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ABSTRACT

Reducing hidden bias in the data and ensuring fairness in algorith-

mic data analysis has recently received signi�cant attention. In this

paper, we address the problem of identifying a densest subgraph,

while ensuring that none of two protected attributes is disparately

impacted.

Unfortunately, the underlying algorithmic problem is NP-hard,

even in its approximation version: approximating the densest fair

subgraph with a polynomial time algorithm is at least as hard a

the densest subgraph problem of at most k vertices, for which no

constant approximation algorithms are known.

Despite such negative premises, we are able to provide approx-

imation results in two important cases. In particular, we are able

to prove that a suitable spectral embedding allows recovery of

an almost optimal, fair, dense subgraph hidden in the input data,

whenever one is present, a result that is further supported by experi-

mental evidence. We also show a polynomial time, 2-approximation

algorithm, whenever the underlying graph is itself fair. We �nally

prove that, under the small set expansion hypothesis, this result is

tight for fair graphs.

The above theoretical �ndings drive the design of heuristics,

which we experimentally evaluate on a scenario based on real data,

in which our aim is striking a good balance between diversity and

highly correlated items from Amazon co-purchasing graphs.
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1 INTRODUCTION

The identi�cation of dense subgraphs is a fundamental primitive in

community detection and graph mining [19, 25, 35, 40, 46]. Given

an underlying graph G = (V ,E), the density of a node set S ⊆ V is

de�ned as
2· |E∩S×S |
|S | . In most mining scenarios, communities are

assumed to have a high intra-community density versus a lower

inter-community density. In this sense, density is arguably the

most natural measure of quality for evaluating and comparing

communities in graphs (see [12] for an extensive survey.)

In this paper, we consider the densest subgraph problem with

fairness constraints. Speci�cally, we are given a binary labeling of

the nodes of the graph ` : V → {−1, 1}. The labeling corresponds

to an attribute that ideally should be uncorrelated with community

membership. Our goal is to compute a set of nodes S ⊆ V of

maximum density while ensuring that S contains an equal number

of representatives of either label. The problem has a number of

motivating applications, some of which are discussed below.

Mitigation of Polarization. Social networks are very prone

to polarization among users [9]: reinforcement of user preferences

can lead to feedback loops. For example, recommender systems

incentivize disagreement minimization, leading to echo chambers

among users with similar preferences. This problem has been con-

sidered for example by [34], who studied the problem of identifying

a graph of connections between users (of two di�erent opinions),

such that polarization and disagreement are simultaneously mini-

mized. The notions behind the fair densest subgraph problem are

closely related: Its goal is to maximize agreement while avoiding

polarization
1
.

Team Formation. In crowdsourcing, team formation consists

in identifying a set of workers, whose collective skill set incldes

all skills that are required for processing some given jobs. Lappas

et al. [30] proposed subgraph density as a way of modeling the

e�ectiveness of multiple individuals when working together. The

potential bene�ts of team diversity are well documented in orga-

nizational psychology [24] studies and also highlighted by recent

work (e.g., see [32] and follow-up work). Diversity in turn can be

naturally modeled via fairness constraints.

Diversity in Association RuleMining. Sozio and Gionis [43]

study dense subgraphs for association rule mining: Given a set of

tags used to label objects, the densest subgraph problem allows

to determine additional related tags that can be used for a better

description of the objects. It is common that the tags that are added

are semantically identical to those already used. We argue that an

appropriate labelling of the tags followed by solving the fair densest

1
The paper by [34] is similar in spirit, but very di�erent in terms of problem modelling.
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subgraph problem allows recovery of a set of tags that are not only

closely related, but also unique.

Algorithmic Fairness. As pioneered by Chierichetti et al. [14],

there has recently been considerable work on clustering data sets

using the disparity of impact measure. Conceptually, the aim is to

perform data analysis such that the resulting clustering or classi�er

does not discriminate based on some protected attribute. In our

case, �nding a densest subgraph such that a protected attribute is

not disparately impacted is equivalent to the de�nition of the fair

densest subgraph problem.

1.1 Contributions

As it turns out (see Section 3), the fair densest subgraph problem is

intractable in general, while its unconstrained counterpart can be

solved optimally through network �ow [22]. Nevertheless, we have

some quanti�able results regarding approximation algorithms in

special cases. If the underlying graph itself is fair, we can show that

there exists a 2-approximation algorithm. We further show that,

assuming the widely used small set expansion hypothesis [38], this

is the best possible. We also consider the case where the graph itself

is not fair and we instead aim for a proportional representation.

For this, in our opinion more �exible variant of the problem, we

show that the results for fair graphs can be extended.

Although this worst-case behavior is discouraging, the possibil-

ity of e�ective algorithms is not ruled out on practical instances.

To this end, we identify properties that, if satis�ed by some sub-

graph of the network under consideration, will a�ord recovery of

an approximately fair, dense subgraph. More precisely, our goal in

this respect is designing a heuristic that

(a) has a quanti�able guarantee if the underlying graph is

well-behaved and

(b) is practically viable.

Our main result is a spectral algorithm that satis�es both of these

requirements. In particular, the practical viability of our algorithm

underscores that our notion of a well-behaved graph is a realistic

one. As a candidate application, we considered the scenario of pro-

viding diverse recommendations of high quality, using data from

the Amazon product co-purchasing graph. Our experiments not

only con�rm the quality of the output solutions, but also the scala-

bility of our approach, which may not be the case for a conventional

combinatorial approximation algorithm.

Overview of approach. Our approach builds on the �nding [27,

33] that the densest subgraph problem admits a spectral formulation.

Speci�cally, an approximate densest subgraph can be computed

by selecting nodes for inclusion according to the magnitudes of

the corresponding entries in the main eigenvector of G’s adjacency

matrix. Unfortunately, this approach does not a�ord balanced

solutions in general. In a nutshell, we sidestep this issue by �rst

projecting the adjacency matrix onto a suitable “fair” subspace, an

operation that corresponds to the enforcement of “soft” fairness

constraints.

To see why the conventional spectral approach of [27] may not

work
2

and why our approach mitigates the issue, Figure 1 presents

2
In fact, this applies to any approach based on unconstrained maximization of the

induced subgraph’s density.

plots obtained from Amazon books on US politics [29]. The books

are labeled as either conservative or liberal, which corresponds to

the labels −1 or 1. As described above, a candidate application may

be to �nd a selection of books that are of interest to multiple readers,

while mitigating potential polarization along political lines.

On the left, we observe the books ordered according to their

corresponding entries in the main eigenvector of the adjacency

matrix of the co-purchase graph. Books are also colored according

to political orientation. We can observe that, whereas liberal books

are well distributed, conservative ones are clustered. On the right

we observe the results after application of our spectral embedding,

which a�ords recovery of a subgraph of the co-purchase graph

that is both dense and approximately balanced. Note that now

conservative books are also well distributed along the principal

component.

1.2 Related work

Densest Subgraph. Identifying dense subgraphs is a key primitive

in a number of applications; see [18, 20, 21, 47]. The problem can be

solved optimally in polynomial time [22]. On the contrary, the fair

densest subgraph problem is highly related to the densest subgraph

problem limited to at most k nodes, which cannot be approximated

up to a factor of n1/(log logn)
c

for some c > 0 assuming the expo-

nential time hypothesis [31] and for which state-of-the-art methods

yield an O (n1/4+ε ) approximation [6].

Algorithmic Fairness. Fairness in algorithms received consider-

able attention in the recent past, see [23, 45, 48, 50] and references

therein. The closely related notion of disparate impact was �rst pro-

posed by [17]. It has since been used by [49] and Noriega-Campero

et al. [37] for classi�cation and Celis et al. [10, 11] for voting and

ranking problems. Another problem that received considerable

attention is fair clustering. This was �rst proposed as a problem

by [14] in the case of a binary protected attribute. It was then

investigated for various objectives and more color classes in theirs

and subsequent work [1, 4, 5, 26, 39, 42].

Most closely related to our work are the papers by [28, 41, 44].

The former two papers considers the problem of executing a prin-

cipal component analysis in a fair manner. Speci�cally, given a

matrix A where the rows are colored (e.g. every row corresponds to

a man or a woman), they ask for an algorithm that �nds the �nds a

rank k matrix A′ whose residual error ‖A − A′‖ is small for both

types of rows simultaneously. While our method is similarly based

on using the principal component in a fair manner, the di�erence

is that we may be forced to treat the classes di�erently, if we aim to

uncover a dense subgraph as illustrated in the example mentioned

above and in Figure 1.

The latter paper by [28] considers spectral clustering problems

such as normalized cut. Like our work, they project the Lapla-

cian matrix of a graph G onto a suitable “fair” subspace, and then

run k-means on the subspace spanned by the smallest resulting

eigenvectors. Under a fair version of the stochastic block model,

they show that this algorithm recovers planted fair partitions. Our

work continues this idea by applying the technique to the densest

subgraph problem.
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Figure 1: Projection of books (see Section 4) onto the �rst principal component. (Left) Original data. (Right) Data after spectral

embedding. Books are ordered on the x axis according to their corresponding entries in the main eigenvector, whereas on the

y axis we have random noise for visualization.

1.3 Preliminaries and Notation

We consider undirected graphs G (V ,E,w ), where V is the set of

n nodes, E ⊂ V × V is the set of edges, and w : E → R≥0 is a

weight function. We denote the (weighted) adjacency matrix of G
by A. For a subset E ′ ⊂ E of the edges, we let w (E ′) =

∑
e ∈E′ w (e ).

Considered u ∈ V , its (weighted) degree is du =
∑
e∩{v },∅w (e ).3

We also let dmax = maxu du . Considered S ⊆ V , we denote by GS
the induced subgraph. The density DS (G ) of S ⊆ V is simply the

average degree of GS , namely: namely:

DS (G ) =
2 · |E ∩ S × S |

|S |
.4

We omit G from DS (G ), whenever clear from context.

A coloring of the vertices is simply a map c : V → [`] ofV , where

[`] := {1, 2, . . . , `}. A set S ⊂ V is called fair if |S ∩ {v ∈ V | c (v ) =
1}| = |S ∩ {v ∈ V | c (v ) = 2}| = · · · = |S ∩ {v ∈ V | c (v ) = `}|.
A graph is called fair if V is fair. In the remainder, we provide

positive results for the important case ` = 2. In this case, for

simplicity of exposition we denote the colors red and blue and we

use Red := {v ∈ V | c (v ) = red} and Blue := {v ∈ V | c (v ) = blue}
to refer to nodes of the respective color.

De�nition 1.1 (Fair Densest Subgraph Problem). Given a (weighted)

graph G (V ,E,w ) and a coloring c of its vertices, identify a fair sub-

set S ⊆ V that maximizes DS .

The fair densest subgraph problem is obviously a constrained

version of the densest subgraph problem. It turns out to be con-

siderably harder than its (polynomially solvable) unconstrained

counterpart, as we show in Section 3.

Linear algebra notation. We denote by λ1 ≥ λ2 ≥ . . . ≥ λn
the eigenvalues of A and by vi its i-th eigenvector. We also set

λ = maxi>2 (λ2, |λn |). Note that we always have λ1 ≤ dmax. For a

subset S ⊂ V , we denote by χ its normalized indicator vector, where

S is understood from context. Namely, χi = 1/
√
|S | if i ∈ S , χi = 0

otherwise. Finally, for a vector x ∈ Rn , we let ‖x ‖ =
√∑n

i=1 x
2

i , the

2-norm of x .

3
The term volume is often used rather than weighted degree. Here we simply use the

term "degree" liberally, since our algorithms and results equally apply to unweighted

and weighted graphs.

4
The right-hand side becomes

2w (E∩S×S )
|S | for weighted graphs.

2 SPECTRAL RELAXATIONS FOR THE FAIR

DENSEST SUBGRAPH

As observed in Kannan and Vinay [27], the densest subgraph prob-

lem admits a spectral formulation. In particular, denoted by x an

indicator vector over the vertex set, the indicator vector of the

vertex subset maxizing density is the maximizer of the following

expression:

max

x ∈{0,1}n
xTAx

xT x
.

Now, assume that each node is colored with one of two colors,

red or blue. The optimal solution x∗ might well overrepresent one

of the colors. To formulate the problem of computing a fair solution,

we can add the constraint∑
node i is red

xi =
∑

node i is blue

xi

⇔
∑

node i is red

xi −
∑

node i is blue

xi = 0.

If we de�ne the (unit 2-norm) vector

fi =



1√
n

if node i is red

− 1√
n

if node i is blue,

the above constraint can be described as f T x = 0. We call such an

x fair. Conversely, very unbiased solutions will have high inner

products with f .

Fair Densest Subgraph: Spectral Relaxation. Based on the consid-

erations above, our approach transforms the input data (in this case

the adjacency matrix A) by �rst projecting them onto the kernel of

f . Namely, we �rst consider the following formulation of the fair

densest subgraph problem:

max

x ∈{0,1}n
2xT (I − f f T )A(I − f f T )x

xT x
.

It should be noted that, for any fair subset S with indicator x , we

have
2xTAx
xT x =

2xT (I−f f T )A(I−f f T )x
xT x . Conversely, for any indicator

vector x < span(I − f f T ), the objective value can only decrease.

We next note that by relaxing x to be an arbitrary vector, the

above expression is maximized by the main eigenvector of (I −
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f f T )A(I − f f T ). Indeed, [27] established a relationship between

the �rst eigenvector of the adjacency matrix A and an approxi-

mately densest subgraph. Similar ideas are also implicit in the work

of [33]. The above relaxation corresponds to replacing hard fairness

constraints with soft ones.

It is straightforward to encode more complicated fairness con-

straints using this technique. Suppose, for example, that we are

given ` colors, and wish to output a subgraph such that every color

is featured equally often. This induces a set of constraints∑
node i is red

xi =
∑

node i is blue

xi∑
node i is red

xi =
∑

node i is green

xi

...∑
node i is red

xi =
∑

node i is yellow

xi

The vectors satisfying all of these constraints lie in the nullspace

of some ` − 1 dimensional subspace S . Assume that F is a matrix

such that the columns of F form an orthogonal basis of S . Then the

above technique leads to the problem

max

x ∈{0,1}n
2xT (I − FFT )A(I − FFT )x

xT x
.

More generally, this technique can be extended to any system of

linear constraints. Only has to merely �nd a suitable basis and

project A onto said basis.

We note that while the technique can handle these more com-

plicated constraints, leveraging this in an algorithm with provable

guarantees seems very di�cult. Nevertheless, our experiments

dealing with multiple colors showcase that we can still tackle more

complicated fairness constraints with success in practice, see Sec-

tion 4.1.

2.1 Recovery of Dense Fair Subgraphs in

Almost Regular Graphs

To prove our main result we need the following de�nition:

De�nition 2.1. Graph H = (VH ,EH ) is (d, ϵ )-regular if a d exists,

such that (1 − ϵ )d ≤ di ≤ (1 + ϵ )d , for every i ∈ VH .

Theorem 2.2. Assume we have a graph G = (V ,E,w ) with a
2-coloring of the nodes. Assume the spectrum of A satis�es λ1 ≥ 4λ.5

Assume further that G contains a fair subset S such that: (1) GS is
(d, ϵ )-regular and (2) d ≥ (1 − θ )dmax. In this case, it is possible to
recover all but 16(ϵ + θ ) |S | of the vertices in S in polynomial time.

Intuitively, the result above states that, if the underlying net-

work G is an expander containing an almost-regular, dense and

fair subgraph, we can approximately retrieve it in polynomial time.

Succintly, this follows because, under these assumptions, the indi-

cator vector of S forms a small angle with the main eigenvector of

(I − f f T )A(I − f f T ).

Proof of Theorem 2.2. In the remainder of this proof, we de-

note by
ˆλ1 ≥, . . . , ≥ ˆλn the eigenvalues of (I − f f T )A(I − f f T )

5
That is, G is an expander.

and by v̂i the i-th associated eigenvector. For a vertex i of GS we

denote by
ˆdi its degree in GS . We denote by χ the indicator vector

of S and we letm = |S |.
As a �rst step, we summarize straightforward, yet useful proper-

ties of the spectrum of (I − f f T )A(I − f f T ).

Claim 1. Whenever ˆλi , 0 we have:

(I − f f T )v̂i = v̂i and ˆλi = v̂
T
i Av̂i (1)

Proof. If
ˆλi , 0, we have:

(I − f f T )A(I − f f T )v̂i = ˆλiv̂i .

Since (I − f f T ) is a projection matrix, if we pre-multiply both

members of the above equation by (I − f f T ) we have:

(I − f f T )A(I − f f T )v̂i = ˆλi (I − f f T )v̂i .

Subtracting the �rst equation from the second and recalling that

ˆλi , 0 immediately the �rst claim.

The second claim follows immediately from the �rst:

ˆλi = v̂
T
i (I − f f T )A(I − f f T )v̂i = v̂

T
i Av̂i .

�

It should be noted that, as a consequence of Claim 1, we always

have:

ˆλ1 = v̂
T
1
(I − f f T )A(I − f f T )v̂1 = v̂

T
1
Av̂1 ≤ v

T
1
Av1 = λ1.

Note that this last property does not apply to the other eigenvalues

in general. The �rst important, technical step to prove Theorem

2.2 is showing that the hypothesis λ1 ≥ 4λ implies that
ˆλ2 cannot

be “too large”.

Lemma 2.3. Assume the spectrum of A satis�es the condition λ1 ≥
4λ2. Then ˆλ2 ≤

3

4
λ1.

Proof. We �rst express v̂2 as v̂2 = γv1 + z, where z is v̂2’s

component orthogonal to v1, the main eigenvector of A. Note that,

since v1 has unit norm, we have γ 2 + ‖z‖2 = 1. Next:

ˆλ2 = (γv1 + z)
TA(γv1 + z)

T = γλ1 + z
TAz, (2)

where the �rst equality follows from Claim 1, while the second

follows since z ∈ span(v2, . . . ,vn ) by de�nition and the vi ’s form

an orthonormal basis. Next, assume γ ≥ 1/2. In this case, we have:

ˆλ2 = γλ1 + z
TAz = γλ1 + ‖z‖

2
zTAz

‖z‖2
≥

3

8

λ1. (3)

Here, the third inequality follows since i) ‖z‖2 = 1 − γ 2 ≤ 1/2,

while z ∈ span(v2, . . . ,vn ) implies:

�����
zTAz

‖z‖2

�����
≤ max

w⊥v1

�����
wTAw

‖w ‖2

�����
= λ.

But (3) contradicts our assumption that λ1 ≥ 4λ. On the other hand,

if γ ≤ 1/2, (2) implies:

ˆλ2 = γλ1 + z
TAz ≤ γλ1 + z

TAz

≤ γλ1 + ‖z‖
2
max

w⊥v1

wTAw

‖w ‖2

= γλ1 + (1 − γ 2)λ2 ≤
λ1
2

+ λ2 ≤
3

4

λ1.

�
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The second step is showing that Lemma 2.3 implies that the

indicator vector of the fair densest subgraph is close to v̂1:

Lemma 2.4. Assume the hypotheses of Theorem 2.2 hold. Then:

‖χ − v̂1‖
2 ≤ 4(ϵ + θ ).

Proof. We begin by noting that χT f = 0 by de�nition, which

implies (I − f f T )χ = χ . We therefore have:

χT (I − f f T )A(I − f f T )χ =

∑
i ∈S ˆdi
m

≥ (1 − ϵ )d, (4)

Next, we decompose χ along its components respectively parallel

and orthogonal to v̂1, namely, χ = αv̂1 + z, and we note that

‖z‖2 = 1 − α2, since both v̂1 and χ are unit norm vectors. Set

B = (I − f f T )A(I − f f T ) for the sake of space. We have:

χT Bχ = (αv̂1 + z)
T Bs (αv̂1 + z) = α

2 ˆλ1 + z
T Bz

≤ α2 ˆλ1 + ˆλ2‖z‖
2 ≤ α2 ˆλ1 + (1 − α2) ˆλ2. (5)

Putting together (4) and (5) yields α2 ≥
(1−ϵ )d− ˆλ2

ˆλ1− ˆλ2
. Now:

‖χ −v ‖2 ≤ 1 −
(1 − ϵ )d − ˆλ2

ˆλ1 − ˆλ2

≤ 1 −
(1 − ϵ ) (1 − θ )dmax − ˆλ2

λ1 − ˆλ2

≤ 1 −
(1 − ϵ ) (1 − θ )λ1 − ˆλ2

λ1 − ˆλ2

< 1 −
λ1 − ˆλ2 − (ϵ + θ )λ1

λ1 − ˆλ2

=
(ϵ + θ )λ1

λ1 − ˆλ2
≤ 4(ϵ + θ ).

Here, the second inequality follows from our hypotheses on d and

since
ˆλ1 ≤ ˆλ, the third inequality follows since the main eigenvalue

of an adjacency matrix is upper-bounded by the maximum degree

of the underlying graph, while the last inequality follows from

Lemma 2.3. �

Corollary 2.5. Under the hypotheses of Lemma 2.4, for all but
at most 16m(ϵ + θ ) vertices in V we have: i) v̂1 (i ) ≥ 1

2

√
m

if i ∈ S , ii)

v̂1 (i ) <
1

2

√
m

otherwise.

The algorithm. Our algorithm is based on a sweep of v̂1 [27, 33].

In particular, we run Algorithm GSA (see Algorithm 1) with M =
(I − f f T )A(I − f f T ) and ∆ = 16(ϵ + θ ).

Corollary 2.5 ensures that i) the above algorithm always returns a

solution, ii) the solution returned by the algorithm will not be worse

than the one obtained by picking i if v̂1 (i ) ≥
1

2

√
m

and rejecting it

otherwise. This concludes the proof of Theorem 2.2. �

The running time of the algorithm is dominated by computing

the �rst eigenvector and the projecting of the rows of the Laplacian

onto said eigenvector. This can be done, up to (1 + ε ) precision, in

linear time.

1 Algorithm: General Sweep Algorithm (GSA)

Data: Non-negative n × n matrix M , parameter ∆
Result: Subset S ⊆ V

2 Ŝ = ∅; D̂ = 0;

3 Compute v1 = main eigenvector of M ;

4 Sort nodes i ∈ V in non increasing order of v1 (i );

// Assume w.l.o.g. that {1, . . . ,n} is resulting

ordering of nodes in V ;

5 for s = 1 to n do

6 S = {1, . . . , s}

7 Compute DS = density of the subgraph induced by S

8 if DS > D̂ AND | |S ∩ Red | − |S ∩ Blue | | ≤ ∆|S | then

9 Ŝ = S ; D̂ = DS
10 end

11 end

12 return Ŝ

Algorithm 1: General Sweep Algorithm (non-increasing).

3 HARD CONSTRAINTS AND HARDNESS OF

APPROXIMATION

In general, enforcing fairness can make an “easy” problem in-

tractable and this is the case for the densest subgraph problem.

In this context, spectral relaxations can be regarded as a way to

mitigate this issue, by enforcing soft fairness constraints to virtually

any problem that is amenable to an algebraic formulation.

Nevertheless, in some cases it might be important to assess the

price of fairness, by comparing the achievable quality of fair solu-

tions to that of solutions for the original, unconstrained problem. In

this section, we complement our algorithmic treatment of fairness

with hardness results and approximation algorithms for speci�c

cases. Proofs are omitted for the sake of space, but they are available

as supplementary material. Some of our hardness results are based

on the small set expansion hypothesis, which we now describe.

Consider a d-regular weighted graph G and, for every S ⊂ V ,

denote by Φ(S ) the expansion6
of S [38]. Given two constants

δ ,η ∈ (0, 1), the small set expansion problem [38] SSE (δ ,η) asks to

distinguish between the following two cases:

Completeness There exists a set of nodes S ⊂ V of size

δ · |V | such that Φ(S ) ≤ η.

Soundness For every set of nodes S ⊂ V of size δ · |V |,
Φ(S ) ≥ 1 − η.

Our hardness proofs are based on the small set expansion hypothe-

sis de�ned as follows.

Conjecture 3.1 (SSEH). For every η > 0 there exists a δ :=

δ (η) > 0 such that SSE (η,δ ) is NP-hard.

Recall from Section 1.2 that, whereas the densest subgraph prob-

lem is polynomially solvable, the best approximation for the densest

at-most-k subgraph problem is in O (n1/4) [7] and cannot be ap-

proximated up to a factor of n1/(log logn)
c

for some c > 0 assuming

the exponential time hypothesis [31] . The next theorem implies

6
Or conductance.
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that these inapproximability results for the densest at-most-k sub-

graph problem hold also for the fair densest subgraph problem,

showing that fairness constraints can drastically a�ect hardness of

this problem.

Theorem 3.2. The densest fair subgraph problem is at least as
hard as the densest at most k subgraph problem. Moreover, any
α-approximation to the densest at-most-k subgraph is a 2α approxi-
mation to densest fair subgraph.

Proof. Consider an arbitrary graph G (V ,E). We consider V to

be colored red. Add k blue nodes with no edges. Then the density

of the fair densest subgraph is, up to a multiplicative factor of

exactly
1

2
, equal to the density of the densest at most 2k subgraph.

Conversely, running an algorithm for densest k subgraph with

k = min( |Blue |, |Red |), and balancing out the resulting subgraph in

post processing decreases the density by at most a factor 2. (This

latter part is explained in more detail in the following theorem). �

When the input graph G is itself fair, we can provide stronger

bounds.

1 Input: Graph G (V ,E,w )

2 1: Compute the densest subgraph S

3 2: W.l.o.g |S ∩ Blue | ≥ |S ∩ Red |

4 3: While |S ∩ Blue | > |S ∩ Red |, add an arbitrary node

v ∈ Red \ S to S
5 4: Return S

Algorithm 2: Approximate Fair Densest Subgraph

Theorem 3.3. Given a fair graph G (V ,E,w ), Algorithm 2 com-
putes a fair set S ⊂ V , such that DS · 2 ≥ OPT , where OPT is the
density of the fair densest subgraph.

Proof. We refer to the set S computed after line 1, and 3 as S1
an S2, respectively. Since S1 is the unconstrained densest subgraph,

DS1 > OPT . For S2, we observe that |S2 | ≤ S1 + |S1 ∩ Blue | − |S1 ∩

Red | ≤ 2 · |S1 |, hence DS2 =
w (ES

2
)

|S2 |
≥

w (ES
1
)

2 |S1 |
≥ OPT

2
. �

The running times of both algorithms depend on the running

time of the subroutines used to compute dense subgraphs. Uncon-

strained dense subgraphs can be found by solving a linear program

or by computing a max �ow [13, 22]. A faster (1+ε ) approximation

that runs in time O (npolylog(n)) also exits [2, 15].

For the densest k subgraph problem, the currently best algorithm

that computes anO (n1/4+ε ) approximation runs in time nO (1/ε )
[6].

We conclude this section by showing that approximating the

fair densest subgraph problem beyond a factor of 2 is at least as

hard as solving SSE (η,δ ). Therefore, barring a major algorithmic

breakthrough, Algorithm 2 is optimal. The proof is provided as

supplementary material and it is based on the following idea: In

regular graphs, for a given set of nodes S , the expansion Φ(S ) is

related to the density of S . We can use this, so that, given a graph

G, we can carefully construct a colored graph G ′ such that �nding

the optimal fair densest subgraph in G ′ gives an estimate of the

largest-expansion node set in G.

Theorem 3.4. If SSEH holds, computing a (2 − ε ) approximation
of the fair densest subgraph problem in fair graphs is NP-hard for
any ε > 0.

Proof. We consider the SSE (η,δ ) problem, i.e. let G (V ,E,w )
be a d-regular graph and let η ∈ (0, 1) and δ = δ (η) ∈ (0, 1/2]
be constants that we will specify later. For any set S ⊂ V of size

s := δ · |V |, we have w (ES ) := d · s − Φ(S ) · d · s .
We construct a colored graph G ′(V ′,E ′,w ′) by considering all

nodes of G to be colored red, and by adding |V | blue nodes. Of

these nodes, we select an arbitrary but �xed subset of δ · |V | blue

nodes that we denote by B. Each edge in EB is weighted uniformly

by t := 2·d
s−1 . The remaining edges are weighted with 0.

Denote the size of the fair densest subgraph C by k . Further, let

Cr ed = C ∩ Red . We will distinguish between four basic cases: (1)

k < 2µ · s , (2) 2µ · s ≤ k < 2 · s , (3) 2 · s ≤ k < 2

µ s , and (4)
2

µ s ≤ k ,

where µ > 0 is suitably small constant speci�ed later. We note that

the cases (1) and (4) and (2) and (3) will turn out to be somewhat

symmetric, even if slightly di�erent proofs are required in every

case.

First, let k < 2µ · s and again let Bk be an arbitrary subset of B
of size k . Then

DCr ed∪Bk ≤
d · k +w (Bk )

2 · k
≤ (1 + 2µ )

d

2

, (6)

where the �rst inequality holds due to regularity.

Now, let 2µ · s ≤ k < 2 · s . We have

DCr ed∪Bk ≤
η · d · s +w (Bk )

2 · k
≤

(
1 +

2η

µ

)
d

2

. (7)

Now, let 2 · s ≤ k ≤ 2

µ · s . We will �rst show that

w (C ) ≤
2

µ
· η · d · k . (8)

For the sake of contradiction, assume that this is not the case. The

argument revolves around double counting w (C ). There exist

(k
s

)
subsets of size s ofC . Observe that for any such subset S ′ has weight

w (S ′) ≤ η · d · s and hence∑
S ′⊂C ∧ |S ′ |=s

w (S ′) ≤ η · d · s ·

(
k

s

)
.

At the same time, every (possibly 0 valued) edge appears in

(k−2
s−2

)
of these subsets. Hence∑

S ′⊂C ∧ |S ′ |=s

w (S ′) = w (C ) ·

(
k − 2

s − 2

)
>

2

µ
· η · d · k ·

(
k − 2

s − 2

)
.

Combining both equations, we have

2

µ
· η · d · k ·

(
k − 2

s − 2

)
< η · d · s ·

(
k

s

)
⇔

2

µ
<

k · (k − 1)

s · (s − 1)

s

k
≤

2

µ
,

which is a contradiction.

Consider now the density of any fair cut containing C ∪ Bk ,

where Bk contains B and k − s further arbitrary blue nodes. We
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have

DCr ed∪Bk ≤

2η
µ · d · k + t ·

(s
2

)
2 · k

≤

(
1 +

2η

µ

)
·
d

2

. (9)

Finally, consider the casek > 2

µ s . Then the density of any fair cut

containingC ∪ Bk , where Bk contains B and k − s further arbitrary

blue nodes, is

DCr ed∪Bk ≤
d · k + t ·

(s
2

)
2 · k

≤ (1 + 2µ )
d

2

. (10)

We note that bounds from Equations 6 and 9 and Equations 7

and 10 are identical. For ε < 1

4
, we set µ = ε

2
, η ≤ 8

3
· ε2. Then the

ratio between the terms ?? and 6 and the terms ?? and 7 is at least

2 − ε . Therefore, approximating the fair densest subgraph problem

beyond a factor of 2 solves the SSE (η,δ ) problem. �

4 EXPERIMENTAL ANALYSIS

Worst case bounds are often uninformative when compared with

empirical behavior. Algorithm 2 is (assuming that the underlying

graph is fair) theoretically optimal and therefore superior to the

spectral recovery schemes. As we now describe, the empirical

performance between these approaches paints the opposite picture.

Overview. To test the performances of our algorithms on real

data we used two publicly available dataset: PolBooks [29] and

Amazon products metadata [36]. Both (explicitly or implicitly)

contain undirected unweighted graphs, whose nodes are products

from the Amazon catalog, while an edge between two nodes exists

if the corresponding products are frequently co-purchased by the

same buyer. Moreover, for both datasets, each product belongs to

exactly one category.

We tested our methods in a scenario in which, given a (not

necessary fair) labeled graph, our only interest lies in �nding fair

subgraphs with high density. In this context, we are considering the

density of the provided solution as a quality indicator: the higher

the density, the better the quality of a solution.

For our experiments we used an Intel Xeon 2.4GHz with 24GB

of RAM running Linux Ubuntu 18.04 LTS. All methods have been

implemented in Python3 using the functionalities provided by Net-

workX
7

and SciPy
8

libraries.

Datasets. The PolBooks data set [29] is an undirected unweighted

graph
9
, whose nodes represent books on US politics included in the

Amazon catalog, while an edge between two books exists if both

books are frequently co-purchased by the same buyer. Each book

is further labeled depending on its political stance, possible labels

being “liberal”, “neutral”, and “conservative”. For our experiments,

we considered only the subgraph induced by “liberal” and “con-
servative” books, obtaining 92 nodes (49 of which were associated

with a “conservative” worldview, 43 with a “liberal” worldview) for

362 edges in total.

The Amazon products metadata dataset [36] contains descrip-

tions for 15.5 million Amazon products
10

. For a single product,

7
https://networkx.github.io/documentation/stable

8
https://www.scipy.org

9
http://www.casos.cs.cmu.edu/computational_tools/

datasets/external/polbooks/polbooks.gml.

10
https://nijianmo.github.io/amazon/index.html

we only considered the product id (asin �eld), the category the

product belongs to (main_cat �eld) and the set of frequently co-

purchased products (also_buy �eld). It should be noted that in

this dataset, each node belongs to exactly one (main) Amazon

category so that, together, these three �elds allow recovery of a

large, undirected, labeled graph, with products as nodes, categories

as labels and edges representing frequent co-purchasing product

pairs. For this data set, we leveraged the co-purchasing relation

among products, to naturally extract undirected and unweighted,

labeled graphs. In more detail, for each pair (`1, `2) of Amazon

main categories, we extracted the undirected subgraph induced

by the subset of nodes of category `1 (`2) that have at least one

neighbour from category `2 (`1). We did not consider graphs with

fewer than 100 nodes. This way, we retrieved 299 subgraphs of

two categories (colors), with sizes ranging between 103 and 33922

nodes. We extended and applied this procedure to triples (`1, `2, `3)
and quadruples (`1, `2, `3, `4) of labels, obtaining 1147 subgraphs

of three categories (colors), with sizes ranging between 352 and

30135 nodes, and 1408 subgraphs of four categories (colors), with

sizes ranging between 1521 and 30086 nodes.

Algorithms. We compared the performance of the following al-

gorithms that for simplicity we describe in the two-colors scenario:

2-DFSG. The optimal 2-approximation algorithm (Algorithm 2)

based on Goldberg’s optimal algorithm for the densest subgraph

problem [22], described in Section 3.

Spectral Algorithms. Following [27, 33] and Theorem 2.2, we ran

a variety of eigenvector rounding algorithms. These are all variants

of a modi�ed version of the General Sweep Algorithm (Algorithm 1)

used in the proof of Theorem 2.2 that sorts the entries of the main

eigenvector of M four times (instead of a single one) according

to the following criteria: i) non-increasing; ii) non-decreasing; iii)

non-increasing absolute values; iv.) non decreasing absolute values.

With these premises, we consider the following spectral algorithms.

The �rst two are just the modi�ed version of Algorithm 1 with dif-

ferent choices for M , while PS and FPS perform a slightly modi�ed

sweep that always a�ords a fair solution.

Single Sweep (SS). This algorithm is simply (Algorithm 1), when

all previously mentioned sorting criteria are used, with M = A and

∆ = 0.

Fair Single Sweep (FSS). It is the execution of SS, this time on

matrix (I − f f T )A(I − f f T ) instead of A.

Paired Sweep (PS). Paired Sweep is a modi�cation of SS in which

the fairness constraint is satis�ed by construction in each subgraph

produced by the rounding algorithm. This is done by considering

the subsets VRed and VBlue of the nodes, sorting each of them sepa-

rately according to the values of the corresponding entries in the

main eigenvector ofA and then, for each s = 1, . . . ,min( |VRed |, |VBlue |)
considering the candidate set of nodes of cardinality 2s obtained by

taking the �rst s nodes from each ordered subset. For a pseudocode,

we refer to Algorithm 3.

Fair Paired Sweep (FPS). It is the execution of PS, this time on

matrix (I − f f T )A(I − f f T ) instead of A.
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Data: Graph G (Vr ed ,Vblue ,E), n × n adjacency matrix M ,

parameter ∆
Result: Subset S ⊆ V

1 Ŝ = ∅; D̂ = 0;

2 Compute v1 = main eigenvector of M ;

3 Sort nodes i ∈ Vr ed and nodes j ∈ Vblue in non increasing

order wrt v1
// Assume w.l.o.g. that Πr ed = {1, . . . , |Vr ed |} and
Πblue = {1, . . . , |Vblue |} is resulting ordering of
nodes in V ;

4 Fuse node i from Πr ed with node i from Πblue
5 for s = 1 to min( |Vr ed |, |Vblue |) do
6 S = {1, . . . , s}

7 Compute DS = density of the subgraph induced by S

8 if DS > D̂ AND | |S ∩ Red | − |S ∩ Blue | | ≤ ∆|S | then

9 Ŝ = S ; D̂ = DS
10 end

11 end

12 return Ŝ

Algorithm 3: Paired Sweep Algorithm.

0.0 0.2 0.4 0.6 0.8 1.0
Balance

0

1

2

3

4

D
en

si
ty

PolBooks Dataset

Entire Graph
DSG
2-DFSG
SS
FSS
PS
FPS

Figure 2: Pareto front of the subgraphs generated by each

algorithm, w.r.t. density and balance, on PolBooks dataset.

4.1 Results

Figure 2 shows the performance of our algorithms on PolBooks

dataset through the Pareto front of the subgraphs generated by

each algorithm during its execution w.r.t. density and balance
11

.

PS and FPS by construction only return fair solutions while the

other algorithms potentially have trade-o�s. In particular, 2-DSG

(Algorithm 2) starts at the unconstrained optimum and proceeds

to add nodes that increase balance while potentially decreasing

density.

Figure 3 shows the distributions of the normalized density, over

the entire set of Amazon instances (for two, three and four colors),

of the fair subgraphs retrieved by di�erent algorithms. Normaliza-

tion, performed to make solutions for di�erent instances compara-

ble, is done by scaling to the optimal density of the unconstrained

11
Given two color classes Red and Blue, we de�ne the balance of a subgraph containing

x Red and y Blue nodes as min

(
x
y ,

y
x

)
.

problem.
12

Experimental results represented in Figure 3 (a, b, and c)

show that spectral heuristics based on the paired-sweep technique

(PS and FPS) consistently outperform 2-DFSG algorithm, despite

its theoretical optimality (proved in a two-color scenario and in

presence of a fair input graph), regardless the number of consid-

ered colors. In more detail, the FPS heuristic is the method that

achieves the maximum median density. According to Figure 3 (b

and c), it is evident that for a number of colors greater than two,

the spectral methods that do not rely on the paired-sweep tech-

nique (SS and FS) are not the appropriate approaches for tackling

the problem. Focussing on the two-colors scenario, depicted in

Figure 3 (a), we have that, with the exception of SS which uses the

original adjacency matrix and whose distribution is skewed toward

lower density values, performances of spectral heuristics are com-

parable, with FPS achieving highest median density. Always in

the two-colors scenario, we can observe that algorithms run on

(I − f f T )A(I − f f T ) (FSS and FPS) respectively outperform their

counterparts (SS and PS) run on A.

We report in Table 1 the percentage of instances each algorithm

is not able to solve, i.e., for which it does not return a fair solution

and, consequently, we assigned a density equal to 0.

#Colors #Samples SS FSS PS FPS 2-DFSG

2 299 0 0.33 0 0 3.01

3 1147 73.93 95.55 0 0 5.31

4 1408 92.54 99.64 0 0 1.91

Table 1: Percentages of unfair solutions for Amazon dataset.

Data reported in Table 1 con�rms the observation that spectral

methods that do not rely on the paired-sweep technique essentially

fail in recovering a dense fair subgraph in a context that involves

more than two colors: the SS and FSS methods provided unfair

solutions for almost all samples when the number of considered

colors is greater than 2. As noted previously, PS and FPS cannot

return unfair solutions: this is the reason behind the presence of

zeros in their columns. It is worth to say that 2-DFSG (Algorithm 2)

results in an unfair solution if the original graph is unbalanced and

the unconstrained densest subgraph cannot be made fair via line

3. This justi�es the presence of quantities greater than zero in the

last column.

Amazon dataset 2 Colors 3 Colors 4 Colors

#Samples 299 1147 1408

2-DFSG 46388.0 101391.3 151048.7 152897.9 127834.4 75275.9
FPS 359.8 659.2 1082.5 2073.0 745.1 524.2
PS 424.1 842.3 1130.2 2105.8 775.3 572.0
FSS 464.6 860.8 1652.4 2184.6 1369.0 983.8
SS 463.0 858.8 1664.8 2216.3 1367.9 986.1

Table 2: Average and standard deviation of the running

times (in msec) of all proposed methods on Amazon dataset:

2, 3 and 4 colors.

12
Hence, the maximum possible value on the y-axis is 1.
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(a) Amazon 2 colors: 299 subgraphs.
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(b) Amazon 3 colors: 1147 subgraphs.
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(c) Amazon 4 colors: 1408 subgraphs.

Figure 3: Performance of our algorithms on Amazon dataset for 2,3 and 4 colors on 299, 1147 and 1408 samples (subgraphs)

respectively. Reported are aggregates over all generated subgraphs, with unfair solutions receiving a density of 0, see Table 1.

Table 2 reports that spectral methods are faster than 2-DFSG.

Indeed, the average running time of the 2-DFSG method is of two

orders of magnitude greater than the one required by the spectral

methods. This is coherent with the fact that the 2-DFSG method

requires solving the Max-Flow problem, which is computationally

expensive.

Amazon dataset 2 Colors 3 Colors 4 Colors

#Nodes, #Edges 108230 1851733 108185 1132578 108220 1360241

2-DFSG 4126002 0.50 3618960 0.34 3991358 0.27
FPS 36199 0.65 11467 0.45 31988 0.61
PS 91582 0.56 39327 0.45 32643 0.50
FSS 33074 0.51 17358 NoFairSol 45465 NoFairSol
SS 26429 0.21 24161 NoFairSol 32324 NoFairSol

Table 3: Running time (in msec) and solution quality (ex-

pressed as normalized density of the retrieved fair subgraph

to the optimal density of the unconstrained problem) of all

proposedmethods on three Amazon subgraphswith 2, 3 and

4 colors each. Each subgraph has roughly 100K nodes and

1.1M edges.

Table 3 reports execution time and solution quality of all pro-

posed methods on three not small-sized Amazon subgraphs with

2, 3 and 4 colors each. In particular, for what concerns the quality

of the provided solutions, the results provided in Table 3 are com-

pletely in line with with the information extracted from Figure 3

and Table 1. Relation among execution times are also in line with

what provided in Table 2, moreover, we can see that on the consid-

ered instances (2, 3 and 4 colors, 100K nodes and 1.1M edges) the

2-DFSG method requires slightly more than one hour of computa-

tion, against 91sec required by the paired spectral heuristics (PS

and FPS). These results suggest that the spectral approaches are

suitable for dealing with not small-sized graphs.

5 CONCLUSION AND FUTUREWORK

In this work, we studied graphs with an arbitrary 2-coloring. For

these graphs, the densest fair subgraph problem consists of �nding

a subgraph with maximal induced degree under the condition that

both colors occur equally often. We observed that the problem

is closely related to the densest at most k subgraph problem and

thus has similar strong inapproximability results. On the positive

side, we presented an optimal approximation algorithm under the

assumption that the graph itself is fair, and a more involved spectral

recovery algorithm inspired by the work of [28] on stochastic block

models. In practice, the spectral recovery algorithm tended to

dominate the approximation algorithm. We interpret these results

as showing that (1) an approximation algorithm may not be the

correct way to attack this problem, and (2) as previous work also

suggests [28, 41], spectral relaxations seem to be an inexpensive

tool to improve the fairness of algorithms geared towards recovery

and learning.

Future work might consider extending this approach to more

involved fairness constraints with provable guarentees. Empiri-

cally, we already observed that the spectral algorithms retain a

good behaviour, while both theoretically and empirically, the per-

formance of the approximation algorithm deteriorates. We identify

two key problems that may be more manageable. First, one might

consider the case where the graph only has to colors, but the colors

may overlap, i.e. a node can be both red and blue. Clearly, the

approximation results still hold in this case. Can one improve the

analysis of spectral recovery scheme, depending on the degree of

overlap? Second, one might consider the case of multiple disjoint

colors, each of equal size. Such considerations have been studied

in clustering literature [3, 4, 8, 16]. Is it possible to derive similar

results for densest subgraph?
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