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On the behavior in time of solutions to
motion of Non-Newtonian fluids
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Abstract. We study the behavior on time of weak solutions to the non-
stationary motion of an incompressible fluid with shear rate dependent
viscosity in bounded domains when the initial velocity u0∈L2. Our esti-
mates show the different behavior of the solution as the growth condition
of the stress tensor varies. In the “dilatant” or “shear thickening” case
we prove that the decay rate does not depend on u0, then our estimates
also apply for irregular initial velocity.
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1. Introduction

Let Ω be a bounded open set of R
N , N > 2. For 0 < T < +∞ we set

ΩT = Ω × (0, T ). The unsteady motion of an incompressible fluid with shear-
dependent viscosity in a cylinder ΩT is governed by the conservation of volume
and the conservation of momentum equations

∇ · u = 0 in ΩT (1.1)
∂tu + ∇ · (u ⊗ u − S + pI) = −∇ · f in ΩT (1.2)

where ∇ · u ≡ ∂xi
ui and we use the notation that repeated subscripts imply

summation over 1 to N . Here
S = {Sij} is the deviatoric stress tensor ,
p is the pressure ,
u = {u1, . . . uN} is the velocity ,
f = {fi,j} is the external force tensor .

We assume that at the initial time t = 0, the initial velocity is a vector field
u0

u(0) = u0 in Ω (1.3)
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with

∇ · u0 = 0 ,

and on the boundary the following aderence’s condition holds

u = 0 on ∂Ω × (0, T ) (1.4)

The stress tensor S may depend on both (x, t) and the “rate of strain tensor”
D = {Di,j}, which is defined by

Di,j = Di,j(u) ≡ 1
2

(
∂xj

ui + ∂xi
uj

)
, i, j = 1, . . . N .

For a background on Non-Newtonian fluids we refer to [1,2,9] and the refer-
ences therein.

The model (1.1)–(1.4) has been considered by J. Wolf in [21] and by
L. Diening, M. Ru̇z̆ic̆ka and J. Wolf in [5] to describe the motion of fluid u
through Ω.

The fluids with “shear dependent viscosity” are given by the constitutive
law

S = ν(DII)D , (1.5)
where1

DII =
1
2
D : D = second invariant of D

and ν is the generalized viscosity function.
As noticed in [5] the model (1.5) includes all power-law and Carreau-

type models, which are quite popular among rheologists. Such models are used
in many areas of engineering sciences such as chemical engineering, colloidal
mechanics, glaciology, geology and blood rheology (see [11] for a discussion of
such models and further references).

Special cases of constitutive laws are the following

S = ν0(DII)
q−2
2 D , (1.6)

and
S = ν0[1 + (DII)

q−2
2 ]D , (1.7)

where the constants ν0 and q satisfy

ν0 > 0 , 1 < q < +∞ ,

(see [1,3,20] and the references therein). A fluid which is determined by the
first of these constitutive laws is said

“dilatant” or “shear thickening” if q > 2
“Newtonian” if q = 2
“pseudoplastic” or “shear thinning” if 1 < q < 2 .

Let us denote by MN
sym the vector space of the symmetric N × N matrices

ξ = {ξij} equipped with the scalar product ξ : η and with the inducted norm

1Here, and throughout what follows, for two matrices A and B of RN2
, we denote by A:B

the sum AijBij .
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‖ξ‖ ≡ (ξ : ξ)
1
2 . Moreover, let a · b be the Euclidean scalar product in R

N and
by |a| the inducted Euclidean norm.

We assume that the the deviatoric stress S : ΩT × MN
sym → MN

sym is a
Caratheodory function satisfying for every ξ and η in MN

sym and for almost
every (x, t) ∈ ΩT

‖S(x, t, ξ)‖ ≤ c0‖ξ‖q−1 + g1 (1.8)
S(x, t, ξ) : ξ ≥ ν0‖ξ‖q − g2 (1.9)

where ν0 and c0 are positive constants, and gi (i = 1, 2) are non negative
functions satisfying g1 ∈ Lq′

(ΩT ) and g2 ∈ L1(ΩT ).
Before recalling what we mean here by weak solutions to (1.1)–(1.4), we

recall some function spaces we need.
Here, C∞

0 (Ω) denotes the space of all smooth functions having compact
support in Ω, W k,q(Ω) (k ∈ N and 1 ≤ q ≤ +∞) are the usual Sobolev spaces
and W k,q

0 (Ω) is the closure of C∞
0 (Ω) in W k,q(Ω).

If (X, ‖ · ‖X) is a normed space, by Lq(0, T ;X) we denote the space of all
the Bochner measurable functions ϕ : (0, T ) → X such that

‖ϕ‖Lq(0,T ;X) =

(∫ T

0

‖ϕ(t)‖q
Xdt

) 1
q

< +∞ if 1 ≤ q < +∞

‖ϕ‖L∞(0,T ;X) = ess supt∈(0,T )‖ϕ(t)‖X < +∞ if q = +∞
Finally, we denote

Hq the closure of the set {ϕ ∈ C∞
0 (Ω)N : ∇ · ϕ = 0} respect to the norm of Lq(Ω)N

Vq is the closure of the set {ϕ ∈ C∞
0 (Ω)N : ∇ · ϕ = 0} respect to the norm

‖ϕ‖Vq
= ‖D(ϕ)‖Lq(Ω) .

To simplify the notation, for q = 2 we use just notation H for the space H2

and we will not distinguish between the norm of scalar-valued, vector-valued
or tensor-valued versions of all the spaces defined above.
Finally, |Ω| denotes the Lebesgue measure of Ω.

We recall that since we are assuming Ω bounded, by means of Korn’s
inequality there exists a positive constant γ0, such that

‖v‖W 1,q(Ω) ≤ γ0‖v‖Vq
for every v ∈ Vq . (1.10)

Definition 1.1. Assume (1.8)–(1.9) with 2N
N+2 ≤ q < +∞. Let f be in

(Lq′
(ΩT ))N2

and u0 ∈ H. A weak solution of (1.1)–(1.4) is a vector-valued
function u ∈ Lq(0, T ;Vq) ∩ L∞(0, T ;H) satisfying

−
∫

ΩT

u · ∂tϕdxdt +
∫

ΩT

(S(x, t,D(u)) − u ⊗ u) : D(ϕ)dxdt

=
∫

ΩT

f : ∇ϕdxdt +
∫

ΩT

u0 · ϕ(0)dx (1.11)

for every ϕ ∈ C∞(ΩT )N with ∇ · ϕ = 0 and supp(ϕ) ⊂⊂ Ω × [0, T ).
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Thanks to the parabolic embedding, any weak solution u belongs to
Lq N+2

N (ΩT ).
The assumption q ≥ 2N

N+2 guarantees that u is in L2(ΩT ).
Assuming that the external force verifies

f ∈
(
Lq′

(ΩT )
)N2

, (1.12)

and the monotonicity condition

(S(x, t, ξ) − S(x, t, η)) : (ξ − η) > 0 ξ 
= η , (1.13)

the first results on existence of solutions were proved by O. Ladyzhenskaya in
[8] and by J.L. Lions in [10] under the restriction that

q ≥ 3N + 2
N + 2

.

The uniqueness holds if q > N+2
2 .

For N = 3 and 2 ≤ q < 11
5 the existence of a weak solution was proved by

J. Malek, J. Nec̆as and M. Ru̇z̆ic̆ka in [12] under further regularity assumptions
on the domain and on S.

Then, J. Wolf has completed the previous existence results in [21], cov-
ering the set

2
N + 1
N + 2

< q < +∞ .

Finally, L. Diening, M. Ru̇z̆ic̆ka and J. Wolf in [5] considered all the set
2N

N + 2
< q < +∞

by proving the existence of a weak solution u ∈ Cw([0, T ];H). We recall that a
function v ∈ L∞(0, T ;H) belongs to the function space Cw([0, T ];H) of weakly
continuous functions from [0, T ] to H if v(·, t) ∈ H for any t ∈ [0, T ] and

t �−→ < ψ, v(t) >H is continuous for any ψ ∈ H ′ .

Here < ·, · >H denotes the duality pairing between H ′ and H.
Solutions found in [5] and [21] are limit of functions solving approximating
problems more regular than (1.1)–(1.4). Moreover these functions satisfy a
balance energy equality (see also [4]).

Motivated by this topic we state the following

Definition 1.2. Let f be in (Lq′
(ΩT ))N2

and u0 ∈ H. A weak solution u ∈
Lq(0, T ;Vq) ∩ L∞(0, T ;H) to (1.1)–(1.4) is a “weak energy” solution if there
exists a sequence uε ∈ Lq(0, T ;Vq) ∩ L∞(0, T ;H) such that

uε(t) ⇀ u(t) in H for a.e. 0 ≤ t ≤ T , (1.14)
1
2
‖uε(t)‖2

H +
∫ t

0

∫

Ω

S(x, s,D(uε)) : D(uε) dxds

=
1
2
‖u0‖2

H +
∫ t

0

∫

Ω

f : ∇uε dxds for every 0 ≤ t ≤ T . (1.15)
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Let us remark that if a weak solution is bounded in ΩT , then it is a weak
energy solution. Indeed (up to a regularization procedure) by using u as test
function in (1.11), integration by parts gives that

∫ t

0

∫

Ω

(u ⊗ u) : D(u) dxds = 0

since ∇ · u = 0 and hence (1.15) follows with uε ≡ u.
If (1.13) holds true, thanks to the results of [5] and [21], for

2N

N + 2
< q < +∞

problem (1.1)–(1.4) admits a weak energy solution u ∈ Cw([0, T ];H).
Aim of this paper is to describe the behavior in time of weak energy

solutions to (1.1)–(1.4).
Based on the Fourier splitting method, estimates on time of the solutions of
Navier-Stokes equation and of non-Newtonian fluid were derived by M. E.
Schonbek in [19] and by S. Nec̆asova and P. Penel in [14], respectively, when
the spatial variable belongs to R

N . Time decay estimates were also discussed
in [4] when the spatial variable is in R

N
+ and the Fourier splitting method does

not apply. The solutions considered there are energy solutions in the sense of
Definition 1.2.

The model treated by the previous authors concerns the case in which
the deviatoric stress tensor S is given by (1.7) with particular values of q .

Here we consider time decay estimates for a weak energy solution to
general problem (1.1)–(1.4) having the spatial variable in a bounded domain
Ω and in all cases in which this problem is known to be well posed.

Our estimates are based on an approach that highlights the different
behavior as the exponent q varies.

To understand the large behavior of a viscous incompressible fluid we
assume that conditions (1.8) and (1.9) hold for a.e. (x, t) ∈ Ω∞ ≡ Ω× (0,+∞)
with g1 ∈ Lq′

(ΩT ), g2 ∈ L1(ΩT ) for every T > 0 and

f ∈ (Lq′
(Ω∞))N2

. (1.16)

In this case we say that u ∈ Lq
loc(0,+∞;Vq) ∩ L∞

loc(0,+∞;H) is a global
weak energy solution to (1.1)–(1.4) if for any T > 0 u is a weak energy solution
in ΩT according to Definition 1.2 above.

Our main result is the following.

Theorem 1.1. Assume (1.8), (1.9) and (1.16). Let u be a global weak energy
solution to (1.1)–(1.4). If g2 ∈ L1(Ω∞) then u ∈ Cw([0, T ];H) for any T > 0
and the following estimates hold true for any t > 0

‖u(t)‖2
L2(Ω) ≤ Λ0e

−Bt +
∫ t

t
2

g(s)ds if q ≤ 2

‖u(t)‖2
L2(Ω) ≤ Λ1

t

1
q
2 −1

+
∫ t

t
2

g(s)ds if q > 2
(1.17)
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where

g(s) ≡ 2
[
c(q, ν0, γ0)‖f(s)‖q′

Lq′ (Ω)
+ ‖g2(s)‖L1(Ω)

]

[with γ0 as in (1.10)]

Λ0 = ‖u0‖2
H + ‖g(s)‖L1((0,+∞)) ,

Λ1 =
[
( q

2 −1)c1

2|Ω|γ

]− 1
q
2 −1

,
(1.18)

c1 = c1(ν0, γ0, q,N) (see formula (2.7)) and B = B(Ω,Λ0, q,N, ν0).

An estimate of the constant B is given in formula (3.16) below.
The existence of a global weak energy solution to (1.1)–(1.4) is proved in

Sect. 2.2.
We point out that the previous result shows that although the global weak

energy solution u decays in time for every value of q, there is a deep difference
in the decay estimates between the “dilatant” or “shear thickening” case q > 2
and all the other cases ( “Newtonian” or “shear Thinning”). As a matter of
fact, if q > 2, all the estimates in Theorem 1.1 are universal estimates, i.e., do
not depend on the initial value u0. In other words, in the “dilatant” or “shear
thickening” case the initial velocity does not influence at all the behavior in
time of the velocity of the fluid.

Thanks to this argument, when q > 2, we are able to provide the existence
of a suitable weak solution also when u0 is just a summable function (see
Sect. 4).

Moreover, we can show that, although the initial datum is not regular,
as soon as t > 0 the solution we found has the same regularity and decay
behavior of the case in which u0 is regular.

In the particular case that the deviatoric stress tensor S is given by (1.7)
we show that an exponential decay estimate holds true regardless of the growth
exponent q (see Proposition 3.1 below).

We point out that in unbounded domains optimal algebraic estimates
have been proved in [14] and [4]. Here we reach an exponential decay rate
thanks to the boundedness of the domain Ω.

The paper is organized as follows: in Sect. 2 we recall some known results
that will be an essential tool in proving our decay estimates (see Sect. 2.1)
and we construct a weak global energy solution (see Sect. 2.2). In Sect. 3.1 we
prove Theorem 1.1 and we study the particular case (1.7). Finally, in Sect. 4
we study the case of not regular initial data.

2. Preliminary results

As recalled in the Introduction, for the convenience of the reader we recall
here some known results that will be an essential tool in proving the decay
estimates stated in the previous section.
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2.1. Gronwall type Lemmas

Lemma 2.1. Assume T ∈ (0,+∞] and let φ(t) a continuous and non negative
function defined in [0, T ) and verifying

φ(t2) − φ(t1) + M

∫ t2

t1

φ(t)1+νdt ≤
∫ t2

t1

g(t)dt (2.1)

for every 0 ≤ t1 ≤ t2 < T where M and ν are positive constants and g is a
non negative function in L1

loc([0, T )). Then it results

φ(t) ≤ φ(0)

[1 + νMφ(0)νt]
1
ν

+
∫ t

0

g(s)ds for every t ∈ [0, T ) . (2.2)

Moreover, the following estimate holds

φ(t) ≤ M0

t
1
ν

+
∫ t

t
2

g(s)ds for every t ∈ (0, T ) (2.3)

where M0 =
(

νM
2

)− 1
ν .

The previous Lemma can be easily proved by a straightforward modification
of the proof of Proposition 3.1 of [13] and hence we omit it.

Lemma 2.2. Assume T ∈ (0,+∞] and let φ(t) a continuous and non negative
function defined in [0, T ) verifying

φ(t2) − φ(t1) + M

∫ t2

t1

φ(t)dt ≤
∫ t2

t1

g(t)dt

for every 0 ≤ t1 ≤ t2 < T where M is a positive constant and g is a non
negative function in L1

loc([0, T )). Then it results

φ(t) ≤ φ(0)e−Mt +
∫ t

0

g(s)ds for every t > 0 . (2.4)

Moreover, if T = +∞ and g belongs to L1((0,+∞)) we have

φ(t) ≤ Λe− M
2 t +

∫ t

t
2

g(s)ds for every t > 0 , (2.5)

where

Λ = φ(0) +
∫ +∞

0

g(s)ds .

In particular, we get that

lim
t→+∞ φ(t) = 0 .

We omit the proof of the previous Lemma since it is an obvious modification
of the proof of Proposition 3.2 of [13].

Remark 2.1. Previous Lemmas have been used in [13] and [7] to study asymp-
totic estimates for evolution problems. Analogous techniques, developed in [15]
and in [17], have been useful also for other parabolic problems (see [16] and
[18]).
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2.2. Existence of a global weak energy solution

In this subsection we prove the existence of a global weak energy solution to
problem (1.1)–(1.4). The existence of a weak energy solution can be deduced
from [21] and [5]. Here, for convenience of the reader, we state the main tools
of the construction in ΩT , in order to obtain a global weak energy solution.

Proposition 2.1. Assume that the structural assumptions (1.8), (1.9) and (1.13)
hold true a.e. in Ω∞ with q > 2N

N+2 , g2 ∈ L1(Ω∞) and g1 ∈ Lq′
(ΩT ) for any

T > 0. Let f ∈ (Lq′
(Ω∞))N2

and u0 ∈ H. Then there exists a weak global
energy solution u of (1.1)–(1.4).
Moreover, u ∈ Cw([0, T ];H) for any T > 0.

Proof. As in [5] and [21] we consider for any ε > 0 and for any T > 0 the
following problem
⎧
⎪⎪⎨

⎪⎪⎩

∇ · uε = 0 in ΩT ,
∂tuε + ∇ · (uε ⊗ uεψε(|uε|) − S(x, t,D(uε)) + f) = −∇pε in ΩT ,
uε = 0 on ∂Ω × (0, T ) ,
uε(0) = u0 in Ω ,

(2.6)
where

ψε(τ) ≡ ψ(ετ) , τ ∈ [0,+∞)

with ψ ∈ C∞([0,+∞)) a non-increasing function such that

0 ≤ ψ ≤ 1 in [0,+∞) φ ≡ 1 in [0, 1]
ψ ≡ 0 in [2,+∞] 0 ≤ −ψ′ ≤ 2 .

Here, by a solution of (2.6) we mean a function uε ∈ L∞(0, T ;H)∩Lq(0, T ;Vq)
satisfying

−
∫

ΩT

uε · ∂tϕdxdt +
∫

ΩT

(S(x, t,D(uε)) − uε ⊗ uεψε(|uε|)) : D(ϕ)dxdt

=
∫

ΩT

f : ∇ϕdxdt +
∫

ΩT

u0 · ϕ(0)dx

for every ϕ ∈ C∞(ΩT )N with ∇ · ϕ = 0 and supp(ϕ) ⊂⊂ Ω × [0, T ).
By using fixed point Theorem in [21] it is proved that, for any ε >

0, problem (2.6) admits a unique solution uε ∈ C([0, T ];H) ∩ Lq(0, T ;Vq).
Moreover this solution satisfies the following energy equality

1
2
‖uε(t)‖2

H +
∫ t

0

∫

Ω

S(x, s,D(uε)) : D(uε) dxds =

1
2
‖u0‖2

H +
∫ t

0

∫

Ω

f : ∇uε dxds for every 0 ≤ t ≤ T (2.7)

(see Theorem 3.1 of [21]).
From (2.7), thanks to the coercivity condition (1.9) we get

‖uε‖2
L∞(0,T ;H) + ‖D(uε)‖q

Lq(ΩT ) ≤ c (2.8)
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where c here and in what follows denotes a positive constant, which may vary
from line to line but does not depend on the parameter ε.
By virtue of Korn’s inequality and Sobolev’s embedding Theorem we get

‖uε‖Lq(0,T ;W 1,q(Ω)) + ‖uε‖Lq(0,T ;Lq∗ (Ω)) ≤ c (2.9)

where q∗ = qN
N−q .

Then by Sobolev’s inequalities and Holder’s inequality from (2.8) to (2.9) we
deduce that

‖uε‖
Lq N+2

N (ΩT )
≤ c .

We recall that from the bound of q we have that

q
N + 2

N
> 2 .

Now we can pass to a subsequence, still denoted by uε for simplicity, and find
u ∈ Lq(0, T ;Vq) ∩ L∞(0, T ;H) such that

uε → u weakly in Lq N+2
N (ΩT ) . (2.10)

Arguing as in Section 4 of [5], it is possible to prove that

u ∈ Cw([0, T ];H) and u(0) = u0 ,

and

uε → u strongly in Lr(0, T ;L2(G)) , 1 ≤ r < ∞ ,

where G ⊂⊂ Ω is a arbitrary open bounded set.
Then for a.e. t ∈ [0, T ]

uε(·, t) → u(·, t) a.e. in Ω

and so from (2.8) for a.e. t ∈ [0, T ]

uε(·, t) → u(·, t) weakly in H .

Finally since u ∈ Cw([0, T ],H) we get that for any t ∈ [0, T ]

uε(·, t) → u(·, t) weakly in H.

It is now easy to prove (see [5] and [21]) that the function u constructed as
above satisfies (1.11) and so it is a weak energy solution to (1.1)–(1.4) (i.e.
a weak energy solution in ΩT ). Now we prove the existence of a global weak
energy solution.

We notice that, since by construction uε is the unique solution of (2.6)
which belongs to C([0, T ];H) ∩ Lq(0, T ;Vq), it is possible to extend it (in
a unique way) to a global solution of (2.6) belonging to Cloc([0,+∞);H) ∩
Lq

loc([0,+∞);Vq). We denote such a global solution again uε.
Hence, let T0 > 0 arbitrarily fixed. As recalled above, there exists a sub-

sequence of uε, that we denote uε0 that converges to a weak energy solution u
of (1.1)–(1.4) in Ω × (0, T0) (i.e. u ∈ Cw([0, T0];H) is a weak energy solution
of (1.1)–(1.4) with T replaced by T0). Being uε0 a subsequence of uε, it follows
that it is a sequence of global solutions. In particular, uε0 is a sequence of so-
lutions of (2.6) in Ω× (0, 2T0) which belongs to C([0, 2T0];H)∩Lq(0, 2T0;Vq).
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Thus, there exists a subsequence of uε0 , that we denote with uε1 , that con-
verges to a weak energy solution u1 of (1.1)–(1.4) in Ω × (0, 2T0), i.e. u1 ∈
Cw([0, 2T0];H) is a weak energy solution of (1.1)-(1.4) with T replaced by 2T0.
By construction u = u1 in Ω × (0, T0) and consequently we can denote u = u1

in all the set Ω × (0, 2T0) and u ∈ Cw([0, 2T0];H) . By a recursive argument,
we can construct a global energy solution u of (1.1)–(1.4) which belongs to
Cw([0, T ];H) for every T > 0. �

3. Decay estimates

Aim of this section is to prove Theorem 1.1 and to treat the special case (1.7).

3.1. Proof of Theorem 1.1

Let u be a global weak energy solution to (1.1)–(1.4). We point out that u
belongs to Cw([0,+∞);H) since any weak solution of (1.1)–(1.4) belongs to
Cw([0, T ];H). As a matter of fact, by (1.11) it follows that ut ∈ L1(0, T ;Y ∗)
where

Y ≡ Vq ∩ Vκ ∩ H , where κ =
q(N + 2)

q(N + 2) − 2N
.

Hence, u belongs to C([0, T ];Y ∗) (see [6]). Now, to conclude that u is in
Cw([0, T ];H) we follow the reasoning in [21]. Let t0 ∈ [0, T ] arbitrarily fixed.
Since, u belongs to L∞(0, T ;H), there exists a sequence tn ∈ [0, T ] such that
tn → t0 with u(tn) bounded in H. Hence, by the reflexivity, there exists a
subsequence u(tnk

) and ξ ∈ H such that

u(tnk
) ⇀ ξ weakly in H as k → +∞ .

On the other hand, being u in C([0, T ];Y ∗), it results

u(tnk
) → u(t0) strongly in Y ∗ as k → +∞ .

Recalling that H is continuously and densely imbedded into Y ∗ it follows
ξ = u(t0). This implies that u(tnk

) converges weakly to u(t0) in H as k → +∞.
Whence u belongs to Cw([0, T ];H).

By definition, for every T > 0 there exist uε ∈ Lq(0, T ;Vq)∩L∞(0, T ;H)
satisfying (1.14) and (1.15). To prove estimate (1.17) it is sufficient to show that
this estimate is satisfied for every t ∈ (0, T ) by the approximating solutions
uε ∈ C([0, T ];H) ∩ Lq(0, T ;Vq) since this implies (thanks to the arbitrary
choice of T ) that u satisfies (1.17) for almost every t > 0 and hence (thanks
to the regularity Cw([0,+∞);H)) for any t > 0.
Hence, choosing t = t2 in (1.15) and then choosing t = t1 again in (1.15)
and subtracting the equations obtained in this way we deduce that for every
0 ≤ t1 < t2 ≤ T

1
2
‖uε(t2)‖2

H − 1
2
‖uε(t1)‖2

H +
∫ t2

t1

∫

Ω

S(x, s,D(uε)) : D(uε)dxds

=
∫ t2

t1

∫

Ω

f : ∇uε dxds (3.1)
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We estimate the integrals in the previous equality. Thanks to assumption (1.9)
we obtain
∫ t2

t1

∫

Ω

S(x, s,D(uε)) : D(uε) dxds ≥ ν0

∫ t2

t1

‖D(uε)‖q
Lq(Ω)ds−‖g2‖L1(Ω×(t1,t2)) .

(3.2)
It remains to estimate the last integral in (3.1). By (1.10) it results

∫ t2

t1

∫

Ω

f : ∇uε dxds ≤ ν0

2

∫ t2

t1

‖D(uε)‖q
Lq(Ω)ds + c(q, ν0, γ0)

∫ t2

t1

‖f‖q′

Lq′ (Ω)

Hence, using the previous estimates in (3.1) we obtain

‖uε(t2)‖2
H − ‖uε(t1)‖2

H + ν0

∫ t2

t1

‖D(uε)‖q
Lq(Ω)ds

≤ 2
∫ t2

t1

[
c(q, ν0, γ0)‖f‖q′

Lq′ (Ω)
+ ‖g2‖L1(Ω)

]
ds (3.3)

Notice that being Ω bounded by (1.10) we get
∫ t2

t1

‖D(uε)‖q
Lq(Ω)ds ≥ γ−q

0

∫ t2

t1

‖uε‖q
W 1,q(Ω)ds . (3.4)

Hence, we deduce (using Sobolev inequality2)

ν0

∫ t2

t1

‖D(uε)‖q
Lq(Ω)ds ≥ ν0γ

−q
0

∫ t2

t1

‖uε‖q
W 1,q(Ω) ds

≥ c1

∫ t2

t1

‖uε‖q

Lq∗ (Ω)
ds (3.6)

where c1 = ν0γ
−q
0 cq

Sob. By (3.3) and (3.6) it follows

‖uε(t2)‖2
H − ‖uε(t1)‖2

H + c1

∫ t2

t1

‖uε‖q

Lq∗ (Ω)
ds

≤ 2
∫ t2

t1

[
c(q, ν0, γ0)‖f‖q′

Lq′ (Ω)
+ ‖g2‖L1(Ω)

]
ds . (3.7)

We recall that

‖uε(t)‖H = ‖uε(t)‖L2(Ω) .

Hence, since

2 < q∗ ⇔ q >
2N

N + 2
it results

‖uε‖q
L2(Ω) ≤ ‖uε‖q

Lq∗ (Ω)
|Ω|γ (3.8)

2Sobolev inequality:

cSob‖v‖Lq∗
(Ω) ≤ ‖v‖

W
1,q
0 (Ω)

, for every v ∈ W 1,q
0 (Ω), (3.5)

where cSob = c(q, N).
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where γ = q
2 + q

N − 1. Using the previous inequality in (3.7) we deduce (for
every 0 ≤ t1 < t2 ≤ T )

‖uε(t2)‖2
L2(Ω) − ‖uε(t1)‖2

L2(Ω) + c1|Ω|−γ

∫ t2

t1

‖uε‖q
L2(Ω)ds ≤

∫ t2

t1

g(s) ds (3.9)

where we have set

g(s) ≡ 2
[
c(q, ν0, γ0)‖f‖q′

Lq′ (Ω)
+ ‖g2‖L1(Ω)

]
(3.10)

Now, to conclude the proof we distinguish the following three cases: q = 2,
q > 2 and q < 2.

If q = 2, since we are assuming that f ∈ (Lq′
(Ω∞))N2

and g2 ∈ L1(Ω∞) it
follows that g belongs to L1((0,+∞)). Hence, applying Lemma 2.2 we deduce
that the following estimate holds true for every t > 0

‖uε(t)‖2
L2(Ω) ≤ Λ0e

−B0t +
∫ t

t
2

g(s) ds (3.11)

where

Λ0 = ‖u0‖2
H + ‖g(s)‖L1((0,+∞)) and B0 =

c1

2
|Ω|−γ . (3.12)

By (3.11) it follows estimate (1.17) when q = 2.
If q > 2 the inequality (3.9) allows to apply Lemma 2.1 and to conclude

that the following estimate holds true for every t > 0

‖uε(t)‖2
L2(Ω) ≤ Λ1

t
1

q
2 −1

+
∫ t

t
2

g(s) ds (3.13)

where g is as in (3.10) and

Λ1 =

[(
q
2 − 1

)
c1

2|Ω|γ
]− 1

q
2 −1

.

By (3.13) it follows estimate (1.17) when q > 2.
Finally, let us consider the case q < 2. By (3.9) we get for every t ∈ [0, T ]

‖uε(t)‖2
L2(Ω) ≤ ‖u0‖2

L2(Ω) +
∫ T

0

g(s) ds ≤ Λ0 (3.14)

from which we deduce, for every 0 ≤ t1 < t2 ≤ T ,

‖uε(t)‖q
L2(Ω) =

‖uε(t)‖2
L2(Ω)

‖uε(t)‖2−q
L2(Ω)

≥
‖uε(t)‖2

L2(Ω)

Λ1− q
2

0

,

where Λ0 is the constant defined in (3.12). By the previous inequality and (3.9)
we have

‖uε(t2)‖2
L2(Ω)−‖uε(t1)‖2

L2(Ω)+c1|Ω|−γΛ
q
2 −1
0

∫ t2

t1

‖uε(t)‖2
L2(Ω)ds ≤

∫ t2

t1

g(s) ds .

(3.15)



NoDEA On the behavior in time of solutions Page 13 of 18    42 

Hence, applying again Lemma 2.2 we obtain that for every t > 0

‖uε(t)‖2
L2(Ω) ≤ Λ0e

−Bt +
∫ t

t
2

g(s) ds

where B = c1
2 |Ω|−γΛ

q
2 −1
0 from which the inequality (1.17) follows also in this

case.
�

Remark 3.1. The proof of Theorem 1.1 shows that in estimate (1.17) the fol-
lowing choice of B is admissible

B =
c1

2
|Ω|−γΛ

q
2 −1
0 c1 = ν0c

q
Sobγ

−q
0 γ =

q

2
+

q

N
− 1 (3.16)

with cSob the Sobolev’s constant defined in (3.5) and γ0 as in (1.10).

Remark 3.2. We notice that by (3.3) and (1.17) it follows that for every 0 <
t1 < t2 < +∞ the following estimates hold true

∫ t2

t1

‖Du(t)‖q
Lq(Ω) ≤ ν−1

0

[∫ t2

t1
2

g(s)ds + Λ0e
−Bt1

]

if q ≤ 2

∫ t2

t1

‖Du(t)‖q
Lq(Ω) ≤ ν−1

0

⎡

⎣
∫ t2

t1
2

g(s)ds +
Λ1

t
1

q
2 −1

1

⎤

⎦ if q > 2 .

(3.17)

We conclude this section studying the particular case (1.7).

3.2. The special case (1.7)

We prove the following result.

Proposition 3.1. Let S be as in (1.7), q > 2N
N+2 , f ∈ (Lq′

(Ω∞))N2
and u0 ∈ H.

Then every global weak energy solution u of (1.1)–(1.4) belongs to Cw([0, T ];H)
for any T > 0 and satisfies the following estimate for any t > 0

‖u(t)‖2
L2(Ω) ≤ Λe−Bt + c

∫ t

t
2

‖f(s)‖q′

Lq′ (Ω)
ds (3.18)

where Λ = ‖u0‖2
H + c‖f‖Lq′ (Ω∞), c = c(q, ν0, γ0) and B = B(Ω, N, ν0).

Proof of Proposition 3.1. Let u be a weak energy solution u of (1.1)–(1.4).
Proceeding exactly as in the proof of Theorem 1.1 it follows that u belongs to
Cw([0, T ];H) for any T > 0.

To prove estimate (3.18), we remark that since u is a global weak energy
solution, for every T > 0 arbitrarily fixed there exists uε satisfying Definition
1.2. In particular, thanks to (1.7) the energy equality (1.15) becomes

1
2
‖uε(t)‖2

H + ν0

∫ t

0

(‖D(uε)‖2
L2(Ω) + ‖D(uε)‖q

Lq(Ω)) ds

=
1
2
‖u0‖2

H +
∫ t

0

∫

Ω

f : ∇uε dxds for every 0 ≤ t ≤ T . (3.19)
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Choosing t = t2 in (3.19) and then choosing t = t1 again in (3.19) and subtract-
ing the equations obtained in this way we deduce for every 0 ≤ t1 < t2 ≤ T

1
2
‖uε(t2)‖2

H − 1
2
‖uε(t1)‖2

H + ν0

∫ t2

t1

(‖D(uε)‖2
L2(Ω) + ‖D(uε)‖q

Lq(Ω)) ds

=
∫ t2

t1

∫

Ω

f : ∇uε dxds . (3.20)

By (1.10) and Young inequality, from (3.20) we get

1
2
‖uε(t2)‖2

H − 1
2
‖uε(t1)‖2

H

+c1

∫ t2

t1

‖uε‖2
W 1,2(Ω)ds + c2

∫ t2

t1

‖uε‖q
W 1,q(Ω) ds

≤ c3

∫ t2

t1

‖f(s)‖q′

Lq′ (Ω)
ds .

where c1 = c1(ν0), c2 = c2(ν0, γ0) and c3 = c3(q, ν0, γ0). From the previous
inequality we deduce

1
2
‖uε(t2)‖2

H − 1
2
‖uε(t1)‖2

H

+c1

∫ t2

t1

‖uε‖2
W 1,2(Ω)ds ≤ c3

∫ t2

t1

‖f(s)‖q′

Lq′ (Ω)
ds . (3.21)

The result follows by applying Poincaré inequality and Lemma 2.2. �

Remark 3.3. We point out that when q > 2 estimate (3.18) shows a faster
decay (with respect to (1.17)) as t → +∞, although it depends on the initial
datum u0.

4. Decay estimates for weak limit solutions

In this section we consider the case of not regular initial data u0 ∈ H1 and we
prove the following existence result.

Theorem 4.1. Assume that the structural assumptions (1.8), (1.9) and (1.13)
hold true a.e. in Ω∞ with q > 2, g1 ∈ Lq′

(ΩT ) for any T > 0 and g2 ∈ L1(Ω∞).
Let f ∈ (Lq′

(Ω∞))N2
and u0 ∈ H1. Then there exists a weak limit global

solution (wls) u of (1.1)–(1.4). Moreover, for every η > 0, u ∈ L∞((η,+∞);
(L2(Ω))N )∩Cw([η,∞);H), Du ∈ Lq

loc((0,+∞); (Lq(Ω))N2

) and for every 0 <
t1 < t2 < +∞ the following bound holds

∫ t2

t1

‖Du(t)‖q
Lq(Ω) ≤ ν−1

0

⎡

⎣
∫ t2

t1
2

g(s)ds +
Λ1

t
1

q
2 −1

1

⎤

⎦ . (4.1)

Finally, estimate (1.17) is true for any t > 0.
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Here, by a weak limit global solution (wls) u of (1.1)–(1.4) we mean a
vector function u that for every T > 0 is a weak limit solution of (1.1)–(1.4),
where a weak limit solution u of (1.1)–(1.4) is a vector-valued function u in
Lq

loc((0, T );Vq) ∩ L∞
loc((0, T );H) satisfying

−
∫

ΩT

u · ∂tϕdxdt +
∫

ΩT

(S(x, t,D(u)) − u ⊗ u) : D(ϕ)dxdt

=
∫

ΩT

f : ∇ϕdxdt (4.2)

for every ϕ ∈ C∞(ΩT )N with ∇ · ϕ = 0 and supp(ϕ) ⊂⊂ Ω × (0, T ) and such
that u is the a.e. limit in Ω×(0, T ) (indeed further convergences hold) of vector
functions uε ∈ C([0, T ];H) satisfying

limε→0‖uε(0) − u0‖L1(Ω) = 0 . (4.3)

In other words, u is a weak limit solution if it is a distributional solution which
satisfies the initial condition “u(0) = u0” in the very weak sense stated in (4.3).
We point out that in the regular case u0 ∈ H, the weak solution constructed
in Proposition 2.1 is also a weak limit solution and hence the notion of weak
limit solution seems to be a natural extension of the previous notion of weak
solution to the more general case of irregular data.

Proof of Theorem 4.1. Let T > 0 arbitrarily fixed. To prove the existence of a
weak limit global solution of (1.1)–(1.4) we approximate the initial datum u0.
In detail, let u0,ε ∈ H, ε > 0, such that

u0,ε → u0 in (L1(Ω))N as ε → 0 (4.4)

Let us consider the sequence uε, where for every ε > 0 the function uε is
the unique solution belonging to C([0, T ];H) ∩ Lq(0, T ;Vq) of the following
approximating system
⎧
⎪⎪⎨

⎪⎪⎩

∇ · uε = 0 in ΩT ,
∂tuε + ∇ · (uε ⊗ uεφε(|uε|) − S(x, t,D(uε)) + f) = −∇pε in ΩT ,
uε = 0 on ∂Ω × (0, T ) ,
uε(0) = u0,ε in Ω ,

(4.5)
where φε and pε are the same functions defined in the proof of Proposition
2.1.

We observe that, since uε is the unique solution of (4.5) which belongs
to C([0, T ];H) ∩ Lq(0, T ;Vq), it is possible to extend it (in a unique way) to a
global solution of (4.5) belonging to Cloc([0,+∞);H) ∩ Lq

loc([0,+∞);Vq). We
denote such a global solution again uε.

Proceeding exactly as in Sect. 3 for the proof of Theorem 1.1 (see also
Remark 3.2) we obtain the following universal estimates

‖uε(t)‖2
L2(Ω) ≤ Λ1

t
1

q
2 −1

+

∫ t

t
2

g(s)ds for every t > 0
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∫ t2

t1

‖Duε(t)‖q
Lq(Ω) ≤ ν−1

0

⎡

⎢
⎣

∫ t2

t1
2

g(s)ds +
Λ1

t

1
q
2 −1

1

⎤

⎥
⎦ for every 0 < t1 < t2 < +∞

where Λ1 and g are as in the statement of Theorem 1.1. We notice
explicitly, that since we are assuming q > 2 the previous estimates are in-
dependent of the initial data u0,ε. This fact allow to proceed exactly as in
the proof of Theorem 1.3 in [21] and to conclude that “away from t = 0”,
i.e. for example for every 0 < T1 < T arbitrarily fixed, there exists a sub-
sequence of uε (that we denote uε1) that converges a.e. in Ω × (T1, T ) to
a function u ∈ Cw([T1, T ];H) ∩ Lq(T1, T ;Vq). Moreover, (again by the ar-
guments in the proof of Theorem 1.3 in [21]) stronger convergences hold
true which allow to pass to the limit in the approximating problem and to
conclude that (4.2) holds true for every test function ϕ ∈ C∞(ΩT )N with
∇ · ϕ = 0 and supp(ϕ) ⊂⊂ Ω × (T1, T ). Let us fix T1 = T

2 . With the same
reasoning done above, we can conclude that there exists a subsequence of
uε1 (that we denote uε2) that converges a.e. in Ω × (

T
4 , 2T

)
to a function

v ∈ Cw

([
T
4 , 2T

]
;H

) ∩ Lq
(

T
4 , 2T ;Vq

)
. Moreover, stronger convergences hold

true which allow to pass to the limit in the approximating problem and to
conclude that (4.2) holds true (with u replaced by v and T replaced by 2T ) for
every test function ϕ ∈ C∞(Ω2T )N with ∇·ϕ = 0 and supp(ϕ) ⊂⊂ Ω×(

T
4 , 2T

)
.

We point out that by construction it results u = v in Ω × (T
2 , T ) and conse-

quently we can denote u = v in all the set Ω×(
T
4 , 2T

)
. Iterating this argument

in the sets Ω × ( T
2n , nT ) we can construct a weak limit global solution u hav-

ing the stated regularity and satisfying the universal estimate (1.17) for every
t > 0 and the universal bound (3.17) for every 0 < t1 < t2 < +∞. �
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