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Abstract. This paper is concerned with time-dependent reaction-diffusion
equations of the following type:

∂tu = △u+ f(x− cte, u), t > 0, x ∈ R
N .

These kind of equations have been introduced in [1] in the case N = 1 for
studying the impact of a climate shift on the dynamics of a biological species.

In the present paper, we first extend the results of [1] to arbitrary dimension

N and to a greater generality in the assumptions on f . We establish a necessary
and sufficient condition for the existence of travelling wave solutions, that is,
solutions of the type u(t, x) = U(x − cte). This is expressed in terms of the
sign of the generalized principal eigenvalue λ1 of an associated linear elliptic
operator in R

N . With this criterion, we then completely describe the large
time dynamics for this equation. In particular, we characterize situations in
which there is either extinction or persistence.

Moreover, we consider the problem obtained by adding a term g(x, u) peri-
odic in x in the direction e:

∂tu = △u+ f(x− cte, u) + g(x, u), t > 0, x ∈ R
N .

Here, g can be viewed as representing geographical characteristics of the terri-
tory which are not subject to shift. We derive analogous results as before, with
λ1 replaced by the generalized principal eigenvalue of the parabolic operator
obtained by linearization about u ≡ 0 in the whole space. In this framework,
travelling waves are replaced by pulsating travelling waves, which are solutions
of the form U(t, x− cte), with U(t, x) periodic in t. These results still hold if
the term g is also subject to the shift, but on a different time scale, that is, if
g(x, u) is replaced by g(x− c′te, u), with c′ ∈ R.

1. Introduction and main results

1.1. Introduction. In a recent paper [1], a model to study the impact of climate
shift (global warming) on the dynamics of a species facing it was proposed. This
model involves the following reaction-diffusion equation on the real line

∂tu = ∂xxu+ f(x− ct, u), t > 0, x ∈ R.

The first part of this paper is dedicated to the mathematical study of higher dimen-
sional versions of this problem, that we call the pure shift case:

(1) ∂tu = △u+ f(x− cte, u), t > 0, x ∈ R
N ,
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with f : RN × [0,+∞) → R, c > 0 and e ∈ SN−1 given. In the one dimensional
ecological model, the variable x is thought of as the latitude, say in the northern
hemisphere. The solution u(t, x) represents the population density of the species at
time t and point x. The net effect of reproduction and mortality - which depends on
the population density - is represented by the reaction term f . The x-dependence of
f embodies the fact that climate conditions are not uniform in space, and there are
regions more favourable than others for the species. Since the space dependence of
f is affected by the time under the action Gt(x) = x−cte, the zones with favourable
climate shift in the direction e with speed c. Heuristically, for the population to
persist it is necessary for a portion of the population large enough to “migrate”
in the direction e, and indeed this is what happens if the speed c is not too large.
This is proved in [1] when the dimension N is equal to 1. Our aim is to extend the
results of [1] to higher dimensions.

A crucial point to establish the large time behavior of solutions of (1) consists in
the study of the existence and uniqueness of travelling wave solutions tracking the
imposed shift. That is, positive bounded solutions of the type u(t, x) = U(x− cte).
Such solutions are obtained from the following elliptic problem in U :

(2)







△U + ce · ∇U + f(x, U) = 0 a. e. in R
N

U > 0 in R
N

U is bounded.

First, we establish a necessary and sufficient condition for the existence and unique-
ness of travelling wave solutions. Then, we show that when such a travelling wave
solution exists it is stable, in the sense that it attracts the orbits of solutions of
the evolution problem with nontrivial initial conditions u0 ≥ 0. Otherwise, the
solutions of (1) converge to zero as t goes to infinity.

In the second part of the paper, we consider problem (1) with the addition of a
nonlinear term which does not depend on t:

(3) ∂tu = △u+ f(x− cte, u) + g(x, u), t > 0, x ∈ R
N .

If one looks for travelling wave solutions u(t, x) = U(x − cte), one is led to the
equation

△U + ce · ∇U + f(x, U) + g(x+ cte, U) = 0 for a. e. x ∈ R
N ,

for any t > 0. Clearly, this problem does not admit a solution unless g(·, s) is
constant in the direction e (in which case it can be incorporated into f). In other
words, the function U(t, x) = u(t, x + cte) cannot be constant in t, that is, no
travelling wave solutions exist. However, if the function x 7→ g(x, s) is periodic in
the direction e, with period l, then g(x+cte, s) is periodic in t, with period l/c. This
suggests that we look for solutions u such that U(t, x) := u(t, x+ cte) is periodic in
t, with period l/c. Then, our problem becomes

(4)















∂tU = △U + ce · ∇U + f(x, U) + g(x+ cte, U), (t, x) ∈ R
N+1

U > 0 in R
N+1

U is bounded
U is l/c-periodic in t,

where we have extended U by periodicity for t < 0. A function solving (4) is called
a pulsating travelling wave, and we refer to this framework as the mixed peri-
odic/shift case. As for the pure shift case, we first establish an existence and
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uniqueness result for pulsating travelling waves, then we prove that as t → ∞ so-
lutions of (3) with positive bounded initial datum converge either to the pulsating
travelling wave, when it exists, or to 0 otherwise.

The arguments in the proofs of the mixed periodic/shift case also work for the
two-speeds case, that is, for a problem of the type:

(5) ∂tu = △u+ f(x− cte, u) + g(x− c′te, u), t > 0, x ∈ R
N ,

with arbitrary c′ ∈ R. In the ecological context, the term g(x−c′te, u) may be viewed
as representing the influence of some environmental factors - such as, for instance,
the presence of vegetation - which are affected by the climate shift but in a different
time scale. We point out that this does not include the case of two cooperating or
competing species living in the same environment. For that kind of problem one has
to consider a system of equations (see in particular [8] and the references therein)
for which eigenvalue problems and maximum principles are more delicate to handle.

In the forthcoming paper [7], we treat the case where f is periodic in some space
directions, orthogonal to the direction of the shift e, as well as the case where the
problem is set in a straight infinite cylinder, with Neumann boundary conditions,
or in sets which have an asymptotic cylindrical shape.

1.2. Main results in the pure shift case. Let us now describe precisely the
assumptions on f . Even in the one dimensional case, they yield a slightly more
general framework than in [1]. Throughout the paper, we will assume that the
nonlinearity f(x, s) : RN × [0,+∞) → R is a Carathéodory function such that

(6)

{

s 7→ f(x, s) is locally Lipschitz continuous, uniformly for a. e. x ∈ R
N ,

∃ δ > 0 such that s 7→ f(x, s) ∈ C1([0, δ]), uniformly for a. e. x ∈ R
N .

In some statements, we will require the following assumptions:

(7) f(x, 0) = 0 for a. e. x ∈ R
N ,

(8) ∃ S > 0 such that f(x, s) ≤ 0 for s ≥ S and for a. e. x ∈ R
N .

Condition (8) is usual in population dynamics and is related to a maximum carrying
capacity of the environment. Another assumption needed is

(9)

{

s 7→ f(x, s)

s
is nonincreasing for a. e. x ∈ R

N ,

and it is strictly decreasing for a. e. x ∈ D ⊂ R
N , with |D| > 0.

Lastly, the condition of boundedness of the favourable zone is expressed by

(10) lim sup
|x|→∞

fs(x, 0) < 0.

Such a condition is weaker than that in [1], where fs(x, 0) is assumed to have a
negative limit as |x| → ∞.

A typical example of f satisfying (7)-(10) is

f(x, s) = s(ζ(x) − η(x)s),

with ζ, η ∈ L∞(RN ) such that η ≥ 0 a. e. in R
N , η > 0 in D ⊂ R

N , with |D| > 0,

inf
{x∈RN : ζ(x)>0}

η(x) > 0, lim sup
|x|→∞

ζ(x) < 0.
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If f satisfies (7) then the linearized operator about w ≡ 0 associated with the
elliptic equation in (2) is

Lw = △w + ce · ∇w + fs(x, 0)w.

The main results here are that the existence and uniqueness of travelling wave
solutions of (1) - as well as the large time behavior of solutions with nonnegative
initial datum - depend on the stability of the solution w ≡ 0 for the equation
Lw = 0, that is, on the sign of the generalized principal eigenvalue λ1(−L,RN ).
The generalized principal eigenvalue of a linear elliptic operator −L in a domain
Ω ⊂ R

N is defined by
(11)

λ1(−L,Ω) := sup{λ ∈ R : ∃ φ ∈W 2,N
loc (Ω), φ > 0 and (L+ λ)φ ≤ 0 a. e. in Ω}.

In the sequel, we will set λ1 := λ1(−L,RN ).

Theorem 1.1. Assume that (7)-(10) hold. Then problem (2) admits solution if and
only if λ1 < 0. Moreover, the solution is unique when it exists.

Theorem 1.2. Let u(t, x) be the solution of (1) with an initial condition u(0, x) =
u0(x) ∈ L∞(RN ) which is nonnegative and not identically equal to zero. Under
assumptions (7)-(10) the following properties hold:
(i) if λ1 ≥ 0 then

lim
t→∞

u(t, x) = 0,

uniformly with respect to x ∈ R
N ;

(ii) if λ1 < 0 then
lim
t→∞

(u(t, x)− U(x− cte)) = 0,

uniformly with respect to x ∈ R
N , where U is the unique solution of (2).

We will see that there exists a critical speed c0, depending only on fs(x, 0)
and not on e, such that λ1 < 0 if and only if c < c0, provided λ1 < 0 when
c = 0 (cf. Definition 2.1 and Proposition 3 in Section 2.1). Hence, the biological
interpretation of Theorem 1.2 is that the population manages to persist by migrating
if the speed of the climate shift is not too large, otherwise there is extinction.

We further consider the problem

(12) ∂tu = a△u+ γf(x− cte, u), t > 0, x ∈ R
N ,

and we examine the dependence of the critical speed c0 with respect to the positive
parameters a and γ (see Section 2.6).

1.3. Main results in the mixed periodic/shift case. It will always be assumed
that g(x, s) : RN × [0,+∞) → R is a Carathéodory function satisfying the same
regularity assumptions (6) as f . Moreover, the function x 7→ g(x, s) is periodic in
the direction e, with period l > 0, that is

g(x+ le, s) = g(x, s) for s ≥ 0 and for a. e. x ∈ R
N .

Henceforth, we set
h(t, x, s) := f(x, s) + g(x+ cte, s).

Then, the function h is l/c-periodic in t. The assumptions on the dependence of h
with respect to x and s are the same as those on f in the pure shift case. More
precisely, we assume that

(13) h(t, x, 0) = 0 for a. e. (t, x) ∈ R
N+1,
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(14) ∃ S > 0 such that h(t, x, s) ≤ 0 for s ≥ S and for a. e. (t, x) ∈ R
N+1,

(15)

{

s 7→ h(t, x, s)

s
is nonincreasing for a. e. (t, x) ∈ R

N+1,

and it is strictly decreasing for a. e. (t, x) ∈ D ⊂ R
N+1, with |D| > 0.

The analogue of condition (10) is required uniformly in t ∈ R, that is,

(16) lim
R→∞

sup
t∈R

|x|>R

hs(t, x, 0) < 0.

A sufficient condition for (16) to hold is

lim sup
|x|→∞

fs(x, 0) < − sup
x∈RN

gs(x, 0).

If (13) holds then the linearized operator about w ≡ 0 associated with the para-
bolic equation in (4) is

Pw = ∂tw −△w − ce · ∇w − hs(t, x, 0)w.

Note that the coefficients of P are l/c-periodic in t. We now introduce a notion of
generalized principal eigenvalue associated with a general parabolic operator P with
T -periodic coefficients with respect to t in a domain R×Ω, where T > 0 and Ω is a
domain in R

N . The generalized T -periodic (with respect to t) principal eigenvalue
of P in R× Ω is defined as

µ1(P,R × Ω) := sup{µ ∈ R : ∃ φ ∈W 1,2
N+1,loc(R× Ω) T -periodic in t,

φ > 0 and (P − µ)φ ≥ 0 a. e. in R× Ω}.
(17)

The test functions φ in the above definition belong to W 1,2
N+1,loc(R×Ω) in order to

satisfy the maximum principle (see e. g. [14]). Unless otherwise specified, we will set
T := l/c and we will denote by µ1 the T -periodic generalized principal eigenvalue
µ1(P ,RN+1).

Theorem 1.3. Assume that (13)-(16) hold. Then problem (4) admits solution if
and only if µ1 < 0. Moreover, the solution is unique when it exists.

Theorem 1.4. Let u(t, x) be the solution of (3) with an initial condition u(0, x) =
u0(x) ∈ L∞(RN ) which is nonnegative and not identically equal to zero. Under
assumptions (13)-(16) the following properties hold:
(i) if µ1 ≥ 0 then

lim
t→∞

u(t, x) = 0,

uniformly with respect to x ∈ R
N ;

(ii) if µ1 < 0 then

lim
t→∞

(u(t, x)− U(t, x− cte)) = 0,

uniformly with respect to x ∈ R
N , where U is the unique solution of (4).

A natural question arises as to whether there exists a critical speed c0 such that
if c < c0 then µ1 < 0 and if c ≥ c0 then µ1 ≥ 0. This would be the analogue here
of the pure shift case. Such a result however is an open question. It is not clear
whether such a property holds for the mixed case. What we can prove is that there
exist a subcritical speed c and a supercritical speed c such that µ1 < 0 if c < c and
µ1 ≥ 0 if c ≥ c (cf. Definition 3.1 and Proposition 8 in Section 3.1).
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1.4. Main results in the two-speeds case. Actually, the results in the mixed
periodic/shift case hold good for the more general two-speeds problem (5) as well,
for any two speeds c′ 6= c > 0. If u solves (5) then the function ũ(t, x) := u(t, x+cte)
satisfies

∂tũ = △ũ+ ce · ∇ũ+ h̃(t, x, ũ) = 0 for a. e. x ∈ R
N ,

with h̃(t, x, s) := f(x, s)+g(x+(c− c′)te, s). Therefore, under the same periodicity

assumption g(x + le, s) = g(x, s) as before, we see that h̃ is l/(c − c′)-periodic in
t. This suggests that we look for pulsating travelling wave solutions U of (5) with
time period l/(c− c′), that is,

(18)















∂tU = △U + ce · ∇U + f(x, U) + g(x+ (c− c′)te, U), (t, x) ∈ R
N+1

U > 0 in R
N+1

U is bounded
U is l/(c− c′)-periodic in t.

As before, we denote by P the linearized operator about w ≡ 0:

Pw = ∂tw −△w − ce · ∇w − h̃s(t, x, 0)w,

and with µ1 the generalized l/(c−c′)-periodic (with respect to t) principal eigenvalue
µ1(P ,RN+1) given by (17) with T = l/(c− c′).

Theorem 1.5. The results of Theorems 1.3 and 1.4 hold true with h, (3) and (4)

replaced respectively by h̃, (5) and (18).

Subcritical and supercritical speeds c, c exist even in this case, and are defined
exactly as in the mixed periodic/shift case.

1.5. Plan of the paper and strategy of the proofs. The paper is divided into
two parts. The first one (Section 2) deals with the pure shift case and the second
one (Section 3) is concerned with the mixed periodic/shift case.

In Section 2.1, we first recall some properties of the generalized principal eigen-
value λ1 that will be used in the sequel. Next, we make a change of unknown in
order to transform problem (2) into a problem with an elliptic equation having self-
adjoint linear part. This allows one to define the critical speed c0 and to establish
its relations with the sign of λ1. Another consequence of the new formulation of the
problem is that, owing to (10), we are able to construct some rotationally invariant
supersolutions that are then used to derive exponential decay of travelling wave
solutions. This is done in Section 2.2. In the following one, we make use of the
self-adjoint structure of the equation and the exponential decay to prove a com-
parison principle for travelling waves, stated in Theorem 2.3 below. The necessary
condition for the existence result as well as the uniqueness result are consequences
of this comparison principle, as it is shown in Section 2.4. We wish to emphasize
that this approach differs from that of [1], where the case λ1 > 0 is handled by
establishing a lower bound for the decay of the generalized principal eigenfunction.
This is possible in [1] only because fs(x, 0) is assumed to have a negative limit as
|x| → ∞, which is not the case in general here. The proof of the sufficient condition
is essentially the same as in [1], based on the method of sub and supersolutions and
a characterization of the generalized principal eigenvalue. In Section 2.5, we derive
the large time behavior of any solution of (1) with nonnegative initial datum by
comparison with some sub and supersolutions monotone in t, as was done in [2].
Some extra work is required to prove that the convergence is uniform in x. The
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dependence of the critical speed c0 with respect to the amplitude of the reaction
and diffusion terms is discussed in Section 2.6.

At the beginning of Section 3.1, we present some results concerning the gener-
alized time-periodic principal eigenvalue µ1 of the evolution operator. Then, we
reduce (4) to an equivalent problem via the same change of function as in Section
2.1. As a consequence of the new formulation, we define sub and supercritical speeds
c, c and, in Section 3.2, we derive exponential decay of pulsating travelling wave
solutions. In contrast with the pure shift case, the linear part of the new operator
being parabolic is not self-adjoint. Thus, the method used in Section 2.3 to prove
the comparison principle for travelling wave solutions is not applicable. Instead, a
method based on the maximum principle is presented in Section 3.3. This is possible
because, by (15) and (16), the function h(t, x, s) has the right monotonicity in s for
|x| large. Section 3.4 is concerned with the large time behavior of solutions of (3).
As a consequence, the sufficient condition for the existence of pulsating travelling
wave solutions is obtained. Since they are of independent interest, we state such
results for more general time periodic parabolic equations (for which neither (15)
nor (16) are required). We prove Theorem 1.3 and Theorem 1.4 in Section 3.5, by
putting together all the previous tools. Lastly, at the end of the paper we show
that the arguments in the mixed periodic/shift case also apply to the two speeds
problem (5).

1.6. Notation. We denote by BR(x) the ball of RN with radius R > 0 and centre
x ∈ R

N , and BR = BR(0). The symbol ∇ stands for the vector (∂1, · · · , ∂N ) of

partial derivatives with respect to the space variables x1, · · · , xN , and△ =
∑N

i=1 ∂ii.
We require the weak notion of solutions for parabolic equations such as (1) or

(3), because it only assumes the initial datum to be in L2
loc. Let us briefly recall

the definition. We say that u(t, x) is a solution (resp. sub, supersolution) of (1)
with initial condition u(0, ·) = u0 ∈ L2

loc(R
N ) if, for all t, r > 0, the functions u,∇u

belong to L2((0, t)×Br) and u(t, ·) ∈ L2(Br), and
∫

Br

(u(τ, ·)φ(τ, ·)− u0φ(0, ·)) +
∫

(0,τ)×Br

(−u∂tφ+∇u · ∇φ)

=

∫

(0,τ)×Br

f(x− cte, u)φ,

(resp. ≤, ≥) for a. e. τ > 0 and any test function φ ∈ C1([0, τ ]×Br) such that φ = 0
on [0, τ ] × ∂Br. We will also make use of theory of strong solutions for parabolic
equations. A strong solution of a parabolic equation in an open set Q ⊂ R

N+1 is
a function u ∈ W 1,2

1,loc(Q) which satisfies the equation a. e. in Q. Here, for p ≥ 1,

W 1,2
p (Q) stands for the space of functions φ ∈ Lp(Q) with weak derivatives ∂tφ, ∂iφ

and ∂ijφ in Lp(Q), equipped with the norm

‖φ‖p,Q := ‖φ‖Lp(Q) + ‖∂tφ‖Lp(Q) +

N
∑

i=1

‖∂iφ‖Lp(Q) +

N
∑

i,j=1

‖∂ijφ‖Lp(Q).

For elliptic equations such as that in (2) it is understood that we refer to strong
solutions. In particular, it follows that if U is a solution of (2) then U(x− cte) is a
(travelling wave) solution of (1) with initial condition U(x).

The regularity assumptions (6) on the function f are understood in the following
sense:
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(1) for any ξ > 0 there exists a positive constant kξ such that

∀ s1, s2 ∈ [0, ξ], ‖f(·, s1)− f(·, s2)‖L∞(RN ) ≤ kξ|s1 − s2|;

(2) for a. e. x ∈ R
N the function s 7→ f(x, s) belongs to C1([0, δ]) and its

derivative fs satisfies

∀ s ∈ [0, δ], lim
h→0

s+h∈[0,δ]

‖fs(·, s+ h)− fs(·, s)‖L∞(RN ) = 0.

Finally, we denote for brief by “inf” and “sup” respectively the essential infimum
and supremum of a measurable function.

2. Pure shift case

Recall that in Section 1.2 we introduced the following notation:

Lw := △w + ce · ∇w + fs(x, 0)w,

λ1 := λ1(−L,RN).

Throughout this section, we set

(19) ζ := − lim sup
|x|→∞

fs(x, 0).

Note that ζ ∈ R because fs(x, 0) ∈ L∞(RN ) thanks to the Lipschitz continuity of
f . If (10) holds then ζ > 0.

2.1. The generalized principal eigenvalue and definition of the critical
speed. The generalized principal eigenvalue λ1(−L,Ω) defined by (11) has been
introduced in [4]. Its properties have been widely investigated in our previous
paper [5] and in the one in collaboration with F. Hamel [2]. We refer to our work
in progress [6] for a comprehensive treatment of the subject, with rather general
assumptions on the coefficients.

A basic result of [4] is that λ1(−L,Ω) is always a well defined real number, which
coincides with the Dirichlet principal eigenvalue of −L in Ω if Ω is bounded and
smooth. We recall that the Dirichlet principal eigenvalue of −L in Ω is the unique
real number λ such that the problem

{

−Lϕ = λϕ a. e. in Ω
ϕ = 0 on ∂Ω

admits a positive solution ϕ (called Dirichlet principal eigenfunction, which is
unique up to multiplication). Henceforth, we denote by λ(R) the Dirichlet prin-
cipal eigenvalue of −L in BR and ϕR the associated principal eigenfunction such
that ϕR(0) = 1. Another fundamental result for our purpose is

Proposition 1. ([4] and Proposition 4.2 in [2]) The function λ(R) : R
+ → R

decreases and satisfies

lim
R→∞

λ(R) = λ1.

Furthermore, there exists a generalized principal eigenfunction of −L in R
N , that

is, a positive function ϕ ∈W 2,p
loc (R

N ), for any 1 ≤ p <∞, such that

(20) − Lϕ = λ1ϕ a. e. in R
N .
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It is classical in this framework to make a Liouville transformation of the unknown
U . The function U(x) is a solution of (2) if and only if v(x) := U(x)e

c
2x·e is a solution

of

(21)











△v + f(x, v(x)e−
c
2x·e)e

c
2x·e − c2

4
v = 0 a. e. in R

N

v > 0 in R
N

v(x)e−
c
2x·e is bounded.

Under assumption (7), the linearized operator about w ≡ 0 associated with the
equation in (21) is

L̃w := △w + (fs(x, 0)− c2/4)w.

Proposition 2. For any domain Ω in R
N the following identity holds:

λ1(−L̃,Ω) = λ1(−L,Ω).
Proof. It follows immediately from definition (11) and the fact that

L̃φ = (L(φe− c
2x·e))e

c
2x·e

for any function φ ∈ W 2,1
loc (Ω). �

We can now define the critical speed c0. Let us introduce the operator

L0w := △w + fs(x, 0)w

and set λ0 := λ1(−L0,R
N ).

Definition 2.1. (Critical speed) We define

c0 :=

{

2
√
−λ0 if λ0 < 0

0 otherwise.

By Proposition 2 we infer

λ1 = λ1(−L0 +
c2

4
,RN) = λ0 +

c2

4
.

Hence, the following equivalence holds

Proposition 3. λ1 < 0 iff c < c0.

Note that, owing to Theorem 1.1 and Proposition 3, our condition c0 = 0 if
λ0 ≥ 0 implies that in such a case, there does not exist a stationary solution even
without climate change, that is c = 0.

2.2. Exponential decay. The next result will be useful to derive the behaviour
of solutions of (21) far from the origin. An analogous property is proved in [1] in
dimension N = 1.

Lemma 2.2. Let v ∈W 2,N
loc (RN ) be a positive function satisfying

∀ x ∈ R
N , v(x) ≤ Ce

√
γ|x|, lim inf

|x|→∞

△v(x)
v(x)

> γ,

for some positive constants C and γ. Then,

lim
|x|→∞

v(x)e
√
γ |x| = 0.
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Proof. From the Sobolev embedding theorem we know that v ∈ C0(RN ). By the
assumptions on v there exist ε,R > 0 such that △v > (γ + 2ε)v a. e. in R

N \BR.
For ρ ≥ R and a > 0 let ϑρ,a : [ρ, ρ+ a] → R be the solution of







ϑ′′ = (γ + ε)ϑ in (ρ, ρ+ a)
ϑ(ρ) = Ce

√
γρ

ϑ(ρ+ a) = Ce
√
γ(ρ+a).

That is, ϑρ,a(r) = Aρ,ae
−√

γ+ε r +Bρ,ae
√
γ+ε r, with

Aρ,a = Ce(
√
γ+

√
γ+ε)ρ

(

1− e
√
γa − e−

√
γ+εa

e
√
γ+εa − e−

√
γ+εa

)

,

Bρ,a = Ce(
√
γ−√

γ+ε)ρ e
√
γa − e−

√
γ+εa

e
√
γ+εa − e−

√
γ+εa

.

The function θρ,a(x) := ϑρ,a(|x|) satisfies

△θρ,a(x) = (γ + ε)ϑρ,a(|x|) +
N − 1

|x| ϑ′ρ,a(|x|), x ∈ Bρ+a \Bρ.

Since ϑ′ρ,a(|x|) ≤ √
γ + εϑρ,a(|x|), there exists ρ̃ ≥ R independent of a such that

△θρ̃,a − (γ+2ε)θρ̃,a ≤ 0 in Bρ̃+a \Bρ̃. Hence, v and θρ̃,a are respectively a sub and
a supersolution of −△+ (γ + 2ε) = 0 in Bρ̃+a \Bρ̃ and v ≤ θρ̃,a on ∂(Bρ̃+a \Bρ̃).
Consequently, the weak maximum principle yields v ≤ θρ̃,a in Bρ̃+a \Bρ̃, for any
a > 0. Therefore, for |x| > ρ̃ we get

v(x) ≤ lim
a→∞

θρ̃,a(x) = Ce(
√
γ+

√
γ+ε)ρ̃e−

√
γ+ε |x|,

which concludes the proof. �

The assumptions in Lemma 2.2 are sharp. Indeed, the function v(x) = e(
√
γ+ε)x,

ε > 0 and x ∈ R, shows that the exponential factor
√
γ in the first assumption

is optimal. On the other hand, owing to the next example from [1], the strict
inequality in the second assumption is needed: let v ∈ C2(R) be a function such
that v(x) = (1 + |x|)e−

√
γ|x| for |x| grater than some positive constant R. Then,

lim
|x|→∞

v(x)e−
√
γ|x| = 0, lim

|x|→∞

v′′(x)

v(x)
= γ,

but the conclusion of Lemma 2.2 does not hold.

Proposition 4. Let v be a solution of (21) and assume that (7), (9), (10) hold.
Then, for any 0 < γ < ζ + c2/4 there exists a positive constant k = kγ such that

∀ x ∈ R
N , v(x) + |∇v(x)| ≤ ke−

√
γ |x|.

Proof. It is sufficient to prove the statement for c2/4 < γ < ζ + c2/4. Set

z(x) :=
f(x, v(x)e−

c
2x·e)

v(x)e−
c
2x·e

.

The function z belongs to L∞(RN ) because f is locally Lipschitz continuous and
(7) holds. By (7) and (9) we get

(22)
△v(x)
v(x)

= −z(x) + c2

4
≥ −fs(x, 0) +

c2

4
for a. e. x ∈ R

N .
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Hence, by (19),

lim inf
|x|→∞

△v(x)
v(x)

≥ ζ +
c2

4
> γ.

The function v(x)e−
√
γ|x| is less than v(x)e−

c
2x·e, which is bounded. Lemma 2.2 then

yields v(x) ≤ C0e
−√

γ |x| for some constant C0 > 0. Now that we have derived the
exponential decay of v, the estimate on∇v follows from (22) by standard arguments.

Indeed, by the Lp estimates, for every 1 ≤ p <∞ there exists C̃1 > 0 such that

∀ x ∈ R
N , ‖v‖W 2,p(B1(x)) ≤ C̃1‖v‖L∞(B2(x)),

where C̃1 depends on ‖z‖L∞(RN ) and not on x. Hence, using the injection of W 2,p

in C1 for p > N , we can find another constant C1 > 0 such that ‖∇v‖L∞(B1(x)) ≤
C1e

−√
γ |x|. �

2.3. Comparison principle. In this section, we derive a comparison result be-
tween solutions and supersolutions of (21). In particular this yields the uniqueness
result. The method here consists in assuming, by way of contradiction, that the
set O where the supersolution lies below the solution is nonempty. Then, thanks
to the self-adjoint structure of the linear part of the operator and the exponential
decay of the solution, one gets a contradiction by using the Stokes theorem and
Hopf’s lemma. We mention that another approach can be followed. Based on the
maximum principle, it applies also to operators with non-self-adjoint linear part
and hence will come handy in the mixed periodic/shift case (see Section 3.3). We
have chosen to present the first method in the pure shift framework, because it is
of independent interest and also because it is the natural extension of the method
used in [1] to prove nonexistence of solutions when λ1 = 0. The main difficulty with
respect to the one dimensional case treated in [1] is that O could be non-smooth
and then neither the Stokes theorem nor Hopf’s lemma do apply directly.

Theorem 2.3. Assume that (7), (9), (10) hold. Let v be a solution of (21) and

w ∈ W 2,N
loc (RN ) be a positive supersolution of the elliptic equation in (21), that is,

−△w +
c2

4
w ≥ f(x,w(x)e−

c
2x·e)e

c
2x·e a. e. in R

N .

In addition, assume that there exist k0, k1 > 0 such that

(23) w(x) ≤ k0 ⇒ |∇w(x)| ≤ k1.

Then v ≤ w.

Proof. Set

O := {x ∈ R
N : v(x) > w(x)}

and assume, by way of contradiction, that O 6= ∅. We distinguish different cases.
Case 1: O = R

N .
Multiplying the equation for v by w and that for w by v and integrating the

difference over BR we obtain, for any R > 0,
∫

BR

(−w△v + v△w) ≤
∫

BR

[wf(x, ve−
c
2x·e)− vf(x,we−

c
2x·e)]e

c
2x·e.

The Stokes theorem yields

(24)

∫

∂BR

(v∇w − w∇v) · ν ≤
∫

BR

[

f(x, ve−
c
2x·e)

ve−
c
2x·e

− f(x,we−
c
2x·e)

we−
c
2x·e

]

vw.
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By Proposition 4, there exists R0 > 0 such that v(x) ≤ k0 for |x| ≥ R0. Hence,
by assumption (23), for |x| ≥ R0 w(x) < k0 and |∇w(x)| ≤ k1. Using again
Proposition 4, we find that the left-hand side of (24) goes to zero as R→ ∞. This
is a contradiction because, by (9), the right-hand side is nonincreasing in R and it
is negative if |D ∩BR| > 0, where D is the set in (9).

Case 2: O 6= R
N .

We would like to proceed as before, applying the Stokes theorem in O, and
deriving (24) with BR replaced by O. The problem is that O could be unbounded
and it is not necessarily smooth. To deal with this, we introduce a family of cut-off
functions. Let β ∈ C∞(R) be such that

β = 0 in (−∞, 1/2], 0 < β′ < 4 in (1/2, 1), β = 1 in [1,+∞).

Then, we define βε(s) := β(s/ε). Let us set σ := v − w. For ε > 0 we get

(25)

∫

RN

(−w△v+v△w)βε(σ) ≤
∫

RN

[wf(x, ve−
c
2x·e)−vf(x,we− c

2x·e)]e
c
2x·eβε(σ).

Note that the function βε(σ) is compactly supported because βε vanishes on (−∞,
ε/2] and σ(x) < ε/2 for |x| large enough by Proposition 4. The Stokes theorem
yields

∫

RN

(−w△v + v△w)βε(σ) =
∫

RN

β′
ε(σ)∇σ · (w∇v − v∇w)

=

∫

O
β′
ε(σ)w|∇σ|2 −

∫

O
β′
ε(σ)σ∇σ · ∇w.

The function β′
ε(σ)σ∇σ · ∇w converges pointwise to 0 as ε→ 0+ and it satisfies

|β′
ε(σ)σ∇σ · ∇w| ≤ |σ||∇σ||∇w|4

ε
χ{σ<ε} ≤ 4|∇σ||∇w|,

where χ{σ<ε} stands for the characteristic function of the set {x : σ(x) < ε}. Since
4|∇σ||∇w| ∈ L1(O), it follows from Lebesgue’s dominated convergence theorem
that the left-hand side of (25) satisfies

(26) lim sup
ε→0+

∫

RN

(−w△v + v△w)βε(σ) = lim sup
ε→0+

∫

O
w|∇σ|2β′

ε(σ) ≥ 0.

We argue differently according to whether w is a solution of the elliptic equation in
(21) or not. Let us denote by U the set where w is a strict supersolution, that is,

U :=

{

x ∈ R
N : −△w(x) + c2

4
w(x) > f(x,w(x)e−

c
2x·e)e

c
2x·e
}

.

Case 2a: |U ∩ O| > 0.
By (26) and (9) we get

0 ≤ lim sup
ε→0+

∫

RN

(

f(x, v(x)e−
c
2x·e)e

c
2x·ew − c2

4
vw + v△w

)

βε(σ)

≤ lim sup
ε→0+

∫

RN

(

f(x,w(x)e−
c
2x·e)e

c
2x·e − c2

4
w +△w

)

vβε(σ)

=

∫

O

(

f(x,w(x)e−
c
2x·e)e

c
2x·e − c2

4
w +△w

)

v.

This is a contradiction because the last term is strictly negative (possibly equal to
−∞).

Case 2b: |U ∩ O| = 0.
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By (9), the right-hand side of (25) is nonpositive. Hence, by (26),

(27) lim
ε→0+

∫

O
w|∇σ|2β′

ε(σ) = 0.

We will find a contradiction by using the fact that σ is a positive solution of a
linear elliptic equation in O, vanishing on the boundary, and applying the Hopf
lemma in a smooth region of ∂O. To this end, we will define such a suitable
region. Let x0 ∈ O and d := dist(x0, ∂O). Thus, Bd(x0) ⊂ O and there exists a
point x1 ∈ ∂O ∩ ∂Bd(x0). Since the function σ is a positive solution of a linear
elliptic equation in Bd(x0) (because f(x, ·) is Lipschitz continuous) and vanishes
on x1 ∈ ∂Bd(x0), the Hopf lemma implies that ∇σ(x1) · (x1 − x0) < 0. Let us
consider a coordinate system for RN such that ∇σ(x1) ∈ {0}N−1 ×R

+ and denote
the generic point in R

N by (y, z), y ∈ R
N−1, z ∈ R. From the implicit function

theorem it follows that, in a suitable neighborhood of x1, the set ∂O is given by
{(y, z) ∈ R

N : y ∈ A, z = F (y)}, where A is a domain in R
N−1 and F is a

function in C1(A), and in this neighborhood O ⊂ {z > F (y)}. Furthermore, there
exist A′ ⊂⊂ A, with |A′| > 0, and k, γ > 0 such that the bounded set

O′ := {(y, z) ∈ R
N : y ∈ A′, F (y) < z < F (y) + k}

is contained in O and ∂zσ ≥ γ holds in O′. Therefore,
∫

O
w|∇σ|2β′

ε(σ) ≥
∫

O′

w|∇σ|2β′
ε(σ) ≥ γ

(

inf
O′
w
)

∫

A′

dy

∫ F (y)+k

F (y)

β′
ε(σ)∂zσ dz

= γ
(

inf
O′
w
)

∫

A′

βε(σ(y, F (y) + k)) dy ≥ γ
(

inf
O′
w
)

|A′|βε(γk).

Since infO′ w > 0 and βε(γk) → 1 as ε → 0+, this yields a contradiction with
(27). �

2.4. Existence and uniqueness of travelling waves.
Proof of Theorem 1.1. Since problems (2) and (21) are equivalent, the uniqueness
result for (2) immediately follows from the comparison principle in Theorem 2.3.
Recall that any solution of (21) belongs to W 1,∞(RN ) by Proposition 4 and then
satisfies (23). Let us now prove the criterion for existence in Theorem 1.1.

Case 1: λ1 < 0.
We proceed exactly as in [2]. By Proposition 1 there exists R > 0 such that

λ(R) < 0. Define the function

U(x) :=

{

κϕR(x) x ∈ BR

0 otherwise,

with κ > 0 to be chosen. Since

−△(κϕR)− ce · ∇(κϕR) = (fs(x, 0) + λ(R))κϕR a. e. in BR,

f(x, 0) = 0 by (7) and f(x, ·) ∈ C1([0, δ]), it follows that, for κ small enough, U
satisfies −△U − ce · ∇U ≤ f(x, U) a. e. in BR. As was shown in [3], U is a weak
subsolution of the equation in (2). On the other hand, the function U(x) ≡ S
(where S is the constant in (8)) is a supersolution of the equation in (2). Also,
choosing a smaller κ if need be, we get U ≤ U . Consequently, (see e. g. [3]) we find
a function U such that

{

△U + ce · ∇U + f(x, U) = 0 a. e. in R
N

U ≤ U ≤ U in R
N .
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The strong maximum principle implies that U is strictly positive and then satisfies
(2).

Case 2: λ1 ≥ 0.
From Proposition 2 it follows that λ1(−L̃,RN ) = λ1 ≥ 0. Assume, by way

of contradiction, that (2) admits a solution U , that is, (21) admits the solution
v(x) = U(x)e

c
2x·e. Let ϕ be a generalized principal eigenfunction of −L in R

N

(cf. Proposition 1). Then, the function ϕ̃(x) := ϕ(x)e
c
2x·e is a positive solution of

−L̃ϕ̃ = λ1ϕ̃ a. e. in R
N . Normalize ϕ̃ in such a way that ϕ̃(0) < v(0). By (9) we

see that

−△ϕ̃+
c2

4
ϕ̃ = (fs(x, 0) + λ1)ϕ̃ ≥ f(x, ϕ̃(x)e−

c
2x·e)e

c
2x·e a. e. in R

N ,

that is, ϕ̃ is a supersolution of the equation in (21). Let us show that ϕ̃ satisfies
(23), for some k0, k1 > 0. By interior elliptic estimates and Harnack inequality, for
1 ≤ p <∞ we get

∀ x ∈ R
N , ‖ϕ̃‖W 2,p(B1(x)) ≤ C1‖ϕ̃‖L∞(B2(x)) ≤ C2ϕ̃(x),

with C1, C2 positive constants independent of x. As a consequence, the embedding
theorem yields |∇ϕ̃| ≤ C3ϕ̃ in R

N , for some C3 > 0, and then (23) holds for
any k0 > 0 with k1 = C3k0. Therefore, Theorem 2.3 implies v ≤ ϕ̃, that is a
contradiction. �

2.5. Large time behavior. In this section, we consider the initial value problem
(1).
Proof of Theorem 1.2. Let S be the positive constant in (8) and set S′ := max{S,
‖u0‖L∞(RN )}. The functions u1 ≡ 0 and u2 ≡ S′ are a sub and a supersolution re-

spectively of (28), because f(x, 0) = 0 and f(x, S′) ≤ 0 for a. e. x ∈ R
N . Therefore,

thanks to the parabolic weak maximum principle, the existence of a unique solution
u of (1) with initial condition u(0, x) = u0(x) follows from standard parabolic the-
ory of weak solutions. In addition, 0 ≤ u ≤ S′. The function ũ(t, x) := u(t, x+ cte)
is a solution of

(28) ∂tũ = △ũ+ ce · ∇ũ+ f(x, ũ), t > 0, x ∈ R
N ,

with initial condition ũ(0, x) = u0(x). Let w be the solution of (28) with initial
datum w(0, x) = S′. By comparison, ũ ≤ w ≤ S′ in R

+ × R
N . Furthermore, using

once again the maximum principle, we infer that t 7→ w(t, x) is nonincreasing and
then, as t→ ∞, it converges to a function W (x) satisfying

(29) ∀ x ∈ R
N , lim sup

t→∞
ũ(t, x) ≤ lim

t→∞
w(t, x) =W (x) ≤ S′.

The Lp regularity theory up to the boundary (see e. g. [13] or Chapter VII in [14])
yields that, for any ρ > 0, there exists Cρ > 0 such that

(30) ∀ t0 ≥ 0, ∀ x0 ∈ R
N , ‖w‖N+1,(t0,t0+ρ)×Bρ(x0) ≤ Cρ.

Then, as t→ ∞, w(t, x) converges toW (x) locally uniformly in R
N and, as n→ ∞,

∂iw(t+n, x) and ∂ijw(t+n, x) converge respectively to ∂iW (x) and ∂ijW (x) weakly
locally in LN+1(R+ ×R

N). Clearly, 0 ≤W ≤ S′ and △W + ce ·∇W + f(x,W ) = 0
a. e. in R

N . Furthermore, we claim that for any sequences (tn)n∈N in R
+ and

(xn)n∈N in R
N ,

(31) lim
n→∞

tn = lim
n→∞

|xn| = +∞ ⇒ lim
n→∞

w(tn, xn) = 0.
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Let us postpone the proof of (31) and conclude the proof. We consider two different
cases.

Case 1: λ1 ≥ 0.
Owing to Theorem 1.1, the function W cannot be strictly positive and then, by

the elliptic strong maximum principle, W ≡ 0. This shows that w(t, x) converges
locally uniformly to zero as t → ∞. If this convergence is not uniform then there
exists ε > 0, (tn)n∈N and (xn)n∈N such that tn, |xn| → ∞ as n→ ∞ and w(tn, xn) ≥
ε for every n ∈ N. This is in contradiction with our claim (31). Therefore, w(t, x)
converges to zero as t → ∞, uniformly with respect to x ∈ R

N , and by (29) the
same is true for ũ. Statement (i) then follows, because u(t, x) = ũ(t, x− cte).

Case 2: λ1 < 0.
By Proposition 1 there exists R > 0 such that λ(R) < 0. Consider the Dirichlet

principal eigenfunction ϕR of −L in BR. As we have seen in the case 1 of the proof
of Theorem 1.1, for κ > 0 small enough the function

U(x) :=

{

κϕR(x) x ∈ BR

0 otherwise

is a weak subsolution of the elliptic equation in (2). Moreover, even if it means
decreasing κ, we can assume that U(x) ≤ ũ(1, x). Indeed, ũ(1, x) > 0 by the
parabolic strong maximum principle. Thus, the comparison principle yields that
the solution v of (28) with initial condition v(0, x) = U(x) is nondecreasing in t and
satisfies

(32) ∀ t > 0, ∀ x ∈ R
N , U(x) ≤ v(t, x) ≤ ũ(t+ 1, x) ≤ w(t + 1, x).

Arguing as before one finds that, as t goes to infinity, v(t, x) converges locally
uniformly to a function V satisfying U ≤ V ≤W ≤ S′ and △V +ce·∇V +f(x, V ) =
0 a. e. in R

N . Therefore, by the strong maximum principle V > 0 and then Theorem
1.1 yields V ≡W ≡ U , where U is the unique solution of (2). We have shown that
v and w converge locally uniformly to U as t goes to infinity and then, owing to
(32), the same is true for ũ. Assume by contradiction that the convergence of ũ to
U is not globally uniform in x. Hence, there exist ε > 0, (tn)n∈N and (xn)n∈N such
that limn→∞ tn = limn→∞ |xn| = ∞ and |ũ(tn, xn) − U(xn)| ≥ ε for every n ∈ N.
Recall that U(x)e

c
2 ·ex is the unique solution of problem (21). Thus, Proposition 4

yields lim|x|→∞ U(x) = 0. Consequently, for n big enough we have that

ε ≤ ũ(tn, xn)− U(xn) ≤ w̃(tn, xn)− U(xn).

Therefore, lim supn→∞ w(tn, xn) ≥ ε, which is impossible by (31). This means that
limt→∞ u(t, x+ cte) = U(x), uniformly in x ∈ R

N , and then statement (ii) holds.
It only remains to prove the claim (31). Assume that (31) does not hold. Then,

there exist ε > 0, (tn)n∈N and (xn)n∈N such that tn, |xn| → ∞ as n goes to infinity
and w(tn, xn) ≥ ε for every n ∈ N. Using estimate (30) and the compact injection
we find that, as n goes to infinity and up to subsequences, w(t, x + xn) converges
to a function w̃(t, x) uniformly in [0, ρ]× Bρ, for any ρ > 0. Moreover, by (9) and
(19), the function w̃ satisfies

∂tw̃ ≤ △w̃ + ce · ∇w̃ − ζw̃ in R
+ × R

N ,

with initial condition w̃(0, x) = S′. Define the function θ(t, x) := S′e−ζt. We see
that ∂tθ = −ζθ and θ(0, x) = w̃(0, x). Therefore, the parabolic maximum principle
yields w̃(t, x) ≤ θ(t, x) for t > 0, x ∈ R

N and then limt→∞ w̃(t, x) = 0. This is
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impossible, because

∀ t > 0, w̃(t, 0) = lim
n→∞

w(t, xn) ≥ lim sup
n→∞

w(tn, xn) ≥ ε.

The proof of Theorem 1.2 is thereby complete. �

2.6. Influence of the parameters on the critical speed c0. We examine now
the dependence of the critical speed c0 with respect to the amplitude of the reaction
and diffusion terms. Consider the problem (12) with a and γ positive constants.
Travelling wave solutions u(t, x) = U(x− cte) of (12) satisfy

(33)







a△U + ce · ∇U + γf(x, U) = 0 a. e. in R
N

U > 0 in R
N

U is bounded.

The associated linearized operator about U ≡ 0 is given by

La,c,γw := a△w + ce · ∇w + γfs(x, 0)w.

For any a, c, γ > 0 set λ1(a, c, γ) := λ1(−La,c,γ ,R
N ).

Theorems 1.1 and 1.2 hold true with (1), (2) and λ1 replaced respectively by
(12), (33) and λ1(a, c, γ). This is readily seen through the time change t → t/γ,
which reduces problem (12) to

(34) ∂tu = △u+
γ

a
f(x− c

a
te, u), t > 0, x ∈ R

N .

Indeed, if f satisfies (7)-(10) then the same is true for a−1γf and we can apply
Theorems 1.1 and 1.2 with

c =
c

a
, f =

γ

a
f, λ1 = λ1(1, c/a, γ/a) =

1

a
λ1(a, c, γ).

We show that the critical speed for the problem (12) is given by

c0(a, γ) :=

{

2
√

−λ1(a/γ, 0, 1) aγ if λ1(a/γ, 0, 1) < 0
0 otherwise.

That is,

Proposition 5. λ1(a, c, γ) < 0 iff c < c0(a, γ).

The following result describes the behavior of the function (a, γ) 7→ c0(a, γ).

Theorem 2.4. Assume that (10) holds. If fs(x, 0) ≤ 0 for a. e. x ∈ R
N then

c0 ≡ 0. Otherwise, c0 ∈ C0(R+ × R
+) and there exists σ > 0 such that

c0(a, γ) > 0 ⇔ a

γ
< σ,

c0(a, γ) ≤ 2
√

sup
x∈RN

fs(x, 0) aγ,

γ 7→ c0(a, γ) is nondecreasing, and it is strictly increasing for γ >
a

σ
,

lim
γ→∞

c0(a, γ)√
aγ

= 2
√

sup
x∈RN

fs(x, 0) uniformly in a ∈ (0, R), for any R > 0.

Owing to Proposition 5, Theorem 2.4 has the following biological interpretation:

(1) if the population diffusion is rather low then a slow climate change is suffi-
cient for extinction;
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a
γσ

c0(a, γ)

γ
a/σ

c0(a, γ)

Figure 1. graphs of a 7→ c0(a, γ) and γ 7→ c0(a, γ)

(2) if the diffusion is too high then extinction occurs even if the climate condi-
tions do not change at all;

(3) the larger is the amplitude of the reaction term, the higher are the chances
of persistence of the species.

Proof of Proposition 5. Applying Proposition 3 with c = a−1c and f = a−1γf we
derive

λ1(1, c/a, γ/a) < 0 ⇔ c

a
< c̃0,

where

c̃0 =

{

2
√

−λ1(1, 0, γ/a) if λ1(1, 0, γ/a) < 0
0 otherwise.

Thus, since λ1(a, c, γ) = aλ1(1, c/a, γ/a) and a
2λ1(1, 0, γ/a) = λ1(a/γ, 0, 1) aγ,

λ1(a, c, γ) < 0 ⇔ c < ac̃0 = c0(a, γ).

�

To prove Theorem 2.4 we will make use of a result for elliptic operators in self-
adjoint form which we quote from [6].

Lemma 2.5. The function ρ 7→ λ1(ρ, 0, 1) : R
+ → R is continuous, nondecreasing

and satisfies

lim
ρ→0+

λ1(ρ, 0, 1) = − sup
x∈RN

fs(x, 0),

− lim sup
|x|→∞

fs(x, 0) ≤ lim
ρ→∞

λ1(ρ, 0, 1) ≤ − lim inf
|x|→∞

fs(x, 0).

Proof of Theorem 2.4. If supx∈RN fs(x, 0) > 0 then Lemma 2.5 and condition (10)
imply that there exists a unique positive number σ such that λ1(σ, 0, 1) = 0. The
result then follows from Lemma 2.5. �

3. Mixed periodic/shift case

In Section 1.3 we introduced the following notation:

T :=
l

c
,

h(t, x, s) := f(x, s) + g(x+ cte, s),

Pw := ∂tw −△w − ce · ∇w − hs(t, x, 0)w,

µ1 := µ1(P ,RN+1).
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Henceforth, we set

(35) ζ := − lim
R→∞

sup
t∈R

|x|>R

hs(t, x, 0).

Note that ζ ∈ R because hs(t, x, 0) ∈ L∞(RN ) thanks to the Lipschitz continuity
of f and g. If (16) holds, then ζ > 0.

3.1. Generalized time-periodic principal eigenvalue and definitions of c, c.
The definition (17) of generalized principal eigenvalue for time-periodic parabolic
operators has been introduced in [15], in the case of operators in divergence form
with Hölder continuous coefficients. Here, we will use some results about µ1(P ,R×
Ω) which we quote form [6], regarding operators with only bounded zero-order
coefficient such as P .

The first property - which motivates the name of “generalized principal eigen-
value” - is that if Ω is a bounded smooth domain in R

N then µ1(P ,R×Ω) coincides
with the T -periodic Dirichlet principal eigenvalue of P in R×Ω, which is the unique
constant µ such that the eigenvalue problem







Pψ = µψ a. e. in R× Ω
ψ = 0 on R× ∂Ω
ψ is T -periodic in t

admits a positive solution ψ (called Dirichlet principal eigenfunction) which is
unique up to multiplication. For the existence and uniqueness of the Dirichlet
principal eigenvalue for time-periodic parabolic operators with smooth coefficients
see [10]. From now on, µ(R) will denote the Dirichlet principal eigenvalue of P in
R × BR and ψR the associated principal eigenfunction such that ψR(0) = 1. The
following result is the analogue of Proposition 1.

Proposition 6. ([6]) The function µ(R) : R+ → R decreases and satisfies

lim
R→∞

µ(R) = µ1.

Furthermore, there exists a generalized principal eigenfunction of P in R
N+1, that

is, a T -periodic in t positive function ψ ∈ W 1,2
p,loc(R

N+1), for any 1 ≤ p < ∞, such
that

Pψ = µ1ψ a. e. in R
N+1.

As in Section 2, we start by a change of function: U is a solution of (4) if and
only if v(t, x) := U(t, x)e

c
2x·e is a solution of

(36)



















∂tv = △v + h(t, x, v(t, x)e−
c
2x·e)e

c
2x·e − c2

4
v, (t, x) ∈ R

N+1

v > 0 in R
N+1

v(t, x)e−
c
2x·e is bounded

v is T -periodic in t.

Under assumption (13), the linearized operator about w ≡ 0 associated with the
equation in (36) is

P̃w := ∂tw −△w − (hs(t, x, 0)− c2/4)w.

Since P̃φ = (P(φe−
c
2x·e))e

c
2x·e, from definition (17) it follows that

Proposition 7. The T -periodic principal eigenvalue of P and P̃ coincide in any
domain R× Ω, with Ω ⊂ R

N . That is, µ1(P ,R× Ω) = µ1(P̃,R× Ω).
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Since hs(t, x, 0) = fs(x, 0)+gs(x+ cte, 0), the dependence on c of the operator P̃
is more complicated than that of the operator L̃ introduced in Section 2.1. Thus,
the existence of a critical speed is not clear in this framework. However, we can
define a subcritical speed c and a supercritical speed c. To this end, set

P0w := ∂tw −△w − fs(x, 0)w,

and µ0 := µ1(P0,R
N+1), where µ1(P0,R

N+1) is the generalized T -periodic principal
eigenvalue of P0 in the whole space.

Definition 3.1. (Sub and supercritical speeds) We define

c :=

{

2
√

inf
x∈RN

gs(x, 0)− µ0 if µ0 < inf
x∈RN

gs(x, 0)

0 otherwise,

c :=







2
√

sup
x∈RN

gs(x, 0)− µ0 if µ0 < sup
x∈RN

gs(x, 0)

0 otherwise.

Proposition 8. If c < c, then µ1 < 0. If c ≥ c, then µ1 ≥ 0.

Proof. For any function φ ∈ W 1,2
N,loc(R

N+1), T -periodic in t and positive, the fol-
lowing inequalities hold:

(

P0 − sup
x∈RN

gs(x, 0) +
c2

4

)

φ ≤ P̃φ ≤
(

P0 − inf
x∈RN

gs(x, 0) +
c2

4

)

.

Hence, using definition (17) we derive

µ0 − sup
x∈RN

gs(x, 0) +
c2

4
≤ µ1(P̃ ,RN+1) ≤ µ0 − inf

x∈RN
gs(x, 0) +

c2

4
.

The statement then follows, because µ1(P̃ ,RN+1) = µ1 by Proposition 7. �

3.2. Exponential decay. The next result is the parabolic version of Lemma 2.2.

Lemma 3.2. Let v ∈W 1,2
N+1,loc(R

N+1) and let C, γ > 0 be such that

∀ (t, x) ∈ R
N+1, 0 < v(t, x) ≤ Ce

√
γ|x|,

lim sup
|x|→∞

∂tv(t, x)−△v(t, x)
v(t, x)

< −γ,

uniformly in t ∈ R. Then, there exists a constant κ > 0 such that

∀ (t, x) ∈ R
N+1, v(t, x) ≤ κe−

√
γ |x|.

Proof. We consider v ∈W 1,2
N+1,loc(R

N+1) so that we may apply the maximum prin-

ciple (see e. g. [14]). The embedding theorem yields v ∈ C0(RN+1). Let ε,R > 0 be
such that ∂tv−△v < (−γ − 2ε)v for a. e. t ∈ R and |x| > R. For ρ, a > 0, consider
the same functions ϑρ,a as in Lemma 2.2. Fix τ ∈ R and define

θρ,a(t, x) := ϑρ,a(|x|) + (τ − t)δρ,a,

where δρ,a = ε
2 min[ρ,ρ+a] ϑρ,a > 0. By computation, for t ∈ R and ρ < |x| < ρ+ a

one gets

∂tθρ,a −△θρ,a(x) = −δρ,a − (γ + ε)ϑρ,a(|x|) −
N − 1

|x| ϑ′ρ,a(|x|)

≥ −
(

γ +
3

2
ε

)

ϑρ,a(|x|) −
N − 1

|x| ϑ′ρ,a(|x|).
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Since ϑ′ρ,a(|x|) ≤ √
γ + εϑρ,a(|x|), we can find ρ̃ > R in such a way that, for any

a > 0,

∂tθρ̃,a −△θρ̃,a > −(γ + 2ε)ϑρ̃,a(|x|) > −(γ + 2ε)θρ̃,a in (−∞, τ)× (Bρ̃+a \Bρ̃).

We apply the comparison principle between v and θρ̃,a in a cylinder (t0, τ) ×
(Bρ̃+a \Bρ̃). Let t0 < τ be such that θρ̃,a(t0, x) ≥ v(t0, x) for x ∈ Bρ̃+a \Bρ̃.
For t < τ and x ∈ ∂(Bρ̃+a \Bρ̃) we see that

θρ̃,a(t, x) ≥ ϑρ̃,a(|x|) = Ce
√
γ|x| ≥ v(t, x).

Therefore, the parabolic weak maximum principle implies θρ̃,a ≥ v in (t0, τ) ×
(Bρ̃+a \Bρ̃), for any a > 0. Then, in particular, for |x| > ρ̃

v(τ, x) ≤ lim
a→∞

θρ̃,a(τ, x) = Ce(
√
γ+

√
γ+ε)ρ̃e−

√
γ+ε |x|,

Since τ can be chosen arbitrarily, this concludes the proof. �

We can now derive the exponential decay of solutions of (4).

Proposition 9. Let U be a solution of (4) and assume that (13), (15), (16) hold.
Then, there exist two positive constants k, ε such that

∀ (t, x) ∈ R
N+1, U(t, x) ≤ ke−ε|x|.

Proof. The function v(t, x) := U(t, x)e
c
2x·e solves (36) and by parabolic interior

estimates we know that it belongs to W 1,2
N+1,loc(R

N+1) . Proceeding as in the proof
of Proposition 4, we see that v satisfies the hypotheses of Lemma 3.2, for any
γ ∈ (c2/4, ζ + c2/4) and some C > 0. Therefore, for any γ ∈ (c2/4, ζ + c2/4) there
exists κγ > 0 such that

∀ (t, x) ∈ R
N+1, v(t, x) ≤ κγe

−√
γ |x|.

This concludes the proof because

U(t, x) = v(t, x)e−
c
2x·e ≤ κγe

(−√
γ+ c

2 )|x|.

�

3.3. Comparison principle. In this section, we establish a comparison result that
will be used to derive the necessary condition for the existence of pulsating travelling
wave solutions as well as their uniqueness.

Theorem 3.3. Assume that (13), (15), (16) hold. Let U,U ∈ W 1,2
N+1,loc(R

N+1) be
respectively a nonnegative subsolution and a supersolution of the parabolic equation
in (4), T -periodic in t and satisfying

U > 0, lim sup
|x|→∞

U(t, x) ≤ 0 uniformly in t ∈ R.

Then U ≤ U .

Proof. For ε > 0 define the set

Kε := {k > 0 : kU ≥ U − ε in R
N+1}.

Let us first show that it is nonempty. Note that U,U ∈ C0(RN+1) thanks to the
embedding theorem. By hypothesis, for any ε > 0 there exists r(ε) > 0 such that

(37) ∀ t ∈ R, |x| ≥ r(ε), U(t, x) − ε ≤ 0.
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Since U is positive and

sup
t∈R

|x|<r(ε)

U(t, x) <∞, inf
t∈R

|x|<r(ε)

U(t, x) > 0,

because U and U are continuous and T -periodic in t, it follows that kU ≥ U − ε for
k large enough, that is Kε is nonempty.

For ε > 0 set k(ε) := infKε. Clearly, the function k(ε) is nonincreasing in ε. Let
us assume, by way of contradiction, that

k∗ := lim
ε→0+

k(ε) > 1

(with possibly k∗ = ∞). For any 0 < ε < supRN+1 U , one sees that k(ε) > 0,
k(ε)U − U + ε ≥ 0 in R

N+1 and there exists a sequence (tεn, x
ε
n)n∈N in R

N+1 such
that

(

k(ε)− 1

n

)

U(tεn, x
ε
n) < U(tεn, x

ε
n)− ε.

Owing to the periodicity in t, it is not restrictive to assume that the sequence
(tεn)n∈N is contained in [0, T ). Moreover, xεn ∈ Br(ε) for n large enough because,

otherwise, it would mean that U(tεn, x
ε
n) < 0 by (37). Consequently, up to extraction

of a suitable subsequence, (tεn, x
ε
n) converges to some (t(ε), x(ε)) ∈ [0, T ]×Br(ε) as

n → ∞. Hence, k(ε)U(t(ε), x(ε)) ≤ U(t(ε), x(ε)) − ε. Thus, for any ε > 0 the
following properties hold:

(38) k(ε)U − U + ε ≥ 0 in R
N+1, (k(ε)U − U + ε)(t(ε), x(ε)) = 0.

We consider separately two different situations.
Case 1: lim inf

ε→0+
|x(ε)| <∞.

Then, there exists a sequence (εn)n∈N in R
+ such that

lim
n→∞

εn = 0, lim
n→∞

t(εn) = τ ∈ [0, T ], lim
n→∞

x(εn) = ξ ∈ R
N .

From (38) it follows that k∗ <∞ and that the functionW := k∗U−U is nonnegative
and vanishes at (τ, ξ). Moreover,

∂tW −△W − ce · ∇W ≥ k∗h(t, x, U)− h(t, x, U) a. e. in R
N+1.

Since k∗ > 1, condition (9) yields

∂tW −△W − ce · ∇W ≥ h(t, x, k∗U)− h(t, x, U) = z(t, x)W a. e. in R
N+1,

with strict inequality a. e. in D, where the function z is defined by

z(t, x) :=

{

h(t,x,k∗U)−h(t,x,U)

k∗U−U
if k∗U 6= U

0 otherwise.

Note that z ∈ L∞
loc(R

N+1). Thus, the parabolic strong maximum principle yields
W = 0 in (−∞, τ) × R

N and then W ≡ 0 in R
N+1 by periodicity in t. This is

impossible because W is a strict supersolution of a linear equation in D.
Case 2: lim

ε→0+
|x(ε)| = ∞.

For ε > 0 setWε := k(ε)U−U+ε. Then, by (38),Wε ≥ 0 andWε(t(ε), x(ε)) = 0.
Furthermore, for ε > 0 small and for a. e. (t, x) ∈ R

N+1,

∂tWε −△Wε − ce · ∇Wε ≥ k(ε)h(t, x, U)− h(t, x, U )

≥ h(t, x, k(ε)U)− h(t, x, U ).
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We claim that, for ε small enough, there exists a cylindrical domain C ⊂ R
N+1

containing (t(ε), x(ε)) such that

(39) h(t, x, k(ε)U)− h(t, x, U) > 0 a. e. in C.
This is a contradiction, because in this case ∂tWε−△Wε−ce·∇Wε > 0 a. e. in C, and
the parabolic strong maximum principle yieldsWε = 0 for (t, x) ∈ C, t < t(ε). Let us
prove the claim. By (16) there exists a positive constant R such that hs(t, x, 0) < 0
for a. e. t ∈ R, |x| > R. Hence, we can find ε, ρ > 0 small enough in such a way
that hs(t, x, 0) < 0 a. e. in R × Bρ(x(ε)). Taking a smaller ρ if need be, it is not

restrictive to assume that k(ε)U < U in the cylinder

Cρ(t(ε), x(ε)) := (t(ε)− ρ, t(ε) + ρ)×Bρ(x(ε)).

Now, we make use of the following property which is a consequence of assumptions
(13) and (15):

∀ 0 ≤ s1 ≤ s2, h(t, x, s2)−h(t, x, s1) ≤ hs(t, x, 0)(s2−s1) for a. e. (t, x) ∈ R
N+1.

Hence,

h(t, x, k(ε)U)− h(t, x, U) ≥ hs(t, x, 0)(k(ε)U − U) > 0 a. e. in Cρ(t(ε), x(ε)),
i. e. (39) holds with C = Cρ(t(ε), x(ε)).

We have shown that k∗ := limε→0+ k(ε) ≤ 1. Consequently, from (38) it follows
that

U ≤ lim
ε→0+

(k(ε)U + ε) ≤ U in R
N+1.

The proof is thus complete. �

3.4. Convergence results for general time-periodic parabolic operators.
Since the next results are of independent interest, we state them for more general
semilinear parabolic equations:

(40) ∂tu = ∂i(aij(t, x)∂ju) + bi(t, x)∂iu+ h(t, x, u), t > 0, x ∈ R
N .

Here aij ∈ C0,1(RN+1), bi ∈ C0,θ(RN+1) for some 0 < θ < 1, h is a Carathéodory
function such that h(t, x, 0) ∈ L∞(RN+1) and s 7→ h(t, x, s) is locally Lipschitz
continuous, uniformly for a. e. (t, x) ∈ R

N+1. We further assume that the matrix
field (aij)ij is symmetric and uniformly elliptic:

∀ (t, x) ∈ R
N+1, ξ ∈ R

N , a|ξ|2 ≤ aij(t, x)ξiξj ≤ a|ξ|2,
for some constants 0 < a ≤ a. The functions aij , bi and h are also assumed to be
T -periodic in t.

When the coefficients in the equation (40) are independent of time, it is well
known that if u(t, x) is the solution with initial datum u(0, x) = u0(x) which is
a subsolution of the stationary equation, then t 7→ u(t, x) is nondecreasing. This
result is extremely useful in analyzing the long term dynamics of parabolic equations
and it has been used here in Section 2.5. It does not hold for equations with time
dependent coefficients. However, we will prove next that it can be extended to
equations whose coefficients are periodic in time, with the same period.

Theorem 3.4. Let v ∈ L∞(RN+1) be a T -periodic in t subsolution (resp. supersolu-
tion) of (40). Assume that the solution u of (40) with initial datum u(0, x) = v(0, x)
exists for every t > 0. Then,

∀ t ≥ 0, x ∈ R
N , u(t+ T, x)− u(t, x) ≥ 0 (resp. ≤ 0).
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If in addition u ∈ L∞(R+ × R
N ) then there exists a solution U of (40) which is

bounded, T -periodic in t and satisfies U ≥ v (resp. U ≤ v) in R
N+1 and

lim
t→∞

(u(t, x)− U(t, x)) = 0,

locally uniformly with respect to x ∈ R
N .

Proof. We prove the result when v is a subsolution, the other case being analogous.
Since v and u are respectively a subsolution and a solution of problem (40), with
the same initial datum, the comparison principle yields v ≤ u a. e. in R

+ × R
N .

Then, in particular,

for a. e. x ∈ R
N , u(T, x) ≥ v(T, x) = v(0, x) = u(0, x).

Thus, thanks to the periodicity of the terms in (40), the function u(t+T, x) is again
a solution of (40), with initial condition u(T, x) ≥ u(0, x). Therefore, applying again
the comparison principle, we derive u(t+ T, x) ≥ u(t, x).

To prove the second statement, consider the sequence of functions un(t, x) :=
u(t+nT, x). By hypothesis it is bounded, and we have shown that it is nondecreas-
ing. It follows that the un converge pointwise to some bounded function U(t, x)
such that U ≥ v. Moreover, U is T -periodic in t because

U(t+ T, x) = lim
n→∞

u(t+ T + nT, x) = U(t, x).

Since the un are solutions of

(41) ∂tun = ∂i(aij(t, x)∂jun) + bi(t, x)∂iun + h(t, x, un), t > −nT, x ∈ R
N ,

with initial datum un(−nT, x) = v(0, x), standard parabolic estimates imply that
for any ρ > 0 there exists a constant Cρ > 0 such that, for n > ρ/T + 1,

‖un‖N+1,(−ρ,ρ)×Bρ
≤ Cρ

(

‖h(t, x, u)‖L∞(R+×RN ) + ‖u‖L∞(R+×RN )

)

.

Consequently, using the compact injection theorems we find that the un converge
to U locally uniformly in R

N+1 and, passing to the weak limit in (41), that U solves
(40). For any t > 0 let n(t) ∈ N be such that τ(t) := t− n(t)T ∈ [0, T ). Then, the
periodicity of U yields

|u(t, x)− U(t, x)| = |un(t)(τ(t), x) − U(τ(t), x)|,
which goes to zero as n(t) → ∞, i. e. as t→ ∞, locally uniformly in x ∈ R

N . �

Let us now suppose that s 7→ h(t, x, s) ∈ C1([0, δ]) for some δ > 0, uniformly
for a. e. (t, x) ∈ R

N+1. Under assumptions (13) and (14), Theorem 3.4 yields a
sufficient condition for the existence of pulsating travelling wave solutions associated
with (40), that is, solutions of

(42)















∂tU = ∂i(aij(t, x)∂jU) + bi(t, x)∂iU + h(t, x, U), (t, x) ∈ R
N+1

U > 0 in R
N+1

U is bounded
U is T -periodic in t.

This condition is µ1(P,R
N+1) < 0, where

Pw := ∂tw − ∂i(aij(t, x)∂jw) − bi(t, x)∂iw − hs(t, x, 0)w.

is the associated linearized operator about w ≡ 0 and µ1(P,R
N+1) is the generalized

T -periodic principal eigenvalue of P in R
N+1 defined by (17). We point out that

neither (15) nor (16) are required in the next two theorems.
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Theorem 3.5. If (13), (14) hold and µ1(P,R
N+1) < 0 then (42) admits at least a

solution.

Proof. The idea of the proof is to find a subsolution v of (42) such that v ≤ S,
where S is the constant in (14), and then apply Theorem 3.4. Such a function v can
be constructed by using the fact that µ1(P,R

N+1) < 0, in an analogous way to the
method in Section 2.4 to prove Theorem 1.1. Indeed, by Proposition 6 (which holds
even for general operators such as P ), there exists R > 0 such that µ̃(R) < 0, where
µ̃(R) is the T -periodic Dirichlet principal eigenvalue of P in R×BR. Let us denote

by ψ̃R the associated principal eigenfunction. Then, with the same arguments as in
the proof of Theorem 1.1, we can find κ > 0 small enough in such a way that the
function

v(t, x) :=

{

κψ̃R(t, x) x ∈ R×BR

0 otherwise

is a subsolution of (40) and satisfies v ≤ S in R
N+1. Consider the solution u of

(40) with initial datum u(0, x) = v(0, x). By standard parabolic theory of weak
solutions, such a solution exists for every t > 0 and satisfies v ≤ u ≤ S thanks to
the maximum principle. Thus, applying Theorem 3.4, we infer the existence of a
T -periodic in t bounded solution U of (40) such that U ≥ v. Since U > 0 by the
strong maximum principle, the proof is concluded. �

Another consequence of Theorem 3.4 is the following result concerning the large
time behavior of solutions of (40), with arbitrary positive bounded initial datum,
that will be used in the next section to prove Theorem 1.4.

Theorem 3.6. Let u(t, x) be the solution of (40) with an initial condition u(0, x) =
u0(x) ∈ L∞(RN ) which is nonnegative and not identically equal to zero. Under
assumptions (13), (14) the following properties hold:
(i) if (42) does not admit any solution then

lim
t→∞

u(t, x) = 0,

locally uniformly with respect to x ∈ R
N ;

(ii) if µ1(P,R
N+1) < 0 and (42) admits a unique solution U then

lim
t→∞

(u(t, x)− U(t, x)) = 0,

locally uniformly with respect to x ∈ R
N .

Proof. Set S′ := max(S, ‖u0‖L∞(RN )), where S is the positive constant in (14). The
function v ≡ S′ is a T -periodic in t supersolution of (40) and, by (13), w ≡ 0
is a subsolution. Let u be the solution of (40) with initial datum S′. From the
comparison principle it follows that the functions u and u satisfy 0 ≤ u ≤ u ≤ S′

in R
+ × R

N and then, in particular, they exist for every t > 0. Therefore, we can
apply Theorem 3.4 to the function u and infer that

(43) 0 = lim
t→∞

(

u(t, x)− U(t, x)
)

≥ lim sup
t→∞

(

u(t, x)− U(t, x)
)

,

locally uniformly with respect to x ∈ R
N , where U is a T -periodic in t solution of

(40) such that 0 ≤ U ≤ S′.
(i) By hypothesis, U has to vanish at some (τ, ξ) ∈ R

N+1. Hence, U = 0 in
(−∞, τ)×R

N by the parabolic strong maximum principle and then U ≡ 0 in R
N+1

by periodicity in t. The statement then follows from (43).
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(ii) First, note that the strong maximum principle yields u(T, x) > 0 in R
N .

Proceeding as in the proof of Theorem 3.5, we can find a T -periodic in t subsolution
ṽ ∈ L∞(RN+1) of (40) such that ṽ ≥ 0, ṽ 6≡ 0 and ṽ(0, x) < u(T, x) in R

N . Let u
be the solution of (40) with initial datum ṽ(0, x). The comparison principle yields

∀ t ≥ 0, x ∈ R
N , ṽ(t, x) ≤ u(t, x) ≤ u(t+ T, x) ≤ S′.

Applying Theorem 3.4, with v = ṽ and u = u, we derive

0 = lim
t→∞

(u(t, x) − U(t, x)) ≤ lim inf
t→∞

(u(t+ T, x)− U(t, x))

= lim inf
t→∞

(u(t, x)− U(t, x)) ,
(44)

locally uniformly with respect to x ∈ R
N , where U is a T -periodic in t bounded

solution of (40) such that U ≥ ṽ. The strong maximum principle yields U > 0 in
R

N+1. By (43), (44) and the periodicity in t, we see that U ≥ U > 0 and then both
U and U coincide with the unique solution U of (42). Therefore, the statement
follows from (43) and (44). �

Remark 1. Let us point out, without going into details, that the results of Theo-
rems 3.4-3.6 also hold for the Dirichlet problem

{

∂tu = ∂i(aij(t, x)∂ju) + bi(t, x)∂iu+ h(t, x, u), t > 0, x ∈ Ω
u(t, x) = 0, t > 0, x ∈ ∂Ω,

with Ω smooth domain in R
N .

3.5. Conclusion of the proofs.
Proof of Theorem 1.3. If µ1 < 0 then the existence of a solution of (4) follows
from Theorem 3.5. Assume now, by way of contradiction, that µ1 ≥ 0 and that (4)
admits a solution U . Let ψ be a generalized principal eigenfunction of P in R

N+1,
given by Proposition 6, normalized in such a way that ψ(0, 0) < U(0, 0). Using (15)
we derive

∂tψ −△ψ − ce · ∇ψ = (hs(t, x, 0) + µ1)ψ ≥ h(t, x, ψ) a. e. in R
N+1.

Since Proposition 9 implies lim|x|→∞ U(t, x) = 0, uniformly in t ∈ R, applying

Theorem 3.3 with U = U and U = ψ we get the following contradiction: U ≤ ψ.
The uniqueness result follows directly from Proposition 9 and the comparison prin-
ciple Theorem 3.3. �

Proof of Theorem 1.4. Let u be the solution of (3) with nonnegative bounded initial
datum u0 6≡ 0. The function ũ(t, x) := u(t, x+ cte) is a solution of

∂tũ = △ũ+ ce · ∇ũ+ h(t, x, ũ), t > 0, x ∈ R
N ,

with initial datum u0. The parabolic maximum principle shows that 0 ≤ ũ ≤ S′,
where S′ := max(S, ‖u0‖∞) and S is the constant in (14). Applying the convergence
result for general operators, given by Theorem 3.6, together with Theorem 1.3, we
infer that

lim
t→∞

(ũ(t, x)− U(t, x)) = 0,

locally uniformly in x ∈ R
N , where either U ≡ 0 if µ1 ≥ 0, or U is the unique

solution of (4) if µ1 < 0. Thus, to conclude the proof of Theorem 1.4 it only
remains to show that the above limit is uniform with respect to x ∈ R

N . Assume
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by contradiction that this is not the case. Then, there exist a positive constant ε
and two sequences (tn)n∈N in R

+ and (xn)n∈N in R
N such that

lim
n→∞

tn = ∞, lim
n→∞

|xn| = ∞, ∀ n ∈ N, |ũ(tn, xn)− U(tn, xn)| ≥ ε.

Since limn→∞ U(tn, xn) = 0 by Proposition 9 and ũ is positive, it follows that

(45) lim inf
n→∞

ũ(tn, xn) ≥ ε.

For n ∈ N define the function ũn(t, x) := ũ(t+ tn, x+xn). It holds that 0 ≤ ũn ≤ S′

and

∂tũn = △ũn + ce · ∇ũn + h(t+ tn, x+ xn, ũn) for a. e. t > −tn, x ∈ R
N .

Thanks to (15) and (35), parabolic estimates and embedding theorems imply that
(a subsequence of) the ũn converge locally uniformly in R

N+1 to some function ũ∞
satisfying

∂tũ∞ ≤ △ũ∞ + ce · ∇ũ∞ − ζũ∞ in R
N+1.

Furthermore, ũ∞(0, 0) ≥ ε by (45). Define the function θ(t) := S′e−ζ(t−t0), where
t0 ∈ R will be chosen later. One sees that ∂tθ = −ζθ in R and θ(t0) = S′ ≥ ũ∞(t0, x)
for any x ∈ R

N . As a consequence of the maximum principle we get θ(t) ≥ ũ∞(t, x)
for t ≥ t0, x ∈ R

N . In particular, if t0 < 0, we obtain

ε ≤ ũ∞(0, 0) ≤ S′eζt0 .

This is a contradiction for −t0 large enough and the proof is concluded. �

Remark 2. All arguments in the proofs of Theorems 1.3 and 1.4 still work if one
replaces h with

h̃(t, x, s) = f(x, s) + g(x+ (c− c′)te, s)

and sets T := l/(c− c′). That is, Theorem 1.5 holds true.
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