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COMPUTATION OF COHOMOLOGY OF VERTEX ALGEBRAS

BOJKO BAKALOV, ALBERTO DE SOLE, AND VICTOR G. KAC

Abstract. We review cohomology theories corresponding to the chiral and
classical operads. The first one is the cohomology theory of vertex algebras,
while the second one is the classical cohomology of Poisson vertex algebras
(PVA), and we construct a spectral sequence relating them. Since in “good”
cases the classical PVA cohomology coincides with the variational PVA co-
homology and there are well-developed methods to compute the latter, this
enables us to compute the cohomology of vertex algebras in many interesting
cases. Finally, we describe a unified approach to integrability through vanish-
ing of the first cohomology, which is applicable to both classical and quantum
systems of Hamiltonian PDEs.
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1. Introduction

In the series of papers [BDSHK18, BDSHK19, BDSK19, BDSKV19, BDSHKV20]
we developed, with our collaborators, the foundations of cohomology theory of
vertex algebras.

This theory is the last in the series of cohomology theories beyond the Lie (su-
per)algebra cohomology, which are intimately related to each other. All these the-
ories are based on a Z-graded Lie superalgebra

WP =
⊕

k≥−1

W k
P , (1.1)
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associated to a linear symmetric operad P , governing the corresponding cohomology
theory. Recall that W k−1

P = P(k)Sk and the Lie superalgebra bracket in WP is
defined in terms of the ◦i-products of the operad P , see [Tam02] or [BDSHK18]
for details. An odd element X ∈ W 1

P satisfying [X,X ] = 0 defines a cohomology
complex (WP , adX), which is a differential graded Lie superalgebra.

The most known example of this construction is the Lie (super)algebra coho-
mology. In this case one takes the well-known operad Hom(V ) (also often denoted
End(V )) for which Hom(V )(n) = Hom(V ⊗n, V ), where V is a fixed vector super-
space, and the action of Sn is by permutation of the factors of V ⊗n. Then WHom(V )

is the Lie superalgebra of polynomial vector fields on V with the Z-grading defined
by letting deg V = −1. Furthermore, odd elements X ∈ W 1

Hom(ΠV ) (where Π stands

for parity reversal) such that [X,X ] = 0, correspond bijectively to Lie superalgebra
structures on V by letting

[a, b] = (−1)p(a)X(a⊗ b) , a, b ∈ V . (1.2)

The complex (WHom(ΠV ), adX) is the Chevalley–Eilenberg cohomology complex of
the Lie superalgebra V with Lie bracket (1.2), with coefficients in the adjoint mod-
ule. Moreover, given a V -module M , we extend the Lie (super)algebra structure

of V to V ⊕ M by taking M to be an abelian ideal, and let X̃ ∈ W 1
Hom(ΠV ⊕ΠM)

be the element corresponding to this Lie (super)algebra structure. Then a natural

reduction of the complex (WHom(ΠV⊕ΠM), ad X̃) produces the Chevalley–Eilenberg
cohomology complex of V with coefficients in M . Note that, while the cohomology
of V with coefficients in the adjoint module inherits the Lie superalgebra structure
from WHom(ΠV ), this is not the case for the reduction.

Returning to vertex algebras, recall that they were defined in [B86] as algebras
with bilinear products labeled by n ∈ Z satisfying the rather complicated Borcherds
identity. According to an equivalent, Poisson-like definition given in [BK03], a
vertex algebra is a module V over the algebra of polynomials F[∂], where ∂ is an
even endomorphism, endowed with the following two structures: a structure of a
Lie conformal (super)algebra (LCA), defined by a λ-bracket

V ⊗ V → V [λ] , a⊗ b 7→ [aλb] , (1.3)

satisfying axioms L1–L3 from Definition 2.1 in Section 2.1, and a bilinear product

V ⊗ V → V , a⊗ b 7→ :ab: ,

called the normally ordered product, which defines a commutative and associative,
up to “quantum corrections,” differential (super)algebra structure on V . These
two operations are related by the Leibniz rule up to a “quantum correction”. See
(2.11)–(2.13) in Section 2.3 for the precise identities.

Since the LCA structure is an important part of a vertex algebra structure, the
first step towards vertex algebra cohomology is the LCA cohomology theory. The
latter was constructed in [BKV99] and in the more general setting of Lie pseudoal-
gebras in [BDAK01]; see also [DSK09] for a correction of [BKV99]. In [DSK13] the
Z-graded Lie superalgebra “governing” the LCA cohomology was introduced, and
in [BDSHK18, Sec. 5.2] the corresponding operad P = Chom(V ) was explicitly
constructed for an F[∂]-module V . The construction goes as follows.

Introduce the vector superspaces

Vn = V [λ1, . . . , λn]/〈∂ + λ1 + · · ·+ λn〉 , (1.4)
2



where all λi have even parity and 〈Φ〉 stands for the image of the endomorphism
Φ. Then

Chom(V )(n) ⊂ Hom(V ⊗n, Vn) (1.5)

consists of all maps Yλ1,...,λn
: V ⊗n → Vn satisfying the sesquilinearity property

(1 ≤ i ≤ n):

Yλ1,...,λn
(v1 ⊗ · · · ⊗ ∂vi ⊗ · · · ⊗ vn) = −λi Yλ1,...,λn

(v1 ⊗ · · · ⊗ vn) . (1.6)

The action of Sn on Chom(V )(n) is given by the simultaneous permutation of the
factors of V ⊗n and the λi’s. The construction of the products ◦i can be found in
[BDSHK18].

Then odd elements X ∈ W 1
Chom(ΠV ) bijectively correspond to skewsymmetric

λ-brackets on V , i.e., maps [· λ ·] : V ⊗2 → V [λ] satisfying the sesquilinearity L1 and
skewsymmetry L2 from Definition 2.1. Explicitly, this bijection is given by

[aλb] = (−1)p(a)Xλ,−λ−∂(a⊗ b) . (1.7)

Finally, the condition [X,X ] = 0 is equivalent to the Jacobi identity L3.
Thus, taking for X ∈ W 1

Chom(ΠV ) the map corresponding to the LCA structure

on V defined by (1.7), we obtain the cohomology complex (WChom(ΠV ), adX), with
the structure of a differential graded Lie superalgebra. The cohomology of this
complex is the LCA cohomology complex with coefficients in the adjoint module.
By a reduction, mentioned above, one defines the LCA cohomology complex of V
with coefficients in an arbitrary V -module.

Yet another important to us example is the variational Poisson vertex (su-
per)algebra (PVA) cohomology [DSK13]. Recall that a PVA V is an F[∂]-module
equipped with a structure of a unital commutative associative differential superal-
gebra with derivation ∂, and a structure of an LCA, such that the Leibniz rule L4
from Definition 2.6 holds. In other words, a PVA is an “approximation” of a vertex
algebra for which all quantum corrections disappear. The variational PVA cohomol-
ogy complex is constructed for a commutative associative differential superalgebra
V by considering the subalgebra

WPV(ΠV) =
∞⊕

k=−1

W k
PV(ΠV) (1.8)

of the Lie superalgebra WChom(ΠV) consisting of all maps Y satisfying, besides
the sesquilinearity property (1.6) and the Sk-invariance, the Leibniz rule (4.20) in
Section 4.4. Then odd elements X ∈ W 1

PV(ΠV) correspond bijectively via (1.7)
to skewsymmetric λ-brackets on V satisfying the Leibniz rule L4. The condition
[X,X ] = 0 is again equivalent to the Jacobi identity L3; hence such X correspond
bijectively to PVA structures on the differential algebra V . The resulting complex
(WPV(ΠV), adX) is called the variational cohomology complex of the PVA V with
coefficients in the adjoint module. As mentioned above, given a V-module M one
defines the corresponding cohomology complex with coefficients in M by a simple
reduction procedure. The corresponding variational PVA cohomology is denoted
by

HPV(V ,M) =

∞⊕

n=0

Hn
PV(V ,M) . (1.9)

Here and for all other cohomology theories, we shift the indices by 1 as compared
with (1.8) in order to keep the traditional notation.
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The goal of the present paper is to develop methods of computation of the
vertex algebra cohomology introduced in [BDSHK18]. This cohomology is defined
by considering the operad Pch(V ), which is a local version of the chiral operad
of Beilinson and Drinfeld [BD04] associated to a D-module on a smooth algebraic
curve X , by considering X = F and the D-module translation equivariant. We
showed that in this case the operad Pch(V ) admits a simple description, which is
an enhancement of the operad Chom(V ) described above.

In order to describe this construction, let O⋆,T
n = F[zi − zj, (zi − zj)

−1]1≤i<j≤n.
For an F[∂]-module V , the superspace Pch(V )(n) is defined as the set of all linear
maps

Y : V ⊗n⊗O⋆,T
n → Vn , v1⊗· · ·⊗ vn⊗ f 7→ Yλ1,...,λn

(v1⊗· · ·⊗ vn⊗ f) , (1.10)

where Vn is defined by (1.4), satisfying the following two sesquilinearity properties
(1 ≤ i ≤ n):

Yλ1,...,λn
(v1⊗· · ·⊗(∂+λi)vi⊗· · ·⊗vn⊗f) = Yλ1,...,λn

(
v1⊗· · ·⊗vn⊗

∂f

∂zi

)
, (1.11)

and

Yλ1,...,λn
(v1⊗· · ·⊗vn⊗(zi−zj)f) =

( ∂

∂λj

−
∂

∂λi

)
Yλ1,...,λn

(v1⊗· · ·⊗vn⊗f) . (1.12)

(Note that (1.11) turns into (1.6) if f = 1.) In [BDSHK18] we also defined the
action of Sn on Pch(V )(n) and the ◦i-products, making Pch(V ) an operad.

As a result, we obtain the Lie superalgebra

Wch(V ) := WPch(V ) =

∞⊕

k=−1

W k
ch(V ) ,

see (1.1). We show in [BDSHK18] that odd elements X ∈ W 1
ch(ΠV ) such that

[X,X ] = 0 correspond bijectively to vertex algebra structures on the F[∂]-module
V such that ∂ is the translation operator. As before, this leads to the vertex algebra
cohomology

Hch(V,M) =

∞⊕

n=0

Hn
ch(V,M) ,

for any V -module M .
Now suppose that the F[∂]-module V is equipped with an increasing Z+-filtration

by F[∂]-submodules. Taking the increasing filtration of O⋆,T
n by the number of

divisors, we obtain an increasing filtration of V ⊗n ⊗ O⋆,T
n . This filtration induces

a decreasing filtration of the superspace Pch(V )(n). The associated graded spaces
grPch(V )(n) form a graded operad.

On the other hand, in [BDSHK18] we introduced the closely related operad
Pcl(V ), which “governs” the Poisson vertex algebra structures on the F[∂]-module
V . The vector superspace Pcl(V )(n) is the space of linear maps (cf. (1.10))

Y : V ⊗n ⊗ G(n) → Vn , v ⊗ Γ 7→ Y Γ(v) , (1.13)

where G(n) is the space spanned by oriented graphs with n vertices, subject to
certain conditions. The corresponding Z-graded Lie superalgebra

Wcl(ΠV ) =

∞⊕

k=−1

W k
cl(ΠV )

4



is such that odd elements X ∈ W 1
cl(ΠV ) with [X,X ] = 0 parametrize the PVA

structures on the F[∂]-module V by (cf. (1.7)):

ab = (−1)p(a)X•→•(a⊗ b) , [aλb] = (−1)p(a)X• •
λ,−λ−∂(a⊗ b) . (1.14)

This leads to the classical PVA cohomology

Hcl(V,M) =

∞⊕

n=0

Hn
cl(V,M) .

Assuming that V is endowed with an increasing Z+-filtration by F[∂]-submodules,
we have a canonical linear map of graded operads

grPch(V ) → Pcl(grV ) . (1.15)

We proved in [BDSHK18] that the map (1.15) is injective. The main result of
[BDSHK19] is that this map is an isomorphism provided that the filtration of V is
induced by a grading by F[∂]-modules. If, in addition, this filtration of V is such
that grV inherits from the vertex algebra structure of V a PVA structure, and grM
inherits a structure of a PVA module over grV (see [Li04, DSK05]), then as a result,
the vertex algebra cohomology is majorized by the classical PVA cohomology (see
Corollary 6.3):

dimHn
ch,b(V,M) ≤ dimHn

cl(V,M) , n ≥ 0 . (1.16)

Unfortunately, we had to replace in (1.16) the space Hn
ch(V,M) by Hn

ch,b(V,M).

It is because we were unable to prove that the decreasing filtration on Pch(V ),
induced by the increasing filtration of V , is exhaustive. However, see Section 5 for
the first step in this direction. Therefore, we have to replace Pch(V ) by Pch,b(V ),
which is the union of all members of the filtatrion of Pch(V ), and introduce the
“bounded” VA cohomology Hch,b(V,M) of the complex (WPch,b(V ), adX).

Fortunately, it is easy to show that

H1
ch(V,M) = H1

ch,b(V,M) , (1.17)

if V is a finitely strongly generated vertex algebra (see Proposition 5.3).
Finally, the obvious inclusion of Lie superalgebras WPV(ΠV) →֒ Wcl(ΠV) induces

an injective map in cohomology, and we prove in [BDSHKV20] that this map is an
isomorphism, provided that as a differential algebra, V is an algebra of differential
polynomials. Hence, we obtain from (1.16) the following inequality:

dimHn
ch,b(V,M) ≤ dimHn

PV(grV, grM) , (1.18)

provided that as a differential algebra, grV is an algebra of differential polynomials.
The inequality (1.18) is used to obtain upper bounds for the dimension of vertex

algebra cohomology, using the results of [BDSK19] on computation of the varia-
tional PVA cohomology. A more powerful tool is a spectral sequence from classical
PVA cohomology to vertex algebra cohomology, constructed in Section 6. It allows
us to obtain in many interesting cases an equality in (1.16), hence in (1.18). Some
of the resulting computations are given by Theorems 6.5, 7.1–7.4, and are stated
in the following theorem.

Theorem 1.1. (a) Let V be a commutative associative superalgebra and M be a
V -module. We can view V as a vertex algebra with ∂ = 0, zero λ-bracket, and
:ab: = ab. Then we have

Hch(V,M) = HHar(V,M) ,
5



where the subscript Har stands for the Harrison cohomology [Har62].
(b) Let V be a vertex algebra freely generated by elements W0 = L,W1, . . . ,Wr,

where L is a Virasoro element and the Wi’s have positive conformal weights.
Then dimHn

ch,b(V ) < ∞ for all n ≥ 0. In particular, this holds for all universal

W -algebras V = W k(g, f) where k 6= −h∨.
(c) The bounded n-th cohomology of the universal Virasoro vertex algebra Virc with

any central charge c is 1-dimensional for n = 0, 2, 3, and 0 otherwise.
(d) The bounded n-th cohomology of the VA of free superfermions is 0 if n ≥ 1 and

it is 1-dimensional for n = 0.
(e) For the VA of free superbosons Bh on a superspace h, one has

Hn
ch,b(Bh) ≃

(
Sn(Πh)

)∗
⊕
(
Sn+1(Πh)

)∗
, n ≥ 0 .

In the conclusion of the paper we explain how to use vanishing of the first PVA
(respectively, VA) cohomology in order to prove integrability of classical (respec-
tively, quantum) Hamiltonian PDEs.

Throughout the paper, the base field F is a field of characteristic 0 and, unless
otherwise specified, all vector spaces, their tensor products and Homs are over F,
and the parity of a vector superspace is denoted by p.

Acknowledgments. This research was partially conducted during the authors’ visits
to MIT and to the University of Rome La Sapienza. The first author was supported
in part by a Simons Foundation grant 584741. The second author was partially
supported by the national PRIN fund n. 2015ZWST2C_001 and the University
funds n. RM116154CB35DFD3 and RM11715C7FB74D63. All three authors were
supported in part by the Bert and Ann Kostant fund.

2. Basic definitions

In this section, we review the definition of a vertex algebra and some related
constructions. We start by a short discussion of Lie conformal (super)algebras,
which are an important part of the vertex algebra structure. We also review Poisson
vertex algebras, which naturally appear as the associated graded of filtered vertex
algebras.

2.1. Lie conformal algebras.

Definition 2.1. Let R be a vector superspace with parity p, endowed with an even
endomorphism ∂. A Lie conformal superalgebra (LCA) structure on R is a bilinear,
parity preserving λ-bracket R⊗R → R[λ], a⊗ b 7→ [aλb], satisfying (a, b, c ∈ R):

L1 [∂aλb] = −λ[aλb], [aλ∂b] = (λ+ ∂)[aλb] (sesquilinearity);
L2 [aλb] = −(−1)p(a)p(b)[b−λ−∂a] (skewsymmetry);
L3 [aλ[bµc]]− (−1)p(a)p(b)[bµ[aλc]] = [[aλb]λ+µc] (Jacobi identity).

A module over the LCA R is a vector superspace M with an even endomorphism ∂,
endowed with a bilinear, parity preserving λ-action R⊗M → M [λ], a⊗m 7→ aλm,
satisfying (a, b ∈ R, m ∈ M):

M1 (∂a)λm = −λaλm, aλ(∂m) = (λ+ ∂)(aλm);
M2 aλ(bµm)− (−1)p(a)p(b)bµ(aλm) = [aλb]λ+µm.

Example 2.2 (Free superboson LCA). Let h be a finite-dimensional superspace,
with parity p, and a supersymmetric nondegenerate bilinear form (·|·). By su-
persymmetry of the form we mean that (a|b) = (−1)p(a)p(b)(b|a) for a, b ∈ h and

6



(a|b) = 0 whenever p(a) 6= p(b). The free superboson LCA corresponding to h is
the F[∂]-module

Rb
h = F[∂]h⊕ FK , where ∂K = 0 , p(K) = 0̄ ,

endowed with the λ-bracket

[aλb] = λ(a|b)K for a, b ∈ h , K central (2.1)

(uniquely extended to Rb
h ⊗Rb

h by the sesquilinearity axioms). In the case when h

is purely even, i.e., p(a) = 0̄ for all a ∈ h, the LCA Rb
h is called the free boson LCA.

Example 2.3 (Free superfermion LCA). Let h be a finite-dimensional superspace,
with parity p, and a super-skewsymmetric nondegenerate bilinear form (·|·). Now
we have (a|b) = −(−1)p(a)p(b)(b|a) for a, b ∈ h and (a|b) = 0 whenever p(a) 6= p(b).
The free superfermion LCA corresponding to h is the F[∂]-module

Rf
h = F[∂]h⊕ FK , where ∂K = 0 , p(K) = 0̄ ,

endowed with the λ-bracket

[aλb] = (a|b)K , K central (2.2)

(uniquely extended to Rf
h ⊗ Rf

h by the sesquilinearity axioms). In the case when

p(a) = 1̄ for all a ∈ h, the LCA Rf
h is called the free fermion LCA.

Example 2.4 (Affine LCA). Let g be a Lie algebra with a nondegenerate invariant
symmetric bilinear form (· | ·). The corresponding affine LCA is the purely even
F[∂]-module

Cur g = F[∂]g⊕ FK , where ∂K = 0 ,

endowed with the λ-bracket given on the generators by

[aλb] = [a, b] + (a|b)λK , a, b ∈ g , K central. (2.3)

Note that, in the special case of an abelian Lie algebra g, we recover the definition
of the free boson: Cur g = Rb

g.

Example 2.5 (Virasoro LCA). The Virasoro LCA is the purely even F[∂]-module

RVir = F[∂]L⊕ FC , where ∂C = 0 ,

endowed with the λ-bracket

[LλL] = (∂ + 2λ)L+
1

12
λ3C , C central. (2.4)

The importance of the last two examples stems from the fact that the LCA’s
Cur g = Cur g/FK for g simple and R̄Vir = RVir/FC exhaust all simple LCA’s,
which are finitely generated as F[∂]-modules [DAK98].

2.2. Poisson vertex algebras.

Definition 2.6. Let V be a commutative associative unital differential superalgebra
with parity p, with an even derivation ∂. A Poisson vertex superalgebra (PVA)
structure on V is an LCA λ-bracket V ⊗ V → V [λ], a ⊗ b 7→ [aλb], such that the
following left Leibniz rule holds (a, b, c ∈ R):

L4 [aλbc] = [aλb]c+ (−1)p(b)p(c)[aλc]b.

By the skewsymmetry L2, this axiom is equivalent to the right Leibniz rule

L4’ [abλc] = (e∂∂λa)[bλc] + (−1)p(a)p(b)(e∂∂λb)[aλc].
7



A module M over the PVA V is a vector superspace endowed with a structure
of a module over the differential algebra V , denoted by a ⊗ m 7→ am, and with a
structure of a module over the LCA V , denoted by a⊗m 7→ aλm, satisfying

M3 aλ(bm) = [aλb]m+ (−1)p(a)p(b)b(aλm);

M3’ (ab)λm = (e∂∂λa)(bλm) + (−1)p(a)p(b)(e∂∂λb)(aλm).

A PVA V is called graded if there is a grading by F[∂]-submodules

V =
⊕

n∈Z+

Vn ,

such that (m,n ∈ Z+)

VmVn ⊂ Vm+n , [VmλVn] ⊂ Vm+n−1[λ] . (2.5)

If V is a graded PVA, a V-module M is graded if there is a grading by F[∂]-
submodules

M =
⊕

n∈Z+

Mn ,

such that (m,n ∈ Z+)

VmMn ⊂ Mm+n , VmλMn ⊂ Mm+n−1[λ] . (2.6)

Note that every PVA is a module over itself, called the adjoint module.

Definition 2.7. A PVA V is called conformal if it has a Virasoro element, namely,
an even element L ∈ V such that the following properties hold:

[LλL] = (∂ + 2λ)L+
c

12
λ3 , for some c ∈ F (the central charge of L) ,

L(0) := [Lλ · ]
∣∣
λ=0

= ∂ ,

and

L(1) :=
d

dλ
[Lλ · ]

∣∣
λ=0

∈ EndV is diagonalizable.

One says that a ∈ V has conformal weight ∆(a) ∈ F if it is an eigenvector of L(1)

of eigenvalue ∆(a).

Given an LCA R, there is the canonical universal PVA V(R) over R, constructed
as follows. As a commutative associative superalgebra it is V(R) = S(R), the
symmetric superalgebra over R, viewed as a vector superspace. The endomorphism
∂ ∈ EndR uniquely extends to an even derivation of the superalgebra V(R). The
λ-bracket on R uniquely extends to a PVA λ-bracket on V(R) by the Leibniz rules
L4 and L4’. Note that the universal PVA V(R) over the LCA R is automatically
graded, by the usual symmetric superalgebra degree.

If C ∈ R is such that ∂C = 0, then C is central in R, i.e., [CλR] = 0. In
fact, C acts as zero on any R-module. Then for any c ∈ F, we have a PVA ideal
V(R)(C − c) ⊂ V(R), and we can consider the quotient PVA

Vc(R) := V(R)/V(R)(C − c) . (2.7)

This PVA is not graded unless c = 0. As a differential superalgebra, Vc(R) is
isomorphic to the symmetric algebra S(R̄), where R̄ := R/FC.

8



2.3. Vertex algebras.

Definition 2.8. A vertex (super)algebra (VA) is a vector superspace V endowed
with an even endomorphism ∂, an even element |0〉 and an integral of λ-bracket,
namely a linear map

V ⊗ V → V [λ] , u⊗ v 7→

∫ λ

dσ[uσv] , (2.8)

such that the following axioms hold (u, v, w ∈ V ):

V1
∫ λ

dσ[|0〉σv] =
∫ λ

dσ[vσ|0〉] = v,

V2
∫ λ

dσ [∂uσv] = −
∫ λ

dσ σ[uσv],
∫ λ

dσ [uσ∂v] =
∫ λ

dσ (∂ + σ)[uσv],

V3
∫ λ

dσ [vσu] = (−1)p(u)p(v)
∫ −λ−∂

dσ [uσv],

V4
∫ λ

dσ
∫ µ

dτ
(
[uσ[vτw]] − (−1)p(u)p(v)[vτ [uσw]]− [[uσv]σ+τw]

)
= 0.

If we do not assume the existence of the unit element |0〉 ∈ V and drop axiom V1,
we call V a non-unital vertex algebra.

See [DSK06, BDSHK18] for a discussion on the meaning of these axioms and
their equivalence to other definitions of vertex algebras.

The λ-bracket of u, v ∈ V is defined as the derivative by λ of their integral of
λ-bracket:

[uλv] =
d

dλ

∫ λ

dσ [uσv] , (2.9)

while their normally ordered product is defined as the constant term:

:uv: =

∫ 0

dσ [uσv] . (2.10)

Note that by differentiating axioms V2-V4 of a VA we recover the axioms L1-L3 of
an LCA. Hence, the λ-bracket of a VA V defines a structure of an LCA on V .

Remark 2.9. One defines n-th products on a VA V for any integer n by the formulas:

u(n)v =
dn

dλn
[uλv]

∣∣
λ=0

, u(−n−1)v =
1

n!
:(∂nu)v: , n ≥ 0 .

Then the definition of a VA can be given equivalently in terms of the identities
satisfied by these products (see [B86, K96, BK03, DSK06]).

The notions of a conformal vertex algebra and conformal weight are defined in
exactly the same way as for PVA; see Definition 2.7.

An equivalent definition of a vertex algebra, which we will also use, is as follows
[BK03]. A non-unital VA is a quadruple (V, ∂, [ λ ], : :), where (V, ∂, [ λ ]) is an LCA,
(V, ∂, : :) is a (noncommutative and nonassociative) differential algebra, such that
the following identities hold:

:ab:− (−1)p(a)p(b):ba: =

∫ 0

−∂

dσ [aσb] , (2.11)

:(:ab:)c:− :a(:bc:): = :
(∫ ∂

0

dσ a
)
[bσc]: + (−1)p(a)p(b):

(∫ ∂

0

dσ b
)
[aσc]: , (2.12)

[aλ:bc:] = :[aλb]c: + (−1)p(a)p(b):b[aλc]: +

∫ λ

0

dσ [aλ[bσc]] . (2.13)

9



Equations (2.11), (2.12) and (2.13) are known as the quasicommutativity, quasias-
sociativity and non-commutative Wick formula, respectively. To get the definition
of a VA, one requires, in addition, the existence of an even vector |0〉 such that
:a|0〉: = a for every a.

Our convention will be that the normally ordered product of more than two
elements is defined inductively from right to left; for example,

:abc: = :a(:bc:): , :abcd: = :a(:b(:cd:):): , etc.

One says that a (non-unital) VA V is strongly generated by an F[∂]-submodule
R ⊂ V if V is the span over F of all elements of the form

:a1a2 · · ·ak: , k ≥ 1 , ai ∈ R

(together with |0〉 when it exists). A VA V is called finitely generated, if it is
strongly generated by a finitely-generated F[∂]-submodule R of V . We say that V
is freely generated by R, if V has a PBW-type basis, i.e., for some ordered F-basis
{ai}i∈I of R, compatible with parity, the ordered monomials

{
:ai1ai2 · · · ais :

∣∣ iℓ ≤ iℓ+1 ∀ℓ, and iℓ < iℓ+1 if p(aiℓ) = 1̄
}

(2.14)

form an F-basis of V . Then any other ordered F-basis of R, compatible with parity,
gives a PBW-type basis of V .

Definition 2.10. A left module M over a vertex algebra V is a Z/2Z-graded F[∂]-
module endowed with an integral of λ-action,

V ⊗M → M [λ] , v ⊗m 7→

∫ λ

dσ (vσm) , (2.15)

preserving the Z/2Z-grading, such that the following axioms hold (u, v ∈ V , m ∈
M):

VM1
∫ λ

dσ |0〉σm = m,

VM2
∫ λ

dσ (∂vσm) = −
∫ λ

dσ σ(vσm),
∫ λ

dσ (vσ∂m) =
∫ λ

dσ (∂ + σ)(vσm),

VM3
∫ λ

dσ
∫ µ

dτ
(
uσ(vτm)− (−1)p(u)p(v)vτ (uσm)− [uσv]σ+τm

)
= 0.

If V is a non-unital vertex algebra, then axiom VM1 is dropped from the definition
of a V -module. In analogy with the notation used for vertex algebras, we call the
normally ordered action :vm: the constant term of the integral of λ-action (2.15):

∫ λ

dσ (vσm) = :vm: +

∫ λ

0

dσ (vσm) , (2.16)

and the λ-action vλm the derivative of (2.16).

2.4. Filtrations. Recall that an increasing (resp. decreasing) Z-filtration of a vec-
tor superspace V by subspaces

· · · ⊂ Fp−1 V ⊂ Fp V ⊂ Fp+1 V ⊂ · · ·
(
resp. · · · ⊃ Fp−1 V ⊃ Fp V ⊃ Fp+1 V ⊃ · · ·

)

(2.17)
is called exhaustive if ⋃

m∈Z

Fm V = V , (2.18)

and is called separated if ⋂

m∈Z

Fm V = {0} . (2.19)
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An increasing Z-filtration is called a Z+-filtration if Fp V = {0} for p < 0.

Remark 2.11. All constructions and arguments of the present paper apply if we
replace Z-filtrations by 1

N
Z-filtrations, where N is a positive integer. For simplicity

of the exposition, we will assume N = 1.

Definition 2.12 ([Li04]). Let V be a (non-unital) VA. An increasing Z+-filtration
(2.17) of V is called good if it is exhaustive, all Fm V are F[∂]-submodules of V ,
and

:(Fm V )(Fn V ): ⊂ Fm+n V , [(Fm V )λ(F
n V )] ⊂ (Fm+n−1 V )[λ] (2.20)

for all m,n ∈ Z+. By a filtered VA, we mean a VA with a given good Z+-filtration.

If V is a filtered VA, a V -module M is called filtered if there is an increasing
exhaustive Z+-filtration by F[∂]-submodules

{0} = F−1 M ⊂ F0 M ⊂ F1 M ⊂ F2 M ⊂ · · · ⊂ M , (2.21)

such that (m,n ∈ Z+)

:(Fm V )(Fn M): ⊂ Fm+n M , (Fm V )λ(F
n M) ⊂ (Fm+n−1 M)[λ] . (2.22)

Proposition 2.13 ([Li04, DSK05]). Let V be a filtered VA. Then the associated
graded

grV =
⊕

n∈Z+

grn V , grn V := Fn V/Fn−1 V ,

has a natural structure of a graded PVA. Namely,

ūv̄ = :uv: + Fm+n−1 V ∈ grm+n V ,

[ūλv̄] = [uλv] + (Fm+n−2 V )[λ] ∈ (grm+n−1 V )[λ] ,

for u ∈ Fm V , v ∈ Fn V such that

ū = u+ Fm−1 V ∈ grm V , v̄ = v + Fn−1 V ∈ grn V .

Proof. Follows immediately from formulas (2.11)–(2.13). �

A similar result holds for modules: if V is a filtered VA and M is a filtered
V -module as in (2.21), then the associated graded

grM =
⊕

n∈Z+

Fn M/Fn−1 M

has a natural structure of a graded module over the graded PVA grV .
We will impose an additional assumption on a good filtration, which will allow

us later to apply the main result of [BDSHK19].

Definition 2.14. A good filtration of a VA V is called very good if V ≃ grV as
F[∂]-modules. Likewise, a filtration (2.21)-(2.22) is called very good if M ≃ grM
as F[∂]-module.

We present here two examples of very good filtrations, which, although trivial,
are still useful.
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Example 2.15. For a VA V , let

F−1 V = F0 V = {0} ⊂ F1 V = F2 V = · · · = V .

This is obviously a very good filtration and grV = gr1 V = V . The λ-bracket
in grV , defined by Proposition 2.13, coincides with the λ-bracket in V , while the
commutative associative product in grV is zero.

Example 2.16. Consider a VA V with the filtration

F−1 V = {0} ⊂ F0 V = F1 V = · · · = V .

This filtration is good if and only if the λ-bracket in V is zero, i.e., V is a com-
mutative vertex algebra. Then the λ-bracket in grV is also zero. Moreover, the
normally ordered product in V is commutative and associative, and it coincides
with the product in grV = gr0 V = V .

Proposition 2.17. Let V be a (non-unital) vertex algebra generated by an F[∂]-
submodule R. Suppose that R is decomposed in a direct sum of F[∂]-submodules

R =
⊕

∆∈Z>0

R∆ . (2.23)

For s ∈ Z, let

Fs V = span
F

{
:a1 · · · ak:

∣∣ ai ∈ R∆i
, ∆1 + · · ·+∆k ≤ s

}
, (2.24)

where the empty product is included and set equal to |0〉 when |0〉 exists. Assume
that [

R∆1λR∆2

]
⊂ (F∆1+∆2−1 V )[λ] for all ∆1 , ∆2 . (2.25)

Then the filtration (2.24) of V is good, and it is very good if V is freely generated
by R.

Proof. It is straightforward to show that {Fs V } is a good filtration, using (2.11)–
(2.13); see [Li04, DSK05]. The filtration is very good if V is freely generated by R,
because the ordered monomials :a1 · · · ak: with ∆1 + · · · + ∆k = s span over F a
complementary F[∂]-submodule to Fs−1 V in Fs V . �

2.5. Universal enveloping VA of an LCA. In analogy to Lie superalgebras,
given an LCA R, one constructs the corresponding universal enveloping (unital)
VA V (R), containing R as an LCA subalgebra. The VA V (R) is defined by the
following universal property: for every LCA homomorphism ϕ : R → V from the
LCA R to a VA V , there is a unique VA homomorphism ϕ̂ : V (R) → V extending
the map ϕ.

It is known that V (R) is freely generated by R (see [K96, BK03, DSK05]). If
we let R = R1 in (2.23), then (2.25) holds and Proposition 2.17 defines a very
good filtration of V (R), which is called the canonical filtration. The corresponding
associated graded PVA, given by Proposition 2.13, is isomorphic to the (graded)
universal PVA over the LCA R:

grV (R) ≃ V(R) . (2.26)

If C ∈ R is such that ∂C = 0, then C is central in R. Hence, for any c ∈ F, we
have a VA ideal :V (R)(C − c|0〉): ⊂ V (R), and we can consider the quotient VA

V c(R) := V (R)/:V (R)(C − c|0〉): . (2.27)
12



The canonical filtration of V (R) descends to a filtration of V c(R), which will also
be called canonical.

Lemma 2.18. Let R be an LCA, C ∈ R be such that ∂C = 0, and c ∈ F. Then:

(a) The canonical filtration of the VA V c(R) is very good.
(b) The associated graded PVA of V c(R) is

grV c(R) ≃ V0(R) ≃ V(R̄) ,

where R̄ = R/FC is the quotient LCA.

Proof. Straightforward from the above discussion. �

3. The chiral and classical operads

In this section, we recall the definitions of the chiral operad Pch(V ) and classical
operad Pcl(V ) from [BDSHK18]. The only new material is in Section 3.8.

3.1. The spaces O⋆T
n . Here and further, we will consider rational functions in

the variables z1, z2, . . . and use the shorthand notation zij = zi − zj . For a fixed
positive integer n, we denote by

OT
n = F[zij]1≤i<j≤n

the algebra of translation invariant polynomials in n variables. Let

O⋆T
n = F[z±1

ij ]1≤i<j≤n

be the localization of OT
n with respect to the diagonals zi = zj for i 6= j. We set

OT
0 = O⋆T

0 = F, and note that OT
1 = O⋆T

1 = F.
We introduce an increasing Z+-filtration of O⋆T

n given by the number of divisors:

F−1 O⋆T
n = {0} ⊂ F0 O⋆T

n = OT
n ⊂ F1 O⋆T

n =
∑

i<j

OT
n [z

−1
ij ] ⊂

· · · ⊂ Fr O⋆T
n =

∑
OT

n [z
−1
i1,j1

, . . . , z−1
ir,jr

] ⊂ · · · ⊂ Fn−1 O⋆T
n = O⋆T

n .

(3.1)

In other words, the elements of Fr O⋆T
n are sums of rational functions with at most

r poles each, not counting multiplicities. The fact that Fn−1 O⋆T
n = O⋆T

n follows
from [BDSHK18, Lemma 8.4].

3.2. The operad Pch(V ). Let V = V0̄ ⊕ V1̄ be a vector superspace endowed with
an even endomorphism ∂. For every i = 1, . . . , n, we will denote by ∂i the action
of ∂ on the i-th factor of the tensor power V ⊗n:

∂iv = v1 ⊗ · · · ⊗ ∂vi ⊗ · · · ⊗ vn for v = v1 ⊗ · · · ⊗ vn ∈ V ⊗n. (3.2)

Recall the superspace Vn given by (1.4). The corresponding to V operad Pch(V ) =
{Pch(n) |n ∈ Z≥0} is defined as follows. The space of n-ary chiral operations Pch(n)
is the set of all linear maps [BDSHK18, (6.11)]

X : V ⊗n ⊗O⋆T
n → Vn ,

v1 ⊗ · · · ⊗ vn ⊗ f(z1, . . . , zn) 7→ Xλ1,...,λn
(v1 ⊗ · · · ⊗ vn ⊗ f)

= Xz1,...,zn
λ1,...,λn

(v1 ⊗ · · · ⊗ vn ⊗ f(z1, . . . , zn)) ,

(3.3)
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satisfying the following two sesquilinearity conditions:

Xλ1,...,λn
(v ⊗ ∂zif) = Xλ1,...,λn

((∂i + λi)v ⊗ f) , (3.4)

Xλ1,...,λn
(v ⊗ zijf) = (∂λj

− ∂λi
)Xλ1,...,λn

(v ⊗ f) . (3.5)

For example, we have:

Pch(0) = HomF(F, V/〈∂〉) ∼= V/∂V, (3.6)

Pch(1) = HomF[∂](V, V [λ0]/〈∂ + λ0〉) ∼= EndF[∂](V ). (3.7)

The Z/2Z-grading of the superspace Pch(n) is induced by that of the vector super-
space V , where O⋆T

n and all variables λi are considered even.
The symmetric group Sn acts on the right on Pch(n) by permuting simultane-

ously the inputs v1, . . . , vn of X , the variables λ1, . . . , λn, and the corresponding
variables z1, . . . , zn in f . Explicitly, for X ∈ Pch(n) and σ ∈ Sn, we have

(Xσ)z1,...,znλ1,...,λn
(v1 ⊗ · · · ⊗ vn ⊗ f(z1, . . . , zn))

= ǫv(σ)X
z1,...,zn
λi1

,...,λin
(vi1 ⊗ · · · ⊗ vin ⊗ f(zi1 , . . . , zin)),

(3.8)

where is = σ−1(s) and the sign ǫv(σ) is given by

ǫv(σ) =
∏

i<j |σ(i)>σ(j)

(−1)p(vi)p(vj) . (3.9)

One can also define compositions of chiral operations, turning Pch(V ) into an op-
erad (see [BDSHK18, (6.25)]).

3.3. Filtration of Pch(V ). Now suppose that V is equipped with an increasing
Z+-filtration of F[∂]-submodules

F−1 V = {0} ⊂ F0 V ⊂ F1 V ⊂ F2 V ⊂ · · · ⊂ V . (3.10)

Since O⋆T
n is also filtered by (3.1), we obtain an increasing Z+-filtration on the

tensor products

Fs
(
V ⊗n ⊗O⋆T

n

)
=

∑

s1+···+sn+p≤s

Fs1 V ⊗ · · · ⊗ Fsn V ⊗ Fp O⋆T
n if s ≥ 0 ,

and Fs(V ⊗n ⊗O⋆T
n ) = {0} if s < 0.

This induces a decreasing Z-filtration of Pch(n), where Fr Pch(n) for r ∈ Z is
defined as the set of all elements X such that

X
(
Fs(V ⊗n ⊗O⋆T

n )
)
⊂ (Fs−r V )[λ1, . . . , λn]/〈∂ + λ1 + · · ·+ λn〉 , s ∈ Z . (3.11)

The composition maps in Pch(V ) and the actions of the symmetric groups are com-
patible with the filtration (3.11) (see [BDSHK18, Proposition 8.9]); hence, Pch(V )
is a filtered operad as in [BDSHK18, Section 3.1]. Then, as usual, the associated
graded spaces are defined by

grr Pch(n) = Fr Pch(n)/Fr+1 Pch(n) , r ∈ Z , (3.12)

and we obtain that grPch(V ) is a graded operad (see [BDSHK18, Section 3.1]).

Lemma 3.1. If the filtration (3.10) of V is exhaustive (see (2.18)), then the fil-
tration of Pch(n) is separated, see (2.19).
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Proof. Note that Fs+n−1(V ⊗n ⊗ O⋆T
n ) ⊃ Fs(V ⊗n) ⊗ O⋆T

n , because Fn−1 O⋆T
n =

O⋆T
n . Since F−1 V = {0}, we see from (3.11) that X(Fs(V ⊗n) ⊗ O⋆T

n ) = 0 for all
X ∈ Fs+n Pch(n). If the filtration of V is exhaustive, then the induced filtration of
V ⊗n is exhaustive. Hence, X = 0 for every X ∈

⋂
r∈Z

Fr Pch(n). �

3.4. n-graphs. For a positive integer n, we define an n-graph as a graph Γ with
n vertices labeled by 1, . . . , n and an arbitrary collection E(Γ) of oriented edges.
We denote by G(n) the collection of all n-graphs without tadpoles, and by G0(n)
the collection of all acyclic n-graphs, i.e., n-graphs that have no cycles (including
tadpoles and multiple edges). For example, G0(1) consists of the graph with a single
vertex labeled 1 and no edges, and G0(2) consists of three graphs:

1 2
,

1 2
,

1 2
.

E(Γ) = ∅ , E(Γ)={1→2} , E(Γ)={2→1}
(3.13)

By convention, we also let G0(0) = G(0) = {∅} be the set consisting of a single
element (the empty graph with 0 vertices).

A graph L will be called a line if its set of edges is of the form {i1 → i2, i2 →
i3, . . . , in−1 → in} where {i1, . . . , in} is a permutation of {1, . . . , n}:

L =
i1 i2

· · ·
in

.
(3.14)

An oriented cycle C in a graph Γ is, by definition, a collection of edges of Γ forming
a closed sequence (possibly with self intersections):

C = {i1 → i2, i2 → i3, . . . , is−1 → is, is → i1} ⊂ E(Γ) . (3.15)

There is a natural (left) action of the symmetric group Sn on the set G(n) of
n-graphs, which preserves the subset G0(n) of acyclic graphs. Given Γ ∈ G(n) and
σ ∈ Sn, we let σ(Γ) be the same graph as Γ, but with the vertex that was labeled
1 relabeled as σ(1), the vertex 2 relabeled as σ(2), and so on up to the vertex
n now relabeled as σ(n). For example, if L0 is the line with edges {1 → 2, 2 →
3, . . . , n− 1 → n} and σ ∈ Sn, then σ(L0) = L is the line (3.14) where ik = σ(k).

Let L(n) ⊂ G(n) be the set of graphs that are disjoint unions of lines. Consider
the vector space FG(n) with the set G(n) as a basis over F. The subspace R(n) ⊂
FG(n) of cycle relations is spanned by the following elements:

(i) all graphs Γ ∈ G(n) containing a cycle;
(ii) all linear combinations of the form

∑
e∈C Γ\e, for all Γ ∈ G(n) and all oriented

cycles C ⊂ E(Γ), where Γ\e ∈ G(n) is the graph obtained from Γ by removing
the edge e and keeping the same set of vertices.

Note that if we reverse an arrow in a graph Γ ∈ G(n), we obtain, modulo cycle
relations, the element −Γ ∈ FG(n).

Lemma 3.2 ([BDSHK19]). The set L(n) spans the space FG(n) modulo the cycle
relations.

In [BDSHK19], we also give an explicit basis of the space FG(n)/R(n), but it
will not be needed here.
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3.5. The operad Pcl(V ). Now we will recall the definition of the classical operad
Pcl(V ) = {Pcl(n) |n ∈ Z≥0} from [BDSHK18, Section 10].

As before, let V = V0̄ ⊕ V1̄ be a vector superspace endowed with an even en-
domorphism ∂. Set Pcl(0) = V/∂V , and for n ≥ 1, define Pcl(n) as the vector
superspace (with the pointwise addition and scalar multiplication) of all maps

Y : G(n)× V ⊗n → Vn , (3.16)

(Γ, v) 7→ Y Γ
λ1,...,λn

(v) , (3.17)

which depend linearly on v ∈ V ⊗n, and satisfy the cycle relations and sesquilinearity
conditions described below. The Z/2Z-grading of the superspace Pcl(n) is induced
by that of the vector superspace V , by letting G(n) and the variables λi be even.

The cycle relations in Pcl(n) state that if an n-graph Γ ∈ G(n) contains an
oriented cycle C ⊂ E(Γ), then:

Y Γ = 0 ,
∑

e∈C

Y Γ\e = 0 . (3.18)

In particular, applying the second cycle relation (3.18) for an oriented cycle of
length 2, we see that changing the orientation of a single edge of Γ ∈ G(n) amounts
to a change of sign of Y Γ.

To write the sesquilinearity conditions, let us first introduce some notation. For
a graph G with a set of vertices labeled by a subset I ⊂ {1, . . . , n}, we let

λG =
∑

i∈I

λi , ∂G =
∑

i∈I

∂i , (3.19)

where as before ∂i denotes the action of ∂ on the i-th factor in V ⊗n (see (3.2)).
Then for every connected component G of Γ ∈ G(n) with a set of vertices I, we
have two sesquilinearity conditions:

(∂λj
− ∂λi

)Y Γ
λ1,...,λn

(v) = 0 for all i, j ∈ I , (3.20)

Y Γ
λ1,...,λn

(
(∂G + λG)v

)
= 0 , v ∈ V ⊗n . (3.21)

The first condition (3.20) means that the polynomial Y Γ
λ1,...,λn

(v) is a function of
the variables λΓα

, where the Γα’s are the connected components of Γ, and not of
the variables λ1, . . . , λn separately.

We have a natural right action of the symmetric group Sn on Pcl(n) by (parity
preserving) linear maps:

(Y σ)Γλ1,...,λn
(v1 ⊗ · · · ⊗ vn) = ǫv(σ)Y

σ(Γ)
λi1

,...,λin
(vi1 ⊗ · · · ⊗ vin) , (3.22)

where is = σ−1(s), the sign ǫv(σ) is given by (3.9), and σ(Γ) is defined in Section 3.4.
In [BDSHK18, (10.11)], we also defined compositions of maps in Pcl(V ), turning it
into an operad.

Remark 3.3. Due to (3.18) and Lemma 3.2, any classical operation Y ∈ Pcl(n) is
uniquely determined by Y Γ for graphs Γ ∈ L(n) that are disjoint unions of lines.

Suppose now that V =
⊕

t∈Z
grt V is graded by F[∂]-submodules, and consider

the induced grading of the tensor powers V ⊗n:

grt V ⊗n =
∑

t1+···+tn=t

grt1 V ⊗ · · · ⊗ grtn V .
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Then Pcl(V ) has a grading defined as follows: Y ∈ grr Pcl(n) if

Y Γ
λ1,...,λn

(grt V ⊗n) ⊂ (grs+t−r V )[λ1, . . . , λn]/〈∂ + λ1 + · · ·+ λn〉 (3.23)

for every graph Γ ∈ G(n) with s edges (see [BDSHK18, Remark 10.2]).

3.6. The isomorphism from grPch(V ) to Pcl(grV ). For a graph Γ ∈ G(n) with
a set of edges E(Γ), we introduce the function

pΓ = pΓ(z1, . . . , zn) =
∏

(i→j)∈E(Γ)

z−1
ij , zij = zi − zj . (3.24)

Note that pΓ ∈ Fs O⋆T
n if Γ has s edges.

Lemma 3.4 ([BDSHK18, Lemma 8.3]). The space Fs O⋆T
n is generated as an OT

n -
module by all partial derivatives of the products pΓ, where Γ runs over the set of
acyclic graphs with n vertices and at most s edges.

Corollary 3.5. A chiral operation Y ∈ Pch(n) is uniquely determined by its values
Y (v⊗pΓ), where v ∈ V ⊗n and Γ runs over the set of connected lines with n vertices.

Proof. This follows from Remark 3.3, Lemma 3.4, and the sesquilinearity conditions
(3.4), (3.5). �

Let V be filtered by F[∂]-submodules as in (3.10). Then we have the filtered
operad Pch(V ) associated to V and the graded operad Pcl(grV ) associated to
the graded superspace grV . These two operads are related as follows [BDSHK18,
Section 8].

Let X ∈ Fr Pch(V )(n) and Γ ∈ G(n) be a graph with s edges. Then for every
v ∈ Ft V ⊗n, we have v ⊗ pΓ ∈ Fs+t(V ⊗n ⊗O⋆T

n ) and, by (3.11),

Xλ1,...,λn
(v ⊗ pΓ) ∈ (Fs+t−r V )[λ1, . . . , λn]/〈∂ + λ1 + · · ·+ λn〉 . (3.25)

We define Y ∈ grr Pcl(grV )(n) by:

Y Γ
λ1,...,λn

(
v + Ft−1 V ⊗n

)
= Xλ1,...,λn

(v ⊗ pΓ)

+ (Fs+t−r−1 V )[λ1, . . . , λn]/〈∂ + λ1 + · · ·+ λn〉

∈ (grs+t−r V )[λ1, . . . , λn]/〈∂ + λ1 + · · ·+ λn〉 .

(3.26)

Clearly, the right-hand side depends only on the image v̄ = v+Ft−1 V ⊗n ∈ grt V ⊗n

and not on the choice of representative v ∈ Ft V ⊗n. We write (3.26) simply as

Y Γ
λ1,...,λn

(v̄) = Xλ1,...,λn
(v ⊗ pΓ) . (3.27)

The fact that Y ∈ grr Pcl(grV )(n) was proved in [BDSHK18, Corollary 8.8].
If X ∈ Fr+1Pch(V )(n), then the right-hand side of (3.26) (or (3.27)) vanishes.

Thus, (3.26) defines a map

grr Pch(V )(n) → grr Pcl(gr V )(n) , X̄ = X + Fr+1 7→ Y . (3.28)

Theorem 3.6 ([BDSHK18, BDSHK19]). The map (3.28) is an injective homo-
morphism of graded operads. If V ≃ grV as F[∂]-modules, then (3.28) is an
isomorphism.
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3.7. The case of trivial filtration and the operad Chom(V ). In this subsec-
tion, V will be an F[∂]-module with the trivial filtration and grading:

F−1 V = {0} ⊂ F0 V = V , grV = gr0 V = V . (3.29)

By (3.11), a chiral operation Y ∈ Pch(n) lies in Fr Pch(n) if and only if [BDSHK18,
(8.4)]:

Y
(
V ⊗n ⊗ Fr−1O⋆T

n

)
= 0 . (3.30)

In this case, the filtration of each Pch(n) is finite:

Pch(n) = F0 Pch(n) ⊃ F1 Pch(n) ⊃ · · · ⊃ Fn−1 Pch(n) ⊃ Fn Pch(n) = {0} . (3.31)

Similarly, by (3.23), a classical operation Y ∈ Pcl(n) is in grr Pcl(n) if and only if
Y Γ = 0 for every graph Γ with n vertices and number of edges 6= r (see [BDSHK18,
(10.9)]). By Remark 3.3, we can restrict to graphs Γ that are disjoint unions of
lines; such graphs have ≤ n− 1 edges. Hence, the grading of Pcl(n) has the form

Pcl(n) =

n−1⊕

r=0

grr Pcl(n) . (3.32)

By Theorem 3.6, we have an isomorphism of graded operads grPch(V ) ≃ Pcl(V ).
Notice that gr0 Pcl(V ) is a suboperad of Pcl(V ), which is also denoted Chom(V )

and is described explicitly in [BDSHK18, Section 5]. We have a surjective morphism
of operads (with kernel F1 Pch(V )) given by evaluation at the function 1:

Pch(V ) → Chom(V ) , Y 7→ Ȳ , Ȳ (v) = Y (v ⊗ 1) for Y ∈ Pch(n) , v ∈ V ⊗n .
(3.33)

Let us review the definition of the operad Chom(V ) = {Chom(n) |n ∈ Z≥0}. Ele-
ments of Chom(n) are called n-ary conformal operations. These are linear maps

Y : V ⊗n → Vn ,

v1 ⊗ · · · ⊗ vn 7→ Yλ1,...,λn
(v1 ⊗ · · · ⊗ vn) ,

(3.34)

satisfying the sesquilinearity conditions:

Yλ1,...,λn
((∂i + λi)v) = 0 , 1 ≤ i ≤ n , v ∈ V ⊗n , (3.35)

where, as before, Vn is defined by (1.4) and ∂i denotes the action of ∂ on the i-th
factor in V ⊗n. The symmetric group Sn acts on the right on Chom(n) by permuting
simultaneously the inputs v1, . . . , vn and the variables λ1, . . . , λn. Explicitly, for
Y ∈ Chom(n) and σ ∈ Sn, we have

(Y σ)λ1,...,λn
(v1 ⊗ · · · ⊗ vn) = ǫv(σ)Yλi1

,...,λin
(vi1 ⊗ · · · ⊗ vin) , (3.36)

where is = σ−1(s) and the sign ǫv(σ) is given by (3.9). The compositions in the
operad Chom(V ) are given by [BDSHK18, (5.6)]. Note that Chom(0) = V/∂V .

3.8. The case ∂ = 0. Finally, let us consider the case when the action of F[∂] on
V is trivial. We take the trivial increasing filtration of V given by (3.29).

Theorem 3.7. Let V be a vector superspace equipped with the trivial F[∂]-action
and filtration. Then, for every n ≥ 1, the filtration of Pch(n) has the form

Pch(n) = Fn−1 Pch(n) ⊃ Fn Pch(n) = {0} .

Hence,

Pch(n) = grn−1 Pch(n) = grPch(n) ≃ Pcl(n) = grn−1 Pcl(n) .
18



Proof. To prove the first claim, we need to check that X(v ⊗ f) = 0 for every
X ∈ Pch(n), v ∈ V ⊗n and f ∈ Fn−2 O⋆T

n . By the sesquilinearity (3.4), (3.5) and
Lemma 3.4, we can assume that f = pΓ where Γ is an acyclic graph with n vertices
and ≤ n − 2 edges. Let G be a connected component of Γ. Then the set I of
vertices of G is a proper subset of {1, . . . , n}. Since, by translation invariance,∑

i∈I ∂zipΓ = 0, the sesquilinearity (3.4) implies

λGXλ1,...,λn
(v ⊗ f) = 0 ∈ V [λ1, . . . , λn]/〈λ1 + · · ·+ λn〉 .

Hence, X(v ⊗ f) = 0.
A similar argument, using (3.21), proves that Pcl(n) = grn−1 Pcl(n). The second

claim of the theorem then follows immediately from the first and from Theorem
3.6. �

In the case when V = F is a 1-dimensional even vector space with a trivial
action of ∂, the operad Pch(V ) is isomorphic to the operad Lie (see [BD04, 3.1.5]
and [BDSHK19, Theorem 5.2]). In order to state the general result, let us recall
the operad Hom(V ), defined by

Hom(V )(n) = Hom(V ⊗n, V ) , n ≥ 0 . (3.37)

Also recall that the tensor product of two operads P1 and P2 is given by

(P1 ⊗ P2)(n) = P1(n)⊗ P2(n) , n ≥ 0 ,

with component-wise compositions and actions of the symmetric groups.

Theorem 3.8. Let V be a vector superspace equipped with the trivial action of
F[∂]. Then

Pch(V ) ≃ Pcl(V ) ≃ Hom(V )⊗ Lie .

Proof. We saw in the proof of Theorem 3.7 that for Y ∈ Pcl(V )(n) we have Y Γ = 0
unless the graph Γ is connected. For a connected graph Γ, the sesquilinearity (3.20)
implies that

Y Γ(v) ∈ V [λ1 + · · ·+ λn]/〈λ1 + · · ·+ λn〉 ≃ V , v ∈ V ⊗n .

Hence, we can view Y as a collection of linear maps Y Γ : V ⊗n → V satisfying the
cycle relations (3.18). In the case V = F, this is a collection of scalars yΓ ∈ F.
Thus, we have a morphism of operads

Hom(V )⊗ Pcl(F) → Pcl(V ) , (3.38)

which sends ϕ ⊗ y to Y given by Y Γ(v) = yΓϕ(v) for v ∈ V ⊗n. Let us check that
the map (3.38) is an isomorphism. By definition we have

Hom(V )(n) = Hom(V ⊗n, V ) ,

Pcl(F)(n) = Hom
(
(FG(n)/R(n))⊗ F⊗n,F

)
,

Pcl(V )(n) = Hom
(
(FG(n)/R(n))⊗ V ⊗n, V

)
.

The fact that (3.38) is an isomorphism follows from the linear algebra isomorphisms

Hom(A1, B1)⊗Hom(A2, B2) ≃ Hom(A1 ⊗A2, B1 ⊗B2) , F⊗A ≃ A .

�
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4. LCA, VA and PVA cohomology

In this section, we review the definitions of the cohomology of Lie conformal
algebras, vertex algebras, and Poisson vertex algebras, following [BDSHK18].

4.1. Lie superalgebra associated to an operad. We start by reviewing a gen-
eral construction, which goes back to [Tam02] (see also [BDSHK18]). For a linear
superoperad P , we define

WP =

∞⊕

k=−1

W k
P , W k

P := P(k + 1)Sk+1 ,

where P(k+1)Sk+1 denotes the subspace of P(k+1) consisting of elements invariant
under the action of the symmetric group. One defines a Lie superalgebra bracket on
WP only in terms of the compositions and symmetric group actions in the operad P
(see [BDSHK18, Theorem 3.4]). We thus get a functor P 7→ WP from the category
of linear superoperads to the category of Z-graded Lie superalgebras.

Remark 4.1. (a) If P is filtered operad with a filtration {Fr P}r∈Z, then WP is a
filtered Lie superalgebra with a filtration Fr W k

P := (Fr P(k + 1))Sk+1 , so that

[Fr W k
P ,F

s W ℓ
P ] ⊂ Fr+s W k+ℓ

P , r, s ∈ Z , k, ℓ ≥ −1 .

(b) If P is graded operad with a grading {grr P}r∈Z, then WP is a graded Lie
superalgebra with a grading grr W k

P := (grr P(k + 1))Sk+1 , so that

[grr W k
P , gr

s W ℓ
P ] ⊂ grr+s W k+ℓ

P , r, s ∈ Z , k, ℓ ≥ −1 .

If X ∈ W 1
P is an odd element such that [X,X ] = 0, then d = adX is a differential

on WP , i.e., d2 = 0 and d is an odd endomorphism of degree 1. We obtain a cochain
complex

CP =

∞⊕

n=0

Cn
P , Cn

P := Wn−1
P = P(n)Sn , d : Cn

P → Cn+1
P .

There are several examples of operads P that give rise to interesting algebraic
structures and corresponding cohomology theories (see [BDSHK18]).

First, consider the operad Hom(V ) given by (3.37), for a fixed vector superspace
V . Then odd elements X ∈ W 1

Hom(V ) such that [X,X ] = 0 correspond bijectively to

Lie superalgebra structures on ΠV , the superspace V with opposite parity p̄ = 1−p,
where p denotes the parity of V . Consequently, an odd element X ∈ W 1

Hom(ΠV )

with [X,X ] = 0 is the same as a Lie superalgebra bracket on V , given explicitly by

[a, b] = (−1)p(a)X(a⊗ b) , a, b ∈ V .

Indeed, one checks that the symmetry of X with respect to p̄ corresponds to the
skewsymmetry of [·, ·] with respect to p, and the Jacobi identity for [·, ·] corresponds
to the identity [X,X ] = 0 (see [NR67, DSK13]). Taking the complex CHom(ΠV ), we
get the Chevalley–Eilenberg cohomology complex of the Lie superalgebra V with
coefficients in the adjoint representation.

The cohomology with coefficients in a module can be obtained by a reduction
procedure as follows. If M is a module over the Lie superalgebra V , then V ⊕M
is a Lie superalgebra such that V is a subalgebra, [M,M ] = 0 and [a,m] = am for
a ∈ V , m ∈ M . For each n ≥ 0, consider the subspaces

Un := Hom(Π(V ⊕M)⊗n,ΠM) ⊂ Cn
Hom(ΠV ⊕ΠM)
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and

Kn := {Y ∈ Un |Y ((ΠV )⊗n) = 0} ⊂ Un .

Using the restriction map, we get a short exact sequence

0 → Kn → Un → Hom((ΠV )⊗n,ΠM) → 0 .

It is easy to check that dUn ⊂ Un+1 and dKn ⊂ Kn+1. Then the cohomology
complex of V with coefficients in M is defined as the subquotient of the complex
CHom(ΠV⊕ΠM), which in degree n is Un/Kn.

4.2. LCA cohomology. Now let V be a vector superspace (with parity p), which
is equipped with an F[∂]-module structure, where ∂ is an even endomorphism of V .
Consider the operad Chom(ΠV ) introduced in [BDSHK18] and briefly discussed in
Section 3.7. Consider the corresponding Lie superalgebra

WChom(ΠV ) =

∞⊕

k=−1

W k
Chom(ΠV ) , W k−1

Chom(ΠV ) = (Chom(ΠV ))(k)Sk .

Then structures of a Lie conformal algebra on V are in bijection with odd elements
X ∈ W 1

Chom(ΠV ) such that [X,X ] = 0, so that

[aλb] = (−1)p(a)Xλ,−λ−∂(a⊗ b) , a, b ∈ V (4.1)

(see [DSK13, Section 4.3]). As a result, we get the cohomology complex of the LCA
V , defined by X , with coefficients in the adjoint module:

CChom(V ) =
∞⊕

n=0

Cn
Chom(ΠV ) , Cn

Chom(V ) := Wn−1
Chom(ΠV ) = (Chom(ΠV ))(n)Sn ,

with the differential d = adX (cf. [BKV99, DSK13]). Given a module M over the
LCA V , the cohomology complex CChom(V,M) of V with coefficients in M can be
obtained by a reduction procedure as in Section 4.1 above. An explicit expression
for the differential d can be found in [DSK13, Eq. (4.19)].

4.3. Vertex algebra cohomology. Let again V be a vector superspace (with
parity p), equipped with an F[∂]-module structure. Consider the operad Pch(ΠV )
and the corresponding Lie superalgebra

Wch(ΠV ) =

∞⊕

k=−1

W k
ch(ΠV ) , W k

ch(ΠV ) = (Pch(ΠV ))(k + 1)Sk+1 .

Then structures of a non-unital vertex algebra on V are in bijection with odd
elements X ∈ W 1

ch(ΠV ) such that [X,X ] = 0 (see [BDSHK18, Theorem 6.12]).
Explicitly, for a, b ∈ V ,

(−1)p(a)Xz,w
λ,−λ−∂

(
a⊗ b⊗

1

w − z

)
=

∫ λ

dσ[aσb] = :ab: +

∫ λ

0

dσ[aσb] . (4.2)

We obtain the cohomology complex of a non-unital VA V with coefficients in V :

Cch(V ) =

∞⊕

n=0

Cn
ch(V ) , Cn

ch(V ) := Wn−1
ch (ΠV ) = Pch(ΠV )(n)Sn , (4.3)

with the differential d = adX . Given a module M over V , the cohomology complex
Cch(V,M) of V with coefficients in M is given by a reduction procedure as in Section
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4.1. Namely, we consider the non-unital VA V ⊕ M such that V is a subalgebra
and

∫ λ

dσ[aσm] =

∫ λ

dσ(aσm) ,

∫ λ

dσ[mσm
′] = 0 , a ∈ V , m,m′ ∈ M .

Then Cn
ch(V,M) = Un/Kn, where Un and Kn are defined as in Section 4.1.

Now we will give a more explicit description of this complex. Elements of
Cn

ch(V,M) are linear maps

Y : V ⊗n ⊗O⋆T
n → M [λ1, . . . , λn]/〈∂ + λ1 + · · ·+ λn〉 , (4.4)

satisfying the sesquilinearity conditions (v1, . . . , vn ∈ V , f ∈ O⋆T
n , i = 1, . . . , n):

Yλ1,...,λn
(v1 ⊗ · · · ⊗ (∂ + λi)vi ⊗ · · · ⊗ vn ⊗ f) = Yλ1,...,λn

(
v1 ⊗ · · · ⊗ vn ⊗

∂f

∂zi

)
,

Yλ1,...,λn
(v1 ⊗ · · · ⊗ vn ⊗ zijf) =

( ∂

∂λj

−
∂

∂λi

)
Yλ1,...,λn

(v1 ⊗ · · · ⊗ vn ⊗ f) ,

(4.5)
and the symmetry conditions (1 ≤ i < n):

Y λ1,...,λi,λi+1,...,λn
(v1 ⊗ · · · ⊗ vi ⊗ vi+1 ⊗ · · · ⊗ vn ⊗ f(z1, . . . , zi, zi+1, . . . , zn))

= (−1)p̄(vi)p̄(vi+1)Yλ1,...,λi+1,λi,...,λn
(v1 ⊗ · · · ⊗ vi+1 ⊗ vi ⊗ · · ·

· · · ⊗ vn ⊗ f(z1, . . . , zi+1, zi, . . . , zn)) .

(4.6)

In (4.6), as before, p̄ = 1− p is the opposite parity to the parity p of V . (Note that
when V is purely even, p̄ = 1̄ and (4.6) becomes a skewsymmetry condition on Y .)

We can describe explicitly the spaces Cn
ch(V,M) for n = 0, 1, 2. We have

C0
ch(V,M) = M/∂M , C1

ch(V,M) = HomF[∂](V,M) .

For n = 2 we can identify M [λ1, λ2]/〈∂+λ1+λ2〉 ≃ M [λ1]. Moreover, a map Y as
in (4.4) is uniquely determined by its value on the function z−1

21 . Indeed, its values
on the negative powers of z21 are determined by the first sesquilinearity condition
(4.5), while its values on the non-negative powers of z21 are determined by the
second sesquilinearity condition (4.5). Hence, as in (4.2), C2

ch(V,M) can then be
identified with the superspace of integrals of λ-brackets

V ⊗ V → M [λ] , u⊗ v 7→

∫ λ

dσ[uσv]
Y ,

satisfying axiom V2 of sesquilinearity under integration, and axiom V3 of symmetry
under integration with respect to the opposite parity p̄ = 1− p.

Next, we write explicitly the differential d of the cohomology complex Cch(V,M)
(see [BDSHK18, Eq. (7.6)]). In order to do so, we need to introduce some notation.
For every n ∈ Z, we define the map V ⊗ V → V [λ], that sends u⊗ v to

∇n
λ[uλv] =





dn+1

dλn+1

∫ λ

dσ[uσv] for n ≥ 0 ,

1

m!

∫ λ

dσ[(∂ + λ)muσv] for n = −m− 1 ≤ −1

. (4.7)
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In particular, for n = −1 we recover the integral of λ-bracket (2.8) defining the
vertex algebra V . The reason for this notation is that, as it can be easily checked,

d

dλ

(
∇n

λ[uλv]
)
= ∇n+1

λ [uλv] for all n ∈ Z . (4.8)

Likewise, for u ∈ V , v ∈ M and n ∈ Z, we let

∇n
λ(uλv) =





dn+1

dλn+1

∫ λ

dσ(uσv) for n ≥ 0 ,

1

m!

∫ λ

dσ((∂ + λ)muσv) for n = −m− 1 ≤ −1

. (4.9)

In particular, for n = −1 we recover the integral of λ-action (2.15) defining the V -
module M . We also extend the notations (4.7)–(4.9) by linearity, thus making sense
of P (∇λ)[uλv] and P (∇λ)(vλm), where P (z) ∈ F[z, z−1] is an arbitrary Laurent
polynomial in z.

Next, let h(z0, . . . , zk) ∈ O⋆T
k+1. For every i = 0, . . . , k, we decompose h as

h(z0, . . . , zk) = fi(z0,
i

ˇ. . ., zk)gi(z0, . . . , zk) , (4.10)

where fi ∈ O⋆T
k , gi ∈ O⋆T

k+1, and gi may have poles only at zj = zi for j 6= i. Here

and further, the notation
i

ˇ. . . means that the i-th term is omitted. Moreover, for
every 0 ≤ i < j ≤ k, we also decompose h as

h(z0, . . . , zk) = fij(zij)gij(z0, . . . , zk) , (4.11)

where fij ∈ F[zij , z
−1
ij ] = O⋆T

2 , gij ∈ O⋆T
k+1, and gij has no poles at zi = zj .

Using the notations (4.7)–(4.9) and the decompositions (4.10)–(4.11), we can
write the cohomology differential of Y ∈ Ck

ch(V,M), as follows:

(dY )z0,...,zkλ0,...,λk
(v0 ⊗ · · · ⊗ vk ⊗ h(z0, . . . , zk))

=

k∑

i=0

(−1)γigi(−∇λ0
, . . . ,−∇λk

) viλi
Y z0,

i

.̌..,zk

λ0,
i

.̌..,λk

(v0⊗
i

ˇ. . . ⊗vk ⊗ fi(z0,
i

ˇ. . ., zk))

+
∑

0≤i<j≤k

(−1)γijY w,z0,
i

.̌..
j

.̌..,zk

λi+λj ,λ0,
i

.̌..
j

.̌..,λk

(
e−∂zi

∂λi

(

fij(−∇λi
)[viλi

vj ]⊗ v0⊗
i

ˇ. . .
j

ˇ. . . ⊗vk ⊗ gij(z0, . . . , zk)
)∣∣

zi=zj=w

)
,

(4.12)

where γi, γi,j ∈ Z/2Z are given by

γi = p̄(vi)(p̄(Y ) + p̄(v0) + · · ·+ p̄(vi−1) + 1) + 1 ,

γij = p̄(Y ) + p̄(vi)(p̄(v0) + · · ·+ p̄(vi−1) + 1) + p̄(vj)(p̄(v0)+
i

ˇ. . . +p̄(vj−1)) .

(4.13)

A few words of explanation are needed to clarify the meaning of formula (4.12).
By construction, the rational function gi(z0, . . . , zk) has no poles at zj = zℓ for j
and ℓ 6= i. If it has a pole at zi = zj for some j 6= i, we expand the operator

gi(−∇λ0
, . . . ,−∇λk

)
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by geometric expansion in the domain |zi| > |zj|. We then get non-negative powers

∇n
λj

= dn

dλn
j

which, when applied to the polynomial

Y z0,
i

.̌..,zk

λ0,
i

.̌..,λk

(v0⊗
i

ˇ. . . ⊗vk ⊗ fi(z0,
i

ˇ. . ., zk)) ,

vanish for n large enough. As a result, we are left with a Laurent polynomial of
∇λi

which can be “applied” to

viλi
Y (· · · )

according to the notation (4.9).
As for the second summand in (4.12), when we expand the exponential e−∂zi

∂λi

and apply it to the polynomial

fij(−∇λi
)[viλi

vj ]

(defined by notation (4.7)), only finitely many (non-negative) powers of −∂zi∂λi

survive. We can then apply the resulting operator to the rational function

gij(z0, . . . , zk) .

Evaluating, as instructed, at zi = zj = w, we get a function in O⋆T
k in the variables

w, z0,
i

ˇ. . .
j

ˇ. . ., zk (on which we evaluate the map Y ).
It is straightforward to check that the differential d defined by formula (4.12)

coincides with the differential given by [BDSHK18, Eq. (7.6)].

Definition 4.2. Given a module M over the VA V , the cohomology of the complex
(Cch(V,M), d) is called the VA cohomology of V with coefficients in M :

Hch(V,M) =
∞⊕

n=0

Hn
ch(V,M) . (4.14)

The following lemma will be useful for computing the cohomology of a vertex
algebra.

Lemma 4.3. Let V be a VA, M be a V -module, and R be an LCA, which is a
subalgebra of the LCA (V, [ λ ]). Then the restriction map

Y ∈ Cn
ch(V,M) 7→ Y |R⊗n⊗1 ∈ Cn

Chom(R,M) (4.15)

is a morphism of complexes, i.e., it commutes with the differentials.

Proof. The special case R = V follows from (3.33). In general, the claim can be
deduced directly from the definitions. Indeed, formula (4.12) for the differential in
Cn

ch(V,M), evaluated at the function h(z0, . . . , zk) = 1, reduces to formula [DSK13,
Eq. (4.19)] for the differential in Cn

Chom(R,M). �

Now we review the description of the low degree cohomology Hn
ch(V,M) (n =

0, 1, 2) in terms of Casimirs, derivations, and extensions [BDSHK18]. We denote by∫
: M → M/∂M the canonical projection, and say that

∫
m ∈ M/∂M is a Casimir

element if V−∂m = 0. Let Cas(V,M) ⊂ M/∂M be the space of Casimir elements.
Note that

Cas(V, V ) =
{∫

a ∈ V/∂V
∣∣ a(0)V = 0

}
.
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A derivation from V to M is an F[∂]-module homomorphism D : V → M such
that

D
(∫ λ

dσ[uσv]
)
= (−1)p(D)p(u)

∫ λ

dσ(uσD(v))

+ (−1)(p(D)+p(u))p(v)

∫ −λ−∂

dσ(vσD(u)) .

(4.16)

Note that D ∈ C1
ch(V,M) is closed if and only if D is a derivation V → M , and it

is exact if and only if this derivation is inner, i.e. it has the form

D∫
m
(a) = (−1)1+p(m)p(a)a−∂m for some

∫
m ∈ M/∂M . (4.17)

In the special case when V = M , we have the usual definition of a derivation and
an inner derivation of the vertex algebra V (an inner derivation is of the form v(0)
for some v ∈ V ). Denote by Der(V,M) the space of derivations from V to M , and
by Inder(V,M) the subspace of inner derivations.

Proposition 4.4 ([BDSHK18]). Let V be a (non-unital) VA and let M be a V -
module. Then:

(a) H0
ch(V,M) = Cas(V,M).

(b) H1
ch(V,M) = Der(V,M)/ Inder(V,M).

(c) H2
ch(V,M) is the space of isomorphism classes of F[∂]-split extensions of the

vertex algebra V by the V -module M , where M is viewed as a non-unital vertex
algebra with zero integral of λ-bracket.

4.4. Classical and variational PVA cohomology. Let V be a vector super-
space (with parity p) equipped with an F[∂]-module structure. Consider the operad
Pcl(ΠV) and the corresponding Lie superalgebra

Wcl(ΠV) =
∞⊕

k=−1

W k
cl(ΠV) , W k

cl(ΠV) := W k
Pcl(ΠV) = Pcl(ΠV)(k + 1)Sk+1 .

The structures of Poisson vertex algebra on V are in bijection with odd elements
X ∈ W 1

cl(ΠV) such that [X,X ] = 0 (see [BDSHK18, Theorem 10.7]). Explicitly,
for a, b ∈ V , we have

ab = (−1)p(a)X•−→•(a⊗ b) , [aλb] = (−1)p(a)X• •
λ,−λ−∂(a⊗ b) . (4.18)

As before, we get a complex

Ccl(V) =
∞⊕

n=0

Cn
cl(V) , Cn

cl(V) := Wn−1
cl (ΠV) , (4.19)

with the differential d = adX . The cohomology of this complex will be called the
classical PVA cohomology of the PVA V with coefficients in V , and will be denoted
by

Hcl(V) =
∞⊕

n=0

Hn
cl(V) .

For the rest of this subsection, we consider V with its trivial grading: V = gr0 V .
Then, by (3.23), Y ∈ Pcl(n) is in grp Pcl(n) if and only if Y Γ = 0 for every graph
Γ with n vertices and number of edges 6= p (see [BDSHK18, (10.9)]). Since the
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symmetric group Sn preserves this grading, the Lie superalgebra Wcl(ΠV) and the
complex Ccl(V) are graded by:

W k
cl(ΠV) =

k⊕

p=0

grp W k
cl(ΠV) , Cn

cl(V) =
n−1⊕

p=0

grp Cn
cl(V)

(see (3.32)). We can write our element X ∈ W 1
cl(ΠV) as X = X0 + X1 with

Xr ∈ grr W 1
cl(ΠV) (r = 0, 1), so that

(X0)
•−→• = 0 , (X0)

• • = X• • , (X1)
•−→• = X•−→• , (X1)

• • = 0 .

Comparing terms of different degrees in the equation [X,X ] = 0, we obtain

[X0, X0] = [X0, X1] = [X1, X1] = 0 .

Hence, d = adX is a sum of two anticommuting differentials dr = adXr
(r = 0, 1),

such that dr : grp Cn
cl(V) → grp+r Cn+1

cl (V).
Note that gr0 Pcl(ΠV) = Chom(ΠV) and the Lie superalgebra WChom(ΠV) from

Section 4.2 coincides with the subalgebra gr0 Wcl(ΠV) of Wcl(ΠV). The odd element
X0 ∈ W 1

Chom(ΠV) corresponds to the λ-bracket in V considered as an LCA (see
(4.1)). Then d0 gives the differential in the LCA cohomology complex CChom(V) =
gr0 Ccl(V).

Since d1 is a derivation of the Lie superalgebra Wcl(ΠV), its kernel is a subalge-
bra. Hence, the subspace

WPV(ΠV) := gr0 Wcl(ΠV) ∩Ker d1

is a subalgebra of WChom(ΠV). As X0 ∈ W 1
PV(ΠV), the differential d0 restricts to

WPV(ΠV) and gives a complex

CPV(V) =
∞⊕

n=0

Cn
PV(V) , Cn

PV(V) := Wn−1
PV (ΠV) ,

called the variational PVA complex of V (see [DSK13]). The cohomology of this
complex is called the variational PVA cohomology of the PVA V with coefficients
in V , and is denoted by

HPV(V) =
∞⊕

n=0

Hn
PV(V) .

Explicitly, by [BDSHK18, Lemma 11.3(c)], Cn
PV(V) can be described as the sub-

space of Cn
Chom(V) consisting of cochains Y that satisfy the following Leibniz rules:

Yλ1,...,λn
(a1 ⊗ · · · ⊗ bici ⊗ · · · ⊗ an)

= (−1)p(bi)(p̄(Y )+p̄(a1)+···+p̄(ai−1))(e∂∂λi bi)Yλ1,...,λn
(a1 ⊗ · · · ⊗ ci ⊗ · · · ⊗ an)

(4.20)

+ (−1)p(ci)(p(bi)+p̄(Y )+p̄(a1)+···+p̄(ai−1))(e∂∂λi ci)Yλ1,...,λn
(a1 ⊗ · · · ⊗ bi ⊗ · · · ⊗ an) ,

for all i = 1, . . . , n and aj , bi, ci ∈ V .

Remark 4.5. As a consequence of the Leibniz rules (4.20) and the sesquilinearity
(3.35), any cochain Y ∈ Cn

PV(V) vanishes whenever one of its arguments is the unit
1 ∈ V (see [BDSK19, Lemma 3.7(b)]).

The relationship between the classical and variational PVA cohomology is clari-
fied in the next theorem.
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Theorem 4.6. Let V be a Poisson vertex algebra.

(a) The embedding of complexes (CPV(V), d0) →֒ (Ccl(V), d) induces an injective
homomorphism of cohomology

HPV(V) →֒ Hcl(V) . (4.21)

(b) Suppose that V, as a differential superalgebra, is isomorphic to an algebra of
differential polynomials in finitely many even or odd variables. Then the map
(4.21) is an isomorphism.

Proof. Part (a) is [BDSHK18, Theorem 11.4], while part (b) is in [BDSHKV20]. �

In the case of a universal PVA over an LCA, the variational PVA cohomology is
related to the LCA cohomology as follows (see [BDSK19, Theorem 3.13]).

Proposition 4.7. Let R be an LCA and V = V(R) be its universal PVA.

(a) If M is a V-module, then M is also an R-module by restriction, and the
restriction of cochains

Y ∈ Cn
PV(V ,M) 7→ Y |R⊗n ∈ Cn

Chom(R,M) (4.22)

gives an isomorphism of complexes CPV(V ,M) ≃ CChom(R,M).
(b) Let C ∈ R be such that ∂C = 0, let R̄ = R/FC be the quotient LCA, and

Vc := Vc(R) = V(R)/V(R)(C − c) be the corresponding quotient PVA. Then
every Vc-module M is an R̄-module by restriction, we have natural embeddings
of complexes

CChom(R̄,M) ⊂ CChom(R,M) , CPV(V
c,M) ⊂ CPV(V ,M) , (4.23)

and the isomorphism (4.22) restricts to an isomorphism of complexes

CChom(R̄,M) ≃ CPV(V
c,M) . (4.24)

Proof. This is, in a different notation, the same as [BDSK19, Theorem 3.13]. �

5. Wick-type formula for VA cocycles and bounded VA cohomology

5.1. Wick-type formula. The main result of this section is a Wick-type formula
for cocycles in Cch(V,M). This formula should help in proving that a good filtration
on V induces an exhaustive filtration in cohomology.

Proposition 5.1. Let V be a vertex algebra, M be a V -module, and Y ∈ Cn
ch(V,M)

be a closed element of the VA cohomology complex: dY = 0. Then, the following
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Wick-type formula holds, for every ℓ = 1, . . . , n

Yλ0,...λℓ−1+λℓ...,λn

(
v0 ⊗ · · · ⊗ :vℓ−1vℓ:⊗ · · · ⊗ vn ⊗ 1

)

= (−1)pℓ−1p̄−1,ℓ−1 :(e∂∂λℓ−1 vℓ−1)Yλ0,...λℓ−1+λℓ...,λn
(v0⊗

ℓ−1
ˇ. . . ⊗vn ⊗ 1):

+ (−1)pℓ(1+p̄−1,ℓ):(e∂∂λℓ vℓ)Yλ0,...λℓ−1+λℓ...,λn
(v0⊗

ℓ

ˇ. . . ⊗vn ⊗ 1):

+ (−1)pℓ−1p̄−1,ℓ−1

∫ λℓ−1

0

dσ vℓ−1σYλ0,...λℓ−1+λℓ−σ...,λn
(v0⊗

ℓ−1
ˇ. . . ⊗vn ⊗ 1)

+ (−1)pℓ(1+p̄−1,ℓ)

∫ λℓ

0

dσ vℓσYλ0,...λℓ−1+λℓ−σ...,λn
(v0⊗

ℓ

ˇ. . . ⊗vn ⊗ 1)

−
n∑

i=0
i6=ℓ−1,ℓ

(−1)pip̄−1,i+p̄i,ℓ−1viλi
Y z0,

i

.̌..,zn

λ0,
i

.̌..,λn

(
v0⊗

i

ˇ. . . ⊗vn ⊗
1

zℓ−1 − zℓ

)

−

∫ λℓ−1

0

dσ Yλ0,...λℓ−1+λℓ...,λn

(
v0 ⊗ · · · ⊗ [vℓ−1σvℓ]⊗ · · · ⊗ vn ⊗ 1

)

−
n∑

i=0
i6=ℓ−1,ℓ

(−1)pℓ−1(1+p̄i,ℓ−1)Y z0,
ℓ−1

.̌.. ,zn

λ0,...λi+λℓ−1

ℓ−1

.̌.. ,λn

(
v0 ⊗ · · · [viλi

vℓ−1]
ℓ−1
ˇ. . . ⊗vn ⊗

1

zi − zℓ

)

+
n∑

i=0
i6=ℓ−1,ℓ

(−1)pℓp̄i,ℓY z0,
ℓ

.̌..,zn

λ0,...λi+λℓ

ℓ

.̌..,λn

(
v0 ⊗ · · · [viλi

vℓ]
ℓ

ˇ. . . ⊗vn ⊗
1

zℓ−1 − zi

)

+
∑

0≤i<j≤n

i,j 6∈{ℓ−1,ℓ}

(−1)pj p̄i,j+p̄j−1,ℓ−1Y z0,
j

.̌..,zn

λ0,...λi+λj

j

.̌..,λn

(
v0 ⊗ · · · [viλi

vj ]
j

ˇ. . . ⊗vn ⊗
1

zℓ−1 − zℓ

)
,

(5.1)

where we let pi = p(vi), p̄i = p̄(vi), and

p̄i,j =





p̄(Y ) + p̄(v0) + · · ·+ p̄(vj) if i = −1 and j ≥ 0 ,

p̄(vi+1) + · · ·+ p̄(vj) if 0 ≤ i ≤ j ,

p̄(vj+1) + · · ·+ p̄(vi) if 0 ≤ j ≤ i .

(5.2)

Proof. The function h = (zℓ−1 − zℓ)
−1 decomposes as in (4.10) with

fi = h , gi = 1 for i 6= ℓ− 1, ℓ ,

fi = 1 , gi = h for i ∈ {ℓ− 1, ℓ} ,

and as in (4.11) with

fij = 1 , gij = h for (i, j) 6= (ℓ− 1, ℓ) ,

fℓ−1,ℓ = h , gℓ−1,ℓ = 1 .
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Hence, if we evaluate equation (4.12) at h, we get

(dY )z0,...,zkλ0,...,λk

(
v0 ⊗ · · · ⊗ vk ⊗

1

zℓ−1 − zℓ

)

= (−1)γℓ−1(∇λℓ
−∇λℓ−1

)−1vℓ−1λℓ−1
Y
λ0,

ℓ−1

.̌.. ,λn

(v0⊗
ℓ−1
ˇ. . . ⊗vn ⊗ 1)

+ (−1)γℓ(∇λℓ
−∇λℓ−1

)−1vℓλℓ
Y
λ0,

ℓ

.̌..,λn

(v0⊗
ℓ

ˇ. . . ⊗vn ⊗ 1)

+
∑

i6=ℓ−1,ℓ

(−1)γiviλi
Y z0,

i

.̌..,zn

λ0,
i

.̌..,λn

(
v0⊗

i

ˇ. . . ⊗vn ⊗
1

zℓ−1 − zℓ

)

+ (−1)γℓ−1,ℓY
λℓ−1+λℓ,λ0,

ℓ−1,ℓ

.̌.. ,λn

(
(−∇λℓ−1

)−1[vℓ−1λℓ−1
vℓ]⊗ v0⊗

ℓ−1,ℓ

ˇ. . . ⊗vn ⊗ 1
)

+
∑

0≤i<j≤n
(i,j) 6=(ℓ−1,ℓ)

(−1)γijY w,z0,
i

.̌..
j

.̌..,zn

λi+λj ,λ0,
i

.̌..
j

.̌..,λn

(
e−∂zi

∂λi

(

[viλi
vj ]⊗ v0⊗

i

ˇ. . .
j

ˇ. . . ⊗vn ⊗
1

zℓ−1 − zℓ

)∣∣∣
zi=zj=w

)
,

(5.3)

where γi, γi,j ∈ Z/2Z are as in (4.13). According to the explanation of equation
(4.12), in the first term in the right-hand side of (5.3) we need to expand (∇λℓ

−
∇λℓ−1

)−1 by geometric series in non-negative powers of ∇λℓ
and use the notation

(4.9). Recalling (2.16), we get as a result

− (−1)γℓ−1

∞∑

n=0

1

n!

∫ λℓ−1

dσ ((∂ + λℓ−1)
nvℓ−1)σ

( ∂n

∂λℓ
nY

λ0,
ℓ−1

.̌.. ,λn

(v0⊗
ℓ−1
ˇ. . . ⊗vn ⊗ 1)

)

= −(−1)γℓ−1 :(e∂∂λℓ−1 vℓ−1)Yλ0,...λℓ−1+λℓ...,λn
(v0⊗

ℓ−1
ˇ. . . ⊗vn ⊗ 1):

− (−1)γℓ−1

∫ λℓ−1

0

dσ vℓ−1σYλ0,...λℓ−1+λℓ−σ...,λn
(v0⊗

ℓ−1
ˇ. . . ⊗vn ⊗ 1) .

(5.4)

Similarly, the second term in the right-hand side of (5.3) is

(−1)γℓ :(e∂∂λℓ vℓ)Yλ0,...λℓ−1+λℓ...,λn
(v0⊗

ℓ

ˇ. . . ⊗vn ⊗ 1):

+ (−1)γℓ

∫ λℓ

0

dσ vℓσYλ0,...λℓ−1+λℓ−σ...,λn
(v0⊗

ℓ

ˇ. . . ⊗vn ⊗ 1) .
(5.5)

The fourth term is, by the notation (4.9) and the symmetry conditions (4.6),

− (−1)p̄(Y )+p̄(v0)+···+p̄(vℓ−1)Yλ0,...λℓ−1+λℓ...,λn

(
v0 ⊗ · · · :vℓ−1vℓ: · · · ⊗ vn ⊗ 1

)

− (−1)p̄(Y )+p̄(v0)+···+p̄(vℓ−1)

∫ λℓ−1

0

dσ Yλ0,...λℓ−1+λℓ...,λn

(
v0 ⊗ · · · [vℓ−1σvℓ] · · · ⊗ vn ⊗ 1

)
.

(5.6)

Let us consider now the last, fifth term of the right-hand side of (5.3). We sum
over all pairs of indices i, j such that 1 ≤ i < j ≤ n and (i, j) 6= (ℓ − 1, ℓ). The
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terms with i < j = ℓ− 1 give

ℓ−2∑

i=0

(−1)p̄(Y )+p̄(v0)+···+p̄(vi)+p̄(vℓ−1)(p̄(vi+1)+···+p̄(vℓ−2))

× Y z0,
ℓ−1

.̌.. ,zn

λ0,...λi+λℓ−1

ℓ−1

.̌.. ,λn

(
v0 ⊗ · · · [viλi

vℓ−1]
ℓ−1
ˇ. . . ⊗vn ⊗

1

zi − zℓ

)
.

(5.7)

The terms with i < ℓ− 1, j = ℓ give

ℓ−2∑

i=0

(−1)p̄(Y )+p̄(v0)+···+p̄(vi)+p̄(vℓ)(p̄(vi+1)+···+p̄(vℓ−1))

× Y z0,
ℓ

.̌..,zn

λ0,...λi+λℓ

ℓ

.̌..,λn

(
v0 ⊗ · · · [viλi

vℓ]
ℓ

ˇ. . . ⊗vn ⊗
1

zℓ−1 − zi

)
.

(5.8)

The terms with i = ℓ− 1, j > ℓ give, by the first sesquilinearity condition (4.5) and
the skewsymmetry of the λ-bracket,

n∑

j=ℓ+1

(−1)p̄(Y )+p̄(v0)+
ℓ−1

.̌.. +p̄(vj)+p̄(vℓ−1)(p̄(vℓ)+···+p̄(vj))

× Y z0,
ℓ−1

.̌.. ,zn

λ0,
ℓ−1

.̌.. λℓ−1+λj ...,λn

(
v0⊗

ℓ−1
ˇ. . . [vjλj

vℓ−1] · · · ⊗ vn ⊗
1

zj − zℓ

)
.

(5.9)

Similarly, the terms with i = ℓ < j give
n∑

j=ℓ+1

(−1)p̄(Y )+p̄(v0)+
ℓ

.̌..+p̄(vj)+p̄(vℓ)(p̄(vℓ+1)+···+p̄(vj))

× Y z0,
ℓ

.̌..,zn

λ0,
ℓ

.̌..λℓ+λj ...,λn

(
v0⊗

ℓ

ˇ. . . [vjλj
vℓ] · · · ⊗ vn ⊗

1

zℓ−1 − zj

)
.

(5.10)

Finally, the terms with {i, j} ∩ {ℓ− 1, ℓ} = ∅ give

∑

0≤i<j≤n

i,j 6∈{ℓ−1,ℓ}

(−1)γijY w,z0,
i

.̌..
j

.̌..,zn

λi+λj ,λ0,
i

.̌..
j

.̌..,λn

(
[viλi

vj ]⊗ v0⊗
i

ˇ. . .
j

ˇ. . . ⊗vn ⊗
1

zℓ−1 − zℓ

)
,

(5.11)

Combining all equations (5.3)–(5.11), and using the assumption that dY = 0, we
obtain (5.1). �

We can compute more explicitly formula (5.1) for n = 1 and 2. First, if Y is a
closed element in C1

ch(V,M) = HomF[∂](V,M), we get:

Y (:ab:) = (−1)p(a)p̄(Y ):aY (b): + (−1)p(a)p(b)+p(b)p̄(Y ):bY (a):

+ (−1)p(a)p̄(Y )

∫ µ

0

dσ aσY (b)−

∫ µ

0

dσ Y ([aσb])

+ (−1)p(a)p(b)+p(b)p̄(Y )

∫ −µ−∂

0

dσ bσY (a) .

The above equation holds for every µ, hence it gives

Y (:ab:) = (−1)p(a)p̄(Y ):aY (b): + (−1)p(a)p(b)+p(b)p̄(Y ):bY (a):

− (−1)p(a)p(b)+p(b)p̄(Y )

∫ 0

−∂

dσ bσY (a)
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and

Y ([aλb]) = (−1)p(a)p̄(Y )aλY (b)− (−1)p(a)p(b)+p(b)p̄(Y )b−λ−∂Y (a) .

If we take the adjoint representation M = V and use the skewsymmetry of the
λ-bracket and the quasicommutativity of the normally ordered product, the above
equations become

Y (:ab:) = :Y (a)b: + (−1)p(a)p̄(Y ):aY (b): ,

Y ([aλb]) = (−1)p(a)p̄(Y )[aλY (b)] + [Y (a)λb] ,

which means that Y is a derivation (of parity p̄(Y )) of the vertex algebra V .
Next, we discuss the special case of formula (5.1) for n = 2. For simplicity, we

consider the case of the adjoint module M = V . Recall that an element Y ∈ C2
ch(V )

is a map

Yλ = Y z,w
λ : V ⊗2 ⊗ F[(z − w)±1] → V [λ, µ]/〈∂ + λ+ µ〉 ≃ V [λ] .

Let us denote, according to (4.2), the normally ordered product and the λ-bracket
corresponding to Y by

:ab:Y = (−1)p(a)Y z,w
0

(
a⊗ b⊗

1

w − z

)
,

[aλb]
Y = (−1)p(a)Yλ(a⊗ b ⊗ 1) ,

(5.12)

so that

(−1)p(a)Y z,w
λ

(
a⊗ b⊗

1

w − z

)
= :ab:Y +

∫ λ

0

dσ[aσb]
Y . (5.13)

Then we have the following corollary.

Corollary 5.2. Let V be a vertex algebra and Y ∈ C2
ch(V ) be a closed element of

the VA cohomology complex: dY = 0. Then with the notation (5.12), we have:
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[aλ:bc:]
Y + (−1)p(a)(p̄(Y )+1)[aλ:bc:

Y ] = :[aλb]c:
Y + :[aλb]

Y c:

+ (−1)p(a)p(b):b[aλc]:
Y + (−1)p(b)(p(a)+p̄(Y )+1):b[aλc]

Y : (5.14)

+

∫ λ

0

dτ
[
[aλb]

Y
τc
]
+

∫ λ

0

dσ[[aλb]σc]
Y ,

[aλ[bµc]]
Y + (−1)p(a)(p̄(Y )+1)[aλ[bµc]

Y ]

= (−1)p(a)p(b)[bµ[aλc]]
Y + (−1)p(b)(p(a)+p̄(Y )+1)[bµ[aλc]

Y ] (5.15)

+ [[aλb]
Y
λ+µc] + [[aλb]λ+µc]

Y ,

[:ab:λc]
Y − [:ab:Y λc]

= :(e∂∂λa)[bλc]:
Y + (−1)p(a)(p̄(Y )+1):(e∂∂λa)[bλc]

Y : (5.16)

+ (−1)p(a)p(b):(e∂∂λb)[aλc]:
Y + (−1)p(b)(p(a)+p̄(Y )+1):(e∂∂λb)[aλc]

Y :

+ (−1)p(a)p(b)
∫ λ

0

[bσ[aλ−σc]]
Y + (−1)p(b)(p(a)+p̄(Y )+1)

∫ λ

0

dσ [bσ[aλ−σc]
Y ] ,

[[aµb]λc]
Y + [[aµb]

Y
λ
c]

= [aµ[bλ−µc]]
Y + (−1)p(a)(p̄(Y )+1)[aµ[bλ−µc]

Y ] (5.17)

− (−1)p(a)p(b)[bλ−µ[aµc]]
Y − (−1)p(b)(p(a)+p̄(Y )+1)[bλ−µ[aµc]

Y ] .

The above equations explain the name “Wick-type formulas” for (5.1). Indeed,
for Y = X , (5.14) and (5.16) become the left and right Wick formula for the
vertex algebra V , while (5.15) and (5.16) become two equivalent forms of the Jacobi
identity for V .

Proof of Corollary 5.2. Equation (5.1) gives for ℓ = 2

Yλ

(
a⊗ :bc:⊗ 1

)

= (−1)p(b)(p(a)+p̄(Y )+1):bYλ(a⊗ c⊗ 1): + (−1)p(c)(p(a)+p(b)+p̄(Y )+1):cYλ(a⊗ b⊗ 1):

+ (−1)p(b)(p(a)+p̄(Y )+1)

∫ µ

0

dσ
[
bσYλ(a⊗ c⊗ 1)

]

+ (−1)p(c)(p(a)+p(b)+p̄(Y )+1)

∫ −λ−µ−∂

0

dσ
[
cσYλ(a⊗ b⊗ 1)

]

+ (−1)p(a)p̄(Y )+p(b)
[
aλY

z,w
µ

(
b⊗ c⊗

1

z − w

)]
−

∫ µ

0

dσ Yλ

(
a⊗ [bσc]⊗ 1

)

− (−1)p(b)Y z,w
λ+µ

(
[aλb]⊗ c⊗

1

z − w

)
− (−1)p(c)+p(b)p(c)Y z,w

−µ−∂

(
[aλc]⊗ b⊗

1

z − w

)
,
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while for ℓ = 1 it gives

Yλ

(
:ab:⊗ c⊗ 1

)

= (−1)p(a)p̄(Y ):(e∂∂λa)Yλ(b ⊗ c⊗ 1): + (−1)p(a)p(b)+p(b)p̄(Y ):(e∂∂λb)Yλ(a⊗ c⊗ 1):

+ (−1)p(a)p̄(Y )

∫ µ

0

dσ
[
aσYλ−σ(b⊗ c⊗ 1)

]
−

∫ µ

0

dσ Yλ

(
[aσb]⊗ c⊗ 1

)

+ (−1)p(a)p(b)+p(b)p̄(Y )

∫ λ−µ

0

dσ
[
bσYλ−σ(a⊗ c⊗ 1)

]

− (−1)p(c)(p(a)+p(b)+p̄(Y ))+p(b)+p(c)
[
c−λ−∂Y

z,w
µ

(
a⊗ b⊗

1

z − w

)]

− (−1)p(a)(1+p(b))Y z,w
λ−µ

(
(e∂∂λb)⊗ [aλc]⊗

1

z − w

)

− (−1)p(b)Y z,w
µ

(
(e∂∂λa)⊗ [bλc]⊗

1

z − w

)
.

The above equations hold for every µ. Hence, by the sesquilinearity and symmetry
conditions on Y and the vertex algebra axioms, we obtain:

Yλ(a⊗ :bc:⊗ 1)

= (−1)p(b)(p(a)+p̄(Y )+1):bYλ(a⊗ c⊗ 1): + :Yλ(a⊗ b⊗ 1)c:

+ (−1)p(c)(p(a)+p(b)+p̄(Y )+1)

∫ −λ−∂

−∂

dσ [cσYλ(a⊗ b⊗ 1)] (5.18)

− (−1)p(a)p̄(Y )+p(b)
[
aλY

z,w
0

(
b⊗ c⊗

1

w − z

)]

+ (−1)p(b)Y z,w
λ

(
[aλb]⊗ c⊗

1

w − z

)

− (−1)(p(a)+1)(p(b)+1)Y z,w
0

(
b⊗ [aλc]⊗

1

w − z

)
,

Yλ(a⊗ [bµc]⊗ 1) + (−1)p(a)p̄(Y )+p(b)[aλYµ(b⊗ c⊗ 1)]

= (−1)p(b)(p(a)+p̄(Y )+1)[bµYλ(a⊗ c⊗ 1)]

+ (−1)p(a)p(b)+p(a)+p(b)Yµ(b⊗ [aλc]⊗ 1) (5.19)

+ [Yλ(a⊗ b⊗ 1)λ+µc] + (−1)p(b)Yλ+µ([aλb]⊗ c⊗ 1) ,

Yλ

(
:ab:⊗ c⊗ 1

)

= (−1)p(a)p̄(Y ):(e∂∂λa)Yλ(b⊗ c⊗ 1): + (−1)p(b)(p(a)+p̄(Y )):(e∂∂λb)Yλ(a⊗ c⊗ 1):

+ (−1)p(b)(p(a)+p̄(Y ))

∫ λ

0

dσ
[
bσYλ−σ(a⊗ c⊗ 1)

]
(5.20)

− (−1)p(b)
[
Y z,w
0

(
a⊗ b⊗

1

w − z

)
λ
c
]

+ (−1)p(a)(1+p(b))Y z,w
λ

(
(e∂∂λb)⊗ [aλc]⊗

1

w − z

)

+ (−1)p(b)Y z,w
0

(
(e∂∂λa)⊗ [bλc]⊗

1

w − z

)
,
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and

Yλ([aµb]⊗ c⊗ 1) + (−1)p(b)[Yµ(a⊗ b ⊗ 1)
λ
c]

= (−1)p(b)Yµ(a⊗ [bλ−µc]⊗ 1) + (−1)p(a)p̄(Y )[aµYλ−µ(b⊗ c⊗ 1)] (5.21)

− (−1)p(a)(1+p(b))Yλ−µ(b ⊗ [aµc]⊗ 1)− (−1)p(b)(p(a)+p̄(Y ))[bλ−µYµ(a⊗ c⊗ 1)] .

Rewriting (5.18)–(5.21) using (5.12), we get (5.14)–(5.17). �

5.2. Bounded VA cohomology. Let V be a filtered VA and M be a filtered
V -module. Recall that we have the induced decreasing Z-filtration Fp Cn

ch(V,M) of
the superspace Cn

ch(V,M), defined in Section 3.3.

Proposition 5.3. (a) The filtration on C0
ch(V,M) = M/∂M is exhaustive.

(b) If V is finitely strongly generated and Y ∈ C1
ch(V,M) is such that dY = 0, then

Y ∈ Fp C1
ch(V,M) for some p ∈ Z. Consequently, the decreasing Z-filtration

on the space of closed elements of C1
ch(V,M) is exhaustive.

Proof. Part (a) is obvious: if m ∈ Fr M , then the corresponding map Y : C →
M/∂M given by Y (1) = m̄ lies in F−r C0

ch(V,M). For part (b), recall that an
element of C1

ch(V,M) is an F[∂]-module homomorphism Y : V → M . Suppose that
such Y is closed, i.e., dY = 0. This, in particular, means that Y is a derivation of
the normally ordered products:

Y
(
:uv:

)
= (−1)p(u)p̄(Y ):uY (v): + :Y (u)v: (5.22)

(which is Wick formula (5.1) in the special case n = 1). Hence, such Y is uniquely
determined by its values on the finite set of (strong) generators v1, . . . , vs. Further-
more, since the filtration on V is exhaustive, each generator vi lies in some member
of the filtration of V , and since the filtration on M is exhaustive, the image Y (vi)
lies in some member of the filtration of M . The claim follows. �

We define the space of bounded n-cochains as

Cn
ch,b(V,M) =

⋃

p∈Z

Fp Cn
ch(V,M) , n ∈ Z+ . (5.23)

Note that the differential d on Cn
ch(V,M) shifts the filtration by 1:

d(Fr Cn
ch(V,M)) ⊂ Fr+1Cn+1

ch (V,M) . (5.24)

To see this for the adjoint module, just observe that the element X defining the VA
structure lies in F1 C2

ch(V ), hence, by Remark 4.1(a), d = adX shifts the filtration
by 1. For an arbitrary V -module M , we obtain the same result by considering the
VA V ⊕ M and taking the subquotient defining Cn

ch(V,M). Alternatively, (5.24)
can be checked directly from the explicit formula (4.12) of the differential d. As a
consequence of (5.24),

Cch,b(V,M) =
⊕

n∈Z+

Cn
ch,b(V,M) (5.25)

is invariant with respect to the action of the differential d.

Definition 5.4. Let V be a filtered VA and let M be a filtered V -module. The
bounded cohomology of V with coefficients in M , denoted by Hch,b(V,M), is defined
as the cohomology of the complex (Cch,b(V,M), d).
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By Proposition 5.3, we have

H0
ch(V,M) = H0

ch,b(V,M) , (5.26)

and, provided that V is finitely strongly generated,

H1
ch(V,M) = H1

ch,b(V,M) . (5.27)

Remark 5.5. Note that the decreasing Z-filtration of Cch(V,M) induces a decreas-
ing Z-filtration Fp Hn

ch(V,M) in n-th cohomology. Clearly, we have a canonical
surjective map

⋃
p∈Z

Fp Hn
ch(V,M) ։ Hn

ch,b(V,M); this does not need to be an

isomorphism, since (dCn−1
ch ) ∩ Fp Cn

ch might be larger than (dCn−1
ch,b ) ∩ Fp Cn

ch.

Remark 5.6. By Lemma 3.1, the decreasing Z-filtration of Cn
ch(V,M) is separated.

By Proposition 5.3, it is also exhaustive for n = 0 and 1 under natural assumptions
on V and M . We were unable to prove that it is also exhaustive for n > 1 under the
same assumptions. This is the reason for considering the bounded VA cohomology
Hch,b(V,M) in place of the VA cohomology Hch(V,M).

6. A spectral sequence for VA cohomology

Throughout this section, V will be a vertex algebra with a very good filtration
(2.17) (cf. Definition 2.14). For simplicity, we consider vertex algebra cohomology
with coefficients in the adjoint module M = V ; the same results for an arbitrary
V -module M can be derived by the standard reduction procedure.

6.1. Spectral sequence from the classical PVA cohomology to the VA

cohomology. As in Sections 3.3 and 5.2, an exhaustive increasing Z+-filtration of
V induces a separated decreasing Z-filtration on the cohomology complex Cch(V ),
{Fp Cch(V )}p∈Z, and the differential d = adX satisfies (cf. (5.24))

d : Fp Cn
ch(V ) → Fp+1 Cn+1

ch (V ) , p ∈ Z , n ≥ 0 . (6.1)

This implies, in particular, that dFp Cn
ch(V ) ⊂ Fp Cn+1

ch (V ). Moreover, we have a
separated, exhaustive, decreasing Z-filtration on the bounded cohomology subcom-
plex Cch,b(V ), with the differential d given by restriction.

Consider the spectral sequence {(Er, dr)}r≥0 associated to the filtered complex
(Cch(V ), d) or to the bounded subcomplex (Cch,b(V ), d). Its definition is reviewed
in Appendix A. By Remark A.3, we have d0 = 0 and

Ep,q
1 = Ep,q

0 = grp Cp+q
ch , p, q ∈ Z .

The differential
d1 : E

p,q
1 → Ep+1,q

1 (6.2)

is induced by the restriction of d to Fp Cp+q
ch (V ).

Recall the definitions (4.3) and (4.19) of the complexes Cch(V ) and Ccl(V) in
terms of the operads Pch(ΠV ) and Pcl(ΠV), respectively. Since, by assumption, the
filtration of V is very good, by Theorem 3.6, the operads grPch(ΠV ) and Pcl(ΠV)
are isomorphic, where V = grV . Therefore, the Lie superalgebras grWch(ΠV )
and Wcl(ΠV) are isomorphic. Note that V inherits a PVA structure from the VA
structure of V (see Proposition 2.13). Let us denote by X̄ ∈ W 1

cl(ΠV) the odd
element with [X̄, X̄] = 0 that corresponds to the PVA structure via (4.18) (with X
replaced by X̄). Then X̄ is the image of X + F2 W 1

ch(ΠV ) ∈ gr1 Wch(ΠV ) under
the isomorphism grWch(ΠV ) ≃ Wcl(ΠV) (see [BDSHK18, Theorem 10.13]). The
differential in the classical complex Ccl(V) is given by d̄ = adX̄ (see Section 4.4).
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Recall that each Cn
cl(V) = Pcl(ΠV)(n)Sn inherits a grading grp Cn

cl(V) from the
grading (3.23) of Pcl(ΠV).

Lemma 6.1. The bigraded complexes (E1, d1) and (Ccl(V), d̄) are isomorphic, i.e.,

Ep,q
1 = grp Cp+q

ch (V ) ≃ grp Cp+q
cl (V) , p, q ∈ Z , (6.3)

and the isomorphisms (6.3) are compatible with the actions of d1 and d̄.

Proof. We already know (6.3) from the above discussion. For Y ∈ Fp Cp+q
ch (V ),

consider the element

Y + Fp+1 Cp+q
ch (V ) ∈ grp Cp+q

ch (V ) = grp W p+q−1
ch (ΠV ) = Ep,q

1

and its image
Ȳ ∈ grp Cp+q

cl (V) = grp W p+q−1
cl (ΠV)

under the isomorphism (6.3). By definition,

d1(Y + Fp+1 Cp+q
ch (V )) = [X,Y ] + Fp+2 Cp+q+1

ch (V ) ∈ grp+1 W p+q
ch (ΠV ) = Ep+1,q

1 ,
(6.4)

and
d̄(Ȳ ) = [X̄, Ȳ ] ∈ grp+1 W p+q

cl (ΠV) . (6.5)

Then (6.4) is mapped to (6.5), since grWch(ΠV ) ≃ Wcl(ΠV) is an isomorphism of
Lie superalgebras, by Theorem 3.6. �

Recall that the cohomology of every filtered complex has an induced filtration,
given explicitly by (A.6). In our case, Fp Hn

ch(V ) is the image of Fp Cn
ch(V )∩Ker d

under the canonical projection Cn
ch(V ) ∩Ker d ։ Hn

ch(V ), namely

Fp Hn
ch(V ) = (Fp Cn

ch(V ) ∩Ker d)/(dCn−1
ch (V ) ∩ Fp Cn

ch(V )) .

Similarly, the filtration Fp Hn
ch,b(V ) on bounded n-th cohomology is the image of

the same space Fp Cn
ch(V )∩Ker d under the canonical projection Cn

ch,b(V )∩Ker d ։

Hn
ch,b(V ), namely

Fp Hn
ch,b(V ) = (Fp Cn

ch(V ) ∩Ker d)/(dCn−1
ch,b (V ) ∩ Fp Cn

ch(V )) .

Since Cn−1
ch,b (V ) ⊂ Cn−1

ch (V ), we have, in particular, a canonical surjective map

Fp Hn
ch,b(V ) ։ Fp Hn

ch(V ).
From Appendix A and Lemma 6.1, we obtain the following theorem.

Theorem 6.2. Let V be a vertex algebra with a very good filtration, and V = grV
be its associated graded Poisson vertex algebra. Then there exists a spectral sequence
{(Er, dr)}r≥1, whose first term is the classical PVA cohomology complex (Ccl(V), d̄)

and whose limit is Ep,q
∞ ≃ grp Hp+q

ch,b(V ). Furthermore, grp Hp+q
ch (V ) is a quotient

space of Ep,q
∞ .

Proof. The isomorphism Ep,q
∞ ≃ grp Hp+q

ch,b(V ) follows from (A.20), while the surjec-

tion Ep,q
∞ ։ grp Hp+q

ch (V ) follows from (A.22). �

We can therefore apply Lemma A.6(b) to the complex (Cch,b(V ), d) to obtain
upper bounds on the bounded cohomology of V .

Corollary 6.3. Let V be a vertex algebra with a very good filtration, and V = grV
be its associated graded Poisson vertex algebra. Then

dimHn
ch,b(V ) ≤ dimHn

cl(V) , n ≥ 0 .
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Under additional assumptions, we derive that the bounded cohomology of V is
finite-dimensional and bounded by the variational PVA cohomology of V .

Theorem 6.4. Let V be a freely finitely generated vertex algebra with a very good
filtration. Assume that the associated graded Poisson vertex algebra V = grV is
conformal and generated by elements of positive conformal weight. Then

dimHn
ch,b(V ) ≤ dimHn

PV(V) < ∞ , n ≥ 0 . (6.6)

Proof. Since V is freely finitely generated and its increasing Z+-filtration is very
good, V = grV is isomorphic, as a differential algebra, to an algebra of differential
polynomials in finitely many (even or odd) variables. By Theorem 4.6, HPV(V) ≃
Hcl(V). Then the claim follows from Corollary 6.3 and [BDSK19, Theorem 3.29].

�

Theorem 6.5. Let V be a vertex algebra freely generated by its F[∂]-submodule
R =

⊕s
j=0 F[∂]Wj, where L := W0 is a Virasoro element in V and each Wj has

positive conformal weight ∆j with respect to L (where ∆j ∈ Q or R). Then

dimHn
ch,b(V ) < ∞ , n ≥ 0 .

Proof. Recall that the conformal weights have the property

∆(a(n)b) = ∆(a) + ∆(b)− n− 1 , a, b ∈ V , n ∈ Z

(see Remark 2.9 and [K96]). Moreover, by Definition 2.7,

[Lλa] =
(
∂ + λ∆(a)

)
a+

∑

n≥2

λn

n!
L(n)a ,

for every a ∈ V of conformal weight ∆(a). Then it is easy to check that, if we let

R∆ = δ∆,1F[∂]L ⊕
⊕

1≤j≤s : ∆j=∆

F[∂]Wj ,

the condition (2.25) holds. Hence, by Proposition 2.17, the filtration (2.24) of V is
very good. In the associated graded PVA V = grV , we have:

[L̄λL̄] = (∂ + 2λ)L̄ , [L̄λW̄j ] = (∂ +∆jλ)W̄j , 1 ≤ j ≤ s ,

where L̄ = L + F2 V ∈ gr1 V and W̄j = Wj + F∆j+1 V ∈ gr∆j V . Since V is
generated by L̄ = W̄0, W̄1 . . . , W̄s as a differential algebra, it follows that V is a
conformal PVA. Hence, we can apply Theorem 6.4. �

Recall that, for any simple finite-dimensional Lie algebra (or more generally, a
basic Lie superalgebra) g, any nonzero nilpotent element f ∈ g, and any non-critical
level k ∈ F (i.e., k 6= −h∨, where h∨ is the dual Coxeter number of g), we have the
universal W -algebra W k(g, f), which satisfies the conditions of Theorem 6.5 (see
[KW04, DSK06]).

Corollary 6.6. For the universal W -algebra V = W k(g, f) with k 6= −h∨, we
have

dimHn
ch,b(V ) < ∞ , n ≥ 0 .

In the next two subsections, we will consider special cases, in which the spectral
sequence from Theorem 6.2 collapses.
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6.2. The case of commutative VA. In this subsection, V will be a commutative
vertex algebra, i.e., such that [VλV ] = 0. Then, by (2.11), (2.12), V is a com-
mutative associative algebra with respect to the normally ordered product with
a derivation ∂. We consider V with the trivial filtration (3.29), as in Example
2.16 and Section 3.7. Then V = grV = V with the same commutative associative
product as V .

The filtration of Pch(ΠV )(n) is given by (3.31). Hence, the filtration of Cn
ch(V )

has the form

Cn
ch(V ) = F0 Cn

ch(V ) ⊃ F1 Cn
ch(V ) ⊃ · · · ⊃ Fn−1 Cn

ch(V ) ⊃ Fn Cn
ch(V ) = {0} .

Since this filtration is finite for every n, it follows that the spectral sequence from
Theorem 6.2 converges: for every p, q ∈ Z, there exists s ≥ 1 such that Ep,q

r =

Ep,q
∞ = grp Hp+q

ch (V ) for all r ≥ s.
Here is a similar example, in which we have convergence.

Example 6.7. Consider an arbitrary VA V with the filtration

F−1 V = F0 V = {0} ⊂ F1 V = F2 V = · · · = V ,

as in Example 2.15. Then V = grV = V with the same λ-bracket as V , but with
the zero product. The filtration of Pch(ΠV )(n) has the form (cf. (3.31)):

Pch(n) = Fn−1 Pch(n) ⊃ Fn Pch(n) ⊃ · · · ⊃ F2n−2 Pch(n) ⊃ F2n−1 Pch(n) = {0} .

Hence, the filtration of Cn
ch(V ) is finite for every n, and the spectral sequence

converges to Ep,q
∞ = grp Hp+q

ch (V ).

Let us go back to the case when the VA V is commutative. If we assume, in
addition, that V is an algebra of differential polynomials, then the spectral sequence
collapses and we can completely determine Hch(V ).

Theorem 6.8. Let V be a superalgebra of differential polynomials in finitely many
even or odd variables,

V = F
[
u
(k)
i

∣∣ 1 ≤ i ≤ N, k ∈ Z+

]
, u

(k)
i = ∂kui ,

considered as a vertex algebra with the zero λ-bracket. Then

Hn
ch(V ) ≃ Hn

PV(V ) ≃ Cn
PV(V ) , n ≥ 0 .

Explicitly, this is the space of all collections of polynomials

P i1,...,in
λ1,...,λn

∈ V [λ1, . . . , λn]/〈∂ + λ1 + · · ·+ λn〉 , 1 ≤ is ≤ N ,

satisfying the symmetry conditions

P
i1,...,is,is+1,...,in
λ1,...,λs,λs+1,...,λn

= (−1)p̄(uis )p̄(uis+1
)P

i1,...,is+1,is,...,in
λ1,...,λs+1,λs,...,λn

, 1 ≤ s ≤ n− 1 .

Such a collection determines a unique (up to coboundary) cocycle Y ∈ Cn
ch(V ) by

Yλ1,...,λn
(ui1 ⊗ · · · ⊗ uin ⊗ 1) = P i1,...,in

λ1,...,λn
.

Proof. Notice that V = grV = V is both a VA and a PVA with the same product
and with the zero λ-bracket. We have

Ep,q
2 ≃ grp Hp+q

cl (V ) ≃ grp Hp+q
PV (V ) ≃ grp Cp+q

PV (V ) .

The second isomorphism holds by Theorem 4.6, and the third because the λ-bracket
in V is zero, which implies that the differential in CPV(V ) is zero. Recall from
Section 4.4 that the grading of Ccl(V ) is given by the number of edges of the graph,
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and CPV(V ) = gr0 Ccl(V ). Hence, Ep,q
2 = 0 for p 6= 0 and E0,q

2 ≃ Cq
PV(V ). This

implies the collapse of the spectral sequence: dr = 0 for all r ≥ 2 and

grp Hp+q
ch (V ) = Ep,q

2 .

Therefore, Hq
ch(V ) ≃ Cq

PV(V ). The explicit description of all cochains in the varia-
tional complex of V follows from [BDSK19, Remark 3.16 and Lemma 3.17(b)]. �

6.3. Relation between VA cohomology and LCA cohomology. Let R be a
Lie conformal algebra such that R = R̄ ⊕ FC as an F[∂]-module, where ∂C = 0
and R̄ is a free finitely-generated F[∂]-module. Note that C is central in R and it
acts trivially on any R-module. Hence, R̄ ≃ R/FC is an LCA, and any R-module
is naturally an R̄-module.

Fix c ∈ F, and consider V = V c(R) with its canonical filtration (see Section 2.5):

F−1 V = {0} ⊂ F0 V = F|0〉 ⊂ F1 V = R̄+ F|0〉 ⊂ F2 V ⊂ · · · . (6.7)

Then F1 V is an LCA subalgebra of (V, [ λ ]), which is isomorphic to R. From now
on, we will identify R = F1 V as an LCA. All Fp V are R-modules; hence also
R̄-modules. The filtration (6.7) is very good and the associated graded Poisson
vertex algebra V = grV is isomorphic to the universal PVA V(R̄) over the LCA
R̄ (see Lemma 2.18 and Section 2.2). As an R̄-module, V is isomorphic to the
symmetric algebra S(R̄) over the adjoint representation, which is a direct sum of
the R̄-modules grq V = SqR̄ (q ≥ 0). Therefore, by Proposition 4.7(a), we have
isomorphisms of complexes

CPV(V) ≃ CChom(R̄,V) ≃
∞⊕

q=0

CChom(R̄, SqR̄) .

Recall that the complex CPV(V) is graded, so that Y ∈ Cn
PV(V) has degree p if

and only if, for all t ∈ Z,

Y (grt(V⊗n)) ⊂ (grt−p V)[λ1, . . . , λn]/〈∂ + λ1 + · · ·+ λn〉

(cf. (3.23)). Restricting Y to R̄⊗n ⊂ grn(V⊗n) and using Remark 4.5, we see that

grp Cp+q
PV (V) = grp Cp+q

Chom(R̄,V) = Cp+q
Chom(R̄, SqR̄) .

We also have the corresponding grading of the cohomology:

grp Hp+q
PV (V) = grp Hp+q

Chom(R̄,V) = Hp+q
Chom(R̄, SqR̄) .

Proposition 6.9. With the above notation, suppose that HPV(V) ≃ HChom(R̄,F),
where the isomorphism is induced from the restriction (4.22) and the inclusion
F ≃ F1 →֒ V. Then HChom(R̄, V ) ≃ HChom(R̄,F), where the isomorphism is
induced from the inclusion F ≃ F|0〉 →֒ V .

Proof. The canonical filtration of V induces a filtration of the complex CChom(R̄, V ),
so that Y ∈ Fp Cn

Chom(R̄, V ) if and only if, for all s ∈ Z,

Y (Fs(R̄⊗n)) ⊂ (Fs−p V )[λ1, . . . , λn]/〈∂ + λ1 + · · ·+ λn〉

(cf. (3.11), (3.33) and Lemma 4.3). Here R̄ is equipped with the trivial filtration

F0 R̄ = {0} ⊂ F1 R̄ = R̄ ,

hence, R̄⊗n = Fn R̄⊗n. Therefore,

Fp Cp+q
Chom(R̄, V ) = Cp+q

Chom(R̄,Fq V ) , p, q ∈ Z .
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This filtration is separated and exhaustive, because so is the filtration of V .
Since each Fq V is an R̄-submodule of V , the differential in CChom(R̄, V ) sends

Fp Cp+q
Chom(R̄, V ) to Fp+1 Cp+q

Chom(R̄, V ). As in Appendix A, we obtain a spectral
sequence {(Er, dr)}r≥1, whose first term is

Ep,q
1 = grp Cp+q

Chom(R̄, V ) ≃ Cp+q
Chom(R̄, grq V ) = Cp+q

Chom(R̄, SqR̄) .

Hence

Ep,q
2 ≃ Hp+q

Chom(R̄, SqR̄) .

But, by assumption, Hp+q
Chom(R̄, SqR̄) = 0 for q > 0. Therefore, Ep,q

2 = 0 for

q > 0 and Ep,0
2 ≃ Hp

Chom(R̄,F). By Remark A.7, the spectral sequence collapses
at the second term: all dr = 0 for r ≥ 2. Since the filtration of CChom(R̄, V ) is
separated and exhaustive, we get

grp Hp+q
Chom(R̄, V ) ≃ Ep,q

∞ = Ep,q
2 , p, q ∈ Z .

This implies that

Hn
Chom(R̄, V ) = grn Hn

Chom(R̄, V ) ≃ Hn
Chom(R̄,F) , n ≥ 0 ,

completing the proof. �

Next, we compare the cohomology of the LCA R̄ to that of its central extension
R.

Lemma 6.10. Suppose that the LCA R = R̄ + FC is a nontrivial central exten-
sion of an LCA R̄ by an element C such that ∂C = 0. Let M be an R-module
such that dimKer ∂|M = 1. Then we have an injective morphism of complexes
CChom(R̄,M) →֒ CChom(R,M), induced by the projection R ։ R̄, which is an
isomorphism on Cn

Chom(R̄,M) for n 6= 1. It induces surjective linear maps

Hn
Chom(R̄,M) ։ Hn

Chom(R,M) , n ≥ 0 , (6.8)

which are isomorphisms for all n 6= 2. For n = 2, the kernel of the map (6.8) is 1-
dimensional and is spanned by the image of the 2-cocycle α ∈ H2

Chom(R̄,F), giving
the central extension R, under the map induced by the inclusion F ≃ Ker ∂|M →֒ M .

Proof. This follows from Proposition 2.11 and the proof of Proposition 3.15 from
[BDSK19]. The reason why H2

Chom(R̄,F) and H2
Chom(R,F) differ is that there is a

1-cochain β ∈ H1
Chom(R,F), defined by

βλ(C) = 1 + 〈∂ + λ〉 , βλ(a) = 〈∂ + λ〉 , a ∈ R̄ ,

such that the image of α in H2
Chom(R,F) is dβ. On the other hand, for n ≥ 2, any

n-cochain vanishes when one of its arguments is C, by the sesquilinearity (3.35). �

Remark 6.11. Suppose that the assumptions of Lemma 6.10 hold, except that the
central extension R = R̄ ⊕ FC is trivial. Then Hn

Chom(R̄,M) ≃ Hn
Chom(R,M) for

all n 6= 1, and we have an inclusion H1
Chom(R̄,M) →֒ H1

Chom(R,M) whose image
has codimension 1.

Under the above assumptions on the LCA, we can determine the VA cohomol-
ogy of its universal enveloping vertex algebra V . This result will be applied, in
particular, to the universal Virasoro VA (see Section 7.2 below).
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Theorem 6.12. Suppose that the Lie conformal algebra R = R̄+FC is a nontrivial
central extension of a Lie conformal algebra R̄ by an element C such that ∂C = 0,
where R̄ is a free finitely-generated F[∂]-module. For c ∈ F, consider the vertex
algebra V c(R) and its LCA subalgebra R̄+ F|0〉 ≃ R. Assume that

HPV(V(R̄)) ≃ HChom(R̄,F) , (6.9)

where the isomorphism is induced from the restriction (4.22) and the inclusion
F ≃ F1 →֒ V(R̄). Then

Hch,b(V
c(R)) ≃ HChom(R̄,F) , (6.10)

where the isomorphism is induced from the restriction (4.15) and the inclusion
F ≃ F|0〉 →֒ V c(R).

Proof. As above, we consider V := V c(R) with its canonical filtration (6.7), which
is very good and satisfies V := grV ≃ V(R̄). Then we have the spectral sequence
{(Er, dr)}r≥1 from Theorem 6.2. Recall that, as a differential algebra, V ≃ S(R̄) is
isomorphic to an algebra of differential polynomials in finitely many (even or odd)
variables. Hence, by Theorem 4.6,

Ep,q
2 ≃ grp Hp+q

cl (V) ≃ grp Hp+q
PV (V) . (6.11)

As in the proof of Proposition 6.9, we have, by assumption, grp Hp+q
PV (V) = 0 for

q > 0. Therefore, Ep,q
2 = 0 for q > 0 and Ep,0

2 ≃ Hp
Chom(R̄,F). By Remark A.7,

the spectral sequence collapses at the second term: all dr = 0 for r ≥ 2. Lemma
A.8 then gives

π(Fp Cn
ch(V ) ∩Ker d) = grp Cn

cl(V) ∩Ker d̄ , (6.12)

where π denotes the canonical projection Fp Cn
ch(V ) ։ grp Cn

ch(V ) ≃ grp Cn
cl(V).

Recall that the LCA R is identified as the subalgebra F1 V = R̄ + F|0〉 of the
LCA (V, [ λ ]). By Lemma 4.3, the restriction map (4.15) induces a morphism of
complexes Cch,b(V ) → CChom(R, V ) and the corresponding linear maps Hn

ch,b(V ) →
Hn

Chom(R, V ). Due to Proposition 6.9 and Lemma 6.10, we have

Hn
Chom(R, V ) ≃ Hn

Chom(R̄, V ) ≃ Hn
Chom(R̄,F) ≃ Hn

PV(V) , n 6= 2 .

Thus, we obtain linear maps Hn
ch,b(V ) → Hn

Chom(R̄,F) for all n 6= 2, which are

surjective by (6.11) and (6.12). On the other hand, by (A.20), we have isomorphisms

Ep,q
∞ = Ep,q

2 ≃ grp Hp+q
PV (V) ≃ grp Hp+q

ch,b(V ) .

We conclude that

Hn
ch,b(V ) ≃ Hn

Chom(R,F) , n 6= 2 .

To finish the proof, it remains to show that H2
ch,b(V ) ≃ H2

Chom(R̄,F). Recall

from Lemma 6.10 that H2
Chom(R,F) and H2

Chom(R̄,F) only differ by the 2-cocycle
α ∈ C2

Chom(R̄,F), which gives the central extension R of R̄. We know from (6.12)

that α can be lifted to a 2-cocycle Y ∈ F2 C2
ch(V ) such that

Y z1,z2
λ1,λ2

(v ⊗ 1) = αλ1,λ2
(v) , v ∈ R̄⊗2 .

We need to check that Y 6= dZ for any Z ∈ C1
ch,b(V ) ≃ EndF[∂] V . Indeed, note

that Z(|0〉) ∈ Ker∂ = F|0〉. If Z(|0〉) = 0, then the image of Z under the the
restriction map (4.22) is in C1

Chom(R̄,F), but α is nontrivial in H2
Chom(R̄,F). Thus,
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Z(|0〉) = a|0〉 for some nonzero a ∈ F. By [BDSHK18, Eq. (7.6)], we find for
v1, v2 ∈ V and h ∈ O⋆T

2 = F[z±1
12 ]:

(dZ)z1,z2λ1,λ2
(v1 ⊗ v2 ⊗ h) = (−1)p̄(v1)p̄(v2)Xz2,z1

λ2,λ1

(
Z(v1)⊗ v2 ⊗ h

)

+Xz1,z2
λ1,λ2

(
v1 ⊗ Z(v2)⊗ h

)
− (−1)p(Z)Z

(
Xz1,z2

λ1,λ2
(v1 ⊗ v2 ⊗ h)

)
.

Setting v1 = v2 = |0〉 and h = z−1
21 , we obtain from (4.2),

(dZ)z1,z2λ1,λ2

(
|0〉 ⊗ |0〉 ⊗ z−1

21

)
= −(−1)p(Z)a|0〉 6= 0 .

On the other hand, since |0〉 ∈ F0 V , z−1
21 ∈ F1 O⋆T

2 and Y ∈ F2 C2
ch(V ), we have

Y z1,z2
λ1,λ2

(
|0〉 ⊗ |0〉 ⊗ z−1

21

)
⊂ (F−1 V )[λ1, λ2]/〈∂ + λ1 + λ2〉 = 0 .

This completes the proof of the theorem. �

6.4. The case when the LCA R̄ is abelian. Suppose that R̄ is an abelian LCA
(i.e., with zero λ-bracket), which is freely finitely-generated as an F[∂]-module, and
let R = R̄ + FC be a nontrivial central extension of R̄ by an element C such that
∂C = 0. Then the λ-bracket in R has the form

[CλR] = 0 , [aλb] = αλ,−λ−∂(a⊗ b)C , a, b ∈ R̄ ,

for some nonzero 2-cocycle α ∈ H2
Chom(R̄,F) = C2

Chom(R̄,F).
Fix c ∈ F, and consider V = V c(R) with its canonical filtration (6.7). As

before, we identify R with the LCA subalgebra F1 V = R̄+F|0〉 of (V, [ λ ]). In this
subsection, we will derive analogs of the results of Section 6.3, with similar proofs.
Now the associated graded Poisson vertex algebra V = grV ≃ V (R̄) ≃ S(R̄) is a
superalgebra of differential polynomials in finitely many (even or odd) variables,
with the zero λ-bracket. The PVA Vc := Vc(R) is isomorphic to it as a differential
algebra, but its λ-bracket is given by

[aλb] = αλ,−λ−∂(a⊗ b) c , a, b ∈ R̄ (6.13)

(which is then extended to the whole PVA by the Leibniz rules L4 and L4’). Recall
that, by Proposition 4.7(b), we have an isomorphism of complexes

CPV(V
c,Vc) ≃ CChom(R̄,Vc) . (6.14)

As an R̄-module, Vc is filtered by its R̄-submodules

Fp Vc :=

p∑

q=0

SqR̄ , p ≥ −1 ;

however, SqR̄ are not R̄-submodules of Vc. In particular, F1 Vc = R̄ + F1 ≃ R is
the adjoint representation of R̄ on R, given by (6.13) and by [aλ1] = 0.

Proposition 6.13. Let the LCA R = R̄+ FC be a nontrivial central extension of
an abelian LCA R̄, where ∂C = 0 and R̄ is freely finitely-generated as an F[∂]-
module. Suppose that for some c ∈ F, we have HPV(V

c,Vc) ≃ HChom(R̄, R),
where the isomorphism is induced from the restriction (4.22) and the inclusion
R ≃ F1 Vc →֒ Vc. Then HChom(R̄, V ) ≃ HChom(R̄, R), where V = V c(R) and the
isomorphism is induced from the inclusion R ≃ F1 V →֒ V .
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Proof. As in the proof of Proposition 6.9, the canonical filtration (6.7) of V induces
a separated exhaustive filtration of the complex CChom(R̄, V ). This gives a spectral
sequence {(Er, dr)}r≥1, whose first term is

Ep,q
1 = grp Cp+q

Chom(R̄, V ) ≃ Cp+q
Chom(R̄, grq V ) = Cp+q

Chom(R̄, SqR̄) .

Since the λ-bracket in R̄ is zero, the differential d1 = 0 and hence

Ep,q
2 = Ep,q

1 ≃ Cp+q
Chom(R̄, SqR̄) .

By construction, the differential

d2 : E
p,q
2 → Ep+2,q−1

2

is induced from the LCA differential

d : Cp+q
Chom(R̄,Fq V ) → Cp+q+1

Chom (R̄,Fq V ) .

Indeed, the image of Cp+q
Chom(R̄,Fq V ) under d lies in Cp+q+1

Chom (R̄,Fq−1 V ), because
[R̄λR̄] = 0.

Notice that Fq V ≃ Fq Vc as R̄-modules, again due to the vanishing of the λ-
bracket in R̄. Therefore,

Ep,q
3 = grp Hp+q

Chom(R̄,Fq V ) ≃ grp Hp+q
Chom(R̄,Fq Vc)

is the image of Hp+q
Chom(R̄,Fq Vc) under the linear map induced by the projection

Fq Vc
։ SqR̄ ≃ Fq Vc/Fq−1 Vc. By assumption, Ep,q

3 = 0 for q > 1. Hence, by
Remark A.7, the spectral sequence collapses at the third term: all dr = 0 for r ≥ 3.
As a result,

grp Hp+q
Chom(R̄, V ) ≃ Ep,q

∞ = Ep,q
3 , p, q ∈ Z .

This implies, for every n ≥ 0, that

Hn
Chom(R̄, V ) ≃

n⊕

p=n−1

grp Hn
Chom(R̄, V ) ≃ En,0

3 ⊕ En−1,1
3 ≃ Hn

Chom(R̄,F1 V ) ,

which completes the proof. �

Under the above assumptions, we can determine the bounded VA cohomology of
V . This result will be applied to the free superfermion and free superboson vertex
algebras (see Sections 7.3 and 7.4 below).

Theorem 6.14. Suppose that the Lie conformal algebra R = R̄+FC is a nontrivial
central extension of an abelian Lie conformal algebra R̄ by an element C such that
∂C = 0, where R̄ is a free finitely-generated F[∂]-module. For c ∈ F, consider the
vertex algebra V c(R) and its LCA subalgebra R̄+ F|0〉 ≃ R. Assume that

HPV(V
c(R)) ≃ HChom(R̄, R) , (6.15)

where the isomorphism is induced from the restriction (4.22) and the inclusion
R ≃ F1 Vc(R) →֒ Vc(R). Then

Hch,b(V
c(R)) ≃ HChom(R̄, R) , (6.16)

where the isomorphism is induced from the restriction (4.15) and the inclusion
R ≃ F1 V c(R) →֒ V c(R).
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Proof. The proof is similar to the proofs of Theorem 6.12 and Proposition 6.13, so
some details will be omitted. As before, we consider V := V c(R) with its canonical
filtration (6.7), which is very good and satisfies V := grV ≃ V(R̄) ≃ S(R̄). Then
we have the spectral sequence {(Er, dr)}r≥1 from Theorem 6.2, and

Ep,q
2 ≃ grp Hp+q

cl (V) ≃ grp Hp+q
PV (V) = grp Cp+q

PV (V) .

We get

Ep,q
3 ≃ grp Hp+q

PV (Vc) ,

where Vc := Vc(R). By assumption, Ep,q
3 = 0 for q > 1 and

En,0
3 ⊕ En−1,1

3 ≃ Hn
PV(V

c,F1 Vc) ≃ Hn
Chom(R̄, R) .

By Remark A.7, the spectral sequence collapses at the third term: all dr = 0 for
r ≥ 3. The rest of the proof is as in the proof of Theorem 6.12. �

7. Examples of computations of VA cohomology

7.1. Vertex algebra with ∂ = 0. Let V be a vertex algebra with ∂ = 0. Then, by
the sesquilinearity V2 (which implies L1), the λ-bracket in V is zero. By the quasi-
commutativity and quasiassociativity (2.11), (2.12), the normally ordered product
is commutative and associative. We endow V with the trivial increasing filtration
(3.29). Hence, grV = gr0 V = V , which is a PVA with the same product as V and
zero λ-bracket.

Theorem 7.1. Let V be a commutative associative superalgebra and M be a V -
module. Consider V as a (non-unital) vertex algebra with ∂ = 0 and M with
∂ = 0 as a module over the VA V . Then the VA cohomology complex of V with
coefficients in M is isomorphic to the Harrison cohomology complex of V with
coefficients in M . Explicitly, a Harrison cochain γ : V ⊗n → M corresponds to a
VA cochain Y ∈ Cn

ch(V,M) such that

Y z1,...,zn
λ1,...,λn

(
v ⊗

1

z12z23 · · · zn−1,n

)
= γ(v) + 〈λ1 + · · ·+ λn〉 , v ∈ V ⊗n .

Consequently, Hn
ch(V,M) ≃ Hn

Har(V,M) for all n ≥ 0, where the subscript Har
stands for the Harrison cohomology [Har62].

Proof. Note that, by considering the algebra V ⊕ M as in Sections 4.1, 4.3, it is
enough to prove the theorem for M = V . In this case, by Theorems 3.7 and 3.8,
we have an isomorphism of operads Pch ≃ Pcl and Pcl(n) = grn−1 Pcl(n) for all
n ≥ 1. As a consequence, we get an isomorphism of complexes Cch(V ) ≃ Ccl(V ).
Explicitly, Y ∈ Cn

ch(V ) corresponds to Z ∈ Cn
cl(V ) such that

ZL(v) = Y (v ⊗ pL) ,

where L is the line 1 → 2 → 3 → · · · → n, and

ZΓ(v) = Y (v ⊗ pΓ) = 0 , v ∈ V ⊗n ,

for every graph Γ with n vertices and ≤ n−2 edges. For graphs Γ with n−1 edges,
ZΓ is determined by Remark 3.3 and the symmetry of Z.

Note that

pL =
1

z12z23 · · · zn−1,n
,
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and Y is uniquely determined by its values Y (v ⊗ pL), by Corollary 3.5 and the
symmetry conditions (4.6). Since L is connected, ZL(v) ∈ V is independent of
λ1, . . . , λn. Therefore,

Cn
ch(V ) ≃ Cn

cl(V ) ≃ Hom(V ⊗n, V ) .

Finally, the differential in Ccl(V ) and the Harrison differential coincide, as proved
in [BDSKV19, Theorem 4.1]. �

7.2. Virasoro VA. The universal Virasoro VA of central charge c ∈ F is defined
as

Virc = V (RVir)/:V (RVir)(C − c|0〉): ,

where RVir is the Virasoro LCA from Example 2.5. It is freely generated by R̄Vir =
F[∂]L, and in Virc the λ-bracket of L with itself is given by

[LλL] = (∂ + 2λ)L+
c

12
λ3 .

The canonical filtration of Virc is very good, and the associated graded is isomorphic
to the PVA V0(RVir) ≃ V(R̄Vir) (see Lemma 2.18).

By [BDSK19, Theorem 4.17], V = Virc satisfies the conditions of Theorem 6.12.
Since HChom(R̄Vir,F) is known by [BKV99], as an immediate consequence we obtain
an explicit description of the bounded cohomology of Virc with coefficients in its
adjoint representation.

Theorem 7.2. For every central charge c ∈ F, we have

dimHn
ch,b(Vir

c) =

{
1, for n = 0, 2, 3,

0, otherwise.

Explicitly, Hn
ch,b(Vir

c,Virc) for n = 0, 2, 3 is spanned over F by, respectively, |0〉+
∂V ∈ V/∂V , and by unique (up to coboundary) cocycles Y , Z such that

Y z1,z2
λ1,λ2

(L⊗ L⊗ 1) = λ3
1 + 〈∂ + λ1 + λ2〉

and

Zz1,z2,z3
λ1,λ2,λ3

(L⊗ L⊗ L⊗ 1) = (λ1 − λ2)(λ1 − λ3)(λ2 − λ3) + 〈∂ + λ1 + λ2 + λ3〉 .

7.3. Free superfermion VA. Let h be a finite-dimensional superspace, with par-
ity p, and a super-skewsymmetric nondegenerate bilinear form (·|·), as in Example
2.3. The free superfermion VA is defined as

Fh := V 1(Rf
h) = V (Rf

h)/:V (Rf
h)(K − |0〉): .

It is freely generated by F[∂]h, where the λ-bracket of a, b ∈ h is as in (2.2) but
with K = 1. The canonical filtration of Fh is very good, and the associated graded

is isomorphic to the PVA V0(Rf
h) (see Lemma 2.18). The latter is a superalgebra

of differential polynomials with the zero λ-bracket. The free superfermion PVA is
(cf. (2.7)):

Fh := V1(Rf
h) = V(Rf

h)/V(R
f
h)(K − 1) .

We showed in [BDSK19, Theorem 4.7] that the cohomology of Fh with coefficients
in itself is trivial. The same is true for Fh, due to Theorem 6.14.

Theorem 7.3. We have

H0
ch(Fh) = F

∫
|0〉 , H1

ch(Fh) = 0 , Hn
ch,b(Fh) = 0 , n ≥ 2 .
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Proof. Recall that, by (6.14),

HPV(Fh,Fh) ≃ HChom(R̄,Fh) ,

where R̄ = Rf
h/FK = F[∂]h. Since, by [BDSK19, Theorem 4.7],

H0
PV(Fh,Fh) = F

∫
1 , Hn

PV(Fh,Fh) = 0 , n ≥ 1 ,

all cocycles are equivalent to cocycles that take values in F1 ⊂ R ⊂ Fh. Hence,
(6.15) holds, which implies (6.16) and completes the proof. �

7.4. Free superboson VA. Let h be a finite-dimensional superspace, with parity
p, and a supersymmetric nondegenerate bilinear form (·|·), as in Example 2.2. The
free superboson VA is defined as

Bh := V 1(Rb
h) = V (Rb

h)/:V (Rb
h)(K − |0〉): .

It is freely generated by F[∂]h, where the λ-bracket of a, b ∈ h is as in (2.1) with
K = 1. The canonical filtration of Fh is very good, and the associated graded is
isomorphic to the PVA V0(Rb

h) (see Lemma 2.18). The latter is a superalgebra of
differential polynomials with the zero λ-bracket. The free superboson PVA is

Bh := V1(Rb
h) = V(Rb

h)/V(R
b
h)(K − 1)

(cf. (2.7)). Its cohomology was found in [BDSK19, Theorem 4.2]. As a consequence,
we determine the bounded cohomology of Bh. In order to state the result, fix a
basis {u1, . . . , uN} for h homogeneous with respect to parity, and let {u1, . . . , uN}

be its dual basis, so that (ui|uj) = δji .

Theorem 7.4. For the free superboson VA Bh, we have

Hn
ch,b(Bh) ≃ Hn

PV(Bh) ≃ (Sn(Πh))∗ ⊕ (Sn+1(Πh))∗ , n ≥ 0 .

Explicitly, an element α + β ∈ (Sn(Πh))∗ ⊕ (Sn+1(Πh))∗ corresponds under this
isomorphism to the unique (up to coboundary) n-cocycle Y ∈ Cn

ch(Bh) such that

Y z1,...,zn
λ1,...,λn

(u⊗ 1) = α(u) +
N∑

j=1

β(u ⊗ uj)uj + 〈∂ + λ1 + · · ·+ λn〉 , u ∈ h⊗n .

Proof. By (6.14) and [BDSK19, Theorem 4.2], we have

HPV(Bh) ≃ HChom(R̄,Bh) ≃ HChom(R̄, R) ,

where R̄ = Rb
h/FK = F[∂]h and R is identified with R̄ + F1 ⊂ Bh. Hence, we

can apply Theorem 6.14 to conclude that Hn
ch,b(Bh) ≃ Hn

PV(Bh). The explicit

description of cocycles follows from [BDSK19, Theorem 4.2]. �

7.5. Universal affine VA. Let g be a simple finite-dimensional Lie algebra. The
universal affine VA at level k ∈ F is defined as

V k
g := V k(Cur g) = V (Cur g)/:V (Cur g)(K − k|0〉): ,

where Cur g is the affine LCA from Example 2.4. It is freely generated by F[∂]g,
where the λ-bracket of a, b ∈ g is as in (2.3) with K = k. The canonical filtration of
V k
g is very good, and the associated graded is isomorphic to the PVA V0(Cur g) ≃

V(Cur g) (see Lemma 2.18).

Conjecture 7.5. Let V k
g be the universal affine VA of g at level k 6= −h∨. Then

dimHn
ch,b(V

k
g ) ≤ dim

(∧
ng⊕

∧
n+1g

)
, n ≥ 0 .
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8. Application to integrability of evolution PDE

8.1. Integrability via cohomology. In this subsection we introduce a general
cohomological framework which allows one to prove integrability of both classical
and quantum Hamiltonian systems of evolution equations. A cohomogical approach
to integrability of classical Hamiltonian PDEs was initiated in [Kra88] and [Ol87],
and further developed in [DSK13]. Let

W =
⊕

k≥−1

W k

be a Z-graded Lie superalgebra with parity p̄. The superspace ΠW−1, with the
opposite parity p = 1 − p̄, is called the space of Hamiltonian functionals, and the
space W 1 is called the space of structures.

Definition 8.1. For an element K ∈ W 1, we define the bilinear product {· , ·}K
on ΠW−1 given by

{f, g}K = (−1)p(f)[[K, f ], g] . (8.1)

If K ∈ W 1 is odd (i.e., p̄(K) = 1̄) such that [K,K] = 0, we call K a Poisson
structure, and the corresponding bilinear product (8.1) a Poisson bracket on ΠW−1.

Note that in the left-hand side of (8.1) we view f and g as elements of ΠW−1,
while in the right-hand side we view them in W−1, and make computations in the
Lie superalgebra W . Also observe that p({f, g}K) = p(f) + p(g), since p(K) = 0̄.
Given a Poisson structure K ∈ W 1, the associated to f ∈ ΠW−1 evolutionary
vector field is defined as Xf = [K, f ] ∈ W 0.

Lemma 8.2. (a) For every K ∈ W 1, (8.1) defines a super skewsymmetric bracket
on ΠW−1.

(b) If K is a Poisson structure, (8.1) defines a Lie superalgebra bracket on ΠW−1.

(c) We have

[Xf , Xg] = X{f,g}K
. (8.2)

Proof. For a, b ∈ W−1 we have, by the Jacobi identity in the Lie superalgebra W ,

[[K, a], b] = (−1)(1+p(a))(1+p(b))[[K, b], a] ,

which is the same as the skewsymmetry condition for the bracket (8.1). This
proves claim (a). Next, we prove claim (b). For a, b, c ∈ W−1, we get, after a
straightforward computation in the Lie superalgebra W , using only the assumption
that K ∈ W 1 is odd,

{{a, b}K,c}K − {a, {b, c}K}K + (−1)p(a)p(b){b, {a, c}K}K

=
1

2
(−1)p(b)[[[[K,K], a], b], c] .

Hence, the Jacobi identity for the bracket (8.1) follows from the assumption that
[K,K] = 0. Finally, claim (c) is just a restatement of the Jacobi identity for the
bracket (8.1). �

By (8.2), the map f 7→ Xf defines a Lie superalgebra homomorphism ΠW−1 →
W 0, whose image is the subalgebra of W 0 of evolutionary vector fields.

47



Proposition 8.3 (Lenard–Magri scheme). Let K,H ∈ W 1 be odd and, for N ≥ 1,
let h0, h1, . . . , hN be even elements of ΠW−1 such that

[H,hn] = [K,hn+1] for all n = 0, . . . , N − 1 . (8.3)

Then

{hm, hn}K = 0 = {hm, hn}H for all m,n = 0, . . . , N , (8.4)

where {f, g}K and {f, g}H are defined by (8.1).

Proof. We prove equation (8.4) by induction on |n −m|. Obviously, {hn, hn}K =
{hn, hn}H = 0, since, by Lemma 8.2(a), both brackets are skewsymmetric on ΠW−1

and, by assumption, all elements hn are even in ΠW−1. This proves the basis of
the induction m = n. For the inductive step, we may assume that m > n ≥ 0. We
have

{hm, hn}K = [[K,hm], hn] = [[H,hm−1], hn] = {hm−1, hn}H ,

which vanishes by the inductive assumption. Similarly,

{hm, hn}H = (−1)1+p(hm)p(hn){hn, hm}H = −[[H,hn], hm]

= −[[K,hn+1], hm] = −{hn+1, hm}K ,

which again vanishes by inductive assumption. �

Theorem 8.4. Suppose that K and H are compatible Poisson structures, i.e., odd
elements of W 1 such that [H,H ] = [K,K] = [K,H ] = 0. Assume, moreover, that

Ker
(
adK|W 0

0̄

)
⊂ [K,W−1

1̄
] (8.5)

(i.e., the even part of the first cohomology of the complex (W, adK) vanishes).
Then, if h0, . . . , hN ∈ ΠW−1, N ≥ 1, are even elements solving equations (8.3),
there exists an even element hN+1 ∈ ΠW−1 such that (8.3) holds for N + 1.

Proof. Since H and K are compatible Poisson structures, we have by the Jacobi
identity

[K, [H,hN ]] = −[H, [K,hN ]] = [H, [H,hN−1]] = (adH)2hN−1 = 0 .

Hence, [H,hN ] lies in the kernel of adK. The claim follows by assumption (8.5). �

Corollary 8.5. If H,K are as in Theorem 8.4 and h is an even element of ΠW−1

such that [K,h] = 0, then there exists an infinite sequence of even elements

h0 = h, h1, h2, · · · ∈ ΠW−1

such that equation (8.3) holds for every n ∈ Z≥0.

Proof. Let h−1 = 0 and h0 = h, and apply Theorem 8.4 recursively. �

Theorem 8.6 (cf. [BDSK09]). Let H,K be as in Theorem 8.4. Consider two
infinite sequences, h0, h1, h2, . . . and g0, g1, g2, . . . of even elements of ΠW−1 sat-
isfying (8.3), and assume that [K,h0] = 0. Then

{hm, hn}K,H = {gm, gn}K,H = 0, {hm, gn}K,H = 0 for all m,n ≥ 0 ,

where {· , ·}H,K denotes either of the two Poisson brackets.
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Proof. The first equation holds by Proposition 8.3. We prove the second equation
by induction on m. We have

{h0, gn}K = [[K,h0], gn] = 0

since, by assumption, [K,h0] = 0. Moreover,

{h0, gn}H = −{gn, h0}H = −[[H, gn], h0] = −[[K, gn+1], h0] = [[K,h0], gn+1] = 0 ,

proving the base case of induction m = 0. For the inductive step, we have, for
m ≥ 1,

{hm, gn}K = [[K,hm], gn] = [[H,hm−1], gn] = {hm−1, gn}H ,

which vanishes by inductive assumption. Similarly, we have

{hm, gn}H = −{gn, hm}H = −[[H, gn], hm] = −[[K, gn+1], hm]

= [[K,hm], gn+1] = [[H,hm−1], gn+1] = {hm−1, gn+1}H ,

which again vanishes by induction. �

Remark 8.7. Note that a solution hN+1 of equation (8.3) is unique up to adding
an element from the kernel of adK. Consider the increasing sequence of subspaces
of W−1

1̄
,

U0 ⊂ U1 ⊂ U2 ⊂ · · · ⊂ Ũ =
⋃

n≥0

Un ,

where U0 = Ker(adK|W−1

1̄

) and, recursively, Un+1 = (adK)−1[H,Un] for every

n ≥ 0. Then, by Proposition 8.3, Ũ is an abelian subalgebras with respect to both
H and K-Poisson brackets:

{Ũ , Ũ}H,K = 0 .

Moreover, let g0, g1, g2, · · · ∈ W−1
1̄

be an infinite sequence satisfying (8.3) for all

n ≥ 0, and let V = span{g0, g1, g2, . . . } ⊂ W−1
1̄

. Then, by Theorem 8.6, we also
have that

{Ũ + V, Ũ + V }H,K = 0 .

On the other hand, if g′0, g
′
1, · · · ∈ W−1

1̄
is another infinite sequence satisfying (8.3),

and V ′ = span{g′0, g
′
1, . . . }, we do not necessarily have that {V, V ′}H,K = 0.

8.2. Example 1: W = WPV(ΠV). Let V be a differential superalgebra, with
parity denoted by p, let ∂ be an even derivation on V , and consider the Lie super-
algebra WPV(ΠV) introduced in Section 4.4. Recall from [DSK13, Section 5.1] that
ΠW−1

PV(ΠV) = V/∂V , W 0
PV(ΠV) = Der∂(V) is the Lie superalgebra of all derivations

of V commuting with ∂, and odd elements K ∈ W 1
PV(ΠV) such that [K,K] = 0

correspond bijectively to the PVA λ-brackets on V , via the map K 7→ {· λ ·}K given
by (cf. (4.18))

{fλg}K = (−1)p(f)Kλ,−λ−∂(f, g) .

Some of the commutators for the Lie superalgebra WPV(ΠV) in low degrees are as
follows. Let

∫
f,
∫
g ∈ V/∂V (here and further

∫
: V → V/∂V denotes the canonical

quotient map), let X,Y ∈ Der∂(V), and let K ∈ W 1
PV(ΠV) be such that [K,K] = 0.

We have

[
∫
f,
∫
h] = 0 , [X,

∫
f ] =

∫
X(f) , [X,Y ] = XY − Y X ,

[K,
∫
f ](g) = (−1)p(f){fλg}K

∣∣
λ=0

.
(8.6)
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By the second and fourth equations in (8.6), the Poisson bracket (8.1) on V/∂V
associated to the Poisson structure K ∈ W 1

PV(ΠV)1̄ becomes

{
∫
f,
∫
g}K =

∫
{fλg}K

∣∣
λ=0

. (8.7)

Furthermore, V is a left module over the Lie superalgebra V/∂V with the well-
defined action

{
∫
f, g}K = {fλg}K

∣∣
λ=0

, (8.8)

which is a derivation of both the λ-bracket and the product, commuting with
∂. Given a Hamiltonian functional

∫
h ∈ V/∂V and a Poisson structure K ∈

W 1
PV(ΠV)1̄, the corresponding Hamiltonian equation is

du

dt
= {

∫
h, u}K , u ∈ V . (8.9)

This equation is called integrable if
∫
h is contained in an infinite-dimensional

abelian subalgebra of the Lie algebra V/∂V (with the Poisson bracket (8.7)). Pick-
ing a basis

∫
h0 =

∫
h,

∫
h1,

∫
h2, . . . of this abelian subalgebra, we obtain a hierarchy

of integrable equations
du

dtn
= {

∫
hn, u}K , n ≥ 0 , (8.10)

which are compatible since the corresponding evolutionary vector fields Xhn
’s com-

mute, by (8.2).

Example 8.8. Let V = F[u, u′, u′′, . . . ] be the algebra of differential polynomials
in one differential variable u, so that ∂u(n) = u(n+1). One has two compatible PVA
λ-brackets on V , defined by

{uλu}K = λ , {uλu}H = (∂ + 2λ)u+
c

12
λ3 . (8.11)

Note that condition (8.5) holds by [DSK12]. Let
∫
h0 =

∫
u. By the last equa-

tion in (8.5), it’s easy to check, using sesquilinearity and the Leibniz rule, that
[K,

∫
h0] = 0. Hence we can apply Corollary (8.5) to construct an infinite sequence∫

h0,
∫
h1,

∫
h2, . . . such that (8.3) holds. Hence, by Proposition 8.3

{
∫
hm,

∫
hn}H,K = 0 for all m,n ≥ 0 .

We can compute the first few integrals of motion using the recursive formula (8.3):

∫
h0 =

∫
u ,

∫
h1 =

1

2

∫
u2 ,

∫
h2 =

1

2

∫
(u3 −

c

12
u′2) , . . . .

The corresponding integrable hierarchy of classical Hamiltonian equations is the
classical KdV hierarchy:

du

dt0
= 0 ,

du

dt1
= u′ ,

du

dt2
= 3uu′ +

c

12
u′′′ , . . .

8.3. Example 2: W = Wch(ΠV ). Let V be a vector superspace and let ∂ be an
even endomorphism of V . Consider the Z-graded Lie superalgebra Wch(ΠV ) =⊕

k≥−1 W
k
ch defined in Section 4.3. This Lie superalgebra is described in detail in

[BDSHK18]. We have W−1
ch = V/∂V , W 0

ch is the Lie superalgebra of all endomor-
phisms of the F[∂]-module V , and the odd elements K ∈ W 1

ch such that [K,K] = 0

correspond bijectively to the VA structures on V , via the map K 7→
∫ λ

dσ[· σ ·]K
given by (4.2). Some of the commutators for the Lie superalgebra Wch(ΠV ) in low
degrees are given by formulas (8.6). It follows that the Poisson bracket (8.1) on
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V/∂V associated to the Poisson structure K ∈ W 1
ch(ΠV ) coincides with formula

(8.7).
Again, V is a left module over the Lie superalgebra V/∂V with the well-defined

action (8.8). It is a derivation of both the λ-bracket and the normally ordered
product, commuting with ∂. Given a Hamiltonian functional

∫
h ∈ V/∂V and a

Poisson structure K ∈ W 1
ch(ΠV)1̄, the corresponding quantum Hamiltonian equa-

tion is again (8.9). The notions of integrability, etc., in the quantum case are the
same as in the classical case.

In a similar fashion as in Example 8.8, one obtains Hamiltonian equations of the
quantum KdV hierarchy. The details of this and other examples will be discussed
in a subsequent publication.

Appendix A. The spectral sequence of a filtered complex

In this appendix, we recall the construction of a spectral sequence from a filtered
cohomology complex in a slightly more general setting than is usually discussed in
the literature (see e.g. [McL01]).

Consider a cochain complex C =
⊕∞

n=0 C
n, where each Cn is a vector superspace

over the field F, equipped with a differential d, an even linear operator on C such
that d2 = 0 and dCn ⊂ Cn+1 for all n. We let Cn = 0 for n ≤ −1. We suppose
that the complex (C, d) has a decreasing filtration {Fp C}p∈Z, so that each space
Cn is filtered by subspaces:

· · · ⊃ Fp−1 Cn ⊃ Fp Cn ⊃ Fp+1 Cn ⊃ · · · , n ≥ 0 , (A.1)

and the differential d is compatible with the filtration:

dFp Cn ⊂ Fp Cn+1 , p ∈ Z , n ≥ 0 . (A.2)

Furthermore, we will assume that the filtration is separated, i.e.,
⋂

p∈Z

Fp Cn = 0 , n ≥ 0 . (A.3)

We will denote by H =
⊕∞

n=0 H
n the cohomology of the complex (C, d):

Hn := Hn(C, d) = (Cn ∩Ker d)/dCn−1 , n ≥ 0 . (A.4)

The filtration of C induces a decreasing filtration of its cohomology H :

· · · ⊃ Fp−1 Hn ⊃ Fp Hn ⊃ Fp+1 Hn ⊃ · · · , n ≥ 0 , (A.5)

where

Fp Hn =
(Fp Cn ∩Ker d) + dCn−1

dCn−1
≃

Fp Cn ∩Ker d

Fp Cn ∩ dCn−1
(A.6)

is the image of Fp Cn ∩ Ker d ⊂ Cn ∩ Ker d under the canonical projection Cn ∩
Kerd ։ Hn. In other words, Fp Hn is the image of Hn(Fp C, d) in Hn(C, d) under
the linear map induced by the inclusion Fp C →֒ C.

Remark A.1. If the filtration (A.1) of Cn is separated, then the induced filtration
(A.5) of the cohomology Hn is also separated.

Let

grH =
⊕

p∈Z

grp H =
⊕

p∈Z

n≥0

grp Hn , grp Hn = Fp Hn/Fp+1 Hn ,
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be the associated graded space. Then by (A.6), we have

grp Hn ≃
Fp Cn ∩Ker d

(Fp+1 Cn ∩Kerd) + (Fp Cn ∩ dCn−1)
. (A.7)

The spectral sequence {(Er, dr)}r≥0 associated to the filtered complex (C, d) is
constructed as follows. For p, q ∈ Z and r ≥ −1, let

Zp,q
r = {α ∈ Fp Cp+q | dα ∈ Fp+r Cp+q+1}

= Fp Cp+q ∩ d−1(Fp+r Cp+q+1) ,
(A.8)

and

Bp,q
r = {α ∈ Fp Cp+q |α = dβ for some β ∈ Fp−r Cp+q−1}

= Fp Cp+q ∩ d(Fp−r Cp+q−1)

= dZp−r,q+r−1
r .

(A.9)

Obviously, we have dBp,q
r = 0 and

Bp,q
r ⊂ Bp,q

s ⊂ Zp,q
s ⊂ Zp,q

r , −1 ≤ r ≤ s .

Note also that Zp+1,q−1
r−1 = Zp,q

r ∩ Fp+1 Cp+q . We define

Ep,q
r := Zp,q

r /(Zp+1,q−1
r−1 +Bp,q

r−1) , p, q ∈ Z , r ∈ Z+ . (A.10)

Since

dZp,q
r = Bp+r,q−r+1

r ⊂ Zp+r,q−r+1
r

and

d(Zp+1,q−1
r−1 +Bp,q

r−1) = Bp+r+1,q−r
r−1 ⊂ Zp+r+1,q−r

r−1 +Bp+r+1,q−r
r−1 ,

the differential d induces linear maps

dr : E
p,q
r → Ep+r,q−r+1

r (A.11)

such that d2r = 0. One checks that the cohomology of (Er , dr) is isomorphic to
Er+1, i.e.,

(Ep,q
r ∩Ker dr)/drE

p−r,q+r−1
r ≃ Ep,q

r+1 , (A.12)

so indeed we have a spectral sequence (see e.g. [McL01]).

Remark A.2. Due to (A.12), if dimEp,q
s < ∞ for some p, q, s, then dimEp,q

r ≤
dimEp,q

s for all r ≥ s. In particular, Ep,q
s = 0 implies Ep,q

r = 0 for all r ≥ s.

Consider in more detail the r = 0 term. Observe that, by (A.1) and (A.2),

Zp,q
−1 = Zp,q

0 = Fp Cp+q , Bp,q
−1 = dFp+1 Cp+q−1 ⊂ Zp+1,q−1

−1 .

Hence,

Ep,q
0 = Fp Cp+q/Fp+1 Cp+q = grp Cp+q , p, q ∈ Z . (A.13)

The differential d0 : E
p,q
0 → Ep,q+1

0 is induced by the restriction d : Fp Cp+q →
Fp Cp+q+1.

Remark A.3. Suppose that the differential d of C satisfies the following stronger
property than (A.2):

dFp Cn ⊂ Fp+1 Cn+1 , p ∈ Z , n ≥ 0 . (A.14)

Then we have d0 = 0 and

Zp,q
0 = Zp,q

1 = Fp Cp+q , Bp,q
0 = dFp Cp+q−1 ⊂ Zp+1,q−1

0 .
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Hence, Ep,q
1 = Ep,q

0 = grp Cp+q and d1 : E
p,q
1 → Ep+1,q

1 is induced by the restriction

d : Fp Cp+q → Fp+1 Cp+q+1.

The limit of the spectral sequence is defined as

Ep,q
∞ := Zp,q

∞ /(Zp+1,q−1
∞ +Bp,q

∞ ) , p, q ∈ Z , (A.15)

where
Bp,q

∞ :=
⋃

r≥0

Bp,q
r ⊂ Zp,q

∞ :=
⋂

r≥0

Zp,q
r .

Lemma A.4. If dimEp,q
s < ∞ for some p, q, s, then dimEp,q

∞ ≤ dimEp,q
s . In

particular, Ep,q
s = 0 implies Ep,q

∞ = 0.

Proof. Note that, by construction, Zp,q
r and Bp,q

r are subspaces of Fp Cp+q for all
r ≥ −1. Let π : Fp Cp+q

։ grp Cp+q be the canonical projection. Then we have a
tower of subspaces

0 = B̄p,q
−1 ⊂ B̄p,q

0 ⊂ B̄p,q
1 ⊂ · · · ⊂ Z̄p,q

2 ⊂ Z̄p,q
1 ⊂ Z̄p,q

0 = grp Cp+q ,

where Z̄p,q
r := π(Zp,q

r ) and B̄p,q
r := π(Bp,q

r ). We claim that

Ep,q
r ≃ Z̄p,q

r /B̄p,q
r−1 , r ≥ 0 .

Indeed, the composition of the restriction of π to Zp,q
r with the canonical projection

Z̄p,q
r ։ Z̄p,q

r /B̄p,q
r−1 is clearly surjective, and its kernel is equal to Zp+1,q−1

r−1 +Bp,q
r−1.

Similarly,
Ep,q

∞ ≃ Z̄p,q
∞ /B̄p,q

∞ ,

where
B̄p,q

∞ := π(Bp,q
∞ ) =

⋃

r≥0

B̄p,q
r , Z̄p,q

∞ := π(Zp,q
∞ ) =

⋂

r≥0

Z̄p,q
r .

The lemma then follows from the inclusions Z̄p,q
∞ ⊂ Z̄p,q

s and B̄p,q
∞ ⊃ B̄p,q

s−1. �

Notice that
Zp,q
∞ = Fp Cp+q ∩Ker d , (A.16)

since the filtration of C is separated (see (A.3)). On the other hand,

Bp,q
∞ = Fp Cp+q ∩ d

( ⋃

m∈Z

Fm Cp+q−1
)
. (A.17)

If the filtration of C is exhaustive, i.e., if
⋃

m∈Z

Fm Cn = Cn , n ≥ 0 , (A.18)

then Bp,q
∞ will be equal to

B̃p,q
∞ := Fp Cp+q ∩ dCp+q−1 . (A.19)

In this case, comparing (A.7) and (A.15), we obtain

grp Hp+q ≃ Zp,q
∞ /(Zp+1,q−1

∞ +Bp,q
∞ ) = Ep,q

∞ , p, q ∈ Z . (A.20)

Remark A.5. Assume that, for some fixed n ≥ 0, the filtration of Cn ∩ Ker d is
exhaustive, i.e., ⋃

m∈Z

(Fm Cn ∩Ker d) = Cn ∩Kerd . (A.21)

Then the induced filtration of Hn = Hn(C, d) is exhaustive (see (A.5), (A.6)). This
condition is weaker than the filtration of Cn being exhaustive.
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In general, without assuming the filtration of C is exhaustive, we have

Bp,q
∞ ⊂ B̃p,q

∞ ⊂ Zp,q
∞ .

Then from (A.7) and (A.15), instead of the isomorphisms (A.20), we get surjective
linear maps

Ep,q
∞ ։ grp Hp+q ≃ Zp,q

∞ /(Zp+1,q−1
∞ + B̃p,q

∞ ) , p, q ∈ Z . (A.22)

As a consequence of (A.22), we obtain upper bounds on the dimension of the
cohomology H .

Lemma A.6. Let r0 = 0 or 1, and (C, d) be a cochain complex equipped with a de-
creasing separated filtration such that dFp C ⊂ Fp+r0 C for all p ∈ Z. Consider the
associated graded complex grC with the differential d̄ : grp C → grp+r0 C induced
by d.

(a) Suppose that dimHp,q(grC, d̄) < ∞ for some p, q ∈ Z, where

Hp,q(grC, d̄) :=
(
grp Cp+q ∩Ker d̄

)/
d̄
(
grp−r0 Cp+q−1

)
.

Then

dimgrp Hp+q(C, d) ≤ dimHp,q(grC, d̄) .

(b) Assume that, for some fixed n ≥ 0, the filtration of Cn ∩ Kerd is exhaustive.
Then dimHn(grC, d̄) < ∞ implies that dimHn(C, d) ≤ dimHn(grC, d̄).

Proof. (a) By (A.13) and Remark A.3, we have that Ep,q
r0

= grp Cp+q and d̄ =

dr0 : E
p,q
r0

→ Ep+r0,q−r0+1
r0

is the corresponding differential. Thus, Hp,q(grC, d̄) ≃
Ep,q

r0+1, and claim (a) follows from (A.22) and Lemma A.4.
(b) As before, let us write Hn = Hn(C, d) for short. We have

Hn(grC, d̄) =
⊕

p∈Z

Hp,n−p(grC, d̄) ,

and part (a) implies that grp Hn 6= 0 only for finitely many p ∈ Z. Hence, the
filtration of Hn is finite, i.e., of the form

· · · = Fk−1 Hn = Fk Hn ⊃ Fk+1 Hn ⊃ · · · ⊃ Fℓ−1 Hn ⊃ Fℓ Hn = Fℓ+1 Hn = · · ·

for some integers k ≤ ℓ. Since, by Remarks A.1 and A.5, the filtration of Hn is
separated and exhaustive, it follows that Fk Hn = Hn and Fℓ Hn = 0. Thus,

dimHn =

ℓ−1∑

p=k

dimgrp Hn ,

which together with part (a) completes the proof of (b). �

A spectral sequence {(Er, dr)} is said to collapse (or degenerate) at the s-th
term if all differentials dr = 0 for r ≥ s. We will use the following notation from
the proof of Lemma A.4. Let π : Fp C ։ grp C be the canonical projection and
Z̄p,q
r := π(Zp,q

r ), B̄p,q
r := π(Bp,q

r ). Then Ep,q
r ≃ Z̄p,q

r /B̄p,q
r−1 and we have short exact

sequences

0 → Z̄p,q
r+1/B̄

p,q
r−1 → Z̄p,q

r /B̄p,q
r−1

dr−−→ B̄p,q
r /B̄p,q

r−1 → 0 .
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If dr = 0 for r ≥ s, we obtain

B̄p,q
s−1 = B̄p,q

s = B̄p,q
s+1 = · · · = B̄p,q

∞ , (A.23)

Z̄p,q
s = Z̄p,q

s+1 = Z̄p,q
s+2 = · · · = Z̄p,q

∞ , (A.24)

Ep,q
s ≃ Ep,q

s+1 ≃ Ep,q
s+2 ≃ · · · ≃ Ep,q

∞ . (A.25)

A common cause for collapse is given in the next remark.

Remark A.7. Fix s ≥ 2 and suppose that, for all p ∈ Z, we have Ep,q
s = 0 whenever

q < 0 or q ≥ s − 1. Then the spectral sequence {(Er, dr)} collapses at the s-th
term. This follows from (A.11) and Remark A.2.

The following lemma will be useful for us.

Lemma A.8. Let (C, d) be a cochain complex equipped with a decreasing separated
filtration such that dFp C ⊂ Fp+1 C for all p ∈ Z. Consider the associated graded
complex grC with the differential d̄ : grp C → grp+1 C induced by d, and denote by
π the canonical projection Fp C ։ grp C. If the spectral sequence (A.10) collapses
at the second term, then

π(Fp Cn ∩Ker d) = grp Cn ∩Ker d̄

for all p, n ∈ Z.

Proof. This follows from (A.16) and (A.24), since Z̄p,q
2 = grp Cp+q ∩Ker d̄. �
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