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Abstract

Even the most distracted observer could hardly miss noticing the extensive hetero-
geneity of traits and behaviors displayed by living systems. So great a variability
is commonly ascribed to differences at the level of the genome, which originated
from the evolution process to adapt the organisms to the different environments
they live in. However, phenotypic heterogeneity is found even in genetically identical
organisms, from monoclonal cellular populations to human twins. The multitude
of microscopic causes that sum up to give such variability is commonly referred to
as biological noise, coming both in the form of environmental fluctuations affecting
the development of individual organisms (extrinsic noise) and as the unavoidable
results of stochasticity at the level of molecular reaction (intrinsic noise). The latter
persisting even when genetically identical organisms are kept under nearly identical
conditions.

For quite a long time, such fluctuations were considered a nuisance that makes
experiments just difficult to interpret, needing to enlarge the number of observations
to have reliable outcomes, and from the point of view of cells, a disturbance cells
need to deal with. In the last two decades, however, experimental progresses allowed
to investigate the system at single-cell scale. The emerging view is that noise under
some circumstances can have a beneficial role, like promoting survival to adverse
environments or enhancing differentiation. Ultimately, evolution tunes the systems
so they can take advantage of natural stochastic fluctuations. We will follow noise
and fluctuation from the cellular level to the higher level of organization of the
cellular population where heterogeneity in the molecular reactions translate in the
variability of phenotypes. Biology is very broad though, and noise affects all biological
processes. Time restraint and my limited knowledge of biological systems did not
allow for an exhaustive discussion of all the aspects in which noise and the subsequent
heterogeneity play a role. Instead, we will focus on the regulation of noise. More in
details, the first part of the thesis introduces to the impact of noise on gene expression
and the regulation mechanisms cells use to control it. The action of large regulatory
networks is to coordinate a huge of number molecular interactions to obtain robust
system-level outcomes. This capability can emerge even when individual interactions
are weak and/or strongly heterogeneous. This is the case of post-transcriptional
regulation driven by microRNAs (miRNAs). microRNAs are small non-coding
RNA molecules able to regulate gene expression at the post-transcriptional level
by repressing target RNA molecules. It has been found that such regulation may
lead the system to bimodal distributions in the expression of the target mRNA,
usually fingerprint of the presence of two distinct phenotypes. Moreover, the nature
of the interaction between miRNAs and their targets gives rise to a complex network
of miRNAs interacting with several mRNA targets. Such targets may then cross-
regulate each other in an indirect miRNA-mediated manner. This effect, called
‘competing endogenous RNA (ceRNA) effect’, despite being typically weak, has been
found to possess remarkable properties in the presence of extrinsic noise, where
fluctuations affect all the components of the system. We will discuss crosstalk and
illustrate how crosstalk patterns are enhanced by both transcriptional and kinetic
heterogeneities and achieve high intensities even for RNAs that are not co-regulated.
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Moreover, we will see that crosstalk patterns are significantly non-local, i.e. correlate
weakly with miRNA-RNA interaction parameters. Since these features appear to be
encoded in the network’s topology this suggests that such crosstalk is tunable by
natural selection.

Moving at the cellular level, we focus on the outcomes of gene expression, i.e.
the observable phenotypes. Depending on the degree of regulation the cell manages
to exert with respect to noise, the distribution of those phenotypes will display a
certain extent of heterogeneity. Such cell-to-cell variability is found to have many
implications especially for the growth of the whole population. In the second part of
the thesis, we discuss some properties of those heterogeneous distributions. First, we
focus on the dependence on the initial conditions for the different phases of growth,
i.e. the adaptive phase and exponential growth phase. Since cellular populations
grow in an exponential fashion, the size and composition of the inoculum shall matter.
We discuss this following a novel extensive experimental investigation recently done
on cancer cell lines in a controlled environment.

Finally, we focus on the effects that a heterogeneous phenotype has on the growth
in hostile environments, i.e. environments fluctuating between states in which the
growth is favored and others where growth is inhibited. In such a case, if cells can
only replicate (by exploiting available resources) and modify their phenotype within a
given landscape (thereby exploring novel configurations), an exploration-exploitation
trade-off is established, whose specifics depend on the statistics of the environment.
The phenotypic distribution corresponding to maximum population fitness requires a
non-zero exploration rate when the magnitude of environmental fluctuations changes
randomly over time, while a purely exploitative strategy turns out to be optimal in
periodic two-state environments. Most notably, the key parameter overseeing the
trade-off is linked to the amount of regulation cells can exert.
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Chapter 1

Introduction and thesis outline

All the relevant information to build, sustain and replicate cells, the building blocks
of life, is safely stored in the DNA molecule and constitutes the genotype of cells.
For this information to be converted into observable traits, or phenotypes, it needs
to be first transcribed into an intermediate molecule (RNA) and then translated
into proteins. This flow of information, commonly referred to as the central dogma
of the biology, involves many cascades of molecular reactions [1]. From the binding
of transcription factors to particular loci of the DNA molecules, which initiate
the transcription, to the action of ribosomes in translation and to the novel post-
transcriptional layer of regulation constituted by micro-RNA molecules. The result
is a complex network of interactions between molecules whose energies are often
just a few times the thermal energy. In fact, along with strong interactions, such as
covalent bonds, that guarantee the stability of molecules, weak molecular interactions
(electrostatic, hydrophobic, van der Waals) stand, having typical energies falling in
the kBT energy range. Being in the level of thermal noise fluctuations, they have
a transitory nature which renders possible for the same molecule to take part in
many reactions. The contrappasso for this is that an often not negligible amount
of ‘noise’ is introduced in all biological processes [9, 10, 11]. Speaking of noise in
biological systems requires particular care, in fact under the noise umbrella term,
a lot of different processes and scenarios are considered. The basic idea is that we
regard as sources of noise all the mechanisms and processes that introduce variability
in the parameters of the system under investigation that we do not want/cannot
consider. As much as we speak of thermal noise leading the Brownian motion of a
power grain, instead of considering the multitude of interaction between the grain
and the water molecules [12].

In practice, biological noise is usually divided into two contributions, an intrinsic
component, due to the stochasticity of the biochemical processes in the system, and
an extrinsic one, related to the coupling with the variability of the environment
in which reactions take place. The functional roles of those noises in biological
processes are very diverse. Along with expected entropy-increasing effects of limiting
robustness, fidelity and channel capacity in signaling, under some circumstances, it
plays more constructive roles, like accelerating the pace of evolution, increasing the
fitness of the population in a dynamic environment (bet-hedging) and promoting
heterogeneity [13]. Still, if not controlled, randomness may pose more damage
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than benefit. Therefore biology had to evolve a number of strategies to cope with
fluctuations. Since the relative magnitude of fluctuations in molecule numbers (N)
is expected to scale as ∼ 1√

N
, a direct solution to decrease noise is to increase

the copy numbers. While this is possible for some processes, in general, spatial
and energetic constraints go against this solution. An alternative, less trivial
way of confronting noise is to use regulatory systems that can either suppress
the noise or redirect perturbations. Overall, although living cells are a crowded
spatially heterogeneous space which contains lots of different biomolecules whose
concentrations and activities are subject to intrinsically random forces, from this
randomness a vast array of precisely timed and intricately coordinated biological
functions emerge. This seemingly paradoxical nature of life has drawn the interest
of an increasing number of physicists, whose expertise contributed to disentangle
the scenario of microscopic processes, experimental advances allow to probe in ever
more details [14]. With all this in mind, along this thesis, we will try and see how
physics, and in particular statistical physics tools can help to shed light on the effect
of noise and the role of the subsequent heterogeneity in some key examples. More
specifically:

In Chapter 2, we begin with the discussion of fluctuations at the cellular level,
and in particular in gene expression, where stochasticity is mitigated by post-
transcriptional regulation channels, that were optimized by evolution to stabilize
the output protein levels. In particular, noise processing is thought to be the key
function, miRNAs) exert in regulation. After an overview of the role of miRNAs as
‘micromanagers’ of gene expression, we will introduce the ceRNA effect and see how
miRNA-RNA networks can be modeled.

In Chapter 3, we see how measuring the response of the system to specimen
perturbation permits to grasp effective interactions between distant RNA molecules
mediated by miRNAs. First, we explain the feature of such crosstalk in simplified
cases of study and then we focus our attention on an experimentally validated large
scale network and explore its features both with respect to its capability of processing
the extrinsic noise on transcription and establish extended crosstalks, which are
enhanced by heterogeneities and shaped by evolution.

In Chapter 4, we discuss the emergence of heterogeneous distributions of pheno-
type from considerations on the metabolic activity. In particular, we will see how
both a maximum entropy scenario and a minimal dynamical model yield experimen-
tally observed distributions that are ultimately dictated by the degree of regulation
cells can attain over noise.

In Chapter 5, we definitively leave the molecular level moving forward to consider
the growth of cellular populations. Here, heterogeneity in phenotypes like the lag
time or the growth rate will be found to influence the fitness of the population in the
presence of a controlled environment. In particular, we will describe an experimental
setup that allowed to measure the growth rate of a cellular population which grows
starting from different initial inoculum sizes. We will find that the fitness of those
populations manifests non trivial features and minimal theoretical models manage to
account for such characteristics. We will then devote the discussion to the problem of
cell adaptability to hostile environments. In particular, in populations of bacteria or
cancer cells facing variable and often unpredictable environmental changes, variability
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Figure 1.1. Representation of the genomic flow of information. Living systems
can be regarded as information-flow systems in which the genetic information, stored in
the DNA, must be passed on to the phenotype, that is the ensemble of characteristics
displayed by an organism within a certain environment [1]. The genetic information is
transmitted through a cascade of bio-chemical reactions. From DNA is produced mRNA,
mRNAs are converted into proteins. Proteins, constituting the molecular machinery
of the cell, build up all the traits that constitute the phenotype, such as the shape,
dimension, the motility of a cell. If the transmission of information would be totally
efficient, all cells sharing the same DNA should have identical phenotypes, i.e. we should
have a homogeneous population of cells. However, at almost every step of these cascades,
both the environment and the limited number of molecules involved in the reactions
introduce noise. Consequently, the output has some noise and populations manifest a
certain level of heterogeneity.



4 1. Introduction and thesis outline

increases the probability that some individuals may survive the stress produced by
a sudden change of the environment. In that respect, it has been speculated that
those kinds of cell populations implement a risk distribution strategy: they may
have evolved to regulate not only the averaged gene expression levels but also the
extent of allowed deviations from such an average, setting it at the desired level in
order to face (as population) each environmental condition [15].

Part of the work described in this thesis led to the publication of three papers:

1. (2019) M. Miotto, E. Marinari, and A. De Martino, "Competing endogenous
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2. (2019) A. De Martino, T. Gueudre’, and M. Miotto, "Exploration-exploitation
tradeoffs dictate the optimal distributions of phenotypes for populations sub-
ject to fitness fluctuations", Phys. Rev. E 99, 012417, DOI: 10.1103/Phys-
RevE.99.012417

3. (2017) C. Enrico Bena, M. Del Giudice, T. Gueudre’, M. Miotto, E. Turco,
A. De Martino, C. Bosia, "Inoculum-density dependent growth reveals inherent
cooperative effects and stochasticity in cancer cell cultures", arXiv preprint
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of species", arXiv preprint arXiv:1912.01444 [16]
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R. Lepore, G. G. Tartaglia, E. Milanetti, "Insights on protein thermal stabil-
ity: a graph representation of molecular interactions", Bioinformatics, DOI:
10.1093/bioinformatics/bty1011 [18]

4. (2018) M. Miotto, L. Monacelli, "Entropy evaluation sheds light on ecosystem
complexity", Phys. Rev. E 98, 042402, DOI: 10.1103/PhysRevE.98.042402 [19]
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Chapter 2

Regulation of gene expression

The information to assemble all the proteins an organism needs in the various stages
of life is encoded in its DNA. Anyway, neither all proteins are synthesized at the
same time, nor all cells employ the same proteins. Each cell produces only the
proteome it needs in relation to the environmental stimuli it receives. The control of
gene expression, i.e. regulation of the conversion of genetic information into proteins,
is a fundamental process to bring the genome to life and mis-regulation at any level
is usually associated with disease [20]. Moreover, gene expression is regulated at
different levels and there is increasing evidence that the diverse processes involved
in this regulation are integrated with each other [21, 22, 23, 24].

The regulation mainly takes place at two levels, during transcription (the con-
version of DNA into RNA) and before translation (before mRNA is turned into
proteins). Furthermore, downstream of these two processes, expressed proteins can
still be regulated by post-translational modifications (PTM) and protein degradation
(post-translational control). Transcriptional control has received much attention,
through both traditional single gene studies [25] as well as through genome-wide
approaches such as expression profiling [26], transcription factor binding studies
and identification of regulatory sequence elements [27], and chromatin remodeling
and epigenetics [28]. Recently, there has been an increasing appreciation of the
necessity and importance of post-transcriptional gene expression regulation. Post-
transcriptional regulation mechanisms comprise various processes such as mRNA
processing (ppolyadenylation, capping, and splicing), mRNA export and localization,
mRNA decay, and mRNA translation. In particular, the regulation operated by
miRNA is under much scrutiny. In fact, from 1993, year of their first observation,
up to now, micro-RNAs were found to be involved in the regulation of a plethora
of processes, from cellular development to proliferation, from survival to apoptosis,
thus being regarded to play a central role in gene regulation both in health and
disease [29]. The observation that, through a titration mechanism, miRNAs can
act as mediators of effective interactions among their common targets (competing
endogenous RNAs or ceRNAs) has brought forward the idea (known as ceRNA
hypothesis) that RNAs can regulate each other in extended cross-talk networks.
This ability is considered pivotal to shape a cell’s protein repertoire. In fact, by
being able to target different RNA species with different kinetics, they can act
as mediators of an effective interaction between the RNAs, such that a change
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in the transcription level of one RNA can result in an alteration of the levels of
another RNA. Furthermore, the involvement of miRNAs in peculiar motifs of the
post-transcriptional regulatory network suggests that they actively perform noise
processing in gene expression [30]. Recent work has characterized the emergent
properties of cross-talk and noise processing in small regulatory motifs in silico [4, 31].
Small motifs are however embedded in large, cell-scale networks of interactions and a
strongly heterogeneous structure of targeting patterns. Perturbations could in prin-
ciple propagate across this network and affect RNAs that are topologically distant
through chains of miRNA-mediated couplings, creating a collective, long-range mode
of regulation characterized by strong and highly selective cross-talks. In Chapter 3,
we will see how to measure crosstalk and discuss its evolutionary signatures and
biological consequences.

2.1 Noise in gene expression

An emerging view is that gene expression noise is not simply a necessary evil of
the molecular computations of the central dogma, but is at times utilized by cells
to achieve certain functions. In other words, evidence is mounting for specific
physiological roles for gene expression noise [13]. For instance, stochasticity is
the driving force that generates phenotypic heterogeneity in microbial populations.
In fact, population heterogeneity in the expression of even one protein can have
important consequences for a population of cells. For instance, [32] found that
cell-to-cell variability in the expression of a single antibiotic resistant protein in
Saccharomyces cerevisiae can lead to pronounced effects in the response of the whole
population to an antibiotic challenge; at intermediate antibiotic concentrations, the
strain with the largest phenotypic heterogeneity was best able to survive. In some
instances, the effect of noise can be amplified by the presence of multi-stability
in genetic networks. This can lead to multiple phenotypes coexisting in a cell
population. Individual cells can make transitions between those phenotypes driven
by fluctuations in the expression of certain key genes in the network [11].

An example is provided by the behavior of individual Bacillus subtilis cells when
they are subject to stress; the cells must decide whether to enter a competent state
or to start forming spores [33, 34]. The two phenotypes are mutually exclusive, and
the decision between them is determined by transient values of the concentration
of key proteins in the network, which can stochastically exceed a threshold value
and thereby force the cells to assume the competence phenotype [35]. Not all gene
expression noise, however, is beneficial. Some processes, such as the development
of a multicellular organism, rely on precise spatial and temporal transmission of
genetic information, and in these cases noise, in gene expression needs to be kept to
a minimum [36]. Recent experiments have found that noise suppression mechanisms
exist at the level of gene networks that control development [37]. Here, we will focus
on one of the mechanisms cells evolved to process noise: the post-transcriptional
regulation mediated by micro RNAs.



2.2 The role of miRNA 7

2.2 The role of miRNA

MiRNAs are endogenous 22 nucleotide-long noncoding RNA RNAs (ncRNAs), which
play important regulatory roles in animals and plants by pairing to the messenger
RNAs (mRNAs) of target genes and specifying mRNA cleavage or repression of
protein synthesis [38]. Lin-4 [39, 40] and let-7 [41] were the first miRNAs to be
discovered, identified studying the developmental stages of Caenorhabditis elegans
( C. elegans). It rapidly became clear that miRNAs represented novel means of
regulating developmental timing. Subsequently, hundreds of non protein-coding
miRNAs started being identified in many other processes. Currently, thousands
of miRNAs have been identified in humans and other species, and miRNA on-
line sequences repositories, such as the miRbase database [42], are available as
much as miRNA-mRNA binding prediction tools like TargetScan [43]. Researchers
further gained interest in miRNAs when, in 2005, the first reports addressing the
biological function of miRNAs in cancer were published, showing that miRNAs act
as onco-genes or tumor suppressors and are involved in a huge variety of pathways
deregulated in cancer [44]. To date, altered miRNA expression has been reported in
almost all types of cancer.

2.2.1 The ceRNA hypothesis

With a lot of simplification, we can state that the phenotype of an organism is set by
the amount of proteins the organism possesses. The proteome of the cell is not static
but can change in response to both precise internal and environmental stimuli as
much as due to fluctuations. The timing of responses can be of paramount importance
for cell survival, especially in the presence of adverse fluctuating environments (as
we will better discuss in Chapter 5). To reorganize the proteome, cells can tune the
synthesis/degradation ratios of proteins and their precursors mRNAs. In particular,
once mRNA molecules are transcribed, the cell can prevent their translation onto
protein increasing their decay rate or acting at the level of ribosomes, those actions
though inevitably affects all mRNA species. The employment of miRNA molecules
allows a more fine layer of regulation. In fact, since miRNAs can be engineered to
target specif RNA molecules in specific regions, cells can repress a certain RNA by
increasing the number of miRNA species that bind to that RNA.

The interesting thing is that one miRNA can bind to several (up to many
hundreds) different RNAs. In fact, the canonical RNA-miRNA binding takes place
through the base-pairing of 6-9 nucleotides of the seed region of the miRNA. The
sole fact that the pairing involves a small number of nucleotides explains why
it is not so uncommon that the same miRNA can have more than one target.
Whenever a molucule binds to other different kinds of molecules and the binding
provokes sequestration of the complex from the system, a competition for the binding
takes place between the targets. This equals to an indirect interaction among the
molecules (see Figure 3.1). In fact, a variation in the concentration of one RNA
induces a variation in the levels of the miRNA molecules that bind the RNA. This
variation in the miRNA will in turn influence all the other RNAs the miRNA
can bind to. This crosstalk introduces a further layer of regulation, in fact not
only the cell can regulate the levels of different RNAs by varying the common
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miRNA concentration. But it can act on one RNA and modify the level of other
RNAs since the miRNAs propagate the perturbation. mRNAs become correlated.
Therefore, looking at target concentrations (as experiments often do) it may be
hard to disentangle the contribution to correlation due to competition from the
more trivial one due to variations in the level of the common miRNA. Together
with the great experimental effort spent in both identifying and characterizing
new miRNA motifs, theoretical modeling has been pursued too. Mathematical
models for ceRNA regulation have been developed by multiple groups, and include
models for ceRNA co-regulation, for the effects of miRNA-target binding strength on
ceRNA regulation, for the effects of the number of miRNA binding sites per ceRNA,
and for the interplay between ceRNA regulation and other types of regulatory
interactions [31, 4, 45]. In particular, kinetic modeling of a minimal network, in
which one miRNA interacts with two competing RNAs, showed that ceRNA activity
is determined by the relative abundance of ceRNAs and miRNAs as well by the
type of their interaction (stoichiometric or catalytic) [46]. Further extension of the
minimal model by considering interactions between multiple miRNAs and ceRNAs
allowed for the characterization of mean and noise profiles of ceRNA network
components and the response time of the network components required to resume
their steady states upon perturbation [31]. Noorbakhsh et al. [47] studied noise
characteristics within a ceRNA network composed by a miRNA, a protein-coding
RNA and a non -coding RNA, showing that the noise is dramatically high when
the combined transcription rate of the ceRNAs approximates the transcription rate
of the miRNA (i.e. the cross-regulation of the two ceRNA happens). Later on,
by integrating miRNA-mediated ceRNA crosstalk with transcription factor (TF)
regulation, Martirosyan et al. [48] showed that miRNA regulation of a gene through
the ceRNA network can outperform its regulation by a TF, suggesting the possible
role of miRNAs as major regulators rather than fine-tuners of gene expression. While
these models helped to improve our understanding of ceRNA regulation, they do not
account for miRNAs that have hundreds of other targets or for ceRNA regulation
by multiple shared miRNA species. Most importantly, they do not consider the
effective coupling between ceRNAs that are linked by a long chain of miRNA-ceRNA
interactions. Those aspects are the main topics of the following sections.
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miRNA biogenesis in animals and interaction with target mRNAs

Genes coding for miRNAs can be found as autonomous units in intergenic
regions of the genome [49, 50], in introns (i.e. non-coding regions inside
a gene that are removed after splicing) of both protein coding and non-
coding genes [51] and even in exons (i.e. regions coding for a portion of the
mature RNA) of non-coding genes [52]. miRNA genes can also form clusters
regulated by a common promoter, creating a polycistronic transcription unit
[53]. The primary product of the transcription of a miRNA gene is a long
transcript called pri-miRNA. Pri-miRNAs are processed in the nucleus by
the enzyme Drosha, originating ∼ 100 nucleotides long miRNA precursors
with a hairpin structure, called pre-miRNAs. These precursors are transferred
to the cytoplasm by the protein Exportin-5, where they undergo further
processing by the Dicer enzyme. This enzyme cuts the hairpin loop of the
pre-miRNA, leading to a double stranded RNA (dsRNA) duplex with an
imperfect match between the sequences. The duplex is then incorporated into
a protein complex called RNA-induced silencing complex (RISC). Within the
RISC, only one of the two strands of the miRNA is loaded, the other being
released and degraded.

Figure 2.1. miRNA biogenesis and
target binding. Adapted from [2].

Once loaded in the RISC, the miRNA
is ready to exert its repressive action
on its target RNA, whose sequence
is recognized through Watson-Crick
base pairing. The canonical bind-
ing mode between a miRNA and its
target consists of a nearly perfect
pairing with a small region, about
6 nucleotides long, contained in the
5′ end of the miRNA, the so-called
seed region [54]. Usually, the se-
quence of the target complementary
to the seed region is located in the
3′-UnTranslated Region (3′UTR). In
animals (plants behave quite differ-
ently), the formation of the com-
plex promotes translational repres-
sion. Furthermore, mRNA bound to
the RISC complex is subject to desta-
bilization, both through direct cleav-
age and through deadenylation [29].
Both processes end with the degrada-
tion of the target and the release of the RISC complex. A further route is the
trapping of the complex protein granular structures, called P-body [55]. In
this case, both target and miRNA are removed from the system. The seques-
tration of target molecules, possibly combined to an enhanced degradation, is
then at the basis of miRNA-mediated gene regulation. Computational models
predict that more than 60% of human genes are targeted by miRNAs [54, 56].
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2.3 Modelling post-transcriptional regulatory networks

To build an efficient measure of crosstalk and see how this crosstalk is influenced
by heterogeneity in important features of the network, the first thing we need is a
model to describe the time evolution of the miRNA and RNA concentrations. When
dealing with chemical reactions, the simplest model one can build is a deterministic
mass-action scenario. In particular, the whole network can be modeled as a system
of coupled ordinary differential equations (ODE) for the concentration levels of free
molecules and complexes.

Let us consider the general case of a system composed of N RNA species {mi}
N
i=1

(the ceRNAs) and M miRNA species {µa}M
a=1. Since we want to understand the basic

features of crosstalk, we focus only on miRNA and RNA molecules. Consequently,
we do not take into consideration all the processes that lead to the formation of
miRNA and RNA molecules nor the pathways that lead to their degradation (as
discussed in the Panel ‘miRNA biogenesis in animal and interaction with target
mRNAs’). We only assume that free RNA i is synthesized and degraded with rates
bi and di respectively, while free miRNA a has βa synthesis rate and δa degradation
one.

RNA and miRNA can form complexes cia with rates k+
ia and complexes can

dissociate with rate k−
ia. (We neglect that in order to form a complex, miRNA

molecules must bind to the RISC). While miRNA and RNA are bound, their
complex is assumed to undergo two different degradation processes, either a catalytic
process in which the miRNA returns to the cytosol or a stochiometric route where
both molecules are destroyed. The two different pathways the complex can take
derives from biological information. In fact, it has been observed that the assembling
of miRNAs in the RISC structure prevents their degradation, so that once the
mRNA is processed the RISC (just the free miRNA for us) returns at disposal for
binding another free mRNA. When miRNA and RNA are bound together, though,
the whole complex can be sequestered by specific cellular structure-like P-bodies,
resulting in effective removal of both miRNA and mRNA from the cytosol [55]. To
model these two complex degradation pathways, we then call for two more rates.
σia quantifies the complexes full degradation route while κia) accounts for complex
partial degradation: the release of miRNA and destruction of RNA.

The whole process can be schematize as

∅ µa

bi ↓ ↑ di ր κia

µa + mi
kiα

+

−−−⇀↽−−−
kiα

–
cia

βa ↑ ↓ δa ց σia

∅ ∅

Since molecular interactions happen only inter species, the network of interactions
has a bipartite structure (see also Figure 2.2a-b). In such a scenario, equations for
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Figure 2.2. Summary of the features of a miRNA-RNA network. (a) Sketch of
an interaction network formed by miRNAs and their targets (ceRNAs). The network
is a weighted bipartite graph. Line thickness is proportional to the coupling strength
(i.e. to the miRNA-ceRNA binding affinity). (b) Sketch of the individual processes
lumped in each interaction represented in (a). (c) Sketch of the behavior of the level of
free targets (ceRNA or miRNA) as a function of the level of free regulators (miRNA or
ceRNA, respectively). Adapted from [3].

the time evolution of free molecules and complexes can be written as follows:

˙[mi] = bi − di[mi] −
∑

a

k+
ia[mi][µa] +

∑

a

k−
ia[cia], (2.1a)

˙[µa] = βa − δa[µa] −
∑

i

k+
ia[mi][µa] +

∑

i

(k−
ia + κia)[cia], (2.1b)

˙[cia] = k+
ia[mi][µa] − (k−

ia + κia + σia)[cia]. (2.1c)

where [mi] and [µa] stand for free RNA and miRNA concentrations, respectively.
This set of equations can be numerically solved once parameters and initial conditions
are specified. To understand how things work, we restrain to the steady state regime
of the dynamics, so that we can not concern with initial values, and have a unique
set of steady state free molecule concentrations. However, transient regimes are
important and crosstalk can be characterized there as well. We briefly discuss this
possibility in Panel ‘Crosstalk away from stationarity’.

Imposing nil time derivative in 3.41a, steady state expressions for the concentra-
tions are given by:

[mi] =
bi +

∑
a k−

ia[cia]
di +

∑
a k+

ia[µa]
, (2.2a)

[µa] =
βa +

∑
i(k

−
ia + κia)[cia]

δa +
∑

i k+
ia[mi]

, (2.2b)

[cia] =
k+

ia[mi][µa]
(k−

ia + κia + σia)
. (2.2c)
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Crosstalk away from stationarity

miRNA-ceRNA interaction strengths and silencing/sequestration mechanisms
emerge, together with the relative abundance of regulators and targets, as key
factors for the onset and character of ceRNA crosstalk, including its selectivity.
Moreover, heterogeneities in kinetic parameters as well as in miRNA-ceRNA
interaction topology are major drivers of ceRNA crosstalk in a broad range of
parameter values. The picture obtained at stationarity can be extended to
out-of-equilibrium regimes. In particular, one can characterize a ’dynamical’
ceRNA effect, which can be stronger than the equilibrium one, as well as the
typical timescales required to reach stationary crosstalk [57].

Eliminating the complexes {cia}, the N × M + N + M steady state equations
eq. (2.2) reduce to a set of N + M coupled equations for the free concentrations of
species {µa, mi}:

[mi] =
m⋆

i

1 +
Ni∑

a

[µa]
µ0

ia

= m⋆
i Fi, (2.3a)

[µa] =
µ⋆

a

1 +
Ma∑

i

[mi]
m0

ia

= µ⋆
aFa. (2.3b)

in which m⋆
i = bi/di and µ⋆

a = βa/δa represent the concentrations of free
compounds in the absence of inhibition; while Ma (Ni) is the number of RNA
(miRNA) that bind miRNA a (RNA i). Finally, m0

ia and µ0
ia are given by:

m0
ia =

δa

k+
ia

(
1 +

k−
ia + κia

σia

)
, (2.4a)

µ0
ia =

di

k+
ia

(
1 +

k−
ia

σia + κia

)
. (2.4b)

m0
ia and µ0

ia are proportional to the inverse affinity of the complex (given by the
ratio k+/k−), so they quantify the strength of the binding. Note that, put in this
form, they can be estimated by novel miRNA transfection experiments [58].

Again, we stress that this modelization represents a coarse-graining of the real
biological process, in fact, it does not consider all the catalyzing intermediate steps
that involve the presence of proteins and other RNA molecules, as the formation of
the RISC complex. Anyway, assuming that the only rate-limiting compounds are
the miRNA molecules the underlining catalytic reactions may be ignored. Despite
its essentialness, this approach allows to fully characterized analytically and numeri-
cally the steady state of the dynamics and consequently to precisely quantify the
sensitivity of a ceRNA to alterations in the level of one of its competitors, sufficing
to capture many of the central characteristics of miRNA-based regulation from basic
assumptions about the underlying processes.
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All reactions reported in 3.41a, i.e. transcription, degradation and titration
events due to miRNA-ceRNA interactions, are intrinsically stochastic. This means
in practice that molecular levels evolving in time are bound to be subject to random
fluctuations, with the strength of the noise affecting each molecular species roughly
proportional to the square root of its mean. After a transient, concentrations will
stabilize and fluctuate around the steady state of the deterministic model. The
deterministic model thereby yields a description of the miRNA-ceRNA network
that is all the more accurate when the system is well mixed and concentrations are
sufficiently large. In what follows, we will limit the discussion on results obtained
only using the deterministic model in the steady state regime. This will allow
to quantitatively measure the cross-talk between ceRNA in different parameter
scenarios and to have strong analytical support. For a review on stochastic models
see [3].

Parameter reduction

At the moment, the state of the system depends on 4MN + 2M + 2N parameters.
While much biology is contained in each parameter and in specific situations all
parameters should be accurately considered, here we want to focus on the main
features of crosstalk and a reduction of the number of parameters to be explored
is helpful. So, to shrink the parameter space we assume that σia = σ, κia = κ,
and di = d and δa = δ for each i and a. Furthermore, we can also suppose that
k−

ia << σ + κ, which equals to say that complexes are degraded faster than the time
thermal noise needs to separate the species. Under those assumptions, one gets
µ0

ia = λm0
ia

d
δ for all i and a, where λ = σ

(σ+κ) is the ‘stoichiometric ratio’ measuring
the relative degree of stoichiometricity of complex decay. The number of effective
parameters in this case shrinks to NM + N + M + 3, namely the inverse affinities
µ0

ia, the synthesis rates bi and βa, the stoichiometric ratio λ, and the rates, δ, d.
Reasonable choices for all those parameters are reported in Table 2.1. Note that
inverse affinities and synthesis rates will be the source of heterogeneity whose effect
we aim to characterize. For this reason, in Table 2.1 we reported typical values that
in practice can vary also by orders of magnitude. Finally, since miRNA molecules
are used by cells as regulators, we use the miRNA transcription rate as a control
parameter upon varying which crosstalk patterns will be analyzed.

2.3.1 RNA regimes

Once a reasonable choice of parameters is done, Eq. 2.3 can be numerically solved
and the concentrations of free molecules can be studied varying miRNA transcription
rate. Note that since equations for the concentration of miRNA and ceRNA have
the same structure, qualitative similar results are found if one looks at the mirror
system, i.e. if we vary RNA transcription rates [4, 57].

Varying β on a logarithmic scale, we can see that as β increases, the concentration
of free miRNA in the system increases as well, while RNA concentrations go down
in a sigmoidal fashion (see Figure 2.2c).

If the levels of all miRNA species interacting with ceRNA i are sufficiently low
(specifically, much lower than the respective thresholds µ0

ia, so that
∑

a µa/µia << 1),
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Figure 2.3. Steady-state concentrations in a system with 2 ceRNAs, obtained by
fixing all parameters but the transcription rate b1 of ceRNA 1. The dynamical
range of the cross-talk interaction between the two ceRNAs corresponds to the window
where the fraction of free and bound molecules (φ) are similar, i.e., to the S-regime.
Adapted from [4].

then the steady-state level of RNA i will be very close to the maximum possible,
m⋆

i . In such conditions, RNA species i will be roughly insensitive to changes in
miRNA levels. We will call this the ‘unrepressed’ or ‘free’ regime for RNA i. As
the quantity a

∑
a µa/µia increases, e.g. following an increase in the level of one or

more miRNA species, [mi] deceases. This occurs most notably when
∑

a µa/µia ∼ 1
(corresponding, for M = 1, to a miRNA level close to the threshold value µ0

ia). Here
RNA i is very sensitive to a change in miRNA levels. We shall therefore term this
the ’susceptible’ regime for RNA i. Finally, when miRNA levels become sufficiently
large, ceRNA i will eventually become fully repressed. In order for this to occur, it
suffices that

∑
a µa/µia >> 1 (which occurs e.g. when the level of at least one of the

miRNA species targeting i significantly exceeds its corresponding threshold µ0
ia ).

We then shall this the ‘repressed’ regime for ceRNA i (see Figure 2.2c for a sketch).
Note that the sigmoidal shaped response curve is typical of titration mechanisms.

It is now very instructive to look at what happens if instead we modulate the
transcription rate of one ceRNA. Let us consider a system with only two ceRNA
molecules and one miRNA and look at concentrations upon varying the transcription
rate of say ceRNA 1. As b1 increases, m1 grows as expected while the concentration of
free miRNAs decreases as they increasingly engage targets. This in turn un-represses
the other RNA species, whose level also increases as the transcription rate of ceRNA
1 is upregulated (see Fig. 2.3). The level of ceRNA 2 increases upon changing b1

and this response happens in the susceptible region. This is the key signature of
the miRNA-mediated crosstalk that can be established between competing RNAs.
In what follows we will see how to quantitatively measure the crosstalk and why
heterogeneity is a key ingredient.
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Table 2.1. Summary of parameter values.

Parameter Value Description Ref.

d 0.08 [h−1] RNA degradation rate [59]
δ 0.027 [h−1] miRNA degradation rate [59]
λ 0.2 stoichiometricity ratio [59]
〈b〉 8 [molecules/h] mean RNA transcription rate [59]
µ0 4 [molecules]
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Chapter 3

Molecular crosstalk

Almost all processes inside cells involve bindings between molecules. If a molecule
can bind to two possible target molecules, in such a way that once the molecule
binds to one target it can not interact with the other until the complex dissociates,
then a sort of competition for the binding of the common molecule is established
between the targets. Such competition results in an effective, or mediated, interaction
between the targets. In fact, if the concentration of one target increases, then part
of the molecules targeting the second target will be diverted toward the first and
the net result will be an increase of the second target free molecules. The effective
interaction is termed crosstalk.

Here, we will focus on the crosstalk between RNAs originating from their compe-
tition in binding micro RNA [60]. However, this mechanism of ‘titrative’ interaction
is found in processes as different as protein ubiquitination [61], growth factors sig-
naling [62], and transcription factors sequestration [63]. Consequently, the picture
we are going to discuss is expected to apply in general to all networks of molecular
species competing for a common resource. As we saw in 2.1 and in 2.2, micro RNAs
are important post-transcriptional regulators of gene expression. Since each micro
RNA can bind to many targets, they originate a network of effective interactions
among the whole population of RNAs.

The characteristic of the resulting crosstalk, as we show in 2.3, depends on
three main ingredients: the concentrations of molecules, the kinetics of the binding
between micro RNA and target and obviously the topology of the resulting network.
The abundances of individual miRNA and target molecules in cells can span many
orders of magnitude. Heterogeneities in transcriptional activities are the central
mechanism behind this scenario. Furthermore, while cells can regulate the average
level of transcription, variations from the average can happen both due to molecular
noise and to perturbations.

miRNA binding kinetics depends on the degree of complementarity between the
miRNA and its target RNA, with higher complementarities resulting in stronger
repressive effects. Recent investigations highlighted a rich scenario of different
binding modes and strength [5]. Finally, the wiring observed in real networks shows
peculiar statistical features, like broad connectivity distributions.
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ia

D

targets

miRNAs

targets competing for 

upregulation of a target frees its 

competitor for translation

an effective positive interaction between targets

ceRNA

mechanism

Figure 3.1. Sketch of the ceRNA mechanism: competition to bind a miRNA
can induce an effective positive coupling between its targets. Adapted from [3].

3.1 Measuring crosstalk

Given the set of equations 2.3 for the free compound concentrations, we want to
characterize the cross-talk established between RNAs by their interaction with
miRNAs. Even if two RNAs can not directly interact, they can compete for binding
a common miRNA, so that variations in the concentration of one RNA are transferred
to the second RNA through the shared miRNA. We will say then that the two
RNAs are connected by a path of length one miRNA, meaning that in the bipartite
network we can move from the first RNA to the second going through the common
miRNA. In principle, crosstalk can take place also between RNAs that are more
than one miRNA apart, by a chain of miRNA mediated interactions. Generalizing,
two RNAs can influence each other if they are connected by a n-miRNA-long path
in the miRNA-RNA network.

The most intuitive measure of crosstalk is the computation of the Pearson
correlation between the levels of the free RNA molecules, i.e.

ρij =
〈mimj〉 − 〈mi〉 〈mj〉√

(〈m2
i 〉 − 〈mi〉

2)(〈m2
j 〉 − 〈mj〉2)

(3.1)

where averages are taken over random fluctuations in the steady state of a
stochastic dynamics or over different samples, as long as each sample can be consid-
ered to be stationary and the interaction network is conserved across samples. A
large positive value of ρij points to the existence of a positive (linear) correlation
between mi and mj .

In such conditions, an increase in the level of ceRNA i, whichever its origin,
will divert part of the miRNA population currently targeting ceRNA j to bind to
i, thereby freeing up molecules of j for translation. In ρ is large, a perturbation
affecting ceRNA i could be ‘broadcast’ to ceRNA j because of the miRNA-mediated
statistical correlation existing between their respective levels. However, quantifying
the crosstalk through ρij may be misleading. To understand why we can imagine a
system in the steady-state subject to some noise in the transcription rates of the
species. In this situation, the level of RNA i is given by
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mi({mj}, {µa}) ≃ 〈mi〉 +
∑

j

∂mi

∂bj

∣∣
mi=〈mi〉δbj +

∑

a

∂mi

∂βa

∣∣
mi=〈mi〉δβa (3.2)

where δx = x − x̄ and the over-bar denotes average over transcription rates. Now
if we assume that the transcription rates are mutually independent, the Pearson
coefficient between any couple of RNAs assumes the form

ρij ≃
∑

k

χ̃ikχ̃jkδb2
k +

∑

a

χ̃iaχ̃jaδβ2
a (3.3)

where χ̃ik = ∂mi

∂bk

∣∣
mi=〈mi〉, χ̃ia = ∂mi

∂βa

∣∣
mi=〈mi〉 and the index k (resp. a) runs over

all RNAs (resp. miRNAs).
From Eq. 3.3, we can see that ρij is given by the contribution of both the

fluctuations in RNAs and miRNAs. A problem of this measure relies on the fact
that a finite value of ρij may not be due to the response of ceRNA i to the variation
in the level of ceRNA j. In fact, we can obtain a finite correlation also due to a
variation in the level of one of the miRNA to which ceRNA j binds. So, ρij quantifies
a combination of different responses and its usage can be misleading. Anyway,
equation 3.3 provides also the answer to the problem. In fact, to be sure that the
crosstalk between the couple (i, j) is indeed solely due to the variation of the level
of the involved RNA, we can directly compute the susceptibility, i.e.

χij = dj
∂[mi]
∂bj

(3.4)

where dj serves the only purpose of rendering dimensionless the observable [7].
Using Eq. 2.3, it is possible to derive an exact analytic expression for the suscep-
tibilities that depends from the model parameters, the free concentrations of the
involved RNAs (e.g. [mi] and [mj) and most importantly from the concentrations
of the miRNAs that are present along the path connecting the two RNAs. Note
that with slightly different computation details (see Appendix A) we could obtain
expression also for the miRNA-miRNA and miRNA-RNA susceptibilities:

χab = δb

(
∂[µa]
∂βb

)
, χia = δa

(
∂[mia]

∂βa

)
(3.5)

The scenario described by χab is expected to be specular to the one depicted by
χij , while a proper characterization χia is so far missing. Since the author has not
properly worked on those quantities, they will not be discussed any further.

Computing the susceptibilities

Focusing on the RNA-RNA susceptibilities χij we can explicit the calculations as:

χij = di

(
∂[mi]
∂bj

)
=

∂[mi]
∂m⋆

j

= Fiδij + m⋆
i

∑

a

∂Fi

∂µa

∑

l

∂µa

∂[ml]
∂[ml]
∂m⋆

j

, (3.6a)

χij =
[mi]
m⋆

i

δij +
[mi]2

m⋆
i

∑

a∈Ni

[µa]2

µ0
iaµ⋆

a

∑

l∈Ma

χlj

m0
la

(3.6b)
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where Fi is defined in Eq. (2.3), Ni is the set of miRNA that target RNA i, Ma

is the set of RNA that are bound by miRNA a and we used the identities:

∂Fi

∂[µa]
= −

F 2
i

µ0
ia

, (3.7a)

∂Fa

∂[mi]
= −

F 2
a

m0
ia

. (3.7b)

(3.7c)

Eq. 3.6 can be re-casted in the compact form:

∑

l

(δil − Wil) χlj =
mi

m⋆
i

δij , (3.8a)

(
1̂ − Ŵ

)
χ̂ = diag

(
m

m⋆

)
. (3.8b)

where χ̂ is the entire susceptibility matrix, diag
(

m
m⋆

)
denotes the diagonal matrix

with elements {mi/m⋆
i } and

(
Ŵ
)

ij
=

[mi]2

m⋆
i

∑

a∈(Ni∩Nj)

1
m0

jaµ0
ia

[µa]2

µ⋆
a

(3.9)

where a ∈ (Ni ∩ Nj) strands for all miRNA molecules that bind both RNA i and j.
The χ̂ matrix can be obtained from Eq. (3.8) through matrix inversion:

χ̂ =
(
1̂ − Ŵ

)−1
diag

(
m

m⋆

)
(3.10)

Expressions (3.10) allows computing the susceptibility matrix exactly for any
miRNA-RNA network. Anyway, expressed in such shape, it is quite hard to see
which characteristic of the crosstalk the susceptibility can provide. To understand
what we can learn about crosstalk using susceptibilities, let us focus on a minimal
network where an approximated solution for the χ matrix can be evaluated.

Crosstalk is selective and directional

Eq. 3.10 provides a powerful recipe to compute the susceptibility, i.e. the competition-
induced crosstalk, in an arbitrarily large network. In this form, though it is hard
to understand the main features of such crosstalk. To gain some insight, it is more
convenient to follow the original computation presented in [4], where we can obtain
an approximated (but quite clarifying) expression for the χij that depends explicitly
on the states (F , S, or B) the couple of RNAs are on.
We consider a system composed of one miRNA species, µ and N RNA species, {mi}.
Starting from the steady state concentrations of Eq. 2.3 we want to approximate:

χij =
∂[mi]
∂m⋆

j

= Fi([µ])δij + m⋆
i

∂Fi

∂[µ]
∂[µ]
∂m⋆

j

, (3.11)
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Figure 3.2. Susceptibilities χij in a system of 4 ceRNAs, as a function of miRNA
transcription rate β. (All other parameters being fixed). In this example, ceRNAs
are cast in two groups: group A, formed by ceRNAs m1 and m3, and group B, formed
by ceRNAs m2 and m4. ceRNAs belonging to the same group share identical kinetic
parameters. In particular, µ0

1 = µ0
3 << µ0

2 = µ0
4. For β smaller than ∼ 500, no cross-talk

is observed; however, as β increases, a symmetric interaction between ceRNAs in group
A (of magnitude comparable to the self-susceptibilities) appears. As β increases further,
this interaction is switched off, and ceRNAs in group B begin to cross-talk instead. In
this region, a change of transcription of a ceRNA in group A can affect the level of
ceRNAs in group B, but not viceversa (asymmetric cross-talk). Finally, for sufficiently
large β, no cross-talk takes place. Adapted from [4].

where [µ] is the free concentration of the lone miRNA species and

Fi([µ]) =
µ0

i

µ0
i + [µ]

. (3.12)

Remembering that the three states in which one can find RNA i depend on the
ratio [µ]/µ0

i being << 1 (F), ∼ 1 (S) or >> 1 (B), we can express Eq. 3.12 in an
approximated form for each of the three states, i.e.

Fi([µ]) ≃





1 − [µ]
µ0

i

if i ∈ F

1
2 −

[µ]−µ0
i

4µ0
i

if i ∈ S

µ0
i

[µ] if i ∈ B

; (3.13)

similarly, also the ratio ∂Fi

∂[µ] can be approximated as

∂Fi

∂[µ]
= −

µ0
i

(µ0
i + [µ])2

≃





− 1
µ0

i

if i ∈ F

− 1
4µ0

i

if i ∈ S

−
µ0

i

[µ]2
if i ∈ B

. (3.14)

Finally, the term ∂[µ]
∂m⋆

j
requires an explicit expression for [µ]. To begin with, we

note that the concentration of free miRNA in the steady state (Eq. 2.3b) can be
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recast as

[µ]


1 +

∑

k∈F

m⋆
kFk

m0
k

+
∑

k∈S

m⋆
kFk

m0
k

+
∑

k∈B

m⋆
kFk

m0
k


 = µ⋆ (3.15)

where we grouped together all the ceRNAs in the same state. The product [µ]Fk

also assumes different forms depending on the state of the k-th ceRNA, i.e.

[µ]Fk([µ]) ≃





[µ] if k ∈ F
[µ]+µ0

k

4 if k ∈ S

µ0
k if k ∈ B

. (3.16)

With these approximations, we can express [µ] as

[µ] ≃
µ⋆ −

∑
k∈B m⋆

k
µ0

k

m0
k

+ 1
4

∑
k∈S m⋆

k
µ0

k

m0
k

1 +
∑

k∈F
m⋆

k

m0
k

+ 1
4

∑
k∈S

m⋆
k

m0
k

(3.17)

and proceed to compute the last term of Eq. 3.11:

χµj ≡
∂[µ]
∂m⋆

j

≃ −
χµµ

m0
i

×





[µ] if j ∈ F
µ0

j
+[µ]

4 if j ∈ S

µ0
j if j ∈ B

(3.18)

where

χµµ ≡
∂[µ]
∂µ⋆

=


1 +

∑

i∈F

m⋆
k

m0
k

+
1
4

∑

k∈S

m⋆
k

m0
k




−1

(3.19)

We must now substitute in Eq. 3.11 the expressions found in Eq. 3.13 and
3.14 (which depend on RNA i) and Eq. 3.18 (depending on RNA j). After some
calculations, we finally obtain

χij ≃

[
Fiδij +

m⋆
i χµµ

4[µ]
MR(i)R(j)

]
, (3.20)

with

M̂ =




4 [µ]2

µ0
i
µ0

j

[µ]
µ0

i

[µ]+µ0
j

µ0
j

4 [µ]
µ0

i

[µ]2

µ0
i
µ0

j

[µ]
µ0

i

[µ]+µ0
j

4µ0
j

[µ]
µ0

i

4µ0
i

µ0
j

µ0
i

[µ]

[µ]+µ0
j

µ0
j

4 µ0
i

[µ]




=




O(ǫ2) O(ǫ) O(ǫ)
O(ǫ) O(1) O(1)
O(ǫ2) O(ǫ) O(ǫ)


 (3.21)

where R(k) represents the state (F , S, or B) of RNA k.
The approximated solution required more calculation than the exact results.

Anyway, it is worth the cost, in fact, put in this form, we can spot several features
of the crosstalk. Firstly, the resulting cross-talk between RNAs is positively defined
since all terms in Eq. 3.20 are positive.

This implies that cross-talk tends to positively correlate the levels of RNAs.
Moreover, M̂ provides important information since it is the only quantity that
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depends on the states of both RNAs. To begin with, the matrix is not symmetric.
This means that given a certain level of miRNAs, if the RNAs have different
thresholds (µ0) the crosstalk between RNAs will be directional, with some RNAs
influencing the others without being influenced themselves.

More specifically, if i 6= j, all the elements of M̂ are of order ǫ or smaller with
the exception of MSS and MSB which are of order 1. This implies that, in this
scenario, two types of effective interactions arise: the first one encodes the response
of a ceRNA in the S-regime to a perturbation of another RNA in the S-regime, and
it is symmetric; the second one encodes the response of an RNA in the S-regime to
a perturbation of an RNA in the B-regime, and it is not symmetric (i.e., perturbing
the susceptible RNA the bound one will not respond). RNAs in the B-regime (higher
binding affinity) can unidirectionally affect RNAs in the S-regime, which in turn may
influence other RNAs in the S-regime. On the other hand, RNAs in the F-regime
(lower binding affinity) interact weakly with the rest of the system and fluctuations
in their transcription rates do not propagate to other RNAs. All this means that
the inverse affinities µ0

i ∼ 1/k+
i , induce a hierarchy of interactions. If a couple of

ceRNA bind to a miRNA with different affinities, then the response will be different.
Furthermore, since cross-talk appears only when the miRNA level is in a specific
range, this implies that the structure of the emergent interaction network is flexible
and dynamical. The set of RNA species that interact may change upon varying [µ]
or from the cellular point of view, upon changing its transcription/degradation rates.

Both selectivity and directionality as features of the cross-talk can be read looking
at the susceptibilities computed for a small system of 4 RNAs as a function of the
miRNA transcription rate, β (see Figure 3.2). One sees that different interactions
are switched on in different ranges of values for the miRNA transcription rate,
leading to a gradual modification of the structure of the interaction network as β
changes. Clearly, heterogeneity in transcription rates of both RNAs and miRNA will
influence the crosstalk. In fact, the regime an RNA assumes depends on the levels
the other species can assume through the ratios µa/µ0

ia, mi/m0
ia. So heterogeneity

on the transcription rates bi and βa which determine the maximum levels of free
compounds is expected to influence the crosstalk. At the same time, we can expect
that heterogeneity in the quantities µ0

i will lead to interaction asymmetries. In
Section 3.2, we will see the role both sources of heterogeneity exert on the crosstalk
at system level.

The role of topology

Last but not least, topology, i.e. the architecture of the miRNA-RNA network
strongly influences the establishment of crosstalk. To appraise its role, again it is
better to consider an approximated case in which all ingredients, except the strictly
topological ones, are as homogeneous as possible. Let us assume that there is no
binding heterogeneity at all (µ0

ia = µ0) and that miRNA levels are held the same for
all miRNA species to a certain value µa = µ. In this scenario, the free concentrations
of the RNA population are given by

[mi] =
m⋆

1 + nit
(3.22)
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Figure 3.3. Real (CLASH) network features. (a) Circular representation of a small
part of the CLASH network. RNA species can crosstalk via miRNA-mediated effective
interactions. Crosstalk can be established also between RNAs that do not share a
miRNA regulator thanks to chains of miRNA-mediated couplings. (b1-b4) Classes
of miRNA-RNA interactions proposed by [5]: (b1) perfect k-base-pairing in the seed
region (‘k-mer’ mode); (b2) seed base-pairing with up to one mismatched or bulged
nucleotide (non-canonical mode or ‘seed-nc’); (b3) non-seed base pairing with bulged
and/or mismatched nucleotides (‘noseed-9nt’ mode); (b4) non-seed binding within weak
diffuse regions (‘noseed’ mode). (c) Frequency of each binding mode in the CLASH
dataset (from [5]).

where m⋆ = b/d, t = µ/µ0, and ni =
∑

α Aiα is the number of miRNA that
target i-th RNA (the degree of node i). We introduced the adjacency matrix Aiα as:

Aiα =

{
1 if RNA mi is targeted by miRNA µα

0 otherwise
(3.23)

Under these approximations Eq. 3.9 becomes:

(
Ŵ
)

ij
=

t

(1 + nit)
2

∑

α∈(Ni∩Nl)

1
Ka

(3.24)

with

Ka =
m0

m⋆
+

Na∑

k

(
1

1 + nkt

)
(3.25)

Reminding the geometric series identity
(
1̂ − Ẑ

)−1
=
∑

n≥0 Ẑn, we can expand
Eq. 3.10 as:

χij =
∑

n≥0

(
Ŵ n

)
ij

[mj ]
m∗

j

≡
∑

n≥0

χ
(n)
ij (3.26)
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Note that for this expansion to converge, we must have that |ζi| < 1 for each
eigenvalue ζi of of Z.

Eq. (3.26) permits to obtain an analytical expression of the χ̂ matrix up to
the chosen order. In particular, if we assume that the miRNA-ceRNA network is
sufficiently sparse and there are no connectivity correlations we can stop to the first
order of the series expansion, i.e.

χij ≃ χ̂
(1)
ij =

t

(1 + nit)
2

(
1

1 + njt

) ∑

α∈(Ni∩Nl)

1
Ka

(if i 6= j) (3.27)

One easily sees that the susceptibility is symmetric only if ni = nj for all i and j,
i.e. only if RNA nodes have the same degree. Furthermore, as expected, the dilution
increases upon increasing the number of ceRNAs interacting with a given miRNA
species µa. In fact, each of RNA adds a positive term (1 + tnk)−1 to Ka thus making
it large. The susceptibility diminishes also upon increasing ni and nj , since

χij ≃
1

njn2
i

. (3.28)

To further get insights on the topology contribution, let us now focus on the
particular case of a regular bipartite network with fixed RNA and miRNA connectivity
so that ni = n for each i and νa =

∑
i Aia = ν for each a. We have that

K =
m0

m⋆
+

ν

1 + nt
(3.29)

From Eq. 3.29, it is clear the dilution effect of miRNA degree. Susceptibilities
assume the form

χij ≃
nij

K

t

(1 + nit)
3 = nijχ0 (if i 6= j) (3.30)

where nij =
∑

α AiαAαj is the number of miRNA shared by RNA i and j. We
clearly see that the contribution of a single miRNA to the overall susceptibilities
depend on the value of t. In particular, one finds that

χ0 =





t
K ∼ O( ǫ

n) for t << 1/n
1

Kn ∼ O( 1
n) for t ≃ 1/n

t
Kt2n3 ∼ O( ǫ

n) for t >> 1/n

(3.31)

Altogether, also for the topology we can identify three possible regimes. In fact,
generalizing what we found varying miRNA transcription rate, one realizes that the
case t << 1/n (resp. t << 1/n and t >> 1/n) describes a ceRNA that is ‘globally
free’ (resp. ‘globally susceptible’ and ‘globally bound’) with respect to the overall
miRNA population.

Regarding topology, we can conclude that χij (i) increases with the number nij

of miRNA species shared by the ceRNAs mi and mj ; (ii) decreases if the shared
miRNAs have many other targets; (iii) peaks when ceRNAs are ‘globally susceptible’
to the overall miRNA population, and it can be of the same order of magnitude
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as the self-susceptibility, i.e. O(1/d), when nij ≃ n. Perhaps most remarkably,
the crosstalk can be effective even among ceRNAs that are in the free regime with
respect to individual miRNAs, provided they are commonly targeted by a large
number of miRNA species thus becoming globally susceptible. However, in order to
achieve efficient cross-talk strong correlations in the network connectivity are needed
(large nij): highly clustered networks can allow for much stronger cross-talk than
random graphs. Finally, the regular bipartite example can be used to appraise the
contribution to the susceptibility given by higher orders of expansions of Eq. 3.26.
In fact, if we look at the second order term

χ̂
(2)
ij =

(∑

l

WilWlj

)
mj

m∗ =

=
(

m∗

µ∗
µ0

m0

)2 ( t

1 + nt

)2 ( 1
1 + nt

)∑

l

nilnlj

(
t

1 + nt

)2

(3.32)

we see that each order carries the contribution due to chains of miRNA-mediated
interactions. Indeed, truncation at the first order is possible if correlations higher than
degree-degree ones are negligible, i.e 〈nilnlj〉 ∼ 0 as much as all higher correlations
given by chains like 〈nijnjknkl...〉 ∼ 0.

Summary

Summing up, when quantified through χij , ceRNA crosstalk displays the following
key features:

• Plasticity: The patterns of miRNA-mediated RNA crosstalk are modulated
by kinetic parameters, and particularly by miRNA levels, i.e changes in miRNA
availability modify the RNA crosstalk network;

• Selectivity: If a miRNA targets multiple ceRNA species, crosstalk may
occur only among a subset of them and is enhanced by heterogeneities in the
thresholds. This effect is related to the fact that different ceRNAs can have
different thresholds for repression by the miRNA;

• Directionality (asymmetry) : In general, χij 6= χji, i.e. RNA i may
respond to a perturbation affecting ceRNA j but not the reverse;

• Dependency on stoichiometric processing: If all miRNA-RNA complexes
formed by RNA j are degraded in a purely catalytic way, then χij = 0 (i.e.
stoichiometric processing is necessary for RNA crosstalk at stationarity).

• Topology: many weakly interacting miRNA species can collectively mediate
efficient RNA crosstalk.

Now that we learned what features the crosstalk, as quantified by susceptibility,
exhibits, one can wonder to which degree the above features persist in a real
large-scale network, where transcriptional heterogeneity combines with binding
heterogeneity and broad distributions of topological features like node degrees. In
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the next sections, we will see how these three different kinds of heterogeneity affect
the emergent cross-talk patterns and look for evolutionary signatures since both
binding and network architecture are under the direct influence of evolution.

3.2 Crosstalk at system level

We now know how crosstalk looks like in particular situations of small motifs or in
fictitious large regular graphs. To probe the modelization in more realistic scenarios
we must both look for experimental miRNA-RNA networks and think about some
proper measures to quantity features as the plasticity or the selectivity. In fact, we
can not use the plots in Figure 3.2 for large networks. Fortunately, experimental
techniques and bioinformatics tools provided the first ingredient. In fact, searching
literature [5, 59] and databases like miRbase [42] or TargetScan [43], we can retrieve
different interaction networks. For example, we consider the human miRNA-RNA
interaction network proposed by [5], which was obtained using the novel cross-linking,
ligation, and sequencing of hybrids (CLASH) experimental protocol. The network,
to which we refer as CLASH network, is made of 17411 links shared between 6943
RNAs (N) and 383 miRNAs (M) (see Figure 3.3a for a sketch). Links are weighted
according to the miRNA-RNA binding affinities, which strongly depend on the modes
of binding. Adopting the same notation used in [5], we distinguish (see Figure 3.3b)
four binding modes based on (i) the perfect pairing of k miRNA seed nucleotides
(‘k-mer’, with k = 6, 7, 8 or 9), (ii) the presence of up to one imperfect pairing
in the seed region (non-canonical,‘nc’), (iii) a no seed interaction, allowing bulged
nucleotides in the target (‘9nt’), or (iv) a no seed binding with distributed less stable
pairings (‘none’). Repression experiments, performed increasing the concentration
of sets of miRNA with the same binding mode, ranked the repression strengths
associated with each binding mode. In particular, [5] showed the seven kinds of
interactions grouped in four sets according to their repression effect, namely 8 and
9mers, being the group with the strongest binding and repressive effect, followed by
7mers; 6mer and non-canonical interactions behave similarly in terms of repression
capacity as well as 9nt and none binding modes (see Figure 3.3c).

Sources of heterogeneity

All the parameters introduced in the previous section present a certain degree of
variability at physiological conditions. In what follows, we will try to understand how
this heterogeneity influences the crosstalk scenario at system level. For simplicity of
exposition, we can divide the source of heterogeneity in three distinct groups. The
first source of heterogeneity arises in the transcription rates. In fact, the presence of
extrinsic noise introduces a variability in the rates of synthesis and degradation of
the molecules across cells. Following [6], we restraint to the sole variability in the
transcription rates and assume that both RNA transcription rates bi (i = 1, ..., N
) and miRNA transcription rates βa (a = 1, ..., M) can be modeled as random
variables extracted from some distribution. In particular, the discussed results are
obtained assuming log-normal i.i.d. random variables with means 〈b〉 and 〈β〉, and
variances σ2

b and σ2
β, respectively.
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CLASH - Crosslinking, Ligation, and Sequencing of Hybrids

CLASH maps RNA-RNA interactions [64, 5]. In this method, RNA-protein
complexes are UV-crosslinked and affinity-purified. RNA-RNA hybrids are
ligated, isolated, and reverse-transcribed into cDNA. Deep sequencing of the
cDNA provides high-resolution chimeric reads of RNA-RNA interactions. The
main advantages are that (i) it allows to map RNA-RNA interactions in vivo
and (ii) provides binding site level resolution. On the other side, the CLASH
protocol makes use of hybrid ligation which may be difficult to obtain between
short RNA fragments. Furthermore, it has a relatively low efficiency [65]

Figure 3.4. Comparison between CLIP and CLASH experimental proto-
col.

We will abbreviate the transcriptional heterogeneity as TH. A used measure for
the magnitude of the fluctuation is the coefficient of variation of individual rates
(standard deviation over mean), which we denote by CVtr. So, assuming comparable
magnitudes for fluctuations in the transcription rates of miRNAs and RNAs, we
identify TH by the coefficient of variation.

Another source of heterogeneity in the system comes from the strengths of the
bindings (binding heterogeneity, BH). The association (k+) and dissociation rates
(k−), which quantify the binding strength between miRNA and RNA molecules,
depend on the base-paring between the molecules. Note that while cells can regulate
transcription rates, the BH can not be regulated by the cells, but it is subject to
evolutionary pressure on longer time scales.

Under the assumption made in the previous section, k+ constitutes the main
source of variability in the binding weights, µ0 and m0. To appraise how hetero-
geneities in the miRNA-RNA interaction strengths affect the emergent crosstalk
landscape, we can imagine three variants, with increasing diversity, of the structure of
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Figure 3.5. Modeling heterogeneities.( a) Distributions of RNA transcription rates
used in this work: each rate is assumed to be drawn independently from a log normal
distribution with given mean (same for each RNA species). Increased transcriptional
heterogeneity (TH) corresponds to increased values of the relative fluctuations (CVb).
(b) Scenarios of miRNA-RNA binding heterogeneity (BH). From left to right: low BH,
where each miRNA-RNA pair interacts with the same strength; medium BH, with
k-mer interactions (stronger) distinguished from the rest (weaker); high BH, where the
full structure is employed. c) CLASH ceRNA and miRNA degree distributions in the
CLASH network and in a randomized version having the same number of contacts and
node degrees. Adapted from [6].
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Figure 3.6. Relative overall molecular abundances in CLASH (a) and degree-
preserving randomized networks (b). Note that the susceptible regime in the latter
is narrower compared to the original CLASH network. Adapted from [6].

binding affinities encoded in the CLASH interactome (see Figure 3.5). At the lowest
level, we assume a homogeneous network in which µ0

ia = µ0 for each miRNA-RNA
pair, with µ0 a certain constant (see Table 2.1). To express an intermediate level of
heterogeneity, we can image a bimodal distribution that discriminates (i, a) pairs
having a k-mer interaction according to the CLASH data (i.e. stronger coupling
rate) from the rest. At the highest level, we associate different binding strengths
to each of the four types of miRNA-RNA pairs considered in CLASH, assuming a
2-fold change in µ0

ia between groups in agreement with estimates from [5].
Finally, the very same network topology can constitute another layer of het-

erogeneity. In fact, the network architecture can possess a broad node degree
distribution which intuitively influences the interactions between compounds. In-
deed, experimental inferred miRNA-RNA networks exhibit power-law distribution of
degrees with exponents ranging from -3 to -1 both for miRNA and RNAs species (see
Figure 3.5c).

To evaluate the role of topological heterogeneities, we can compare results for the
real network with those found in ensembles of networks obtained (i) by re-assigning
each (i, a) link to a miRNA-RNA pair drawn randomly among all possible pairs with
equal probability; or (ii) by a more conservative procedure based on degree-preserving
edge-swaps [66].

The first type of re-wiring disregards topological correlations of all orders, in-
cluding node connectivities [67]. The second type instead preserves the real degree
distributions, while it destroys all higher structures.

3.2.1 Probing CLASH crosstalk

Once reasonable choices for all the parameters have been made, we can use Eq. 2.3
and Eq. 3.4 to obtain the steady state concentrations of all miRNA and RNA
molecules and the exact values of all the N2 susceptibilities. Since we are dealing
with ∼ 105 RNA species, we can not hope to understand the behavior of the system
by simply looking at plots of the susceptibilities as functions of the parameters like
we did before. Instead, we must think at some clever system observables. To begin
with, let us identify the region in which the network is globally susceptible. We can
do so by looking at the behavior of the mean re-scaled populations:
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Figure 3.7. Quantitative characteristics of RNA crosstalk in the CLASH net-
work. (a) Representative distributions of susceptibilities obtained for the CLASH
interactome for five different realizations of parameters with different values of β̄,
CVtr = 0.4 and maximal BH. (b) Mean susceptibility as a function of the overall miRNA
mean transcription rate 〈β〉 in the 3 scenarios considered for binding heterogeneity. (c)
Maximal susceptibility as a function of the overall miRNA mean transcription rate 〈β〉 in
the 3 scenarios considered for binding heterogeneity. The yellow shaded area marks the
region where the mean susceptibility is significantly different from zero (which coincides
with the susceptible regime). Displayed curve points have a Standard Error of the Mean
(SEM) comparable to the size of the markers. Adapted from [6].

ρm =
1
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∑

i

[mi]
m⋆
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ρµ =
1
N

∑

a

[µa]
µ⋆

a

(3.33)

Each specimen concentration is divided by the maximum value it can reach if all
molecules were unbound. These two quantities range from 0, where all species are
bound to 1 in which molecules are all in the free state. Figure 3.6 displays the mean
re-scaled populations as a function of the mean miRNA transcription rate β̄. (The
mean transcription rate of miRNA is often used as a control parameter in experiments
since it is both simple to tune but also because it is indeed the parameter that cells
can change.) As one would expect, the degree of RNA repression increases with β.
In the region around miRNA-RNA equimolarity, the system becomes susceptible.

The position of the susceptible region along the β̄ axis is strongly influenced by
the stochiometricity ration λ. An increase (resp. decrease) of λ shifts the susceptible
region to higher (resp. lower) values of the mean miRNA transcription rate. This
can be understood noting that changes in λ, in turn, effectively modify the ratio
µ0

ia/m0
ia of interaction thresholds. In particular, when λ increases (resp. decreases)
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Figure 3.8. Crosstalk in CLASH and random network. (a) Mean susceptibility as a
function of the overall miRNA mean transcription rate 〈β〉. (b) Maximal susceptibility
as a function of the overall miRNA mean transcription rate 〈β〉. The yellow shaded area
marks the region where the mean susceptibility is significantly different from zero (which
coincides with the susceptible regime). Displayed curve points have a Standard Error of
the Mean (SEM) comparable to the size of the markers. Adapted from [6].

ceRNAs become less prone to interact (resp. more prone to interact) with miRNAs,
so that more (resp. less) miRNAs will be required to repress ceRNAs. The most
intuitive measure to take is the mean susceptibility 〈χ〉, where the brackets 〈· · ·〉
denote an average over all pairs of RNA species such as i 6= j, while the over-bar
stands for an average over different realizations of transcription rate profiles at fixed
CVtr.

〈χ〉 informs about the typical strength of RNA crosstalk in the network. In
figure 3.7b, it is shown as a function of the mean transcription rate of miRNAs. We
can note two things. Firstly, miRNA availability modulates 〈χ〉 so that it peaks
within the susceptible region and is vanishingly small outside of it, where molecular
levels are practically unaffected by varying miRNA transcription rates. Secondly,
this picture is substantially unchanged by modifying the degrees of TH and/or BH,
save for a modest expansion of the susceptible region. Such a behavior therefore
describes a ‘basal level’ of crosstalk that occurs in the network in any given condition.
Indeed, because of miRNA titration, some degree of crosstalk is to be expected
between randomly selected pairs of RNAs no matter what. In numerical terms, it is
rather weak: a change in the transcription level of an RNA on average leads (via
miRNAs) to a change in the level of another RNA by something of the order of
0.01% of the size of the perturbation. If we visualize susceptibilities, for example
looking at the their distributions at different values of β̄ and fixed values of all
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Figure 3.9. Self and cross-susceptibilities. (a) Mean self-susceptibility as a function of
the mean miRNA transcription rate β̄. (b) Mean maximal self-susceptibility as a function
of the mean miRNA transcription rate β̄. Results are shown for the 3 BH scenarios
considered. The yellow shaded area qualitatively marks the region where the mean
susceptibility is significantly different from zero, which coincides with the susceptible
regime. In each case, the standard error of the mean is equal to or smaller than the size of
the markers. The self-susceptibility is maximal when miRNA levels are low, in which case
the availability of free RNA molecules increases roughly linearly with the transcription
rate. As β̄ increases, miRNA repression gets stronger and self-susceptibilities decrease
until, at large enough β̄, RNAs are fully repressed and therefore insensitive to small
changes in their transcription rates. (c) Comparison between maximum self-susceptibility
, mean self-susceptibility and χmax for different degrees of TH in the high BH scenario.
The intensity of crosstalk between different RNAs, measured by the latter quantity, is
indeed of the same order of magnitude as self-susceptibilities. Adapted from [6].

other parameters (see Figure 3.7a), the first thing one notes is that susceptibility
values span several orders of magnitude. The mean is obviously not enough to
properly describe the system. In this respect, it is interesting to see how extreme
values behave. In particular Figure 3.7c displays the behavior of the mean maximum
susceptibility

χmax = max(i6=j)χij , (3.34)

where the maximum is taken over all pairs of different RNA species (i.e. with i 6= j)
as a function of β̄.

We can see that χmax
ij increases going CVtr = 0.1 to CVtr = 2 and going from low

BH to high BH. This behavior suggests that heterogeneities both in transcription rates
and in kinetic parameters enhance cross-talk intensity. In particular, the increase of
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maximal susceptibility with the amplitude of RNA transcriptional fluctuations in
contrast with the robustness of the mean susceptibility to parameter variability is a
marker of the effect of heterogeneities in creating specific channels of RNA-RNA
cross-talk: the mean susceptibility does not depend on noise amplitude, but some
susceptibilities do increase, so only a limited number of RNA pairs reach sizeable
coupling strength. χmax quantifies the maximum achievable intensity of crosstalk
interactions in each scenario, therefore providing a proxy for the strength of the
most significant miRNA-mediated couplings arising between different RNA species
in the network.

To appraise its significance, one can gauge χmax against the self-susceptibility
χii = di

∂m
∂bi

, which quantifies the change in the level of free transcripts of species i
induced by a small modification of its own transcription rate (note that by definition
χii ≤ 1). Self susceptibilities pose an upper bound against which we can evaluate the
intensity of the relevant crosstalks for each choice of the parameters. In particular
from Figure 3.9, one sees that 〈χ〉 is about four orders of magnitude smaller than
the mean self-susceptibility. In this respect, basal crosstalk appears to be on average
very weak. Also, the strongest crosstalk interactions are 4 orders of magnitude
above basal and tend to occur between RNA pairs that are co-regulated (i.e. share
some miRNA). Furthermore distant (not co-regulated) RNAs can still give rise to
significant crosstalk, with susceptibilities that are 2 orders of magnitude above 〈χ〉.

The emerging picture is that the miRNA regulatory layer may be serving a
two-fold role. On the one hand, it makes the system more homogeneous with respect
to differences in the transcription rates, exerting a stabilizing crosstalk (mean
susceptibility). On the other hand, it allows a certain number of mRNA pairs to be
strongly interdependent (maximum susceptibility). Since placing both stabilization
and enhanced interdependence of transcript levels under the term ‘crosstalk’ might
be confusing, in the following, we will refer to crosstalk having in mind the extreme
values of the susceptibility.

At last, to appraise the role of the specific wiring encoded by the CLASH data in
determining the scenario described so far, we can compare our results against a null
model obtained by randomly re-wiring the CLASH interactome. Specifically, if we re-
assigned each link to a randomly chosen miRNA-RNA pair, thereby preserving only
the overall numbers of links and nodes while altering all other topological features
like node degrees, degree-degree correlations, etc we see (Figure 3.8) that randomized
networks display a much larger (about two-fold) mean susceptibility for crosstalk than
the CLASH interactome, possibly due to the fact that miRNA targets are generically
closer in the randomized versions. However, the maximum achievable crosstalk
strength χmax is about 4 times smaller in the random networks compared to CLASH.
Moreover, the susceptibility profile is more concentrated in the randomized network
than it is for the CLASH network, reflecting a significantly narrower susceptible
region. This picture is consistent with the fact that the susceptibility is proportional
to the number of miRNA species co-targeting RNAs i and j [3]. Furthermore, since
the wiring of the network is strongly determined by natural selection this suggests
that natural selection fosters the emergence of stronger crosstalk links.
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Figure 3.10. Crosstalk selectivity in CLASH network. Inverse of incoming (S−1
in on

left column) and outgoing (S−1
out on right column) selectivities as a function of miRNA

mean transcription rate, β̄. The inverses of Sin and Sout give a proxy of the number
of mRNAs receiving or propagating the effects of a perturbation. CLASH network is
very selective until the susceptible region is reached, i.e. both the number of nodes
whose variation influences a given mRNA and the number of nodes that are influenced
by variation of a certain node is very low. Upon reaching the susceptible threshold the
network starts cross-talk and the number of nodes involved in perturbations drastically
increases. The random network presents a lower selectivity with respect to real and
reshuffled ones, with a peak of cross-talk in the susceptible region. Adapted from [6].

Quantifying the selectivity

Intuitively, if a cell wants to achieve a good degree of control over perturbations
carried out on a certain mRNA, it is necessary that the number of mRNAs responding
to the perturbation is not too large [68]. As we saw, analytical results obtained for
small motif showed that competitive interactions can give rise to a rather selective
RNA-RNA communication channel, as only RNAs in the susceptible regime are
responsive to changes in the miRNA transcription rate and are coupled by cross-talk
interactions at stationarity [4] (during transients, cross-talk is instead extended [57]).
To quantify selectivity in a large network, we can introduce the following measures:

Sin =
1

M

∑

i

gi Sout =
1

M

∑

j

hj (3.35a)

gi =

∑
j 6=i χ2

ij

(
∑

j 6=i χij)2
hj =

∑
i6=j χ2

ij

(
∑

i6=j χij)2
(3.35b)

Note that both gi and hj vary between 0 and 1, as do Sin and Sout. The rationale
for these quantities is the following. A value gi ≈ 0 indicates that a large number of
RNA species can almost equally affect the steady state of RNA i, whereas a value of
gi close to 1 indicates that RNA i has a small number of RNA regulators. Likewise,
when hj ≈ 0 a perturbation of the transcription rate of RNA j affects the steady
state of a large number of other RNA species almost equally, while if hj ≈ 1 RNA j
only has a small number of targets.
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The quantities gi and hi are based on the standard definition of the inverse
participation ratio (IPR), widely used in statistics to quantify the number of ‘states’
over which a certain variable is distributed. Given a probability distribution {pi}
over N states, such that

∑N
i=1 pi = 1, the IPR is given by

IPR =

(
N∑

i=1

p2
i

)−1

(3.36)

One sees that if the variable is strongly concentrated, e.g. if pi = 1 and pj = 0 for
j 6= i, then IPR = 1 (the variable occupies one state). If instead the variable is
distributed equally over all states, i.e. if pi = 1/N for all i, then IPR = N (the
variable occupies N states). Therefore, it is the inverse of gi (or of Sin and Sout )
that provides the key information. In particular, S−1

in (respectively S−1
out) represents

the average of the number of RNAs, a perturbation of which can considerably affect
the level of a given RNA (resp. whose level can be affected by a perturbation of
a given RNA). We will call Sin the incoming RNA-RNA selectivity and Sout the
outgoing RNA-RNA selectivity.

In Figure 3.10, the inverse incoming (left) and outgoing (right) selectivities are
showed as a function of the mean miRNA transcription rate β̄. The network is
rather selective outside the susceptible region, where both the number of RNAs
that affect a certain node and the number of nodes being affected in return is
comparable with the average degree of RNA nodes. On the other hand, where the
system enters the susceptible region, it becomes distributed, i.e. perturbations on
one RNA species propagates through the whole network. Notably, transcriptional
heterogeneity has a strong impact on selectivity. In fact, the higher the degree of
transcriptional heterogeneity the more crosstalk becomes selective at every level of
miRNA concentrations. On the other hand, different degrees of binding heterogeneity
(BH) appear to impact this scenario rather weakly.

3.2.2 Crosstalk asymmetry

Another feature of the crosstalk, we identified in the previous sections, is its direc-
tionality. In fact, we saw that in principle χij 6= χij , and this inequality originates
from the states in which the couple of RNAs are. To measure crosstalk directionality,
we can define the quantity

∆ij =

(
χij − χji

χij + χji

)2

, (3.37)

such that 0 ≤ ∆ij ≤ 1. In short, the closer ∆ij is to zero (resp. one) the closer
crosstalk between RNAs i and j is to being symmetric (resp. fully asymmetric). A
global measure of asymmetry is conveniently obtained by computing the average
asymmetry over all pairs of different RNAs in the network, i.e.

∆ =
2

N(N − 1)

N∑

i,j>i

∆ij . (3.38)

Results for this quantity are reported in Fig 3.11 for both the CLASH network and
its randomized variant. Crosstalk asymmetry is generically larger in the susceptible
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Figure 3.11. Measure of RNA asymmetry (a) and (b) CLASH and random asym-
metries values, ∆, as a function of the overall miRNA mean transcription rate 〈β〉 in
the 3 scenarios considered for binding heterogeneity. The yellow shaded area marks the
region where the mean susceptibility is significantly different from zero (which coincides
with the susceptible regime). Displayed curve points have a Standard Error of the Mean
(SEM) comparable to the size of the markers. Adapted from [6].

regime, more pronouncedly so in the CLASH network than in its randomized version.
Notably, the asymmetry profile is roughly independent of the degree of binding
heterogeneity while it is only weakly modulated by transcriptional variability in
the CLASH network. As seen for the mean crosstalk intensity, this state of things
suggests that the way in which crosstalk asymmetry is tuned by the mean miRNA
transcription rate β is an inherent property of miRNA-RNA networks, that is mainly
encoded in their topology. The striking difference that can be seen between the
behavior of ∆ in real (CLASH) and random networks (see Fig 3.11b) supports this
intuition.

Degree of cross-talk localization

The limited selectivity achievable in the susceptible regime suggests that the cor-
relation length, i.e. the typical node-to-node distance (in terms of links of the
miRNA-mRNA interaction networks) above which one node can be considered to be
insensitive to perturbations carried out on another node, becomes comparable to the
diameter of the network (that for the CLASH network amounts to 5 miRNAs). In
this case, a perturbation in the transcription level of one mRNA could be broadcast
(via a chain of miRNA-mediated effective interactions) across other mRNA nodes
until it propagates over the entire network. Such a feature appears to be intrinsically
due to the competition mechanism that generates effective couplings rather than
to the topology of the underlying network. When network-scale effects dominate,
however, higher-order interactions (passing via multiple miRNA-mediated steps) can
become dominant. In such conditions, relying on local kinetic parameters to identify
strongly coupled mRNAs may turn out to be a poor strategy. In order to dissect the
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Figure 3.12. Degree of cross-talk localization (ρ) as a function of β. a) CLASH
network ρ for different values of transcriptional heterogeneity at fixed (high) BH. b)
CLASH network ρ for different values of binding heterogeneity at fixed TH. c) Cross-talk
localization for CLASH and random network. Adapted from [6].

relationship between the local topology and the intensity of effective interactions
we can estimate the correlation between the susceptibility of a couple of mRNAs
and their local interaction, i.e. the strength of the parameters that link the mRNAs
through the shared miRNAs.

A commonly used quantity, in estimating correlations, is the Pearson coefficient:

ρ =
〈χijKij〉 − 〈χij〉 〈Kij〉√(

〈χ2
ij〉 − 〈χij〉2

) (
〈K2

ij〉 − 〈Kij〉2
) (3.39)

where the brackets 〈〉i6=j stand for the average over all ordered pairs of different
mRNAs and Kij quantifies the local interaction strength:

Kij =
1
N

∑

α

k+
iαk+

jα (3.40)

Based on the locality of the sequence-based interaction mechanism, one would
expect to observe a high correlation with local kinetics (corresponding to ρ ≈ 1)
when effective interactions are short-ranged and the ceRNA effect mostly couples
nodes that are nearest neighbors on the network. On the other hand, a smaller
correlation should characterize cases in which network effects become important.
As shown in Figure 3.12, where the Pearson coefficient is plotted as a function
of β̄, we see that while the correlation peaks in the susceptible region, crosstalk
patterns generically appear to correlate poorly with local topology in the CLASH
interactome, as ρ ≃ 0.2. Most notably, correlation decreases significantly as TH
is strengthened. This implicates kinetic heterogeneities in the establishment of
extended interaction paths that reduce the effective diameter of the interactome by
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connecting distant RNAs via miRNA-mediated interactions. In this respect, miRNAs
appear to operate on RNAs both as specific repressors of individual transcripts and as
a diffuse regulatory layer affecting the transcriptome as a whole. This indicates that
relying on local kinetic parameters to predict strongly coupled mRNAs or preferred
miRNA targets is a rather poor strategy as network-scale effects are typically non
negligible.

Things are different for a random network, in fact for the latter the correlation
coefficient remains above 0.8 along all the selective region as shown in Figure 3.12,
where the Pearson coefficient is plotted as a function of β̄. It diminishes in the
susceptible/distributed region and then goes to zeros in the bound region. miRNA-
mediated crosstalk in random networks is therefore significantly more local, and
thereby easily predictable by local interaction parameters, than it is in a network
shaped by natural selection. Remarkably, by applying a more conservative protocol
that reshuffles miRNA-RNA links while preserving node degrees, one retrieves a
crosstalk scenario that is essentially identical to that found for the original CLASH
interactome (see Appendix B). Overall, this picture indicates that degree sequences
(i.e. the topology of miRNA-RNA interactions encoded by the different types of
couplings), as opposed to e.g. degree-degree correlations or other higher-order
topological features, are the key geometric controllers of RNA crosstalk patterns.
Enhanced crosstalk and stronger non-locality therefore appear to be shaped by
selection through the miRNA-RNA network interaction structure.

3.3 Transcriptional noise processing

Regulatory RNAs are known to be capable of processing the variability of transcript
populations, leading, in several cases, to the fine tuning of expression levels [3]. In fact,
the effective interactions that are established between RNA influence the fluctuations
in the level of the free molecules. In particular, in our scenario, since all rates are
independent random variables, fluctuations are expected to increase. In Figure 3.13,
we show the coefficient of variation of RNA levels, averages being taken over many
independent realizations of TH, as a function of the mean miRNA transcription rate
β̄ in different BH scenarios. Relative fluctuations exhibit a maximum at large values
of β̄ within the susceptible region and generically increase with the degree of TH.
Variability in transcription rates therefore expectedly promotes variability in the
resulting expression profiles. However, in an extended range of values of β̄ within the
susceptible region, the increase of fluctuations with respect to the unregulated case
β̄ → 0 is very modest. On the other hand, at fixed TH, different BH scenarios do not
appear to modify the robustness of expression profiles. At the same time, expression
profiles generated in the randomized network are more stable than those found in
the CLASH interactome. This feature is however more marked at higher miRNA
expression levels, where RNA crosstalk is generically weaker. The basic traits of the
RNA crosstalk emerging in fully randomized versions of the CLASH data are hence
substantially different from those characterizing the original interactome.
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Figure 3.13. Robustness of expression profiles from the CLASH interactome in
the presence of crosstalk. (a) Coefficient of Variation (CV ) of RNA levels as a
function of the overall mean miRNA transcription rate β̄ for different degrees of TH.
(b) Behaviour of the CV as a function of β̄ in different BH scenarios in a given TH
scenario (CV tr = 0.4). (c) Comparison between the rescaled normalized maximal
susceptibility χmax (varying between 0 and 1) and the rescaled normalized Coefficient
of Variation as a function of the overall mean miRNA transcription rate Îš in a given
CV for different degrees of TH (CVtr = 0.4) and BH (high) scenario. (d) χmax vs CV
transcriptional heterogeneity (CV tr ) and high BH. Results are obtained by averaging
over 100 independent TH realizations. In each case the standard error of the mean is
equal to or smaller than the size of the markers. Adapted from [6].
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3.3.1 Tradeoff between crosstalk and noise buffering

If we compare the behavior of the maximal susceptibility χmax (see Figure 3.7b)
to that of the CV, we can notice that the strongest maximal crosstalk is attained
within the susceptible region corresponding to more robust expression profiles and,
vice-versa, stronger fluctuations in expression profiles occur when crosstalk gets
weaker.

In other terms, uncorrelated transcriptional heterogeneities tend to be amplified
when crosstalk is suppressed (higher miRNA expression levels), while they are more
efficiently processed when the strongest crosstalk emerges (lower miRNA expression
levels). This scenario is summarized in Figure 3.13a: for any given degree of TH, as
miRNA availability increases, crosstalk intensity on one hand and fluctuations of the
output levels on the other are subject to a tradeoff that becomes stronger and stronger
as the transcription rates become more homogeneous. These results clearly implicate
transcriptional heterogeneities as a key observation on small networks [3, 69]. It is
however important to remark that this picture is obtained under the assumption of
uncorrelated extrinsic fluctuations in RNA transcription rates.

3.4 Experimental validation of crosstalk

At last, we are left with the most compelling question: how do we validate the model?
A first step in this direction was already done. In fact, results so far discussed were
obtained using an experimentally validate network of interaction (i.e. using the
CLASH protocol or the TargetScan database). Furthermore, the key parameters
were taken from literature (Table 2.1). Anyway many assumptions were made and
a more decisive validation is due. Clearly, the most direct route would be through
experimental work. Although, there exists an intermediate route, i.e. make use
of transcriptomic data and exploit the relationships between susceptibilities and
correlation functions derived in [70] to locate strongly interacting ceRNA pairs from
a statistical analysis of readouts. Indeed, such an analysis is currently in progress as
this thesis is being written, so we are not able to present results. We want to discuss
the basic idea.

Fluctuation dissipation relation revisited

As we already discuss, the physical meaning and therefore the crosstalk scenarios
underlaid by the Pearson correlation ρij , and the susceptibility,χij are rather different.
The fact that χij is asymmetric under exchange of its indexes (i.e. χij 6= χji in
general) whereas correlation is necessarily symmetric already pointed in this direction.
If the two quantities are compared in greater detail other differences however emerge.
In first place, susceptibility can be non zero (and possibly large) even for a completely
deterministic system, as it simply measures how a target’s steady state level is
modulated by changes affecting the transcription rate of one of its competitors,
independently of the presence of stochastic fluctuations around the steady state. In
this sense, χij focuses exclusively on the effects induced by competition. On the
other hand, in absence of fluctuations ρij is identically zero. Second, in general is
true that if A is correlated with B and B is correlated to C, then A will result to be
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correlated with C. In this case, one speaks of ‘indirect correlation’. It follows that a
large value of ρij can occur when both ceRNAs respond to fluctuations in miRNA
levels. This however does not imply that mi is responding to a direct variation of mj .
Operatively, in absence of a direct correlation between A and C, upon conditioning
over the value of B one will observe that A and C are uncorrelated. The same holds
in the presence of extrinsic noise, in which case averages are performed over different
samples rather than over time in a single sample.

It remains that measuring correlation is the easier thing one can do from tran-
scriptomic data readouts. Indeed, for physical system where a linear response theory
can be applied, a relationship between the correlation function and the susceptibility
can be derived. This relation is known as fluctuation-dissipation theorem [71]. Luck-
ily, a similar relationship can be obtained also for the system under exam. To see
how, let us follow the work done in [70]. We start from the set of equations 3.41a.
Assuming that complex dynamics is much faster than those of the free molecules, we
can suppose that complex achieved a steady state regime while free molecules still
vary in time. If we also assume that stoichiometric degradation without recycling is
the dominant channel of complex processing (i.e. κia + k−

ia << σia), we can recast
Eq. 3.41aa,b as

˙[mi] = −mi
∂L

∂mi
(3.41a)

˙[µa] = −µa
∂L

∂µa
(3.41b)

(3.41c)

where,

L = −
∑

i

(bi ln(mi) − dimi) −
∑

a

(βa ln(µa) − δaµa) +
∑

i,a

(
k+

iamiµa

)
(3.42)

Since L decreases along the dynamics of molecules free concentrations (as one
can easily see by total differentiation of L), we can imagine that once the evolution
reaches the steady state, i.e. L is in its minimum, small perturbations of the
concentrations (or equivalently the presence of some noise) make the system oscillate
near the minimum. This behavior closely resembles that of a physical system at
equilibrium inside a potential. In this framework, we can express ensemble averages
of quantities like the mean level of free RNA as

〈mi〉 =
1
Z

∑

mj ,µa

mie
−L/T (3.43)

where T quantifies the strength of the noise (as temperature expresses the level
of thermal noise).

Eq. 3.43 provides a direct way to link the (dimensional) susceptibilities to
correlation functions. In fact, differentiating 3.43 by bj we have

χij =
∂ 〈mi〉

∂bj
=

1
T

〈mi ln(mj)〉 − 〈mi〉 〈ln(mj)〉 =
1
T

cov (mi, ln(mj)) (3.44)
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The system response to a small variation in the transcription rates is proportional
(via the constant T) to the fluctuations induced by noise. Note that the presence
of the logarithm in the covariance renders it asymmetric like the susceptibility.
Surprisingly, if we differentiate according to the RNA degradation rate, dj we find
the real covariance between RNA levels

wij =
∂ 〈mi〉

∂dj
=

1
T

〈mimj〉 − 〈mi〉 〈mj〉 =
1
T

cov (mi, mj) . (3.45)

In [70], the authors validated this model in the case of a small motif. Our aim
is to extend the application to a system scale network like CLASH and look for
crosstalk patterns between distant couples under physiological conditions, where the
role of crosstalk is still under validation.
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Chapter 4

Phenotypic diversity

The phenotypes of an organism result from the expression of the genetic information
(its genotype) and the influence of environmental factors. To a great extend, the
manifested phenotypes correlates with the set of proteins the cell manages to
produce [72, 73]. For instance, an important phenotype like the cell growth rate is
linked to the amount of nutrients the cell is able to import from the environment and
its capability of turning it in biomass (mostly proteins). The biochemical processes
leading to the synthesis of new proteins are noisy, as they typically involve a small
number of diffusing molecules. This leads to fluctuations in the number of proteins in
a single cell as a function of time and to cell-to-cell variability of protein abundances.
These in turn bring cell population (even genetically identical one) to exhibit a
heterogeneous distribution of their phenotypes. For many years the investigation
of such heterogeneities was limited since experiments were able to probe just mean
behaviors [74]. Advances at the experimental level mostly due to the possibility of
labeling cells with fluorophores allowed to begin investigating cell-to-cell variability.
Indeed, a lot of experimental work has been done to characterize the growth rate,
which is considered one of the most important traits of cells since it gives a proxy
for the fitness. The distribution of growth rates, in physiological conditions, turned
out to have a unimodal shapes peaked at low values of growth rates but with tails
toward much higher (up to two order of magnitude) rates [75, 76, 7]. In other
words, they present a high degree of heterogeneity. The emerging view is that
such phenotypic heterogeneity have important consequences for the development
of multicellular organisms and the fitness of cell colonies, especially those subject
to fluctuating adverse environments [77]. This enforced the question of how such
heterogeneity arises and how/if it is regulated. In this Chapter, we will try to convey
some ideas on those questions. In particular, we will discuss the work done in [7, 78],
where the macroscopic features of phenotypic distributions are obtained starting
from minimal assumptions on the network of metabolic molecular reactions (the
microscopic states). The authors focused on the cell growth rate. Hence we will do
the same, both at the level of single cell growth rate and as the growth rate of the
whole cellular population.
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4.0.1 Maximum entropy distributions

Intuitively (but with a lot of simplification), the growth rate depends on the amount
of energy the cell manages to find, process and use to synthesize the required proteins.
We know that all those metabolic processes are governed by a complex network of
molecular reactions.

To model the cellular metabolic activity in a given medium, the standard in silico
route relies on constraint-based models [79, 80]. To make a long story short, the
basic assumption of those models consist in assuming that the intracellular reaction
network that processes nutrients (e.g. glucose) to harvest free energy and synthesize
macromolecular building blocks (e.g. amino acids) operates at a non-equilibrium
steady state (NESS), such that instead of looking at the number of molecules at a
certain time, it is more convenient to consider fluxes of molecules. Following [78], we
can describe each viable metabolism by a vector v = {vi}, representing the metabolic
reaction fluxes (i = 1, ..., N with N the number of reactions). Note that N includes
also the fluxes that determine exchanges of metabolites between the cell and the
surrounding environment, thus defining the composition of the growth medium.

Clearly, the flux vectors can not take any possible values. Each flux has its own
range of variability [vi

min, vi
max], which accounts for thermodynamic irreversibility,

kinetic bounds and other physiological or regulatory constraints [81]. Moreover,
supposing that the cell is in a close system with respect to chemicals, fluxes must
satisfy the mass-balance conditions

S · v = 0 (4.1)

where S denotes the M × N stoichiometric matrix (M being the number of
chemical species). In genome-scale models for specific organisms, like E. coli, S
is reconstructed from genomic data and represents a network with thousands of
reactions and chemical species [82]. Likewise, upper and lower bounds for fluxes
are normally available based on prior biochemical knowledge. The solutions of the
mass-balance equation subject to the constraints on the maximum and minimum
fluxes define the space F of feasible flux vectors v (the phase space). Therefore for a
given organism and a given medium, each solution describes a feasible NESS of the
network, or in other terms a ‘phenotype’. In fact, if we know the biomass output of
all the reactions, we can found the corresponding growth rate λ = λ(v) that a cell
with those fluxes would have [83].

Now, if we consider a genetic identical population of cells embedded in the same
environment they should in principle have the same flux vector and so the same
growth rate. Though, we know that at least thermal noise affects all the reactions,
so the resulting fluxes differ from cell to cell. Considering a cellular population and
measuring the growth rate of each cells equals to perform a statistical sampling
of F, which in turn produces a distribution of growth rates relative to the specific
environment defined in S, to the constraints imposed by the bounds on fluxes, and
to the chosen statistics.

The easier thing we can do is to regard all viable fluxes as equally probable
and perform an uniform sampling of the phase space. With such a statistics, the
growth-rate distributions retrieved in a rich and a poor growth medium are shown
in Fig. 4.1. Both curves are fit by the formula
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Figure 4.1. Growth rate distributions for a uniform sampling of E. coli’s genome-
scale metabolic network in a glucose-limited medium. Inset: same on a log-log
plot. Adapted from [7].

q(λ) ≃ λb
(

1 −
λ

λmax

)a

(4.2)

where a > 0 and b > 0 are constants, while λmax is the maximum growth rate
allowed by the constraints that define F. An uniform sampling of the feasible space
is the less biased choice we can made if we know nothing about the system (in fact
for us all flux vectors should be good choices). It is remarkable that the resulting
phenotype distribution turns out to be highly heterogeneous, meaning that if fluxes
are random cells seldom can acquire high growth rates (and so high fitness). Another
important feature is that in poor medium, the population is composed by cells with
lower growth rates than in the presence of a favorable (nutrient rich) environment.

Since growth rates are easy enough to measure experimentally, we can compare
predictions with experiments. Comparing the distributions obtained by the uniform
sampling with experimental one in the same environmental conditions [75, 76], one
find that although the shape of the distributions are quite similar, experimental
curves settle on higher mean values (see Figure 4.2). An uniform sampling of the
phase-space seen from the point of view of the cell means that cells reactions are
completely dominated by noise and the only bounds are imposed by physical limits.
In real cells, things works differently, in fact, regulatory networks, like the crosstalk
we discussed before, have the precise task of controlling the noise and the rates at
which reactions take place.

It seems quite reasonable then to assume that cells manage through regulation
to constraint fluxes so to have a certain mean growth rate. Accordingly, we must
require the sampling not to be uniform, but to ensure an average growth rate. In
this case, the maximum-entropy distribution with prescribed mean assumes the form
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Figure 4.2. Empirical growth rate distributions (markers), together with the
best fitting MaxEnt distributions (dashed lines in both panels) and the dis-
tributions derived from the dynamical model (straight lines in both panels).
Adapted from [7].

of a Boltzmann distribution,

p(v) =
eβλ(v)

Z(β)
(4.3)

where β is the Lagrangian multiplier enforcing the constrain

〈λ〉 =
∫

F

λ(v)p(v)dv . (4.4)

The case of a uniform sampling corresponds to having β << 1. On the other
hand, if β >> 1, one will tend to extract values of growth rates near to λmax.

From a biological point of view, flux vectors varies due to the presence of noise
in the molecular processes. What regulation does is to select the optimal flux vector
in response to different environmental stimuli. Here, we can see the parallelism with
β. In fact, the case β = 0 equals to having no regulation. All fluxes are equally
probable and noise differentiates the vectors. On the other hand, if the cell want
to acquire higher growth rates (β > 0) it needs to invest energy in some degree of
regulation. The higher the growth rate the more the regulation.

This gives also an hint on the effects of environmental changes: cells with high
growth rate require high amount of nutrients to maintain the high level of regulation.
If we suppose that the environment is represented by the amount of nutrients, a
sudden negative fluctuation of the environment will affect more the cells with high
growth rates than the one in low regulation regimes. We will see in 5.3 how a
trade-off between low and high fitness cells is beneficial for the population living in
a changing environment.

4.0.2 A dynamical model of population growth

Up to now, we discussed a rather static scenario where cells assume different growth
rates depending on the degree of regulation (embodied by β), which fixes the
mean growth rate of the population and on the noise that spreads the distribution.
Apparently though, we are neglecting an important point. In fact, each cell of the
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population grows and duplicates. Since q(λ) admits cells with large growth rates,
those cells should rapidly overgrow the slower ones. This apparent contradiction
can be solved if one thinks at the probability to pass from one phenotype to the
other. The maximum entropy framework that yielded the q(λ) informs us that fast
phenotypes are entropic unfavored states. In fact, since very few microscopic flux
realizations correspond to high growth regimes, noise on reactions will continuously
tend to divert those states toward slower one. Only a tight regulation can maintain
those states. And such a regulation is expensive for the cell.

In terms of dynamics, all this can be seen as biased diffusion in the phenotypic
space. To see how, let us for simplicity assume that each cell is fully characterized
by a single phenotype, its GR λ, taking on values in [0, λmax]. And let us denoted
by n(λ, t) the density of cells having GR in [λ, λ + dλ] at time t, such that the total
number of cells in the population at time t is given by

N(t) =
∫

n(λ, t)dλ . (4.5)

Following e.g. [7], we require that n changes due to (a) replication events and
(b) diffusion in the phenotypic space, whereby cells change their GR from λ to λ′. If
the rate of the latter process is given by W (λ → λ′), n(λ, t) evolves according to

dn(λ, t)
dt

= λn(λ, t) +
∫ [

W (λ′ → λ)n(λ′, t) − W (λ → λ′)n(λ, t)
]
dλ′ . (4.6)

Evolving the number of cells without imposing a limiting number soon produces
huge populations, which are difficult to handle in simulations. We can solve the
problem with a trick: introducing the population density

p(λ, t) =
n(λ, t)
N(t)

, (4.7)

we can directly evolve the distribution (which must be normalized at each time).
Operatively, we re-cast Eq. (4.6) as

dp(λ, t)
dt

=
[
λ − 〈λ〉

]
p(λ, t) +

∫ [
W (λ′ → λ)p(λ′, t) − W (λ → λ′)p(λ, t)

]
dλ′ , (4.8)

with

〈λ〉 =
∫ λmax

0
λp(λ, t)dλ . (4.9)

The time evolution of the phenotypic distribution is given by two contributions,
a pure replication and a pure diffusive terms. In particular, first term on the r.h.s of
Eq. (4.8) can be obtained noting that

ṅ(λ, t) = ṗ(λ, t)N(t) + p(λ, t)Ṅ(t) , (4.10)

where, from Eq. (4.6), we have
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Ṅ(t)
N(t)

=
∫ λmax

0
λp(λ, t)dλ = 〈f〉 . (4.11)

A comparison between Eqs (4.6) and (4.10) immediately yields the replicator
term.

To insert the diffusion bias toward lower values of λ we can require that transition
rates satisfy a detailed-balance condition of the form

W (λ → λ′)q(λ) = W (λ′ → λ)q(λ′) , (4.12)

with q(λ) the density of phenotypes, accounting for the fact that some phenotypes
might be easier to attain than others. Although the detailed balance condition
poses some constrain on the transitions, it is not sufficient to determine the whole
W matrix. The most natural route to model the effects induced at phenotypic
level by small random fluctuations in intracellular composition, is to assume that
only transitions from phenotype λ to phenotypes λ ± δλ are allowed, with equal
probability and small δλ. A diffusive transition kernel seems quite realistic since
noise-driven transitions are unlikely to cause major gains or losses in terms of GR.

The last ingredient we need is a temporal scale, dictating the characteristic
time of the diffusions. In this respect, we can introduce the mean waiting time τ
characterizing transitions via

∫
W (λ → λ′)dλ′ =

1
τ

. (4.13)

If we assume the diffusive transition kernel and make use of the detailed balance
condition (4.12), we can manipulate the second term on the r.h.s of Eq. (4.8) as

∫ [
W (λ′ → λ)p(λ′, t) − W (λ → λ′)p(λ, t)

]
dλ′

≃ lim
δλ→0

W (λ + δλ → λ)p(λ + δλ, t) − W (λ → λ + δλ)p(λ, t)+

+ W (λ − δλ → λ)p(λ − δdλ, t) − W (λ → λ − δλ)p(λ, t) =

= W (λ → λ + δλ)q(λ)
[

p(λ + δλ, t)
q(λ + δλ)

−
p(λ, t)
q(λ)

]

+ W (λ − δλ → λ)q(λ − δλ)
[

p(λ − δλ, t)
q(λ − δλ)

−
p(λ, t)
q(λ)

]

≃
(δλ)2

2τ

∂

∂λ

[
q(λ)

∂

∂λ

p(λ, t)
q(λ)

]
, (4.14)

where the last step follows after a second order expansion in δλ and we imposed
that transitions from λ to λ ± δλ happen with the same probability (implying that
W (λ → λ ± δλ) = (2τ)−1, see (4.13)). Defining D = (δλ)2

2τ , as the diffusion coefficient
in the phenotypic space, one can recast Eq. 4.8 as

dp(λ, t)
dt

=
(
λ − 〈λ〉

)
p(λ, t) + D

[
∂2p(λ, t)

∂2λ
−

∂

∂λ

[
p(λ, t)

∂

∂λ
(ln q(λ))

]]
. (4.15)
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Figure 4.3. Results from the minimal population dynamical model. a) Time-
evolution of p(λ). b) Stationary growth rate distributions obtained for different values of
σ = D/λ3

max. c) Stationary mean growth rate 〈λ〉 as a function of σ. Adapted from [7].

The time evolution of the phenotypic distribution in Eq. 4.15 follows a non-linear
Fokker-Plack dynamics. In Figure 4.3a, we can see some snapshots of the evolution
for a small value of the diffusion coefficient. The initial distribution, which peaks on
small values of GR, rapidly shifts toward high growth rate values. This means that
the replicator term dominates: cells with high GR replicates faster than the time
required to change their phenotypes. As the diffusion increases, the distribution
tends to the q(λ) (see Figure 4.3b). If we look at the mean growth rate, we see that
it monotonically decreases as a function of the diffusion coefficient (Figure 4.3c).

The diffusion coefficient behaves in opposition with the inverse temperature β
we introduced in the maximum entropy framework. The uniform sampling limit
corresponds, in fact, to having a vanishingly small β and a fast phenotypic diffusion
and viceversa. Indeed, one could expect that, since in real systems the diffusion
coefficient is proportional to the temperature of the system. In our model, the
effective temperature or the diffusion coefficient represent the degree of regulation
the cells manage to acquire. The population can achieve a high growth rate (i.e. a
high fitness), if it can find enough nutrients to exert a tight regulation (and so reduce
the diffusion) which allows the distribution to settle near λmax. If the environment
is unfavorable, for example because the medium is poor of nutrients, the population
can invest in regulation less energy and thus acquire lower fitness (see Figure 4.1).
In the next Chapter, we will study the effects these heterogeneous distributions of
phenotypes have on the growth of the population. In particular, in 5.3, we will see
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that the model we have derived can be used to study the growth in a fluctuating
environment, where favorable (nutrient rich) states alternate to unfavorable ones.
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Chapter 5

Population growth and survival

Stochasticity at the molecular level produces diversity in cellular populations, as
measured by the overall numbers of specific phenotypes different cells manifest.
Such differences reflect in the fitness of the individuals to the environment it lives
in. For instance, a cell that expresses a higher number of heat shock protein will
withstand better temperature fluctuations and so it will possess a high fitness in a
fast fluctuating environment; a cell with few mitochondria will produce less energy
and thus will grow slowly, but since mitochondria are voluminous, less mitochondria
means more space to accommodate other cellular components [84]. Conversely, the
cell that invests much energy in producing heat shock proteins in an environment
that remains stable at physiological conditions for long times will waste that energy
fruitless most of the time. Nevertheless, that cell will be able to survive an abrupt
change of temperature. Clearly, single cells can not be ready to face all possible
adverse situations at the same time. Cells embedded in fluctuating environment
evolved mechanisms like post-transcriptional regulatory networks that allow for a
fast reorganization of the proteome in response to external stimuli [85, 86]. At the
population level things are different. In fact, experiment and theoretical models
provided evidence of different strategies cell population can adopt to face (as a
population) adverse environments [87, 88, 77]. Essentially, instead of investing
resources to render each cell capable of facing different conditions, population can
be formed of sub-populations of cells with diverse phenotypes, each phenotype fitted
for a particular environment. A sudden change of environment can kill part of
the population, but there will be a resistant sub-population that will survive and
reproduce. In this part of the thesis will see more in details how cell-to-cell variability
influences the growth of the population and hence its fitness to the environment the
population lives in. Basically, we will analyse two scenarios.
To begin with, we will look at the simple case where the environment is given by a
fixed carrying capacity. In this situation, theoretical and experimental findings foretell
highly heterogeneous distributions of phenotypes [7]. Such variability inevitably
influences the growth especially in its initial phases. We discuss this first part mainly
following the work done in [89], where the dependence of population phenotypes,
like the growth rate and the lag time on the initial size of the population are studied.
Then we will move to a more complex scenario where environment can fluctuate
between two regimes, one which is favorable for the growth and another where fast
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cells can not replicate. In this scenario, the fitness of the population strongly depends
on the distribution of the population phenotype and on the capability of cells to
differentiate. We will see that an exploration-exploitation trade off is established,
whose understating is particularly important in cases where mechanisms controlling
the growth are inhibited as in cancer cells. In fact, tumors evolve so rapidly that they
manage to overcome suppressing mechanisms and develop resistance to anti-cancer
drugs, in that respect exploiting the evolutionary response and the diversity of the
cancer cells is believed to be one of the key-points to designing successful treatments.
This second part of the discussion is mainly based on the work done in [8].

5.1 Phases of the cellular growth

In order to maintain their status cells must perform a wide range of functions, most
of which require energy. Such energy can be provided either in the form of food
molecules or by sunlight. Cellular nutrients come in many forms, the major part
as sugars and fats. In order to provide a cell with energy, these molecules have to
pass from the external medium across the cell membrane, which is semi-permeable.
In much the same way that doors and windows allow necessities to enter a house,
various proteins that span the cell membrane permit specific molecules into the cell,
although they may require some energy input to accomplish this task. Depending on
the environment composition and the amount of nutrients they manage to find, cells
show different behaviors, e.i. they enter different phases of growth. In particular,
if we seed a certain number of cells in a new environment with a limited amount
of nutrients and leave them free to grow by consuming the growth medium three
distinct phases representative of the growth can be identified [90].

The first growing phase cells undertake is termed lag phase. It enters this state
whenever it is introduced into a medium richer of nutrients, such as glucose, than
the one it comes from. Usually it takes some time for the cell to adjust with the
new environment. During this time it accelerates is cellular metabolism, starting
to absorb nutrients from the medium and to synthesize the necessary proteins,
co-enzymes and vitamins needed for its growth. Hence cells begin to increase in size
until they can duplicate themselves. The length of the lag phase depends directly on
the previous growing condition of the cell. In fact if it comes from a similar medium
it will already possess the right protein to continue its activity; on the contrary
coming from an entirely different environment the cell will have to create all required
proteins.

Once a cell has collected enough nutrients and stored sufficient energy, it enters
the exponential growth phase. During the logarithmic or log phase, which follows the
lag one, the microorganisms are in a rapidly growing and dividing state. The growth
medium is exploited at the maximal possible rate. Metabolic activity increases and
the cells begin the DNA replication at a constant rate, which reflects in a constraint
growing rate with the number of specimen that exponentially increases.

If we look from the point of view of the population, the number of cells in the
population, N , evolves in time simply as

dN

dt
= ΛN(t) (5.1)
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where Λ is the population replication rate. Eq. 5.1 predicts that the population
grows exponentially

N(t) = N0eΛt . (5.2)

Note that, usually what experiments measure is the generation time, which is the
time taken by the population to double in number during a specified time period, i.e
T = ln 2

Λ defined by N(T ) = 2N0. For instance, the bacterium E. coli under optimal
conditions (rich nutrient broth and a temperature of 37 oC), has a doubling time,
T ≃ 20 minutes, which corresponds to a growth rate, Λ ∼ 2.1 h−1.

Eq. 5.1 can be used to describe the system as long as we are dealing with a
relatively large population ( >> 103 cells). For smaller populations, it may be
important to consider that replication is not a continuous process but occurs as
discrete events which may not be synchronous. In some cases, it may be more
convenient to use as the dynamical variable the total biomass of the population
rather than the number N of cells.

Coupling with nutrient dynamics

Saturating population growth can also be modeled in a more biologically
consistent way by including the dynamics of the nutrient explicitly in the
equations. The classic equation for the nutrient-concentration dependent
growth of a bacterial population is:

Ṅ =
rmaxs

ks + s
N (5.3)

where s is the nutrient concentration, rmax is the maximal growth rate and
ks is the nutrient concentration at which the growth rate is half-maximal. In
Eq. 5.3, the instantaneous growth rate is described by a ’Monod function’ [90]:

g(s) =
rmaxs

Ks + s
(5.4)

which depends linearly on the nutrient concentration s for low nutrient
concentrations, but becomes independent of the nutrient as s → ∞. This
captures the fact that for high nutrient concentration, growth is limited by the
cell’s capacity to import and use the nutrient, rather than by the availability
of the nutrient in the environment. Eq. 5.3 must be coupled with a dynamical
equation for the nutrient concentration:

ṡ = −γ
rmaxs

Ks + s
N (5.5)

where γ is a yield coefficient, describing the number of units of nutrient that
are consumed to produce one cell (divided by the volume).

Once medium nutrients diminish and waste materials, toxic metabolites and
inhibitory compounds such as antibiotics take their place in the medium, cells enter
a stationary phase. This phase is characterized by a strong decrease of reproduction
rate until the number of cells, that undergo division, becomes equal to the number
of cells that die. This is due to the shift of conditions, which creates an unfavorable
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environment for the population growth. The cell number is not increased and
thus the growth rate is stabilized. At a certain point bacteria stop their division
completely and the death phase begins. From now on, the cell completely loses its
ability to reproduce and it begins to die due to the unfavorable conditions. The
death is rapid and at uniform rate. Eq. 5.1 does not capture the transition to the
stationary phase, where the population saturates, in fact the progressive lack of
nutrients forces the population to slow its growth. A simple way to capture this
saturation is to use instead a logistic growth equation [91]

Ṅ = ΛN(1 −
N

k
) (5.6)

where k is the maximal population size (or carrying capacity). The solution of
the logistic equation is analytical:

N(t) = N0
eΛt

[1 + N0

k (eΛt − 1)]
(5.7)

This model is in quite good agreement with measured growth curves for ex-
periments in simple nutrient media. At last, we note that the growth rate of the
population does vary in time. The term (1 − N/k) diminishes the effective growth
rate when N becomes large, mimicking the effect of nutrient depletion or toxic waste
product build up. In fact, in the long time limit it becomes vanishingly small, as the
number of cells in the population approaches the carrying capacity. In particular,
from Eq. 5.1, we can define the instantaneous growth rate as

λ(t) =
Ṅ

N
= ẏ = Λ(1 −

N

k
) (5.8)

where y = log(N/N0). From Eq. 5.8, one sees that the population has a maximum
growth rate,

λmax = Λ(1 −
N0

k
) (5.9)

for N = N0 (see also Figure 5.1, for a recapitulation). We will see in the next
section that Eq. 5.9 does not capture the right behavior for every inoculum size if
memory and cooperation are present in the population.

Batch culture

In the laboratory, cells are often grown in liquid suspension under well-mixed
conditions. One of the most used methods for growing cells in wet-laboratories is the
so-called ‘batch-cell culture’. A sketch of a typical setup for a batch culture growth
experiment is illustrated in Figure 5.2. A small number of cells are inoculated into a
well-shaken container filled with liquid nutrient medium. Over a period of several
days, the density of cells is measured and the results are plotted as a function of
time. These ‘growth curves’ have a characteristic shape: an initial period in which
no growth is detected (the lag phase), followed by a period of exponential growth
(the log phase), followed by a slowing down and eventual cessation of net growth
(the stationary phase).
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Figure 5.1. Cartoons representative for the analysis of the logistic growth model.
a) The solution of the logistic model plotted as the logarithm of the population size as
a function of time. The initial condition is given by the initial population size N0. b)
Mapping of the punctual growth rate (dN/dt) vs population size (N). c) Maximum
growth rate (λmax) calculated as the derivative in time t = 0 of growth curves obtained
by the model with different initial conditions plotted as function of N0. In all the three
plots the carrying capacity level (k) is emphasized by a dashed black line.

It is generally stated that the lag phase happens because the cell needs to adjust
to the liquid medium (having typically been stored under different conditions), while
stationary phase happens when the population exhausts its nutrient supply, or
builds up waste products.The lag time, the maximum growth rate and the carrying
capacity of the medium are the most direct and used descriptors for the three phases
of the growth, since they can easily enough be measure fitting the growth curves.
This observables must be linked to the underlining phenotype distribution of the
populations, in fact they are given by a often non-trivial function of the phenotypes
of all the cells composing the population. Furthermore, the starting point of a batch
experiment consists in transferring a certain number of cells from a certain culture
to a fresh one, the one used in the experiment. This equals to sampling the old
culture phenotype distribution.

Intuitively, the more heterogeneous the distribution the more the new population
features will depend on the sampling size. If one takes a big sample such that the old
distribution results well reproduced, then the new culture observables will be close to
the old culture one and fluctuation will be small. If instead the sample is small, the
system will be prone to large fluctuations, since the final outcome is the combination
of many cellular replications, originating from a few growing trajectories.

5.2 The inoculum size influences the growth

In the previous Chapter, we discussed the role of noise in producing heterogeneous
phenotypes. And we also saw that through regulation cells can interfere with noise.
In the next sections, we will concern ourselves with the effects of such heterogeneity
on the fitness of the population. First, we ask what happens if the growth starts
from a bunch of cells randomly sampled from a certain q(λ). This is quite a common
scenario. In fact, from the experimental point of view, many experimental protocols
start with an inoculum of cells taken from a previous culture (for example in the
batch culture set-up). Similar scenarios may constitute also the start of an infection
where some cells are transferred from one host to the next or in the more worrying
case of cancer cell migrations.

Since the initial density N0 of a population of cells (the inoculum density) can
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Figure 5.2. Batch experiment protocol and results. From left to right, from a flask
with cells growing exponentially in their standard growth medium, at time t = 0 h,
samples of N0 cells have been taken and moved into new dishes supplied with the very
same nutrient quality present in the flask. From time t = 0 on the growth was monitored
through automatic cell counting and growth curves similar to the one on the very right
have been obtained.

influence several aspects of population growth in a variety of cell types, it has
been subject of many investigations. Starting from the pioneering work of Rein and
Rubin [92], inoculum-dependent traits have been observed, in populations as different
as bacterial [93, 94], insect [95], plant [96], and cancer cells [97, 98], most notably
affecting metabolism (specifically the ability to excrete specific compounds [97]),
carrying capacity [97], and the duration of the lag phase [99]. For instance, N0-
dependent lag times have been reported at very low inoculum densities [100] or under
stress, when only small sub-populations can sustain growth [101]. In turn, the growth
rate was found to increase, or decrease, with the initial density depending on the
organism and the growth medium. Similar scenarios hold for its sample-to-sample
variability [96]. Here, we will compare theoretical predictions against the data
obtained in a novel experimental investigation by [89], clarifying the dependence of
growth rate and lag time from the inoculum size (N0) with quantitative accuracy
across a broad range of initial densities for two widely used cancer cell lines (Jurkat
and K562), growing in carbon-limited media with fixed carrying capacity. We will
see that both lag time and the growth rate display a complex behavior as a function
of N0, illustrated in Figures 5.4 and 5.5.

5.2.1 Inoculum size effects on Lag phase

Let us imagine to start a standard batch experiment. We take a bunch of N0 cells
from a system (in practice a flask) and we inserted them in a fresh medium at time
t = 0. After the adaptation time, tlag the population grows exponentially according
to (by neglecting the carrying capacity)
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N(t) = N0eΛ(t−tlag) (5.10)

where Λ is the growth rate of the population. The very same dynamics is valid
also for every single cell i belonging to the initial population N0, with i = 1, 2, .., N0.
Indeed, each single cell needs a time τi to adapt to the new environment. In agreement
with the existing models [102], we can assume that the single cells are independent
and do not have any information on the size of the colony they belong to. Thus,
after τi, each sub-colony derived from cell i grows exponentially with a constant rate
Λi. We assume that the growth rates of the sub-colonies are equal to the growth
rate of the macroscopic population Λ and that τi are identical independent random
variables. So, the size of each sub-colony (ni) evolves in time according to:

ni(t) = eΛ(t−τi) (5.11)

At the same time, the size of the entire population of cells (N) is given by the
sum of the ni single colonies and grows as follows:

N(t) =
N0∑

i=1

ni(t) =
N0∑

i=1

eΛ(t−τi) (5.12)

Comparing Eq. 5.10 and 5.12, the population lag time can be written in terms
of the single cell adaptation time τi as:

tlag = −
1
Λ

ln


 1

N0

N0∑

i=1

e−Λτi


 . (5.13)

Interestingly, tlag carries information on both the initial cell density N0, the
single cell lag times τi and the population growth rate Λ. Depending on the value
of Λ, two different regimes can be identified. If Λ is ’small’ with respect to inverse
adaptation times, i.e. if Λ << 1

τi
, an asymptotic expansions of Eq. 5.13 yields:

tlag ≃
1

N0

N0∑

i=1

τi . (5.14)

The population lag time is equal to the average of the single cell first division
times and increasing N0, tlag is driven by a Gaussian statistics. The value of tlag is
better defined, while its fluctuations decrease. If we now consider Λ assuming ‘large’
values ( Λ >> 1

τmin
), the sum is dominated by the minimum of τi for the saddle

point method, leading to the following expression for tlag:

tlag ≃ τmin = min{τ1...τN0
} (5.15)

In this second case, the population lag time is described by the extreme value
statistics. Thus, by increasing the sampling, namely increasing N0, there is a
higher probability of sampling small τ . As τmin decreases so do both tlag and its
fluctuations. The way tlag decreases with N0 depends on the distribution of the τis.
Figure 5.3 summaries the above-described model and the two possible scenarios for
the population lag time derived from it.
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Figure 5.3. Sketch of the lag time model. a) Cartoon summarizing the model. At
the population level, a population of N0 cells (light blue dots in the top-left circle) needs
a time tlag before starting to grow exponentially over time. The same dynamics is valid
at the single-cell level, where each single cell i starts after a time τi to give birth to
sub-colonies whose sizes grow exponentially over time. b) Schematic representation of
the two possible scenarios for the population lag time. The Gaussian statistic scenario
(in blue) and the extreme-values one (in red). This second case has been obtained
considering a uniform distribution for the τis.

In conclusion, the behavior of the population lag time depends on the initial
concentration of cells N0, the population growth rate λ and the distribution of single
cell lag times τi, that can be considered as the first division time of each single cell.
As stated above, the main distinction concerning the statistics driving the behaviour
of tlag vs N0 is given by the value of Λ with respect to the single cell lag times.

Experimental results

Figure 5.4 shows the lag time as a function of the initial density N0 as measured
in [89]. Two noteworthy observations emerge from the plot: firstly the lag time
is non-zero for a large range of N0 and secondly, it decreases when increasing N0.
Fluctuations in the lag time behave similarly. The former is a non-trivial result as
the composition of the growth medium used for growing cells before and after the
seeding was the very same. If the growing environment does not change, cells do not
need to adapt and zero lag time is expected. Since this is not the case, we should
suppose a difference between the two growth media, namely before and after the
seeding. Thus, such difference must be only attributed to cells themselves which may
secrete chemicals during growth. If this is true, cells growing exponentially before the
seeding are adapted to grow in an environment full of such secreted chemicals. When
they are seeded in the new fresh growth medium, although the basal composition is
the same, there is lack of cell products, thus cells need a certain time to adapt before
beginning again to exponentially proliferate. The simplest trend that describes our
experimental data is a linear negative correlation between the population lag time



5.2 The inoculum size influences the growth 61

Figure 5.4. Experimental lag times. a) Experimental lag times as a function of the
initial seeding (N0 ). Lighter color dots are experimental data obtained through the fit.
Their error bars are the error on the fit. The darkest red dots are the average of the
smaller dots binned over N0. b) Standard deviation of the averaged values (dark red
dots) of plot (a). In both plots the vertical dashed lines are located in correspondence of
the carrying capacity value, k.
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Figure 5.5. Experimental growth curves and growth rates. a) Example of a growth
curve as a function of time. b) Experimental growth rates as a function of the initial
seeding (N0 ). Lighter color dots are experimental data obtained through the fit. Their
error bars are the error on the fit. The darkest red dots are the average of the smaller
dots binned over N0. In both plots the vertical dashed lines are located in correspondence
of the carrying capacity value k.

and the initial cell density. Considering now, the two possible theoretical scenarios
summarized in the previous section, we can reasonably say to be in the regime of
large Λ ’large’. Thus, the extreme values statistics predicts a decreasing trend of the
lag time when increasing N0, which is exactly what the experimental data show.

5.2.2 Inoculum effect of the population fitness

Following our experiment, once the population enters the exponential phase, the
dynamics should be described by Eq. 5.6. Let us now see, what a simple model can
tell about the dependence from the inoculum on the growth rate.

Consider a population of N0 cells initially planted in a growth medium with finite
carrying capacity k and assume that their intrinsic GRs λi are sampled independently
from a distribution q(λ) defined over the feasible space F and describing the statistics
of the population from which the initial inoculum was obtained (i.e. by the q(λ)).
If the finite carrying capacity is the only growth-limiting factor, each of the initial
seeds will expand in time according to its GR and the number ni of cells with GR
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λi will evolve in time according to

ṅ

n
= λi(1 −

N

k
) (5.16)

Overall, the total number of cells at each time will be given by

N(t) =
N0∑

i=0

ni(t) . (5.17)

This implies that we can obtain the ‘microscopic’ equivalent of Eq. 5.6, i.e.

Ṅ

N
= 〈λ〉t

(
1 −

N

k

)
(5.18)

with

〈λ〉t =
∑N0

i=1 λini(t)∑N0

i=1 ni(t)
(5.19)

Eq. 5.16 can be formally solved by ni(t) = eβ(t)λi where

β(t) = t −
1
k

∫ t

0
N(t′)dt′ . (5.20)

The formal solution of ni closely resembles Eq. 4.3 even if it is not normalized.
Going on with the analogy, if we consider a large enough inoculum, we can use an
annealed approximation for N(t), which yields

N(t) ≃ N0Z(β) with Z(β) =
∫

q(λ)eβλdλ (5.21)

Using the expression for Z, we can find the stationary values β can assume. i.e

Z(β⋆) =
∫

q(λ)eβ⋆λdλ =
K

N0
(5.22)

which fixes the asymptotic degree of optimization the regulation can provide
given q(λ), the carrying capacity k, and the size of the inoculum N0. Since

〈λ〉 =
dln(Z)

dβ
(5.23)

the growth rate of the population depends on those three quantities too. In
particular, it decreases as a function of the inoculum size, in accordance with
experimental results for large inucula (see Figure 5.5b for N0 > 105). Anyway,
if we look at Figure 5.5b, we see that the trend predicted by the logistic model
(Eq. 5.9) does not match with data in an extended range of initial inoculum sizes.
In particular, for small N0 (more precisely, for N0 << k), λmax is roughly constant.
This agrees with the expectation that initial seeds far from the carrying capacity
should generate populations growing at the (asymptotic) rate corresponding to
medium with infinite carrying capacity. In this regime, sample to sample variability
is small, i.e. different populations grow at very similar rates. As N0 increases,
however, one observes a significant increase in fluctuations as well as an overall
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upward trend in the mean growth rate (averaged over different populations). In
other words, larger seeds appear to yield a fitness advantage. Finally, when the
initial seed gets closer to the carrying capacity, λmax expectedly decreases linearly
with N0. Growth rate fluctuations in this regime are much smaller than those seen
at intermediate values of N0. This behavior calls for the presence of memory and
cooperation among cells. In fact, a decrease of growth rate with the initial cell
density can occur whenever cells are subject to competition with density-dependent
strength due e.g. to medium conditioning or finite resources. On the other hand,
a positive correlation between the growth rate and the initial density points to
the existence of cooperative, density-dependent effects. Interestingly, memory and
history-dependence have recently been investigated as factors influencing exit from
quiescence [103] and competence in bacteria [104]. In the latter case, quorum sensing
was identified as a central coordinating mechanism. In the next section, we discuss
some minimal modifications of the logistic model that allow to explain data along
the whole range of N0.

5.2.3 Memory and cooperation

Many background causes can lead to memory in cell growth. For instance, the
standard logistic growth model aĺa Baranyi [105] suggests that the growth medium
can impose a well defined initial-density dependence on the growth rate through
a finite carrying capacity k. In particular, the growth rate should be expected to
decline as the initial seed approaches k, as quantified e.g. in [78]. The simplest
explanation for the fact that, at intermediate N0, the growth rate increases with
the inoculum density is provided by cooperative behavior mediated by cell-to-cell
signaling that gets stronger as the population grows. In other words, the observations
at a given time point would depend on what happened during the growth. More
generally, initial density dependence can be understood in terms similar to those
employed for generic density-dependent features described by the Allee effect [106].
In fact, to model cooperation, or more properly density-dependent growth, logistic
growth is usually modified by an extra ‘Allee factor’

Ṅ

N
= r

(
1 −

N

k

)(
N − q

k

)α

(5.24)

Although no exact analytical solution is possible for Eq. 5.24, it can be easily
solved numerically for any choice of the parameters, r, α, Q and k. As one can see in
Figure 5.6, the instantaneous growth rate dN

dt , as a function of the number of cells, is
mainly influenced by the exponent α quantifying the strength of the cooperation and
by q, which instead dictates the effect (positive or negative) of cooperation. In fact,
if q > 0 and N0 < q, the population decreases and vanishes in time, so the effect of
cooperation is detrimental. Even if no analytical expression for N is available, we
can compute the maximum slope of y using a trick: the fact that ẏ = Ṅ

N . So that
the maximum slope of y equals the maximum of Eq. 5.24, i.e.

λmax =





r
(

1
1+α

) (
α

1+α

)α
if N0 < α

1+αk

r
(
1 − N0

k

) (
N0

k

)α
otherwise

(5.25)
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Figure 5.6. Representations of the growth rate (dN/dt) of a population of size
N as a function of its size. a) Trends for logistic growth (blue solid line), weak
(green) and strong (yellow) Allee effect. The value k corresponds to the carrying capacity.
b) Examples of weak Allee effects with different values of parameter α that increases
according to the arrow. The blue curve is the logistic case with α = 0. The dashed black
line represents the carrying capacity k.

where N0 = α
1+αk corresponds to the flex point of y.

Anyway, fitting Eq. 5.25 over the data, we see from Figure 5.7 that the predicted
behavior of λmax versus N0 is qualitatively identical to that of the purely logistic
model (see Eq. 5.25). Moreover, the instantaneous growth rate (dN/dt) in the
exponential phase as a function of the population size N should show an Allee-like
behavior, with an elbow for small N (see Figure 5.6) that deviates from a logistic
map. However, when fitting the instantaneous growth rate in the exponential phase
versus the population size at that time (Eq. 5.24) the exponent α that indicates the
level of cooperativity is ∼ 0. This suggests that cooperativity is at least weak and
that the dependence of the GR on N0 should be interpreted more like a long-term
memory effect.

The simplest modification of the logistic model allowing to recover empirical
observations is obtained by assuming that the intrinsic growth rate r is a slowly
increasing function of N0, r = r(N0). In turn, this implies

λmax = r(N0)
(

1 −
N0

k

)
. (5.26)

In this way, the maximum growth rate is dominated by the intrinsic term (and
thereby increases with N0) for small enough inocula, while it gets more and more
limited by the carrying capacity (and therefore decreases with increasing N0) as N0

gets closer to k. Upon assuming

r(N0) = r + a (N0)b . (5.27)

with r the asymptotic growth rate, this model replicates all the empirical ob-
servations by fitting parameters a and b to the observed profile of λmax versus
N0.

We are left with the patterns of fluctuations to be explained. In fact, since
experiments were repeated many times over approximately the same inoculum
size, we have information also on the fluctuation away from the mean. Notably,
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Figure 5.7. Experimental data and model comparison. Fit of the logistic (orange),
weak Allee (blue) and modified logistic (red) models.

the patterns of fluctuations are recovered by assuming uniform fluctuation across
experiments (see Figure 5.8) on the two parameters which govern r(N0), i.e. a and b
(r is assumed fixed for simplicity). Finally, in the experimental setup discussed here,
an N0-dependent r would imply that cell populations carry intrinsic memory of their
initial condition into the exponential phase. Such a scenario could be validated by
carrying out more experiments at different (e.g. larger) carrying capacities. Based
on the above model, in fact, faster growth rates than those observed here should be
achievable at larger values of N0, as one can see from Figure 5.9. Unfortunately, as
this thesis is being written, those experiments are just being performed.

5.3 Growth in a changing enviroment

At last, we want to discuss the effects of a heterogeneous distribution of phenotypes
on the growth in a changing environment. Up to now, we saw that the growth rate
of a population (as so its fitness) is linked to (i) the distribution of phenotypes, q(λ),
which depends itself on the degree of regulation cells can impose, (ii) the initial
number of cells and (iii) the carrying capacity of the system.

In the minimal model we presented before and described by Eq. 4.15, phenotypic
diffusion is inversely proportional to the maximum fitness the population can acquire.
In fact, the faster a cell can change its phenotype, the more the final phenotypic
distribution tends to the underlining one (i.e. the q(λ)), which corresponds to a flat
sampling of the flux vector space. Recapitulating in few words, once a cell manages
to acquire a high growth rate, if it can maintain that rate, it will quickly dominate
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Figure 5.8. Outcomes of the modified logistic model with uniform noise on a
and b.

Figure 5.9. Putative validation of the modified logistic model. a) Maximum growth
rate as a function of N0 for different values of the carrying capacity and r(N0) ∼ a(N0)b.
b) Maximum growth rate as a function of N0 for different values of the carrying capacity
and r(N0) ∼ a(ln N0)b.
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over slower growing one. This shifts the overall growth rate of the population toward
higher values. High growth rates, though, require a lot of regulation to be maintained,
and a tight regulation is expensive. Furthermore, it is experimentally known that
fast phenotypes are more prone to suffer environmental changes. To give an intuition,
a cell that replicates fast needs a lot of nutrients, if those nutrient become scarce in
a sudden, then this cell will found itself with no energy to reorganize its proteome.
Figure 4.3 clearly conveys the idea that the higher the fitness the lower must be the
diffusion.

This scenario has been obtained in the presence of a ‘static’ environment. In
the sense that while the population growth the environment remains either globally
favorable (rich medium) or unfavorable (poor medium). The latter case producing
a phenotypic distribution shifted toward lower values of growth rate. Let us see
how the scenario described so far changes if we introduce a dynamical environment,
i.e. an environment that changes in time from a state which is favorable for the
growth of all the population to a state where the fast phenotypes are inhibited. The
simplest route to couple the system to such an external environment is to assume
that the effective growth rate (EGR), f , of a cell depends both on its constitutive
growth rate, CGR, λ (which is the rate the cell would have in absence of external
influences) and on the state of an exogenously varying medium which, for sakes of
simplicity, we can describe by a single time-dependent variable x. In rough terms,
we consider a fluctuating environment in which x describes the threshold fitness for
replication under randomly occurring shocks. This corresponds to the choice

f(λ, t) =

{
λ if λ ≤ x(t)

0 otherwise
, (5.28)

according to which cells with CGR smaller than x(t) can replicate at time t,
while replication is inhibited for the others.

To see the impact of the environment on the population, we can look at two
rather opposite scenarios: a predictable environment (switching periodically between
two fixed states) and a most random one (switching after a random time and to a
random value). More specifically following [8], we can assume that the threshold x
fluctuate in time by switching between the value x = λmax, in which case all cells in
the population can replicate, and a value x = λ⋆ < λmax, in which case replication
can only take place for cells with λ ≤ λ⋆. We consider two choices for λ⋆. In the
periodic case, λ⋆ is a constant kept fixed throughout the dynamics, so that x takes the
values λ⋆ and λmax alternately, leading to a two-state environment (labeled ‘const-x’
in [8]). While in the random case, λ⋆ is sampled independently at every switch from
a uniform distribution on the interval [xmin, λmax], leading to an environment with a
continuum of states (‘rand-x’ case in [8]). For simplicity, we set λ⋆ = xmin in the
const-x environment. Switches from the non-selective environment where all cells
replicate to the selective one where only some do (ns → s) and viceversa (s → ns)
are assumed to occur with characteristic times ωns and ωs respectively. Note that
the statistic of the switching turned out to produce no appreciable differences to the
fitness of the population (‘const-t’ case or ‘rand-t’ case according to the notation
of [8]). With this modelization of the environment, we can still use Eq. 4.15 to
describe the time evolution of the population growth rate distribution, with the only
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Figure 5.10. Representative behavior of the threshold x as a function of time in
the different environments.(a) a periodic two-state environment where x switches
(in this case) between the values λmax and xmin = λmax/2; (b) a periodically switching
environment where x takes on random values drawn uniformly from [xmin, λmax]; (c)
a two-state environment where switches occur at exponentially distributed random
times; (d) an environment where x behaves as in (b) but in which switches occur at
exponentially distributed random times. In this example, the characteristic switching
times ωns and ωs are taken to be equal and fixed to 40 (a.u.). Adapted from [8].

difference that f takes the place of λ in the replication term, i.e.

dp(λ, t)
dt

=
[
f(λ, t)−〈f〉

]
p(λ, t)+D

[
∂2p(λ, t)

∂2λ
−

∂

∂λ

[
p(λ, t)

∂

∂λ
(ln q(λ))

]]
, (5.29)

where now the mean growth rate at time t obviously involves the effective growth
rate, f , i.e.

〈f〉 =
∫ λmax

0
f(λ, t)p(λ, t)dλ . (5.30)

We finally have to specify a form for the phenotypic landscape q(λ). Instead of
using the expression in Eq. 4.2, we define a slightly modified version, which is easier
to treat analytically:

q(λ) =
a + 1
λmax

(
1 −

λ

λmax

)a

, (5.31)

where the exponent a ≥ 0 modulates the steepness of q(λ). In short, the larger a,
the more heterogeneous the landscape, with slow phenotypes being increasingly more
frequent than fast ones as a increases. In [7, 78], the CGR landscape underlying
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Figure 5.11. Colormaps showing representative probability densities p(λ, t). Pan-
els to the right of each map depict the density profile at different time points within
the zoomed-in region, at time increasing from top to bottom. Results are shown for
a) const-t and const-x environment, b) const-t and rand-x environment, c) rand-t and
const-x environment, and d) rand-t and rand-x environment. Parameter values: a = 20,
x = 0.3λmax, D = 10−3. Adapted from [8].

bacterial metabolic networks has been found to be characterized by values of a lying
between 200 and 300 depending on the specifics of the environment. Again to focus
on two extreme cases, we can consider explicitly the cases a = 0 (uniform q(λ)) and
a = 20 (strongly heterogeneous q(λ)).

5.3.1 Phenotypic distributions and fitness

The non-linear Fokker-Planck equation (5.29) can be solved numerically for any
choice of the environment, of the diffusion coefficient and of the prior phenotypic
density q(λ). After a short transient, p(λ, t) appears to settle in qualitative robust,
environment-dependent patterns. Samples are shown in Fig. 5.11.

Different types of distributions emerge across the various environments, includ-
ing bimodal distributions in which most of the population occupies the two peaks
alternately (panel a) or in which one peak always dominates over the other (panel
c), unimodal distributions with fluctuating positions (panel b) and unimodal dis-
tributions in which peaks drift in a specific direction (panel d). While all of these
can occur in every type of environment, both their frequency of occurrence and the
relative intensities of the peaks are strongly environment-dependent.

Such patterns provide hints about the way in which the population copes with
environmental fluctuations. An important feature observed from data is that,
independently of whether switches occur periodically or randomly, adaptation to
two-state environments is achieved more efficiently by structuring the population in



70 5. Population growth and survival

a bimodal form, while complex environments favor unimodal distributions.
How can we assess which distribution, and/or which strategy provides the best

chances against the environment? As we are mostly interested in understanding
how the system behaves in the long-time limit, we surely must look at the long-
term population structure, after it interacted with the environment sufficiently
enough. Note that in this scenario, we can not hope for a steady state regime for
the probability distribution as the one we had solving Eq. 4.15. In fact, here the
environment continuously changes. However, since x takes on values in a finite range,
we can expect that sampling after a certain transient time, we should start finding
typical structures of the population. To assess whether we can start sampling typical
configuration, we can look at the long-term growth rate, which is widely used to
quantify the fitness of the population and it is expected to achieve a stationary
value in the long term. The population growth rate is defined as a generalization of
Eq. 5.1, i.e.

Λ ≡ lim
t→∞

1
t

ln
N(t)
N(0)

. (5.32)

Computing Λ for an exponentially growing population may result a difficult task.
Luckily, from Eq. (4.6) and from the fact that N(t) =

∫
n(λ, t)dλ, in our case we

can recast Eq. 5.32 as

Λ = lim
t→∞

1
t

∫ t

0
〈f(λ, t′)〉 dt′ , (5.33)

which can be computed directly from the phenotipic distribution at each time.
Figure 5.12a,b shows, for all environments, the long-term probability distributions

p(λ) obtained by averaging over time after Λ has reached its stationary value in the
limiting case where replication is faster than diffusion. Comparing the distributions
with the fitness, we can notice a quite peculiar behavior for the two thresholds: while
as expected the more aggressive (xmin = 0.3) environment produces a Λ which is
lower than the one found in a softer environment (xmin = 0.7); distributions behave
the other way around. In the former case, the distribution of the phenotype sets near
λmax, while for the softer case it peaks around the threshold. To understand why the
system exhibits this feature, we can study more in details the so-called ‘exploitation
limit’, i.e. the case where phenotypic diffusion happens on a scale bigger than the
characteristic time of growth.

5.3.2 Exploitation limit

Let us know see how we can get some analytical insight in the case where cells grow
without changing their phenotype (D << 1). The dinamics in this regime is given
simply by first term in Eq. 5.34, i.e.

dp(λ, t)
dt

= (f − 〈f〉) p(λ, t) . (5.34)

In this pure replication dynamics, the distribution tends to concentrate on
the highest achievable growth rate. In presence of a non-selective environment,
distribution peaks on λmax. Instead, our environment switches from a selective state
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Figure 5.12. Growth without phenotypic diffusion. (a and b)Long-time phenotypic
distributions (left) and time evolution of the population growth rate Λ (right) in the
absence of diffusion in the different environments (represented by different colors and
line widths) and for x = 0.3λmax (panel (a)) and x = 0.7λmax(panel (b)). In the former
case (x < λmax/2), the distribution can achieve the highest possible CGR. In turn, the
long term fitness Λ sets around λmax/2. In the latter case (x > λmax/2), the distribution
peaks around the threshold CGR, while the population achieves a growth rate Λ larger
than λmax/2. (c) Time-averaged f as a function of the CGR for const-x (left) and
rand-x (right) environments and for three different values of xmin. One sees that the
position of the maximum depends both on the chosen threshold and on the specific
environment. Adapted from [8].
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to a non-selective one with characteristic times ωs and ωns respectively. So that
observing the evolution for a long enough time, the population will spend a fraction
pns = ωns

ωns+ωs
of time in the non-selective state and a fraction ps = 1 − pns of time in

the selective one.
In the selective regime, cells with CGR higher than the threshold will be freezed,

while cells with CGR near the x rapidly outnumber all growing cells.

Periodic environment

To gain an insight on the dynamics, let us see first what happens in the two-state
environment with x oscillating between λmax and a constant value xmin. In this case,
f will equal λ at all times if λ < xmin, while for λ > xmin it will be equal to λ for
approximately a fraction pns of the total the time of the evolution and to zero for
the other ps = 1 − pns of time. Therefore, the time average of f in this environment
reads

f̄ ≃

{
λ if λ < xmin

pnsλ if λ ≥ xmin

. (5.35)

In specific, for xmin > pnsλmax (resp. xmin < pnsλmax), the mean IGR has a
maximum for λ = xmin (resp. λ = λmax), where f̄ = xmin (resp. f̄ = pnsλmax).

The mean IGR displays again a discontinuity at the threshold xmin, and the value
of λ for which it attains a maximum depends on both xmin and pns (see Fig. 5.12c,
left panel for a case in which pns = ps = 1/2). In specific, for xmin > pnsλmax

(resp. xmin < pnsλmax), the mean instantaneous growth rate has a maximum for
λ = xmin (resp. λ = λmax), where f̄ = xmin (resp. f̄ = pnsλmax). Hence, at
long times, we expect the population to grow at the fastest IGR achievable, with a
phenotypic distribution p(λ) peaked at λ = xmin (resp. λ = λmax) for xmin > pnsλmax

(resp. xmin < pnsλmax). This is in agreement with the numerical evidence shown
in Fig. 5.12a,b for const-x environments. A more quantitative demonstration is
provided in Appendix C.

This result can be used to obtain an analytical approximation for Λ. In fact,
considering that the system spends roughly a fraction pns of time in the non-selective
environment (x = λmax) and the other ps in the selective one (x = xmin), we have
(see (5.33))

Λ ≃ pns 〈f〉 + ps 〈f〉xmin
(5.36)

≃

{
xmin if xmin > pnsλmax

pnsλmax if xmin ≤ pnsλmax

. (5.37)

where
〈f〉z =

∫ z

0
f(λ, t)p(λ, t)dλ (5.38)

From Fig. 5.13, we can see that the value of Λ estimated numerically agrees with
the one just derived in the limit D → 0 (horizontal blue line) for xmin = 0.3. Note
that Λ corresponds to the maximum of the time-averaged IGR, f̄ (see Fig. 5.12c),
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confirming how, when diffusion is much slower than environmental fluctuations),
fitness is ultimately limited by the environment alone.

Random environment

In the random case (x oscillating between λmax and a random value λ⋆ uniformly
chosen from [xmin, λmax]), f will again equal λ roughly a fraction pns of the time, while
for the other time it will be randomly zero or λ depending on xmin. In particular, one
can calculate the probability that during the unfavorable period a cell with growth
rate higher than xmin is replicating, i.e. Prob{f = λ} ≡ Prob{x > λ} = 1 − φ, with

φ =
λ − xmin

λmax − xmin
. (5.39)

Retracing the steps done for the periodic environment, we can evaluate the mean
value of the IGR and look for the subpopulation of cells having the maximum IGR.
One therefore finds

f̄ ≃

{
λ if λ < xmin

λ (1 − psφ) if λ ≥ xmin

, (5.40)

from which we see that f̄ attains a maximum value fmax given by

fmax =
1

4ps

(λmax − pns xmin)2

λmax − xmin
, (5.41)

at λ = λmax−pns xmin

2ps
if xmin < λmax

1+ps
, while fmax = xmin at λ = xmin if xmin > λmax

1+ps
.

In complete analogy with the previous case, the population concentrates around
phenotypes λ for which f̄ is maximum, while for the asymptotic growth rate of the
population Λ one finds

Λ ≃ fmax . (5.42)

The results displayed in Fig. 5.12c again confirm this conclusion. Let us now see
what we can say on the other limiting case, i.e. the pure ‘exploration limit’ in which
diffusion dominates over the replication.

5.3.3 Exploration limit

In the limit D → ∞ and more generally whenever diffusion occurs on time scales
much faster than those of environmental fluctuations, the growth term in Eq. 4.8 is
negligible with respect to the diffusion one and population is rapidly redistributed
according to the underlying phenotypic landscape described by q(λ). As a conse-
quence p(λ) → q(λ) asymptotically. Since also in this case we know the form the
distribution assumes, it is again possible to derive an approximate expression for Λ
from Eq. 5.33 following the lines traced in the previous section. In analogy with 5.36,
we find

Λ ≃ pns 〈f〉 + ps 〈〈f〉〉 , (5.43)
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where

〈〈f〉〉 =
∫ λmax

xmin

[
〈f(λ, t)〉x

]
π(x)dx (5.44)

and π(x) stands for the probability distribution of the threshold x. In particular,
π(x) = δ(x − xmin) in the periodic case since the value of the threshold during the
unfavorable regime is fixed. While π(x) = (λmax − xmin)−1 for x ∈ [xmin, λmax] in
the random case (by the definition we chose for the random environment). Because
p(λ) ≃ q(λ) and f = λ (resp. f = 0) for λ < x (resp. λ > x), the term inside the
integral in Eq. 5.44 assumes the form

〈f〉x ≃

∫ x

0
λq(λ)dλ =

=
λmax

(a + 2)

[
1 −

(
1 − (a + 1)

x

λmax

)
·

(
1 −

x

λmax

)a+1
]

. (5.45)

Substituting this into Eq. 5.44 and then in Eq. 5.43 one obtains

Λ ≃





λmax

(a + 2)

[
1 − ps(a + 2)

xmin

λmax

(
1 −

xmin

λmax

)a+1

− ps

(
1 −

xmin

λmax

)a+2
]

(const-x)

λmax

(a + 2)

[
1 − ps

xmin

λmax

(
1 −

xmin

λmax

)a+1

−
2ps

(a + 3)

(
1 −

xmin

λmax

)a+2
]

(rand-x)
.

(5.46)
These formulas confirm the intuitive picture according to which the more the

underlying distribution of phenotypes q concentrates on small values of CGR (i.e. the
larger the value of a), the slower the population grows at fast phenotypic diffusion.
Fig. 5.13c,f (horizontal lines at D ≫ 1) show that the agreement between the long
term population growth rate computed numerically and the theoretical estimate
given above is excellent in both environments.

5.3.4 Fitness and regulation

The time evolution of p(λ, t) is ruled by two different timescales, namely the mean
environmental switching time, ω and the mean time to transition between different
phenotypes, τ .

Generically, at sufficiently small values of D, phenotypes tend to concentrate close
to λmax (see Fig. 5.13a,b and d,e). This situation reproduces the ’exploitation’ limit
D → 0, where the time evolution reduces to the replicator dynamics. A population
whose phenotypic diffusion occurs on exceedingly long time scales (compared to
those characterizing environmental fluctuations) can only grow exploiting resources
available from the environment and is therefore maximally sensitive to environment-
derived shocks. In such a case, the population growth rate is significantly smaller than
λmax, see Fig. 5.13c,f, due to the growth-curbing effect of environmental fluctuations.
Upon increasing D (and therefore the relevance of diffusion in the phenotypic space),
distributions start to acquire non-trivial traits, including bimodality (see Fig. 5.13a,d)
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Figure 5.13. Phenotypic distributions and fitness in a symmetric environment.
a,b) Asymptotic, time-averaged phenotypic distributions obtained for a population
evolving with a diffusive kernel in a uniform background phenotypic landscape (a = 0).
c) Asymptotic population growth rate Λ (in units of λmax) as a function of D for the
four types of environment. Vertical dotted lines mark the values of diffusion studied
in panels (a) and (b). Horizontal lines at small and large D stand for the analytical
estimates for the fitness obtained in the const-x regime (dotted blue line) and the rand-x
regime, respectively. d-f) Same as a-c but with q(λ) with a = 20 rather than uniform.
Adapted from [8].

and extended tails (see Fig. 5.13b,e). The population growth rate Λ then increases
with D with respect to the small-diffusion limit in complex environments, where the
population structure develops tails. In such cases, Λ has a well-defined maximum
at a specific value of D (which depends, as in [107], on the characteristic time of
environmental switches), marking the existence of an optimal trade-off between
diffusion (exploration) and growth (exploitation) in the given environment. On the
other hand, the population growth rate decreases continuously with D, albeit slowly,
in the simpler two-state environments, implying that any amount of exploration is
detrimental to fitness in such contexts. When diffusion dominates the dynamics
(larger values of D), Λ appears to drop rapidly in all environments. In such a case,
which is close to the purely ‘exploration’ limit D → ∞, cells explore the phenotypic
space very efficiently, continuously redistributing their CGR among allowed states.
The asymptotic behavior is hence dominated by the background provided by q(λ).
Indeed, the phenotypic distribution evolves towards its stationary limit q(λ) due to
the detailed balance constraint.
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This suggests that in fluctuating environments the maximum of the fitness is
not necessarily associated to the strongest regulation cells can exert. In fact, they
can indeed tune the phenotypic diffusion through regulation to cope optimally with
environmental fluctuations so as to ensure a significant gain in terms of fitness,
provided the selective threshold of the environment changes randomly over time.
Instead, in periodic environments, remains valid what we found in Section 4.0.2: the
more the regulation the higher the fitness. In both cases, the fitness advantage that
regulation can provide are enhanced by heterogeneity in the underling distribution
(q(λ)). In fact, the limiting case of an uniform distribution produces nearly no
differences in fitness while phenotypic diffusion spans many orders of magnitude.

Finally, we can notice from Fig. 5.13a,b,d,e, that the population structures into an
extended unimodal distribution of phenotypes in the case of a random environment.
While, on the other hand, in an environment fluctuating between two well-defined
states, bimodal phenotypic distributions occur. Notably, varying the fraction of time
the population spends in the favorable/unfavorable regime, the relative intensity
of the two peaks show a well defined trend. Ranging from a completely favorable
environment to a fully selective one, the population distribution shifts from the right
peak (high CGR) to the left one (low CGR) as we can see from Figure 5.14. This
phenomenon is observed also in real system and it is known as ‘bet-hedging’. In the
next two sections, we will spend a few more words on both the trade-off and the
bet-hedging.

5.3.5 Exploration-exploitation trade-off

The exploration vs exploitation dilemma exists in many aspects of our life. Say,
our favorite restaurant is right around the corner. If we keep going there every day,
we can be quite confident of what we will get. Anyway, we miss the chances of
discovering an even better option. On the other hand, if we try new places all the
time, very likely we end having to eat unpleasant food from time to time.

The dilemma comes from the incomplete information: we need to gather enough
information to make best overall decisions while keeping the risk under control.
With exploitation, we take advantage of the best option we know. With exploration,
we take some risk to collect information about unknown options. The best long-
term strategy may involve short-term sacrifices. For example, one exploration trial
could be a total failure, but it warns us of not taking that action too often in
the future. Setting apart the delicate issue of restaurants, an especially significant
effort to understand this trade-off is ongoing for biological systems, as seen e.g. in
the recent interest about the ’ecology of cancer growth’ [108, 109] (the strikingly
diverse distributions of cell strains observed throughout different types of cancers)
and its relationship to the timing of drug administration [109]. Microbial systems
have also been a natural testing ground for the exploration-exploitation scenario for
many years. It is empirically known that, in fluctuating environments, microbes
tend to display a high degree of phenotypic heterogeneity driven by stochasticity
in the regulation of gene expression and metabolism [110, 87, 111]. The ability
to explore the space of allowed phenotypes ultimately provides an effective route
to hedge against environmental noise [112, 113], favoring e.g. the persistence of a
sub-population of resistant but slow-growing bacteria within a population subject to
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Figure 5.14. Phenotypic distributions and fitness in an asymmetric environment:
bet-hedging. a) Asymptotic, time-averaged phenotypic distributions (top panels) and
asymptotic population growth rate Λ (in units of λmax) as a function of D (bottom
panel) obtained as in Fig. 5.12d-f but in the presence of an asymmetric environment
with characteristic switching times ωs = 30 and ωns = 50 time units. Blue and green
horizontal lines at small and large D show the analytical estimates of Λ in the exploration
and exploitation limits, obtained in the const-x and rand-x regimes, respectively. Grey
horizontal lines represent the same analytical estimates but in the presence of a symmetric
environment with ωns = ωs = 40 time units. (b to d) Same as (a) but with different
choices of ωns and ωs. Displayed curves are averaged over 100 independent realizations
of the dynamics. Adapted from [8].
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high doses of antibiotics [114, 115]. Coming back to our case of study, the central
question concerns which balance of replication (exploitation) and phenotypic change
(exploration) will provide the population with the highest fitness (e.g. the fastest
growth rate) in the long run. The optimal strategy is obviously interlocked with
details like the statistics of resources and i more complex systems can be challenging
to analyze at a quantitative level [107, 116, 117]. Still, fitness maximization is very
often found to require a non-zero exploration rate.

The multi-armed bandit problem

The classic Exploration-Exploitation problem in mathematics is the multi-
armed bandit [118], which is a slang term for a bank of slot machines. The
problem affects players, who know that each machine has a variable payoff
and they have a limit number of attempts before running out of money. The
goal is to balance trying out new machines with unknown payoffs against
exploiting the knowledge one already has from the earlier machines we have
tried. When a player first starts on new bandits, he really does not know
which will pay out and at what rates. So some exploration is necessary
to know what the reward ratio in the territory will be. As the knowledge
grows, the player gets to know which bandits are likely to pay, and which are
not, and this later informs his choices as to where to place his dollars [119].

Figure 5.15. Cartoon of the multi-armed bandit problem.

5.3.6 Biological bet-hedging

Biological bet hedging was originally proposed to explain the observation of a seed
bank, or a reservoir of ungerminated seeds in the soil [120]. For example, an annual
plant’s fitness is maximized for that year if all of its seeds germinate. However, if
a drought occurs that kills germinated plants, but not ungerminated seeds, plants
with seeds remaining in the seed bank will have a fitness advantage. Therefore,
it can be advantageous for plants to ‘hedge their bets’ in case of a drought by
producing some seeds that germinate immediately and other seeds that lie dormant.
Examples of biological bet hedging are found in mechanism as different as female
multiple mating [121] and bacterial persistence in the presence of antibiotics [77, 122].
The first formal study of the bet-hedging features dates 1956 [123]. In practice,
we can speak of biological bet hedging when organisms suffer decreased fitness in
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their typical conditions in exchange for increased fitness in stressful conditions [113].
Indeed, this is exactly what happens in our case. In fact, in a periodic environment
(where periodicity must be solely relied to the position of the threshold and not
on the times of the switches), the population splits in two well defined peaks. One
remains near the threshold (where growth is always allowed) and another sets near
λmax. As we can see from Figure 5.14, varying the fractions of time the system
remains in the selective regime, interestingly, the weight of the slowest part of the
distribution (smaller λ) follows the (mean) time spent in the selective state (i.e. it
increases with ωs). This means that the population does not just place some persister
cells at low growth rates, but it ‘learns’ to invest the right fraction depending on
the probability of having a selective environment.
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Chapter 6

Discussions

Regulation has the role of conferring both robustness to gene expression and providing
the flexibility cells need to rapidly adapt to sudden environmental fluctuations.
Robustness and regulation capacity are both linked to how the network handles
noise. In general, the intrinsic stochasticity in gene expression must be dampened
in order to have stable output protein levels. However, cells often must respond
to external fluctuations, with a specific reorganization of their proteome. So, the
regulatory network has to process noise in a selective way, containing some kinds of
noise while properly propagating some perturbations [124].

In order to do so, evolution selected many different molecular motifs, which
intersect resulting in complex networks with lots of interactions. In those networks,
competition to bind substrates, enzymes or gene expression machinery is ubiquitous
and impacts regulatory processes in several ways [125]. For instance, the initiation
and translation rates of different transcripts are effectively coupled by the competition
for the ribosome pool, so that modifications of a given RNA species can alter the
translational dynamics of other RNAs [126]. Quite generally, competition for limited
and shared molecular resources induces effective interactions between the competing
species, with signs (positive or negative) that depend on the specifics of the underlying
processes [127]. Such interactions constitute an effective additional layer of indirect
regulation, whose intensity is strongly context-dependent [128]. As we discussed,
competition for miRNAs (or, more generally, small regulatory RNAs) among long
transcripts is undergoing much scrutiny [129]. Following the work done in [4],
we showed how miRNA-RNA interaction network can be characterized in terms
of a set of coupled differential equations describing the concentrations of all the
involved molecules. Such modelization permits to measure the crosstalk (through the
evaluation of susceptibility functions, which quantify the response of each component
of the system to the variation of any other) and analyze its features, like selectivity
and directionality. Furthermore, whereas the typical crosstalk interaction generated
by small changes in RNA availability is weak, non-local effects are found to be
significant and crosstalk patterns can be modulated by cells, tuning the levels of
free miRNA molecules. Collecting data from available databases [5, 43] and looking
for a robust set of parameters [130], we probe the response to perturbations in
system-level networks. In particular, we showed that all the identified features
persist, are modulated by transcriptional and/or binding heterogeneities and appear
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to be hard-wired in the topology of the underlying miRNA-RNA interactome. Most
importantly, since both the strength of the bindings and the connections are under
selective pressure, evolution seems to be playing a role in tuning the network in such
a way to optimize noise processing. Probing the crosstalk scenario, we described,
in experiments turned out to be challenging essentially due to weakness and non-
locality of the interactions. To validate the picture, both in terms of individual
interactions and of global features, we can however resort to transcriptomic data since
a reformulation of fluctuation-dissiption [70] can relate, under certain conditions,
correlations to the real susceptibilities. Evaluating such quantities on system-scale
RNA readouts will provide a direct, data-driven test of the RNA crosstalk. Moving
upward, the interplay between noise and regulation reflects on the phenotypes
cells manifest. In particular, the differences in the microscopic states of each cell
(intrinsic noise) give rise to variability at the level of the phenotype. Along the
line of [7], we saw that the shape of experimental growth rate distributions can be
recovered using both a maximum entropy approach and a minimal dynamical model.
Control parameters (the MaxEnt inverse temperature, β and the phenotypic diffusion
coefficient, D) can be introduced to shift the position of the mean growth rate. This
informs that those two parameters are linked to the amount of regulation cells can
exert, which depends on the environment the population lives in. Overall, those
models told us that the growth of the population depends both on the characteristics
of the cellular population and on the interaction with the environment. In fact,
phenotipic heterogeneity influences the fitness in the case of a controlled environment
where the only external effect is due to the presence of a carrying capacity [89]. In
such conditions, the initial number of cells, N0, reflects on growth observables like the
lag time and the population maximum growth rate as much as on their fluctuations.
While initial-density dependencies are not totally surprising, since the growth rate of
a population of non-interacting cells is naturally expected to decline as N0 approaches
the carrying capacity of the medium [78], increases of the growth rate with N0 away
from the carrying capacity are harder to understand. At the simplest level, they
suggest the existence of a regime in which populations starting from larger inocula can
achieve higher fitness e.g. by strengthening cooperation [106]. This however implies
that populations can maintain a memory of their initial conditions well into the
exponential phase. It is well known that randomness in cellular reproduction events
can propagate to macroscopic parameters [131]. If such heterogeneities are putatively
averaged out in large inocula, they become relevant when the initial cell density is
small, so that even populations of identically prepared single cells can generate very
different growth trajectories. The scenario complicates even further if we turn on
fluctuations in the environment, in particular if those variations produce selective
regimes where some cells can not replicate. In this situation, phenotypic variability
is found to help the population to withstand external shocks. In fact, empirical
data on phenotypic distributions, quantified from protein expression data, display
a rich spectrum of behaviors of cellular populations, ranging from unimodal two
bimodal distribution [132]. The question of when one type of distribution is favored
naturally arises. The model we discussed suggests that the population structure is
tightly linked to the specific features of the environment. In particular,generalizing
the setup considered in [7, 133] and discussed in Chapter 4 to the case in which
the replication rate depends on the coupling of cells to a fluctuating environment,
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we saw that the structure of a population emerges from the balance between the
term that rewards fast-growing states (which are however sensitive to environmental
shocks) and the diffusion term favoring states with larger entropy in the phenotypic
space (but slower replication rates). When the strength of the coupling between
the environment and phenotypes takes on two distinct levels, bimodal distributions
arise but exploration does not yield a fitness advantage to the population. On the
other hand, under the more complex scenario in which the coupling strength varies
randomly, the exploration-exploitation trade-off leads to a non-zero optimal search
rate and unimodal phenotypic distributions are generically preferred. This picture
is in complete agreement with the results obtained in [134], where the theoretical
benefit of a bimodal distribution of stress response proteins was found to be highest
in two-state environments, while more variable and structured environments allow
for the selection of unimodal distributions. In addition, we saw that adding a small
amount of diffusion to a purely exploitative strategy always leads to an increase
of the fitness in random environments, while it is always detrimental in periodic
environments. The fitness gain given by exploration also appears to be linked to
the structure of the underlying phenotypic landscape q(λ). In fact, the more q(λ)
is strongly heterogeneous, with rare fast phenotypes among a multitude of slow
ones [7], the more significant the fitness advantage diffusion can provide. Since
more heterogeneous populations are more likely to evolve in complex environments,
this suggests that higher intra-tumoral heterogeneity may be the result of highly
variable micro-environments. On the other hand, if the we assume that the selective
environment is caused by a therapeutic protocol, subjecting the population to a
single repeated dose is effective in quenching its fitness irrespective of the timing
of administration. Overall, such a framework sheds some light on the origin of
phenotypically heterogeneous cell populations such as tumors and point to educated
strategies to control their diversity.
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Appendix A

Susceptibilities calculation

Dimensionless susceptibilities are defined as:




χij =
∂[mi]
∂m∗

j

χia =
∂[mi]
∂µ∗

a

χab =
∂[µa]
∂µ∗

b

χai =
∂[µa]
∂m∗

i

(A.1)

where i and j refer to RNA molecules while a and b to miRNA ones. We remind
that m⋆

i and β⋆
a are the maximum level of free RNA and miRNA, respectively.

Starting from the expression for the χij of the main text (that we repeat for
simplicity)

χij = δij
[mi]
m⋆

i

+
[mi]2

m⋆
i
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α∈(i∩j)
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we can compute the equivalent for the miRNA-miRNA susceptibility just carefully
substituting indexes as

χab = δab
[µa]
µ⋆

a

+
[µa]2

µ⋆
a

∑

i∈(a∩b)

[mi]2

miaµibm
⋆
i
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(A.3)

From here, the miRNA counterpart of Eq. 3.8 reads

∑

c

(δac − Vac) χcb =
[µa]
µ⋆

a

δab (A.4)

where
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The χ̂ matrix of the miRNA-miRNA susceptibilities can be obtained again
through matrix inversion:

χ̂ =
(
1̂ − V̂

)−1
diag

(
µ

µ⋆

)
(A.6)
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Once we know the susceptibilities among couples of the same species, we can
easily compute also the cross-species susceptibilities since

χai = µ⋆
a

∑

k

∂Fa

∂mk

∂mk

m⋆
i

= −
µ2

a

µ⋆
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and
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Appendix B

Degree-preserving

randomization

To randomize the CLASH network while preserving the degree sequence we can
employ a standard edge-swapping algorithm, i.e.

1. randomly select two links lia and ljb from the miRNA-RNA network with
uniform probability;

2. swap the links, obtaining new connections lja and lib while keeping the inverse
binding affinities (µ0

ia and µ0
jb ) associated to RNAs i and j respectively;

3. discard the swap if it generates duplicate links or if the resulting network is
not connected;

4. iterate steps 1-3 a number n of times much larger than the total number of
links in the network.

The resulting edge-swapped network has the same number of links and the
same one-point statistics (i.e. the node connectivities) of the original network,
while higher-order (e.g. two-node) topological correlations are lost. As shown in
Figure B.1, the structure of randomized networks differs only slightly from that of
the original CLASH network in the distribution of shortest paths between RNA
species, whereas degree distributions are expectedly unchanged. In such conditions,
global crosstalk descriptors are nearly identical to those obtained in the original
CLASH network (panels d through g). This confirms that node degrees are the key
topological determinant of the crosstalk scenario derived from the CLASH data.
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Figure B.1. Comparison between crosstalk patterns in the CLASH network and
its edge-swapped randomized versions. a) Frequency of the shortest paths for
CLASH (left) and edge-swapped (right) networks. b-c) Degree distributions of RNA
(top) and miRNA (bottom) nodes in the CLASH and edge-swapped networks. d-g)
Global crosstalk descriptors for the CLASH and edge-swapped networks as a function
of the mean miRNA transcription rate β: (d) mean susceptibility; (e) mean maximum
susceptibility; (f) Pearson correlation coefficient between susceptibilities and local kinetic
parameters; (g) Coefficient of variation of RNA levels. Adapted from [6].
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Appendix C

Approximated phenotypic

distribution

Based on the reasoning done in 5.3 and considering a symmetrical environment
where on average the system spends half the time in a favorable regime and the
other half in the selective one, we can approximate p(λ, t) with the bimodal function

p(λ, t) ≃ α(t)δ(λ − λ⋆) + (1 − α(t))δ(λ − λmax) , (C.1)

with 0 ≤ α(t) ≤ 1 a time-dependent coefficient quantifying the fraction of cells with
CGR equal to λ⋆ < λmax. (For sakes of simplicity, we shall henceforth omit to
indicate explicitly the dependence of α on time.) We can then use (5.34), which in
discrete time takes the form

p(λ, t + δt) ≃
{

1 +
[
f(λ, t) − 〈f〉

]
δt
}

p(λ, t) , (C.2)

to evolve the above ansatz for small time intervals δt during which the environment
does not change.

In non-selective conditions (x = λmax), one can use the fact that

〈f〉 = αλ⋆ + (1 − α)λmax (C.3)

to arrive at

p(λ, t + δt) ≃ (α − δαns) δ(λ − λ⋆) +

+ (1 − α + δαns) δ(λ − λmax) , (C.4)

where δαns = (λmax − λ⋆)(1 − α)δt.
In a selective environment (x = λ⋆), instead,

〈f〉 = αλ⋆ , (C.5)

and one finds

p(λ, t + δt) ≃ (α + δαs) δ(λ − λ⋆)+

+ (1 − α − δαs) δ(λ − λmax) , (C.6)
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Figure C.1. Cartoon representation of the evolution of the distribution.

with δαs = λ⋆(1 − α)δt.
This shows that, at every switch, the population distribution will tend to shift

from one threshold to the other, but the speed with which the two peaks grow or
shrink are different. In particular, one has

δαns

δαs
=

(λmax − λ⋆)
λ⋆

. (C.7)

This implies that δαns < δαs for λ⋆ > λmax/2. Hence the peak growing at speed δαs

is favored and the probability density will peak around λ⋆ in the long run. On the
other hand, δαns > δαs when λ⋆ < λmax/2, causing the population to concentrate
around λmax. In other terms,

p(λ) ≃

{
δ(λ − λ⋆) if λ⋆ > λmax/2

δ(λ − λmax) if λ⋆ < λmax/2
, (C.8)

in agreement with the numerical picture for the two-state (const-x) environment
shown in Fig. 5.12.
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Acronyms and Glossary of

Terms

apoptosis The death of cells which occurs as a normal and controlled part of an
organism’s growth or development. 5

capping Capping is a form of RNA processing in which the 5’ end of the nascent
pre-mRNA is capped with a 7-methyl guanosine nucleotide, 7-methylguanylate.
Capping occurs shortly after initiation of transcription. The 5’ cap is retained
in mature mRNAs. Capping is required to protect the RNA transcript from
degradation. 5

chromatin The material of which the chromosomes of organisms other than bacteria
(i.e. eukaryotes) are composed, consisting of protein, RNA, and DNA. 5

cytosol The cytosol, also known as intracellular fluid (ICF) or cytoplasmic matrix, or
groundplasm, is the liquid found inside cells. It is separated into compartments
by membranes. 10

deadenylation The removal of an adenylate group from a protein. 9

mRNA export The process of transportation of the mRNA from the nucleus to
the cytoplasma. 5

noncoding RNA A non-coding RNA (ncRNA) is an RNA molecule that is not
translated into a protein. The DNA sequence from which a functional non-
coding RNA is transcribed is often called an RNA gene. Abundant and
functionally important types of non-coding RNAs include transfer RNAs (tR-
NAs) and ribosomal RNAs (rRNAs), as well as small RNAs such as microRNAs,
siRNAs, piRNAs, snoRNAs, snRNAs, exRNAs, scaRNAs and the long ncRNAs
such as Xist and HOTAIR. 7

polyadenylation Polyadenylation is the addition of a poly(A) tail to a messenger
RNA. The poly(A) tail consists of multiple adenosine monophosphates; in
other words, it is a stretch of RNA that has only adenine bases. In eukaryotes,
polyadenylation is part of the process that produces mature messenger RNA
(mRNA) for translation. 5
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proliferation Cell proliferation is the process that results in an increase of the
number of cells, and is defined by the balance between cell divisions and cell
loss through cell death or differentiation. Cell proliferation is increased in
tumours. 5

PTM Post-translational modification (PTM) refers to the covalent and generally
enzymatic modification of proteins following protein biosynthesis. Proteins are
synthesized by ribosomes translating mRNA into polypeptide chains, which
may then undergo PTM to form the mature protein product. PTMs are
important components in cell signaling, as for example when prohormones are
converted to hormones. 5

ribosome Ribosomes comprise a complex macromolecular machine, found within all
living cells, that serves as the site of biological protein synthesis (translation).
Ribosomes link amino acids together in the order specified by messenger RNA
(mRNA) molecules. Ribosomes consist of two major components: the small
ribosomal subunits, which read the mRNA, and the large subunits, which join
amino acids to form a polypeptide chain. Each subunit consists of one or
more ribosomal RNA (rRNA) molecules and a variety of ribosomal proteins.
The ribosomes and associated molecules are also known as the translational
apparatus. 7

splicing RNA splicing, in molecular biology, is a form of RNA processing in which a
newly made precursor messenger RNA (pre-mRNA) transcript is transformed
into a mature messenger RNA (mRNA). During splicing, introns (Non-coding
regions) are removed and exons (Coding Regions) are joined together. 5

titration A titration is a technique where a solution of known concentration is used
to determine the concentration of an unknown solution. Typically, the titrant
(the know solution) is added from a buret to a known quantity of the analyte
(the unknown solution) until the reaction is complete. 5

transcription factor In molecular biology, a transcription factor (TF) (or sequence-
specific DNA-binding factor) is a protein that controls the rate of transcription
of genetic information from DNA to messenger RNA, by binding to a specific
DNA sequence. The function of TFs is to regulateâĂŤturn on and offâĂŤgenes
in order to make sure that they are expressed in the right cell at the right time
and in the right amount throughout the life of the cell and the organism. 8

UTR In molecular genetics, an untranslated region (or UTR) refers to either of
two sections, one on each side of a coding sequence on a strand of mRNA. If it
is found on the 5’ side, it is called the 5’ UTR (or leader sequence), or if it is
found on the 3’ side, it is called the 3’ UTR (or trailer sequence). 9

Watson-Crick base pairing In canonical Watson-Crick base pairing in DNA,
adenine (A) forms a base pair with thymine (T) using two hydrogen bonds,
and guanine (G) forms a base pair with cytosine (C) using three hydrogen
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bonds. In canonical Watson-Crick base pairing in RNA, thymine is replaced
by uracil (U). 9
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