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Abstract
We study the generalization of the dispersionless Kadomtsev—Petviashvili
(dKP) equation in n + 1 dimensions and with nonlinearity of degree m + 1, a
model equation describing the propagation of weakly nonlinear, quasi one-
dimensional waves in the absence of dispersion and dissipation, and arising in
several physical contexts, like acoustics, plasma physics, hydrodynamics and
nonlinear optics. In 2 4+ 1 dimensions and with quadratic nonlinearity, this
equation is integrable through a novel inverse scattering transform, and it has
been recently shown to be a prototype model equation in the description of the
two-dimensional wave breaking of localized initial data. In higher dimensions
and with higher nonlinearity, the generalized dKP equations are not integrable,
but their invariance under motions on the paraboloid allows one to construct in
this paper a family of exact solutions describing waves constant on their
paraboloidal wave front and breaking simultaneously in all points of it,
developing after breaking either multivaluedness or single-valued dis-
continuous profiles (shocks). Then such exact solutions are used to build the
longtime behavior of the solutions of the Cauchy problem, for small and
localized initial data, showing that wave breaking of small initial data takes
place in the longtime regime if and only if m(n — 1) < 2. Lastly, the analytic
aspects of such wave breaking are investigated in detail in terms of the small
initial data, in both cases in which the solution becomes multivalued after
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breaking or it develops a shock. These results, contained in the 2012 master’s
thesis of one of the authors (FS) [1], generalize those obtained in [2] for the
dKP equation in n + 1 dimensions with quadratic nonlinearity, and are
obtained following the same strategy.

Keywords: generalized dKP equations, exact solutions, small data Cauchy
problem

(Some figures may appear in colour only in the online journal)

1. Introduction

In this paper we investigate the following generalized dispersionless Kadomtsev—Petviashvili
(dKP) equation

(ut + umux)x + AL” = 0’ u= M('x’ f’ t) S Ra

n—1
a =0 V=0 s o) ERTL a1 ER, (1D
i=1

in (n + 1) dimensions, where (m + 1) is the degree of nonlinearity, and m, n € N*.
Hereafter, we refer to (1.1) as the dKP(m, n) equation. Equations (1.1) contain, as particular
cases, the integrable (through the method of characteristics) Riemann equation [3]

u, + u"u, =0 (1.2)
for n = 1, the integrable dKP equation [4-7]

(u; + uny)y + uyy =0 (1.3)
for (m, n) = (1, 2), the nonintegrable Khokhlov—Zabolotskaya (KZ) equation [6]

(uy + uny)y + uyy, + uyy, =0 (1.4)
for (m, n) = (1, 3), and the nonintegrable modified dKP (mdKP) equation [8]

(u, + vluy), + uy, =0 (1.5)

for (m, n) = (2, 2).

Equation (1.1) describes weakly nonlinear and quasi one-dimensional waves, with
negligible dissipation and dispersion, if the linear approximation of the original theory is
given by the (n + 1)-dimensional wave equation, at least in some limiting cases like long-
wave approximation [2]. In equation (1.1) there are two competing terms: the nonlinear term
u"u,, responsible for the steepening of the profile, and the A u term, describing diffraction in
the transversal (n — 1)-dimensional hyperplane (reminiscence, through the multiscale
expansion leading to (1.1), of the diffraction described by the wave operator); therefore
diffraction increases as n increases [2]. The degree (m + 1) of nonlinearity originates from
expanding the nonlinear terms of the original PDEs in the power series, when the first m
powers of the expansion are absent due, usually, to some symmetry of the problem. In this
sense, the degree of universality of (1.1) decreases as the degree of nonlinearity grows (see
section 2). dKP(1, n), n =2, 3 are relevant in acoustics [2, 4-6], and also in plasma
physics [1, 2, 7] in long-wave approximation; dKP(1, 2) in hydrodynamics, again in long-
wave approximation [9, 10]; dKP(1, 3) and dKP(2, 3) in nonlinear optics [1]; and dKP(2, 2)
in the study of sound waves in antiferromagnets [11].
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We remark that equation (1.1) arises as the x-dispersionless limit of the natural gen-
eralization in n + 1 dimensions and with nonlinearity of degree m + 1:

Uy + Upr +U"u)y E Au=0, u=ulx,y, 1) eR (1.6)

of the 2+1 dimensional Kadomtsev—Petviashvili equation [7]
(4 Uy + uny)y Tuyy =0, u=u(xt)cR. (L.7)

This equation is integrable by the classical inverse scattering transform (IST) [12-15] (see
also [9, 10, 16]) and the corresponding inverse problem has been used to construct the
longtime behavior of its solutions [17-20].

Apart from the Riemann equation (1.2), integrable by the method of characteristics, in the
family of equations (1.1) only the dKP equation (1.3) is integrable through a novel IST for
integrable dispersionless PDEs [21-23], recently made rigorous in [24] on the example of the
Pavlov equation [25]. This IST allows one to show, in particular, that solutions u (x, y, t) of
dKP depend on x through the combination x — 2ut [26]; i.e., these solutions can be written in
the characteristic form [26, 27]

u=F(, vy, 1, (=x-—2F(Cy, t, (1.8)

in analogy with the case of the Riemann equation (1.2), for which the dependence of the
solution u (x, ¢) on x is through the combination x — u™t. For this reason, the IST for dKP can
be viewed as a significant generalization of the method of characteristics. Formulation (1.8)
has allowed one to study in an analytically explicit way the interesting features of the gradient
catastrophe of two-dimensional waves at finite time [26, 27] and in the longtime regime [26]
in terms of the initial data.

Other examples of dKP(m, n) equations are not integrable; therefore the possibility of
investigating a generic wave breaking through equations like (1.8) and the precise form that
these equations should take are, in our opinion, challenging open problems; in addition, blow-
up of the solutions is expected for sufficiently large m [8] to complicate the picture. In recent
papers [28] and [29], f.i., the formal dependences x — ut and x — u™t, respectively, moti-
vated by the y independent limit, were used to study the breaking features of dKP(1, 2) and
dKP(m, 2), respectively, together with its dissipative and dispersive shock formations,
respectively.

In our paper we shed some light on the problem of finding a convenient characteristic
form of the type (1.8) for the study of the wave breaking of dKP (m, n) solutions, (i) from the
construction of a family of exact solutions of dKP(m, n) exhibiting wave breaking, and (ii)
from the construction of the longtime behavior of solutions of the Cauchy problem of
dKP(m, n), for small initial data.

Indeed, after showing in section 2 the universality of (1.1) starting from a family of
nonlinear wave equations, in section 3 we use the invariance of the dKP(m, n) equations
under motions on the paraboloid, to construct a family of exact solutions involving an
arbitrary function of one variable, and describing waves constant on their paraboloidal wave
front, breaking simultaneously in all points of it, and developing, after breaking, either
multivalued overturning profiles or single-valued discontinuous profiles (shocks). Then we
use in section 4 such solutions to build a uniform approximation of the solution of the Cauchy
problem, in the longtime regime and for small and localized initial data, showing that such
small and localized data evolving according to the dKP(m, n) equation break, in the longtime
regime, iff m(n — 1) < 2. In 5 we study the analytic aspects of such wave breaking, given
explicitly in terms of the initial data, providing, in particular, a description of the overturning
profile and of the development of a shock immediately after breaking; we concentrate, in
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particular, on the mdKP (1.5) case and on its comparison with the already known dKP (1.3)
case. The results of this paper, contained in the 2012 master’s thesis of one of the authors (FS)
[1], generalize analogous ones for the dKP(1, n) equation in [2], and are obtained following
the same strategy.

We end this introduction considering the following consequence of these results: for the
family of exact solutions of dKP (i, n) and for the longtime asymptotics of the solutions of
the small data Cauchy problem, the dependence of the solutions u(x, ¥, t) on x is, f.i.,
through the combinations x — c,;,lnu’”t, if ¢y, > 0, and x — u™tlogt, if ¢, = 0, where

m(n — 1)
— 5

Therefore this dependence involves in a simple way the degree m + 1 of the nonlinearity and
the dimensionality n 4 1 of the problem through the coefficient c,, ,, and it is consistent with
the case of the Riemann equation (1.2), for which ¢, ; = 1, and with the dKP equation (1.3),
for which ¢, = 1/2 (confirming the apparently mysterious factor 2 in (1.8)); it is not
consistent, in contrast, with the formal dependence x — ™t used in [29].

In analogy with the dKP case, the results of our paper seem to suggest the following
conjecture (admittedly a weak conjecture, due to the absence, in the generic case, of an IST
generalizing the method of characteristics).

Conjecture. The solutions of the dKP(m, n) equation around breaking, for ¢, , > 0, are
described by the following characteristic formulae:

u= G(C$ y’ t)’
¢= {x — G (G T, 01, if G > 0,

Con =1 — (1.9)

. (1.10)
x—G"™(, ¥, titlogt, if ¢y = 0.

This paper is dedicated to the memory of S. V. Manakov.

2. Universality and applicability of dKP(m, n)

The universality (and therefore the applicability) of (1.1), through a multiscale expansion, is
well described by the following simple model: the family of nonlinear wave equations

(f W) = Aw, A= anazi, w=wX,T). (2.1
i=1

For small amplitudes: w — ew, 0 < € < 1, we substitute in (2.1) the nonlinear term by its
Taylor expansion

f(ew):f(O)+f’(0)6w+%f”(0)62w2+ (2.2)

obtaining, at O(¢), the wave equation

wrr = c2aw, c=1/Jf0), (2.3)

where f/(0) is assumed to be positive.

If the waves are quasi one-dimensional and we choose X as the direction of propagation,
the wave vector in the transversal directions is small: lq_ = €“K,, where kl is the transversal
wave vector and v > 0 has to be fixed. Then the dispersion relation becomes [2]
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) 2
) R R
w = c\/klz +k, =ck, |1+ 62ak—é o~ ckl(l + 62&?} 2.4)

1 1

and the phase of a monochromatic wave reads

I o ce™R?
k- X —wl=kX —cT)+ €R. - X, — 5 FT’ (2.5)
1
motivating the introduction of the new variables
X X — T,
y = EGXL, =Xy, i=1,...,n—1, (2.6)
t = 2l
2

Rewriting (2.1) in the new variables and imposing o = 1/2 to get the maximal balance, one
obtains, at O (¢?), the dKP(1, n) equation

(u; + uuy)y + Aju=0, 2.7

where u = —%2 "(0)w, and A, is the transversal Laplacian given in (1.1b).

If the term f'/(0) vanishes, the maximal balance must involve the cubic term; if also
f""(0) = 0, the maximal balance must involve the quartic term, and so on. In the very special
case in which f@(0) =0, [ =2, ...m, and f*D(0) = 0, the maximal balance must
involve the term of order m + 1, and is achieved for o« = m/2 at the first nontrivial order
O(e™*1), obtaining the dKP(m, n) equation (1.1), with u = CY/my and
C2f(m+ 1) (0)

m!

C:=— 2.8)

if m is odd, and
(u; — sgn(fD(0)) u™uy), + Au =0, (2.9

with u = |C|"/™w, if m is even.
The above considerations explain well why equations (1.1) are less and less universal and
applicable as m increases.

3. Exact solutions of dKP(m, n)

It was observed in [2] that dKP(1, r) is invariant under the following Lie symmetry group of
transformations:

n—1
T o= x4 (6, — 67),
i=1 ) 3.1
o=y — 201, j=1L-,n—-1,

=t

where 6;, j=1,...,n — 1, are the arbitrary parameters of the group, leaving invariant the
paraboloid

1 I’l*l
E=x+—>y. (3.2)
4t =



J. Phys. A: Math. Theor. 49 (2016) 405203 F Santucci and P M Santini

Such a symmetry was used to construct a family of exact and implicit solutions of dKP(1, n)
exhibiting wave breaking and playing a relevant role in the longtime regime of the small data
Cauchy problem for dKP(1, n) [2].

Since dKP(m, n) is also invariant under the transformation (3.1), following the same
strategy as in [2], such a symmetry will be used in this section to construct a family of exact
and implicit solutions of dKP(m, n). In this paper we also add, to the exact solutions exhi-
biting a gradient catastrophe and multivaluedness after breaking, the exact weak solutions of
dKP(m, n) developing, after breaking, single-valued discontinuous shocks of a dissipative
nature.

Therefore we look for localized solutions of (1.1) in the form

n—1
u=v@0,£=x+i§)ﬁ (3.3)
4t 50

reducing (1.1) to the (1 4 1)-dimensional PDE

n—1

vy + v + v=0. 34
t 3 Y 3.4
The following change of variables
n—1
v(§ D=1 247, (3.5)

where

1 .
— tn + o, ifcy, =0

T (Z‘) = Cm,n

: (3.6)
Int + 8, if Cpp =0

o, 3 are real constants and the coefficient c,, , is defined in (6.1), transforms (3.4) into the
Riemann equation (1.2) in the variables (&, 7)

4, + q"q. = 0. (3.7
We recall [3] that (3.7) has the general implicit solution
qg=AQ), (=§-A"(OT < qg=AE—q"7), (3.8)

where A is an arbitrary differentiable function of one argument. If, in particular, A describes a
localized positive hump, the solution breaks first at 7 = 7, on the characteristic ¢, where

. 1 1
Tb:m1n<(— — - ): — — - > 0. 3.9
mA"(OA'(C) mA™ (A (Gy)
For 7 > T, the solution becomes multivalued and not acceptable in many physical contexts.
Alternatively, for 7 > 7, the regular multivalued solution can be replaced by a weak solution,
a single-valued shock of a dissipative nature, whose wave front discontinuity s(7) is
described by equations [3]
ds _ 1 ATNQ-aIG)
dr — om+l A -AK) (3.10)
s =G+ AT =G+ AT,

with the initial conditions

$() = & () = () = G, @3.11)
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Figure 1. Plotting of the exact solution of the mdKP equation (1.5) (¢, = 0), before, at
and after breaking. Here we have chosen A(x) = e consequently: ¢, = 1/2,
™Hn=+€/2, K= eve/2,

Behind and ahead the shock, the solution is given by

_ fa = A, €< s,
q = A(C1), if &> s(7),

where ¢, and g, are respectively the maximum and the minimum among the (three, in the case
of a single hump) branches of the implicit equations (3.8).

We remark that 7(¢) in (3.6) is a monotonically increasing function of #; to have it
positive, we choose the constants «, 3 and the r-intervals as follows:

(3.12)

tonn, 1> 0, if ¢y > 0,

Cm,n
T@) =4Int,t > 1, if ¢y =0, (3.13)
1 (to_lcm,nl _ t—lcm,,,l)’ t>ty, if Cmn < 0,

[ cmn |

Recalling (3.3), (3.5), and (3.13), the exact solutions of dKP(m, n) in the original
variables corresponding to (3.8) read

n—1
_nl 1 2 1 .
T2 A x—l—zzlyl —Eu’”t}t>0, lme’n>0
i=
. 1nfl
u=<1t"74 x—l—EZyiz—umtlnt,t>l, ifcpp,=0 (3.14)
i=1
a1 = 2 T A )
t 2Ax+;zlyl—mut(g) — 11|, t > 1o, lme,n<0,
i=

where ¢, , is defined in (6.1).

If, again, A is a localized hump, (3.14) describes a wave constant on the paraboloidal
wave front (3.2) and simultaneously breaking on it. More precisely, the solution breaks at
time t, defined by

tb = {(cm,nTb)l/Cm'ns lf Cm,n > 0’

3.15
em, if Cpn = 0, @.15)
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204
10/

Figure 2. Plotting of the exact solution of the dKP(3,2) equation (c3, < 0) before, at
and after breaking, and before freezing. Here we have chosen A (x) = e and to = 2;
consequently: ¢, = 1/2, m = V€/2, and ¢, e > Tp|cm.q|- Therefore the solution
breaks, according to (3.17), at f, = 11.49, before freezing.

on the paraboloid

1 n—1
Xm0 = G AT (3.16)
b =1

where 7, ¢, are defined in (3.9) (see figure 1).

=l

If cpp <0, 7(t) = 7(00) = |cm,,,|‘lt0 as t — oo, and the wave freezes asympto-

tically. If ¢, lemal > Tp|Cm.ul, then 7(c0) > 7, and the wave breaks before freezing at
ty = (6 1" — Tylep ) V1enal, (3.17)

on the paraboloid (3.16) (see figure 2). If, instead, ¢, el < TplCm.nl> then 7(c0) < 7, and no
breaking takes place before the wave freezes.

Ifn=1, Vm, (3.14) reduces to the general solution u = A(x — u™t) of the Riemann
equation (1.2). Subcases of the above solutions in the multidimensional context were obtained
in [30] for the KZ equation (1.4), in [31] for the dKP equation (using its nonlinear Riemann—
Hilbert inverse problem), and in [2] for the dKP(1, n) equations.

After breaking: t > t,, the regular multivalued solutions (3.14) can be replaced by the
discontinuous single-valued solutions of dKP (2, n) obtained using (3.3), (3.5), and (3.13) in
(3.10), (3.11), and (3.12). More precisely, for t > #,, where #, is defined in (3.15) and (3.17),
the dKP(m, n) solution described by (3.14) for ¢ < #, develops a shock on the parabola

L =50, S0 =s@0), (3.18)

where s(7) is characterized by equations (3.10) and (3.11), and 7(¢) is defined in (3.13).
Behind and ahead the shock, the solution is given by

(. ¥, 0, ifx + 2 < S,
u= ’ (3.19)

w(, ¥, 0, ifx+ 2> S0,

where u, and u; are respectively the maximum and the minimum among the (three, in the case
of a localized bump) branches u; 5 = ¢t~/ *A(( ) of the implicit equations (3.14).

We end this section remarking that, as already mentioned in section 1, in the above class
of exact solutions of (1.1) the dependences of u on x through the combinations x — cnj’bu’"t
(f Cpn > 0), x — ut log (if ¢,y = 0), and x — |Cpn| ™ u™t [(2/t0)lnsl — 1] (if ¢,y < 0) are
not consistent with the formal dependence x — u™t recently postulated to study the breaking
features of dKP(m, 2) in [29].
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4. The Cauchy problem for small and localized initial data and longtime wave
breaking

In analogy with [2], now we show the relevance of the exact solutions of the previous section

in the construction of the longtime behavior of solutions of the Cauchy problem of (1.1) for

small and localized initial data, showing in particular that small and localized initial data

evolving according to (1.1) break, in the longtime regime, only if m(n — 1) < 2 (¢, = 0).
For small and localized initial data of the type

ux,y,0) = apx, y), 0<ex 1 4.1)

evolving according to equation (1.1), the behavior of the solution may be approximated by the
solution of the linearized dKP(m, n) equation until nonlinearity becomes relevant.
For the O (¢) initial data, equations (3.7) and (3.9) imply that the breaking time is

H=0(@"™>1; “4.2)
so, the nonlinear regime for dKP(m, n) is characterized by the condition
onﬁﬁ,cmn>o
O(e(ﬂ”)’ Cmn = 0

t=0(" e ™) = 4.3)

where 771(-) is the inverse of (3.6), while, for ¢,,, < 0, large values of ¢ are not compatible
with (4.2), and a nonlinear regime never occurs.

So, for t < 77'(e™™), the solution of the Cauchy problem is approximated by the
solution of the linearized dKP(m, n) equation, while for t ~ 7—'(¢~"), a matching will be
made between the linearized solution and the exact solution (3.14).

In the linear regime, when 0 < r < O(7~'(¢7)), the dKP(m, n) solution is well
described by that of the linearized dKP(m, n), i.e.:

u('x7 y” t) ~

€ - - kf -
1o (ki, k) )ex kix + k. -y — —1) |dkdk 4.4
(mnfnuo(l L) p[m - )] k(44

where
ot £) = [ (e, )expL—ix + K. - 5)1dvdy.

In the longtime regime
1<t O (e™), 4.5)

the multiple integral can be evaluated by the stationary phase method, which gives [2]

_n—1 1t y
ulx,y,t)~t 2 eGlx + — 2 2 4.6
(x, ¥, 1) ( py ;y, ZI) (4.6)
where
R 1 n=1 N T
G 7)== — f dky |ky| 2 dig (ky, Tiky) exp [1k1§ —1(n — ])Z sgn(k])]. 4.7)
2o VR
in the space-time region
@x =9/t y/t=00, i=1,..,n—1, (4.8)

on the paraboloid (3.2), and decays faster outside it. Therefore, small and localized initial data
are set, in the longtime regime (4.5) governed by linear theory, on the paraboloid (3.2).

9
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When nonlinearity becomes relevant, i.e., when t = O(7~!(¢™™)), the asymptotic
solution of dKP(m, n) is built matching the longtime solution (4.6), (4.7) of the linearized
Cauchy problem with the exact solution (3.14). If, fi., ¢, , > 0, the first argument £ of
function G (&, 7j) defined in (4.7) is replaced by £ — c,;j, u™t, or, equivalently, the arbitrary
function A(¢) in (3.8) acquires dependence on the second argument 7j = y'/2¢, and is
identified with G. As a result of this matching, in the nonlinear regime (4.2), (4.3) the solution

reads

u(x, y’ t) = urftfn(x7 }_f’ t)’

1 n—1 .
2 EG(X + 3y - %) Cmn > 0,
) ~ -
u®,(x, 7,1 = ’ 1 4.9)
n—1 . y
2 eG(x + iZyz — u"t Int, V), Cmn = 0,

2t

with ™t = O(1) for ¢, > 0, and u™t logt = O(1) for ¢,,, = 0, becoming infinitesimal in
the linear regime, as it has to be.

For ¢, , < 0, the solution is described by its linear form (4.6); therefore wave breaking
takes place for the particular values of (m, n) described by the condition

Cm,n 2 0 <~ m(n - 1) < 2; (410)

i.e., for

n=1|n=2 n=23

Vm m=12|m=1 @.11)

Forn =1, Vm,u,’, reduces to the general solution of the Riemann equation (1.2) [3]. The
cases (m, n) = (2, 1) and (m, n) = (3, 1), the dKP and the KZ equations, have been already
investigated in [26] and [2] respectively; therefore, in the following section we mainly focus
on the case (m, n) = (2, 2), corresponding to the nonintegrable mdKP equation (1.5) and to
its asymptotic solution
1 y? y
u~u®(x, v, 1) =—eG|x +  — u?tlnt, =|, 4.12
22(6, ¥, 1) 7 ( 4 > (4.12)
comparing the results with the dKP case (m, n) = (1, 2) investigated in [26], with its
asymptotic solution

u >~ u(x l‘)_LfG x+y—2—2ut A (4.13)
= M2t N 4¢ T2t '

Remark 1. The estimate of the first correction to the asymptotics (4.9) reads
@6, ¥, (1 + 0@ h). (4.14)

u==u

Indeed, if ¢,,, > 0, one has

fl+CZn n—1 )—)»
U~ Uy, (6, Y, 1) + Hlx+—=>y2, =, 7|, (4.15)

n—1
t 2
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where 7 = ™7 and H (&, 7}, 7) is expressed in terms of G ((, 7}) (€ is defined in the second
equation of (5.1)), through the PDE

( H. + G"H ] 1 nl( G,
1 + mG™ G 7 c 4(Cpp ) Fm =

= 0. 4.16
1+ mG’”lGﬁ)” ( )

Since, from (4.3), emnn = O(t"), equation (4.15) yields (4.14). Similarly, if c,,, = 0,

n—1 -
(X+L2y,1 ) (4.17)

U~ u, (x,y

l 2

where H (€, 7}, 7) now solves the PDE

H 1'& Gn,
— | == Z — 1. 4.18)
1+ mG’"*ngvT 4 = 1+ mGm™ IGCT

Then equation (4.17) yields equation (4.14) too.

Remark 2. The leading term (4.9) of the solution of the Cauchy problem of (1.1), for small
and localized initial data (4.1), combines in a simple way features of the linearized theory,
described by equations (4.6) and (4.7), and of the exact lower-dimensional solutions (3.14)
describing a wave constant on its paraboloidal wave front and simultaneously breaking on it.
In particular, the dependence of (4.9) on the first argument, describing the wave breaking in
the longitudinal direction, is the same as in the exact solutions (3.14), while the dependence
on the remaining n — 1 arguments, describing the localization properties of the wave front
and, therefore, its multidimensionality, is the same as in the linearized theory (4.6), (4.7).

Remark 3. As is observed in [2], for a Gaussian initial condition

x2

22
J] (4.19)

&+

ug(x, y) = d exp[—

where d is constant, the asymptotic solution can be written in terms of special functions,
obtaining for G (&, 7)):

G, 1)
2
d;n“[cos( (n—l)) (n+1)1F1(n+l7l’_Y_)
T UT A+ ) 4 4 4 2 4
+sin( (n — 1)) (”“)YIFI( ; ;—Y;)] (4.20)
where
y— S5 4.21)
1+ 7

I'is the Euler gamma function and £ is the Kummer confluent hypergeometric function
[32, 33]. For n = 2 and d = /2, it yields, respectively:

11
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Figure 3. Plotting of function (4.22).
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shown in figure 3.

Remark 4. The fact that small data break only when inequality (4.10) is satisfied is expected
from physical considerations. Indeed, as already mentioned in the introduction, in
equation (1.1) there are two competing terms: the nonlinear term u™u,, responsible for the
steepening of the profile, and the A u term, describing diffraction in the transversal
(n — 1)-dimensional hyperplane (reminiscence, through the multiscale expansion leading to
(1.1), of the wave operator); therefore diffraction increases as (n — 1) increases [2]. For small
initial data, the u™u, term initially becomes smaller and smaller increasing m, and the solution
evolves in a linear way for longer and longer time, diffracting transversally through the
(n — 1) diffraction channels. So, diffraction, increasing with (n — 1), acts on a very long
time, increasing with m, before the nonlinear regime could become relevant, and if (n — 1) or
m is sufficiently large, one expects that the solution would be diffracted away almost
completely, before reaching the nonlinear regime, and will not break. We find, in particular,
that breaking takes place in the following longtime regimes (see (4.3)):

m = n = 1 (the Riemann equation with quadratic nonlinearity): #, = O (¢~');
m =1, n =2 (the dKP equation): #, = O (e 2);
m =1, n =3 (the KZ equation): f, = O (e );
m =2, n = 1 (the Riemann equation with cubic nonlinearity): f, = O (¢2);
m =2, n =2 (the mdKP equation): O (#, = e ).
It is interesting that, as observed in [2], if m = 1 (the physically more relevant case),
wave breaking takes place only for n < 3; i.e., in physical space!

We end this section remarking that also in the longtime behavior of the solutions of the
small data Cauchy problem for equation (1.1), the dependence of the solution u on x, as in the

12
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case of the exact solutions (3.14), is not consistent with the formal ansatz recently made
in [29].

5. Analytic aspects of wave breaking

In this section we use the longtime behavior of solutions of the small data Cauchy problem for
dKP(m, n) to show explicitly the analytic aspects of the solution in the neighborhood of the
breaking time in terms of the initial data, represented by function G defined in (4.7), as
already done in [2, 26].

Choosing ¢, , = 0, we rewrite equation (4.9) in the characteristic form

q~ ¢G(, ),
£ = e"F(C T m)T+ ¢ F(G T m) = GG, ), 5.1)
where
n-l S y
=ut 2, =x+ — 0, M= 52
q=u §=x+ - ]Z:]y, n= (5.2)
and

tmn, if ¢, > 0,
T(t) — Cim,n ’ (5‘3)
Int, if ¢, = 0.

One solves the second equation of (5.1) with respect to the parameter (, obtaining
¢ (&, 1}, 7), and substitutes it into the first, to obtain the solution g ~ ¢G (¢ (&, 7, 7), 7j). The
inversion of the second equation of (5.1) is possible iff its (-derivative is different from zero.
Therefore the singularity manifold (SM) of the solution is the n-dimensional manifold
characterized by the equation

SGAT =14 R hmr=0 = r—-— L (5.4)

€"F(C, 7, m)
Since

eVieinG (1)

[ (5:5)

Vemd =
the slope of the localized wave becomes infinity (the so-called gradient catastrophe) on the
SM, and the n-dimensional wave ‘breaks’ except on the direction represented by the vector
field V = Zj;llam + me"Gm! (z;l;llc;,h_)a5 [2, 27], on which:

n—1
Vg=¢€>.G,. (5.6)
i=1

Since the KZ case (m, n) = (1, 3) has been studied in detail in [2], in the following we
mainly concentrate on the mdKP case (m, n) = (2, 2), and we compare it with the dKP case
(m, n) = (1, 2) investigated in [26].

From (5.4), the first breaking time 7, and the corresponding characteristic parameters
zb = (G 1p,) are defined by the global minimum of a function of the two variables (¢, 7):

13
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1 . 1
Th = ———————— = lnf - > 09 (5'7)
€"F (Gys 1y m) e"F (G, 15 m)
and it is characterized, together with the condition F; (Zb; m) < 0, by the following equations:
¢ (G m) = Fy (G m) = 0

5 S o R (5.8)
a = Fee (G m) By (G m) — Fiy (Gym) >0, Fee(Gy; m) > 0.

. The corresponding point at which the first wave breaking takes place is, from (5.1),
& = (& my) € R%, where:

> F (G m)
&= G+ €"F (G mm = G, — —2—. (5.9)
F(Gys m)
Now we evaluate equations (5.1) and (5.4) near breaking, in the regime:
£:§b+£l’ 77:"71,"'77/’ T=m+ 7, C=Cb+C’, (5.10)

where &', 0/, 7/, (' are small. Using (5.7)—(5.9), the second equation of (5.1) becomes, at the
leading order, the following cubic equation in (’:
P+ am?+ b0, N —AXE 0, 7)) =0, (5.11)
where
N _ 3B
a(n’) ek

b(n/’ )= %[2}2‘7— + annnlz],

(5.12)
X(gl’ 77/, 7'):f/_EF(Cb’ le+77’)7’—6[F(Cb, 77b+77/)_F]7'b’\‘
/7i/,_~7 EI'] 12 Fr/ Iz Fuuu /3 76“'“
AL v Ty k1T T e R
and
/ _
=l I (5.13)
Th Th

corresponding to the maximal balance
I L= o372, Xl = 0(FP/?). (5.14)

In (5.12) and in the rest of this section, G, F = G™ and all their partial derivatives whose
arguments are not indicated are meant to be evaluated at ¢, = (¢, 7y)-
The three roots of the cubic are given by the well-known Cardano-Tartaglia formula:

@, M) = =5+ A + A,

(5.15)
e = —4 L@t + @l = i - @b,
where
AL =R+ JA (5.16)
and the discriminant A reads
A =R?+ 03, (5.17)
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with
/sy 3b—a> 21Kl o)
Q' 7)== = T+t
R, 7) = 2IXE 0, ) + 2 + 5000, 7). (5.18)

At the same order, function S in (5.4) becomes

S(C/, Tl', T)=—-7+ ﬁ[FchC/z + 21%@4/77/ + FCrmn/z]

2
%(Qm )+(C+§%ﬁ)- (5.19)

Known ¢’ as the function of (¢/, n’, 7) from the cubic (5.11), the solution ¢ and its gradient
are then approximated, near breaking, by the formulae:

q&n, 1)~ GG+ ny + 1) =€(G+ G+ G + O(7)),
Ve GG+ ¢ omy 1) (5.20)
S\ 7)

Vemq ~ €

Before breaking

Before breaking: 7 < 7, (7 < 0), the coefficient Q in (5.18) is strictly positive (see the second
equation of (5.8)); then the discriminant A = R? 4 Q3 is also strictly positive and only the
root ¢ 6 is real. Correspondingly, the real solution ¢ is single-valued and described by Car-
dano’s formula and by (5.20). In addition, function S in (5.19) is also strictly positive and
Ve q is finite V' £, 1.

To have a more explicit solution than that provided by Cardano’s formula, we first
restrict the asymptotic region to a narrower area, so that the cubic (5.11) reduces to the linear
equation h(’ = vX, and X contains only linear terms. This is achieved by choosing:

0 =0GF), X =0, L S <p <l cp (5.21)
implying
(=00,
X=& 4 i+ 7+ oG ) =& + 2 + .57+ o(rt,
bo'=X = (e Sy ) (5:22)
Then
’ i ! 1 EGC 1 " 1
qg=eG(G+ ¢ n+n)~eG+eG( ~e€ 1—; G—— &+ —Cn . (5.23)

Since g ~ €G, and recalling the definitions (5.7), (5.13), it follows that g is described by the
exact similarity solution

1

G,/G)n' y»

q ~ (M) (5.24)

7_/

of equation (3.7).
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The cubic is also simplified in the asymptotic region in which &’, n’ are of the same order
while 7/ < O(|n']), reducing to ¢’> = X, so that the solution ¢ and its gradient are

q~ eG(G + Y WX ', 7)., + 1) (5.25)

37 eVenG
Ve d ~ £¢ (5.26)

3 Yx2¢ ', )

At breaking

When 7 = 7, the SM S (5.19) is positive everywhere in the (£, n7) plane, except at the
breaking point (&, 77,), in which it is zero, together with Q, R and the discriminant A. The
solution g is well described again by Cardano’s formula and by (5.20). To have a more
explicit solution than that provided by Cardano’s formula, we choose &', 1’ of the same order,
the cubic (5.11) reduces to (’* = vX and equations (5.25) become

g~ G+ YXE&, 17,0, n,+1n)
Vi €Ve,G (5.27)
3 Yx2¢, 0, 0)

Venq ~

The expression of Xy, (¢, 7j") = X (&', 7}, 0) is given in (5.12): Xy (&', /) ~ &' — |2|”/

F;W

if & oc i’ but & = (F/F)n’, while X (¢, 0/, 0) = —mn’z if ¢ = (F,/E)1.

Equation (5.27) implies that all the derivatives of g blow up at 7 = T, in the breaking
point (§,, n,,), with the universal law X 2/3_ except the derivative along the transversal line
Xy (&', 1, 0) = 0, represented by the vector field V = 0, — Xby0¢ (compare with (5.6)), for
which [2, 27]

Vdlg,ny = Gy, (5.28)

After breaking I: the overturning profile

After breaking, the solution becomes three-valued in a compact region of the (¢, 77) plane (see
figures 6, 7), and, in general, does not describe any physics; nevertheless a detailed study of
the multivalued region is important, in view of a proper regularization of the models.

If 7> 7 (F > 0), in the regime (5.14), the SM equation S = 0:

2|FC|7~— = FCCCCQ + 2FCC7]</77/ + FCm]n/Z (529)

describes an ellipsoidal paraboloid in the ((’, 7', 7) space, with the minimum at the breaking
point (&, 7).

One can check that, eliminating ¢’ from equations (5.29) and (5.11), one obtains the SM
equation in space-time coordinates, coinciding with the equation A = R? + Q3 = 0, where
A is the discriminant (5.17) of the cubic (5.11), and Q and R are defined in (5.18). Such an
equation can be satisfied only if Q < 0O; i.e., only if

'l < 0y (5.30)
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Figure 4. Plotting of the analytic solution g (£, 1, 7) defined in (5.20) corresponding to
dKP (m = 1), for G given by (4.22), ¢ = 0.2, attimes 7 =0, m — 2, 7, 7 + 2.,
where 1, = 6.57.

where

2IFIR
Mo ) = | VT (531)

and is given by the following analytic and universal expression

F F E E, Fy, 1

/ o) ~ m 12 [l ¢ > 2
f — n — —T — s — + =T+ —— —F, F
{ K| | % 2| K| (“Cl ICCC) 6“4“6244[ KA

AR 132 @ 12 2)3
+ By GReec By = 2Fg) 1Y = gpe (U1, (1) — 0.

(5.32)

Equation (5.32) describes a closed curve with two cusps in the (£, 7) plane at the points

€)= G 1) + (€6, (7). £0], (D). (5.33)
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Figure 5. Plotting of the analytic solution g (£, 7, 7) defined in (5.20) corresponding to
mdKP (m = 2), for G given by (4.22),¢ = 0.2, attimes7 =0, © — 4, m, 7+ 4.,
where 1, = 14.31.

where

, 2F, F, F
g8 () ~ £, | =T 4 LIS PSR (5.34)
alF| |£2| «

where B = O(1) (see figure 6 for dKP and 7 for mdKP), corresponding to the conditions
QO = R = 0, on which the three real solutions of the cubic coincide (in 1 + 1 dimensions, it is
not possible to have three coincident solutions!):

F, F,
Co=C= -y, = gy=q, = ~e|G+ |G, — G| (5395
Feee Feee

On the remaining part of the closed curve A = 0, two of the three real branches coincide.
Outside the closed curve, A > 0 and the real solution g is single valued; inside the closed
curve, A < 0 and the real solution ¢ is three valued, with the three branches

qg=€eG(+ ¢ ny+ 1)~ e(G+ Gl + G + OF)), (5.36)

where (' represents the three real solutions of the cubic (5.11) (see figure 4 for dKP and
figure 5 for mdKP).
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Figure 6. Plotting of the three-valued region of the (£, n) plane for dKP at times
7 =202, 04, 0.5 for G given by (4.22) and ¢ = 0.2. The center of the square frame
is the breaking point (&, 1,). Notice that the two cusps have the same & coordinate
§c+usp(7—) ~ fc’usp(%) since, for solution (4.22), G, = 0 (see (5.31), (5.34)).
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Figure 7. Plotting of the three-valued region of the (£, n) plane for mdKP at times
7=20.2, 04, 0.5 for G given by (4.22) and ¢ = 0.2. The center of the square frame
is the breaking point (&, 1,,). Notice that the two cusps have the same ¢ coordinate
§C+usp(7~') ~ E;usp(%) since, for solution (4.22), F, = G, = 0 (see (5.31), (5.34)).

Such a three-valued region of the (¢, n) plane is characterized by the conditions

/ ~ — ~ + ~
'l < Moy s E4 (', ) < & < &0, ), (5.37)
where
ooy — B F Ew 12 LT/ VS S 2
T TR TR T AL A (|F<| - Fc«)nT arrim, T
F 3
+ Ry Ggckan = 2Fg) 10" + 577 108
(5.38)
(see figure 6 for dKP and figure 7 for mdKP).
Since
o e oo 2R i 42 [IR]
AL =& 1) = 0, 1) = S joar, PR < S [ (5.39)
3IE] 3\ F

we infer that the longitudinal width of the multivalued region is O (73/2); the transversal width
delimited by the two cusps is instead O (7'/2); therefore the multivalued region develops, at
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T = Ty, from the breaking point (&, 1), with an infinite speed in the transversal direction,
and with zero speed in the longitudinal direction. All these results are a common feature to the
class of dynamics (1.1) (see the previously derived results for the dKP equation, for finite time
[26, 27] and in the longtime regime [26], and those for the KZ equation in the longtime
regime [2]).

We end this subsection remarking that, as already observed in [27], since dKP(m, n) is
symmetric w.r.t. y, if the initial datum is also symmetric w.r.t. y, like the Gaussian (4.19), its
evolution will also be so: u(x, y, t) = u(x, —y, t). This implies that, = y, = 0, and that all
partial derivatives of F' and G containing an odd number of 7 derivatives are 0 at breaking. As
a consequence, the transversal direction in which the derivative of the profile does not blow
up is the n (y) direction, and, in it, the derivative is O at breaking (see (5.6)).

After breaking Il: the shock solution

As in the (1 + 1)-dimensional case of equation (1.2) [3], after the appearance of the singu-
larity at # = f,, the solution of (1.1) bifurcates into two different solutions: the regular but
multivalued solution described above, which may not be acceptable from physical con-
siderations, and a weak discontinuous solution, describing the development of a shock of a
dissipative nature.

Using the matching rules of section 3, the shock formulae (3.10) become

Is __em G" (¢, m) — GG, m)
or m+1 G, n—G(n

S=GF+ €"G"(CL,MT=C + "G (C, T (5.41)

where subscript 2 is for values behind the shock and subscript 1 for values ahead.
Equations (5.41) are two implicit equations for ¢; and (,: solving these equations yields
¢ (s, m, 7), ¢, (s, m, T), and, substituting these expressions in (5.40) results in a nonlinear first-
order differential equation for s. This equation and the initial conditions (3.11) uniquely give
s(n, 7) and, consequently, ¢ , (1, 7) = (,(s(n, T7), 1, T).

We recall that, immediately after breaking and if (5.30) holds, equation (5.41) reduces to
the cubic (5.11) and (5.12), in which £’ must be replaced by s’, possessing three real roots,
where

, (5.40)

s'(', 7) =5 — &, (5.42)
Therefore the values of ¢, and (, are chosen among the three solutions (5.15) so that

g, = €G (G, + C'z, 77) has the maximum value and g, = €G (¢, + Ci, 1) the minimum one
among the three branches of g. Since G; < 0, it follows that

G =max{¢g ¢\ G =min{¢G (L) (5.43)

To identify ¢ 2 with one of the three roots ( 6, § ;, let us rewrite them as follows

Gh= -2+ 2ypeos(2). (5.44)
3 3
, a 0 . (0
=737 W(COS(E) + «/§sm(§)), (5.45)
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-t alolt)- ()

where

JIA
p=~R? + |A], 0 := arctan( lR | ] (5.47)

We observe that, for 0 < 6 < 7, the following inequalities hold

—Cos (%) — ﬁsin(%) < —cos( ) + ﬁsm( ) < 2cos (%),
so that

¢ <<=+ m<aG+ L <a@+ Clm, (5.48)
for ¢ decreasing in (. Hence

Q' ) = 6 ' T, GGy =6, ). (5.49)
Then (5.40) reduces to the equations

jj+—+ 2+ SIC s B + ¢ ', DI =0, for dKP,

&t e 5 b+ 51 0 7+ (LG M =0, for mdKP, (5.50)

5'(0) = gb,

obtained after expanding (5.40) near the breaking point and recalling that 7 = 7//7,.

We remark that, in the differential equations (5.50), s” depends on 7’ parametrically. So,
the dissipative shocks of the longtime solutions of the small data Cauchy problems for dKP
and mdKP have a simple geometric construction: given 7 > 0, for any fixed || < Neusp> the
overturning profile in the (&, g) plane is intercepted by a vertical straight line cutting off
equal-area lobi, in analogy with the 1 4+ 1 dimensional case.

Going back to the dKP variables

The above formulae, written in the convenient variables ¢, &, 1, 7, are essentially the same
for both dKP and mdKP; relevant differences appear when we go back to the original
variables u, x, y, t inverting equations (5.2) and (5.3):

1 2 'r]‘rz 7]27'2
Uu=-—-q, t=—, y=-—, x= , for dKP,

f 4 2 4 (5.51)
u=-rq, 1= e, y=2ne, x=¢— n?’, formdKP,

and all the above universal formulae are easily transferred to the dKP(m n) equations. In
particular: small and localized initial data break, (i) at f, = 72/4 in the point
(b, yp) = (& — T%ni/“-, 1, 78/2) of the parabolic wave front x + y?/(4t,) = &, evolving
according to dKP, and (ii) at #, = e™ in the point (xp, y,) = (§ — nf’efb, 2n,e™) of the
parabolic wave front x + y?/(41,) = &, evolving according to mdKP. If, for instance, we use
the same Gaussian initial condition (4.19) for both dKP and mdKP, with ¢ = 0.2, then G is
given by (4.22) in both cases. Consequently, for dKP:
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Figure 8. Plotting of the analytic dKP solution « in the physical variables x, y, ¢, for G
given by (4.22) (corresponding to the Gaussian initial condition), ¢ = (0.2, at times
t=t — 3, t, t, + 3, where t, = 10.8.
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0.0000
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Figure 9. Plotting of the analytic mdKP solution u in the physical variables x, y, ¢, for
G given by (4.22) (corresponding to the Gaussian initial condition), ¢ = 0.2, at
breaking.

¢, =196, 1,=0, & =327, =657 (5.52)

and wave breaking takes place at #, = 10.8 in the point (xy,, y,) = (3.27, 0) on the parabola
x+231-1022 =327, and at breaking the amplitude of the wave is
u~ ety \2G (¢, ) = 6.02 - 1072 (see figure 8).

For mdKP:

¢, =161, n,=0, & =251, 7=1431 (5.53)

and wave breaking takes place at f, = 1.64 - 10° in the point (xp, ¥,) = (2.51, 0) on the
parabola x + 1.52 - 1077y?2 = 2.51, and at breaking the amplitude of the wave is
u= e, '2G((, n,) = 1.95 - 107* (see figure 9).

Since, in the mdKP case, #, is very large and the wave amplitude at breaking is very
small, we wonder if such wave breaking could be actually detected numerically.
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Figure 10. The first two figures show the three-valued region of dKP at times 7 = 0.03
and 7 = 0.05, for G given by (4.22), in the ({ — &,, 7 — 7,,) plane. The second and
third figures show the same three-valued region of dKP at the corresponding dKP times
t=t0+7)?2=1146 ¢ = % = 0.061) and r = 11.91 (7 = 0.102), in the (x, y)
plane.

Now we go into the analytic details. For the dKP case:

- ﬁ}m’ (5.54)
<y
implying
t=t(1+7)7? i="2=72+7). (5.55)

If we choose the analytic solution generated by the Gaussian initial condition, with ¢ = 0.2,
we have seen that wave breaking takes place at #, = T%,/4 = 10.8 in the point (xp, y;,) =
(& — Tent/4. m,73/2) = (3.27, 0) of the parabolic wave front x + y?/(43.2) = & = 3.27.
In this case, if, f.i., ¥ = 0.03, then t = 11.46 and 7 = 0.061. In addition,
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W= €= O Y - D, (5.56)
where

X =x—x Y=y—x. (5.57)

Y = W NN
T O( T )]
(5.58)

Using (5.54) and (5.56), the dKP solution reads:

W, y, 1) = =G (G + sy + 1) = —

€
G+ G+ G
NG 7 Gy

where (’ is the solution of the cubic (5.11) in which &', n’, 7 are replaced by their expressions
(5.54), (5.56).

Analogously, the three-valued region in the (x, y) plane, after breaking, is obtained by
substituting in (5.32) &/, i/, ¥ by their expressions (5.54), (5.56).

The obtained equation in the (x, y, ¢) variables describes a closed curve with two cusps at
the points

Tausp(D) = Wagp(ts g ) (5.59)
where
RO 2[ |2 ]zf ( \/2|F<|F<<C ]tb\/ﬁ — ‘/E, (5.60)
Cll§p a a \/E
and

Teasp®) ~ 3 = o [03® = 1) + 25, 0 — ) — 371

L F 2k N ( Fw&«)% (5.61)
£

Oél( a

(see figure 10).
Lastly, the transversal width of this multivalued region is Aaney ~ ( yctsp(t) — yC;Sp(t)),
while the longitudinal width in the (x, y) plane is the same as in (5.39):
2 |IKl 3

Apgng < = |[— (7)2. (5.62)
3\ F

It follows that

Atrcmsv = 0((tb \/_)) = (tb ﬁ \/_\/— ] (563)
Along (T) ( )
% —olX|=0
Atransv ty \/E(ﬁ + \/E)
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Figure 11. The first figure is the plotting of the three-valued region of mdKP at time
7 = 0.02, corresponding to t = 12 = 2.19 x 10° and % = 0.33, for G given by

(4.22), in the (§ — &, 7 — n,) plane. The second and third figures are different details
of the same three-valued region, but in the (x, y) plane of the dKP variables.

For the mdKP case:

7 = lntflntb, (564)

In #,

implying that

r=t, F=h =T (5.65)

Iy

and we choose a 7 sufficiently small to have 0 < 7 < 1. For instance, if we choose the
analytic solution generated by the Gaussian initial condition, with ¢ = 0.2, wave breaking
takes place at #, = 1.64 - 10° in the point (x,, y,) = (2.51,0) on the parabola
x + 1.52 - 1077y = 2.51. In this case, if ¥ = 0.02, then 7 = 2.18 x 10% and 7 = 0.33.
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The mdKP solution reads:
u(x, Vs t) = %G(Cb + Cls 77b + 77/)

€ V= wi Int—1n %
=—|G+ G/ + G + 0 , 5.66
ﬁ( CC n 2 ( )) ( )

In #

where ('’ is the solution of the cubic (5.11) in which &', 0/, 7 are replaced by their expressions
(5.64), (5.56).

Analogously, the three-valued region in the (x, y) plane, after breaking, is obtained by
substituting in (5.32) &', i/, 7 by their expressions (5.64), (5.56).

The obtained equation in the (x, y, ¢) variables describes a closed curve with two cusps at
the points

cusp(t) - (xcusp(t/) )’Cip(t)) (567)
where
2|F;|F; 2|F|F; —
o =2|n, I RIS tﬁNznbing@tlnt In#, (5.68)
P «@ o In #
and
Teasp®) ~ 3 = o [0Gp(® = 1) + 20, O — ) — 371
(5.69)
2FC€A FWF<<< ~
kK al k| \/_ (|F| @ )T

(see figure 11).
Lastly, we observe that the longitudinal width of the multivalued region in the (x, y)
plane is again the same as in (5.39):

3

A 4J_ 1Rl (In 7 —1n )2

Along X 5 ( ) 5
3V R 3 VB Ing

(5.70)

while the transversal width Aypey ~ (yjusp(t) Yeusp — (1)) becomes very large in a very short
time, due to the fact that, when breaking takes place the parabolic wave front is almost a

plane wave front. If, fi., we are in the explicit case described above, with 7 = 0.02 and
ty = 1.64 - 10

Aransy = O(Iﬁ) O(t Jr1\/_) ~ 8.74 x 10°. (5.71)

We end our considerations by remarking that, in the (x, y) plane, the ratio between the
longitudinal and transversal widths of the multivalued region is extremely small:
oty T+Dy ~ 0(1078); it follows that the multivalued region is essentially one-dimensional
(see the second and third figures in figure 11).

6. Conclusions

In this paper we have studied what we call the dKP(m, n) equation (1.1), the natural gen-
eralization of the dKP equation (1.3) in n 4+ 1 dimensions and with nonlinearity of degree
m + 1, a model equation describing the propagation of weakly nonlinear, quasi one-
dimensional waves in Nature, in the absence of dispersion and dissipation. Apart from the
subcases of the Riemann equation (corresponding to n = 1), integrable by the method of
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characteristics, and of the dKP equation (corresponding to (m, n) = (1, 2)), integrable
through a novel IST, the dKP (m, n) equations are not integrable. In spite of that, in this paper
we have shown that, if the initial data are localized and small, it is possible to solve analy-
tically the initial value problem for the dKP(m, n) equation, (i) showing that multi-
dimensional wave breaking takes place only if

1 - w >0, 6.1)

and (ii) studying in great analytical detail such wave breaking when it occurs.

An important role in obtaining these results has been played by a family of exact
solutions of the dKP (m, n) equation constructed in this paper, corresponding to its invariance
under transformations on the paraboloid

1 n—1
x + ” ZY,-Z = constant. (6.2)
L

These exact solutions, describing waves constant on their paraboloidal wave front and
breaking simultaneously on it, appear, together with the longtime behavior of the linearized
theory, to be the basic ingredients in the description of the asymptotic nonlinear regime of the
above Cauchy problem.
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