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Summary

During strong earthquakes, structural pounding may occur between structures (buildings, bridges, strategic
facilities, critical equipment, etc.) and the surrounding moat wall because of the limited separation distance
and the deformations of the isolator. An arrangement that favors the solution of this problem is the
interposition of shock absorbers. Thus, the influence of geometrical and mechanical characteristics of isolation
and mitigation devices on nonlinear, nonsmooth response of vibro-impact systems is experimentally
investigated in this paper on the basis of a laboratory campaign of experimental tests. Shaking table tests were
carried out under a harmonic excitation in order to investigate two different configurations: the absence and
the presence of bumpers. Three different values of the table acceleration peak were applied, four different
amplitude values of the total gap between mass and bumpers were considered, and also four different types of
bumpers were employed; moreover, two problems were addressed, namely, control of excessive displacements
and control of excessive accelerations, and hence, two types of normalization were adopted in order to better
interpret experimental results. Suitable choices of pairs of bumpers and gaps were suggested as a trade-off
between conflicting objectives. Furthermore, a numerical model was proposed, and its governing parameters
identified in order to simulate the experimental results.

mailto:ugo.andreaus@uniroma1.it


Keywords: displacement and acceleration control; seismic protection; shaking table; structural pounding; two-
sided bumpers; vibro-impact system

1 INTRODUCTION

In earthquake<<Query: AUTHOR: Please check the hierarchy of the section headings if presented
correctly.>>-prone areas, civil structures experience exceptional loading conditions that may result in wide
undesirable losses and damage. Seismic isolation systems are essentially designed to preserve structural safety
and prevent occupants' injury and properties' damage. The major concept in base isolation is to diminish
the fundamental frequency of structural vibration to a value lower than the dominant energy frequencies of
earthquake ground motions.[1, 2]

However, seismically isolated structures are expected to experience large displacements relative to the
ground especially under near-fault (NF) earthquakes. The NF ground motions are characterized by one
or more intense long-period velocity and displacement pulses, which lead the isolator to undergo large
displacements[2–4] and—possibly—to be seriously damaged by exceeding the limit deformation and hence
remaining permanently deformed or rupture can even occur. Such large displacements are accommodated
by providing a sufficient seismic gap around the isolated structure. In some cases, the width of the provided
seismic gap is limited because of practical constraints.[2]

Base isolation is used on different scales, from decoupling a superstructure from its substructure[5] resting
on a shaking ground, thus protecting a building or nonbuilding structure's integrity down to a single room
in a building. Floor isolation technology can be an efficient and cost-effective means for providing seismic
protection for precision equipment or delicate works of art.[6–8]

1.1 Damages because of large displacements in based isolated systems

Because of the greater flexibility offered by the isolators at the base, seismically isolated buildings can exhibit
large relative horizontal displacements during strong seismic excitations, just in the case they contain long-
period pulses, which characterize NF earthquakes. Therefore, in the event of a strong earthquake, it should be
taken into account that the seismically isolated structure can face the risk of the occurrence of colliding with a
surrounding retaining wall or other adjacent constructions.[9]

The performance of structures with respect to earthquake excitation can be improved by the technique of
seismic isolation, which has often proved to be an effective tool for earthquake-resistant design. Although floor
isolation reduces the risk of damage to a building, because of greater flexibility, it causes a significant drift at
the level of isolation. In order to account for large relatively displacements, it is necessary to provide a large
seismic clearance as free space around the building. A practical limitation is imposed by this specification
on the use of earthquake isolation, because there are often limitations in the amount of clearance available
in the presence of seismically isolated buildings, which will later be referred to as gaps, particularly in the
practice of adaptation and reinforcement of existing constructions, situated in metropolitan zones. Thus, the
danger of impact on the surrounding moat walls or adjacent structures during severe earthquakes and the
likely consequences of these undesired events are of great importance.[10]

1.2 Damages because of large accelerations in based isolated systems and
equipment

The results from numerical simulations and parametric studies that have been conducted in the papers of
Komodromos et al.[11] and Polycarpou and Komodromos[9] demonstrated the detrimental effects of potential
poundings on the effectiveness of seismic isolation. In particular, both floor accelerations and interstory
deflections of a seismically isolated building increase because of impact, either with the surrounding moat



wall or with adjacent buildings. Both accelerations at floor levels and displacements between stories are
importantly magnified when structural pounding occurs, menacing the vulnerable equipment roomed in the
structure and the operation of the structure itself.[11–14] In more detail, the acceleration response exhibits
impulses characterized by large frequency and amplitude, the latter being influenced by impact rigidity, in
correspondence of the floors where pounding occurs. Therefore, pounding can cause a very crucial problem
that is represented by the existence of high spikes in the acceleration response; this problem is particularly
accentuated in the case of vulnerable equipment hosted in the buildings.[15] Moreover, in the case of industrial
and power generation facilities, acceleration spikes may influence floor response spectra and thus the response
of equipment.[16] Thus, considering practical interventions finalized to obtain the mitigation of the impact
effects seems to be a very notable task.[17]

1.3 Classification

A first aim of this work is precisely that of framing the problem of pounding in its various aspects. For
simplicity's sake, the considered structural configurations can be schematically grouped into the following
types:

•
Pounding of ADJacent structures (PADJS)

•
Buildings

•
Bridges

•
Pounding of base-isolated structures (PBIS)

•
Building

•
Equipment

Three situations are considered: pounding (a) between adjacent structures, (b) of base-isolated building
against retaining walls, and (c) of base-isolated building against retaining walls and adjacent structures.

1.4 PADJS—Buildings

1.4.1 Connection by dampers

The probability that during strong earthquakes, pounding of seismically isolated structures with the
neighboring adjacent structures (PADJS) occurs may represent an inescapable problem. In this respect,
the case of common buildings has been the object of important studies,[18–23] which considered adjacent
buildings connected by shock absorbers.

The papers[18–20, 23] present theoretical procedures for mitigating earthquake-induced pounding of
adjacent buildings linked by dampers. Two adjacent structures are connected by linear visco-fluid



dampers,[18, 19] by linear visco-elastic[23, 24] and visco-fluid damper,[23] and by friction damper under
harmonic ground acceleration.[20] Each structure is modeled as a single-degree-of-freedom (SDOF)
system[19, 20] and as 2-D and 3-D multi-degree-of freedom (MDOF) systems, respectively.[18, 23] Zhang and
Xu[18] and Zhu et al.[23] use a numerical approach, whereas Zhu and Xu[19] give analytical formulas and
Bhaskararao and Jangid[20] give closed-form solutions for determining seismic response of adjacent buildings
linked by dampers. In Agarwal et al.,[24] the earthquake-induced pounding in friction varying base-isolated
buildings is investigated.

1.4.2 Impact by bumpers

The mitigation of pounding induced by earthquake between steel structures through the interposition of
shock absorbers between the colliding members are the focus of the papers.[15, 16, 25–30] The constitutive
relations between impacting systems can be modeled in different ways. A summary subdivision can be made
in two general groups: hard and soft impacts. The former is based on the concept of restitution
coefficient,[24–26] where the contact time is assumed to be infinitely small and the deformation in the contact
zone to be negligible, whereas the latter presumes contact time of finite duration, and a penetration between
colliding bodies is admitted. Therefore, linear,[29] Hertzian,[31, 32] or alternative nonlinear springs and
viscous dampers[15, 16, 27, 28, 30] are used to model the contact.

The effectiveness of using dissipative and deformable bumpers to mitigate potential earthquake-induced
pounding was investigated numerically by Polycarpou et al.[15] and experimentally by Chase et al.,[25]
utilizing 2-D MDOF structural models.

Wang et al.,[26] Mate et al.,[28] Bamer et al.,[29] Wang et al.,[30] and Crozet et al.[16] presented numerical
studies devoted to the analysis of building pounding for SDOF[16, 26, 30] and MDOF[28, 29] (Bamer et al.[29]
in 2-D and Mate et al.[28] in 3-D) systems, under seismic[16, 28, 29] and impulsive excitation.[26, 30]

1.5 PADAJS—Bridges

Bridges can be particularly sensitive to pounding because it can cause the failure of the decks because of local
damage involving crushing and spalling of girders and of supports between girders and piers and of limiters
between adjacent girders. A survey about impact models, results of experimental researches, and techniques
devoted to mitigate the effects of pounding induced by earthquake excitation between bridge decks can be
found in Hao et al.,[33] whereas further results of both experimental and analytical investigations concerning
pounding of isolated bridges are reported in other works.[34, 35]

Bridges have also been separately analyzed in many cases.[34, 36–40] Furthermore, a wide literature[34,
40–42] published the results obtained by conducting pounding experiments on framed buildings and highway
bridges. In particular, pounding response of bridge superstructures subjected to ground motions varying in
space has been studied by Li-Xiang et al.[43] in both experimental and analytical way.

1.6 PBIS—Moat wall

In the context of earthquake-induced pounding of PBIS, Tsai[44] investigated the effects of pounding on
structural response by simulating the superstructure of an isolated building as a continuous shear beam
and observing a very high acceleration response during pounding with the surrounding moat wall in
correspondence of the isolation level. Similar work was done by Malhotra,[31] who found that the increase
of stiffness of isolated structure or of surrounding moat wall induces the increase of base shear forces.
The damaging effects of structural impact on the effectiveness of seismic isolation were revealed by the
parametric analysis conducted by Komodromos et al.[11] on pounding of a seismically isolated building with
the surrounding moat wall.[11, 45]



The main objective of the applicative[10, 11, 14, 17, 46] and theoretical[47] studies is to examine through
numerical simulations[10, 11, 17, 46, 47] and also experimentally evaluate[14, 47] the effects of structural
pounding at the base-isolated level in building structures—which are subjected to strong earthquakes—and the
resulting dynamic response of the superstructure.

Base pounding theoretical models with linear spring-gap element are proposed in Mavronicola et al.[10] and
Liu et al.,[46] whereas Komodromos et al.,[11] Polycarpou and Komodromos,[17] Masroor and Mosqueda,[14,
47] Mavronicola et al.,[10] and Liu et al.[46] formulate nonlinear impact elements that can simulate the
contact force during impact of base-isolated structure to a moat wall; the moat wall was modeled as either a
concrete wall with soil backfill or a rigid steel plate[14, 47] and as two-sided rubber bumpers.[10, 11, 17, 46]

The results for two-dimensional MDOF models are discussed in Komodromos et al.,[11] Polycarpou and
Komodromos,[17] Masroor and Mosqueda,[14, 47] and Mavronicola et al.,[10] whereas three-dimensional
finite element analyses are conducted by Liu et al.[46]

1.7 PBIS and PADJS

Section 1.6 contemplates the occurrence of impact of the building against the retaining moat wall exclusively
in correspondence of the level where the isolator is located, in each case when the displacement of the
building base exceeds the clearance of the gap (PBIS), during severe earthquakes. The other situations where
other buildings are adjacent to the seismically isolated building under consideration and the drift of their
superstructures is significant encounter the risk of poundings also in correspondence of the upper floors, as
well as at ground level (PBIS and PADJS).

Matsagar and Jangid[32] studied the effects of using different base isolation techniques on the seismic
response of multistory buildings, when is foreseen the possibility of collision against contiguous structures.
In more detail, a relation of accelerations of upper floors in terms of isolation gap and the existence of a
gap threshold was noticed, according which an increasing trend up to the threshold and then a decreasing
trend were observed. Furthermore, the greater the flexibility of superstructures, the number of stories, and the
stiffness of adjacent buildings, the more serious the consequences of pounding. The paper of Polycarpou and
Komodromos[48] studied the pounding of an isolated building with adjacent structures both at the base level
and at upper floors (PBIS and PADJS) and demonstrated that the collision of the building under examination
with neighboring constructions cannot be excluded even in the case a sufficiently wide clearance is allowed for
preventing impact against the retaining moat wall, because of excessive floor drifts.

In these applicative papers, the impact response of base-isolated multistory (MDOF in 2-D) buildings is
numerically investigated under different real earthquake ground motions.

In particular, one of the specific objectives of Matsagar and Jangid[32] is to study the performance of
different nonlinear and friction-based isolation systems during impact, whereas Polycarpou and
Komodromos[48] simulate the behavior of the seismic isolation system by using a bilinear inelastic model.

In these studies, a force-based impact model is used, assuming an impact spring and an impact dashpot
exerting, in parallel, impact forces to the colliding structures whenever their separation distances are exceeded
(linear viscoelastic impact model).

Pant and Wijeyewickrema[49] studied the seismic pounding of a 4-story building in reinforced concrete
isolated at the base. They considered three configurations characterized by (a) one moat wall on one the right
side, (b) a similar building fixed at the base on the right side, and (c) two moat walls on both sides. Material and
geometrical nonlinearities are accounted for by carrying out 3-D finite element analyses, in order to evaluate
the structural performances of base-isolated buildings subjected to different seismic excitations.

1.8 Inner and outer pounding



Devices that enable the continuous activity of computing facilities, transmission networks, and life saver
systems reduce the risk of material, economic, and human damages by moderating earthquake hazards.
A promising answer for ensuring mission-critical systems and valuable assets from earthquake threats is
represented by equipment isolation. Different isolation techniques have been proposed, developed, and
employed in structures and equipment, such as friction pendula, rolling and sliding isolators, and bearings.
The principle of operation is basically the same: The horizontal components of the ground (or floor) movement
are mechanically separated from the isolated structure (or equipment) through compatible, sliding, rotating,
or rolling interfaces.[50] In rolling isolation systems proposed by Harvey and Gavin,[50] Harvey et al.,[51] and
Harvey and Gavin,[52] the limited rolling of steel spheres encapsulated between convex surfaces is employed
in order to confine the displacement of the ball by means of a lip located at the border of every rolling
surface. The roll-n-cage isolators[2, 53, 54] limit the peak isolator displacements and prevent PADJS under
strong seismic excitation by using a self-braking mechanism, which contains the pounding inside the roll-
n-cage isolator's frame. In friction pendulum isolators,[7, 55] if large displacements are attained, the slider
element continues its motion on only one of the concave surfaces, when possible impact against the limiting
ring prevents it to slide any longer on the other concave surface. Furthermore, also the high damping rubber
bearing devices are inside self-braking seismic isolators (by constitutive law), with possible out pounding. In
fact, experimental results[56, 57] revealed that the high damping rubber bearing exhibits strong nonlinearities
and stiffening behaviours when large shear strains are attained because of a strain crystallization process in
the rubber.[58]

The problem of outer pounding has been dealt with in the subsections “Impact by bumpers,”
“PADJS—Bridges,” “PBIS—Moat wall,” and “PBIS and PADJS” and therefore we will not return to the topic in
this subsection.

1.9 Authors' state of the art and aim of the paper

The problem of the impact of structures against moat walls and in particular of the base-isolated structures
inspired the theoretical-numerical work presented in Andreaus and De Angelis.[59]

In order to simulate the response of these structures, a sufficiently general SDOF oscillator model was
proposed consisting of a mass isolated by means of an isolator and impacting on two symmetrically spaced
bumpers on the sides. A numerical investigation was carried out on the basis of this model, enabling the
authors to outline possible scenarios within the system response. This purely numerical investigation was also
carried out in order to guide the subsequent experimental activities. The results of preliminary experimental
studies were presented in Andreaus et al.[60, 61] In particular, the first paper[60] was used to check the
operation of the experimental equipment and verify the feasibility of the designed experiments, using one type
of bumper, one gap width and four values of the table acceleration; whereas the second paper[61] was designed
to individually characterize the mechanical behavior of the damper and bumpers prior to the shake table tests
also in relation to the strain rate and to verify the potential differences in the dynamic response of the system
with respect to different bumpers, gaps, and accelerations of the table; for this purpose, two types of bumpers,
two amplitudes of gaps for each type of bumper, and at most four accelerations of the table in the case of a
bumper and a gap were used. This prior activity has had the character of exploration.

As can be seen from the previous survey of the scientific literature on this subject, there are not many papers
simultaneously dealing with the problems of (a) determining the effects of pounding in terms of damages,
(b) mitigating pounding itself in the case of base-isolated structures from both a theoretical and experimental
point of view, and (c) analyzing the influence of the most important parameters on the system response, such
as gaps, mechanical parameters bumpers, input (intensity of harmonic excitation).

In this regard, the present work aims to present and comment the results obtained by carrying out a
campaign of experimental investigations that is relatively extensive, limited to the table's performances and to
the characteristics of the experimental setup, as illustrated in Section 2, by using a shaking table. In particular,
the experimental setup has been improved by replacing the spherical bearings to the wheels, reducing the



friction phenomena and the risk of misalignment. See Tables 1 and 2 and Figure 1 for a more precise survey
and comparison.



Table 1 Investigated cases
aG 0.03 0.04 0.05 0.075 0.1

NB B0 x x x — —

G1 x x x — —

G2 x x x — —

G3 x x x — —

B1

G4 x x x — —

G1 x x x — —

G2 x x x — —

G3 x x x — —

B2

G4 x x x — —

G1 xo x xo — —

G2 x x x — —

G3 x x xo x+ —

B3

G4 x x x — —

G1 x x x — —

G2 x x xo — —

G3 x x x x —

YB

B4

G4 x* x x* x* x#

Table 2 Maximum values of dimensional accelerations and excursions
AG 0.03 g 0.04 g 0.05 g 0.07 g

νR Amax (m/s2) Dmax (cm) νR Amax (m/s2) Dmax (cm) νR Amax (m/s2) Dmax (cm) νR Amax (m/s2) Dmax (cm)

B0 1.30 1.23 2.95 1.10 1.57 4.60 1.08 2.02 6.73

G1 1.60 1.73 2.30 1.70 2.39 3.07 1.72 2.81 3.74

G2 1.40 1.58 2.59 1.50 2.20 3.17 1.60 2.94 4.18

G3 1.30 1.46 2.86 1.50 2.35 3.66 1.60 3.05 4.57

B1

G4 1.30 1.23 2.83 1.40 2.34 3.82 1.50 3.12 4.74

G1 2.00 2.90 1.84 2.30 4.01 2.07 2.50 4.93 2.33

G2 1.40 2.52 2.38 1.90 3.77 2.61 2.20 5.16 2.98

G3 1.30 1.86 2.67 1.80 4.07 3.14 2.00 5.18 3.32

B2

G4 1.20 1.26 3.10 1.55 3.53 3.65 1.75 4.84 3.90

G1 1.90 2.86 1.84 2.30 4.36 2.01 2.60 4.74 2.28

G2 1.50 2.22 2.40 1.90 4.43 2.72 2.15 5.70 2.86

G3 1.30 1.99 2.74 1.35 1.72 2.77 1.40 2.19 2.79

B3

G4 1.30 1.12 2.67 1.40 2.86 3.30 1.30 6.48 3.82

G1 2.10 4.34 1.58 2.70 6.51 1.69 3.00 8.03 1.77

G2 1.60 3.07 1.99 2.05 5.85 2.05 2.70 9.00 2.22

G3 1.60 4.36 2.60 2.10 7.38 2.70 2.40 9.29 2.81 3.00 12.75 2.97

B4

G4 1.30 1.37 2.88 1.80 6.73 3.20 2.10 9.43 3.28 2.70 13.60 3.50



Figure 1 Experimental setup for impact testing

The above-mentioned campaign concerns the nonlinear nonsmooth impact dynamics of a base-isolated
(Figure 2a) SDOF oscillator (Figure 1), excited by a harmonic acceleration applied to the base and constrained
by two-sided shock absorbers (Figure 2b). The series of experimental investigations considers two distinct
configurations: (a) the absence of bumpers (NB) and (b) the presence of bumpers (YB).

Figure 2 Dissipation devices. (a) Damper and (b) bumpers: (b1) AP 65 × 52, (b2) MB 40 × 22, and (b3)
MB 60 × 52

The influence of the most important parameters on the system response, namely, gap width, bumpers'
stiffness, and intensity of harmonic excitation is analyzed in order to evaluate the reduction (mitigation) of the
dynamic response and the undesirable consequences of outer pounding in the case of PBIS effects in terms
of (a) control of excessive displacements, denoted First Problem (Section 3.1), and (b) control of excessive
absolute accelerations, denoted Second Problem (Section 3.2).

2 EXPERIMENTAL SETUP AND TEST DESCRIPTION

The physical model of the SDOF with double-side unilateral constraints under consideration is shown in
Figure 1; it consists of (a) a rigid body the can be treated as a lumped mass, M = 500 kg (to simulate the
isolated object), (b) an elastomeric isolator, the so-called damper (Figure 2a), (c) two kinds of elastomeric
bumpers (Figure 2b) symmetrically mounted on steel stands that are bolted onto the base plate. The mass is
comprised of six plates of mild steel jointed by through bolts. The damper is centrally connected to the lower
layer of the mass, whereas the clearance between each bumper and the mass, the so-called gap, can be varied
by adjusting the screws at the fronts of the stands. The mass is supported by four spherical bearings, rotating
within unidirectional guides. The whole system is excited by the shaking table.

2.1 Bumpers



The bumpers used in the campaign of experiments are of three types: AP having a width 65 mm and height
52 mm (Figure 2b1), MB <<Query: AUTHOR: Please define AP and MB if these are abbrevaitions.>>having a
width 40 mm and height 22 mm (Figure 2b2), and MB having a width 60 mm and height 52 mm (Figure 2b3);
as regards the material,[62] the bumper AP is constituted by an ethylene propylene diene monomer having a
hardness of 75 Shore A; and the bumpers MB are constituted by a styrene butadiene rubber copolymer having
a hardness of 70 Shore A. Four different bumpers, which were actually used in the tests, were obtained from
the three types described above: the bumper B4 was obtained from the bumper AP, using a contact length of
L = 400 mm; one bumper (B3) was obtained by the second (MB 40 × 22) type of bumper having length L =
400 mm, and two bumpers were obtained by the third (MB 60 × 52) type of bumper: the bumpers B2 of length
L = 400 mm and B1 with L = 100 mm. Bumpers B1–B4 are listed in order of increasing stiffness. For ease of
representation, the NB configuration is also referred to below as a B0 bumper.

In terms of relative stiffness, the bumpers can be grouped as follows: B0–B1, B2–B3, and B4. The bumper B0
(also called with the acronym NB) can be interpreted as a bumper associated to an infinite gap or, equivalently,
to a bumper of stiffness tending to zero, representing the extreme case of absence of bumpers. The bumper
B1 can represent soft bumpers (not very rigid), the bumper B4 can be counted among hard bumpers (very
rigid, to the limit comparable with the impact against a rigid obstacle), and bumpers B2 and B3 can be
considered representative of a class of bumpers characterized by intermediate stiffness between those of the
two previously defined groups.

2.2 Gaps

Four values of the total gap amplitude (i.e., the sum of the single gaps on both sides of the mass), specifically
G1 = 15 mm, G2 = 20 mm, G3 = 25 mm, and G4 = 30 mm, were also considered.

2.3 Input signals

The experiments were performed using a vibrating table Moog 1.50 × 1.50 m, managed by Moog Replication
Software. Forward and backward sine sweep signals in displacement control were modeled to impose given
peak accelerations AG to the table, along the total frequency ranges f = 0.5–5.0–0.5 Hz. These signals were
generated with frequencies f variable in steps, applied for a time sufficient to reach the response's steady state,
consisting of 10 cycles within each subfrequency range having a step-size Δf = 0.1 Hz. The input displacement
amplitude step-wise decreases as the frequency step-wise increases in the forward sweep (0.5–5.0 Hz) and
increases as the frequency step-wise decreases in the backward sweep (5.0–0.5 Hz), Figure 9. In both
configurations NB and YB, tests were performed with the same type of exciting action.

2.4 Table accelerations

Four peak values of table acceleration, specifically AG = 0.03, 0.04, 0.05, 0.07 g (= gravity's acceleration),
were imposed.

2.5 Measured response

The measured parameters are the absolute acceleration A of the mass and the relative displacement D of the
mass with respect to the vibrating table. Time histories of acceleration and displacement of the table and of
the mass were acquired under sinusoidal action applied according to a forward and backward sine sweep, as
described above. The acceleration of the mass was measured by the two accelerometers positioned on the mass,
in two opposite edges, as shown in Figure 1, and the value A averaged on the two accelerometers has been taken
into account. Maximum absolute acceleration values Amax were extracted that were recorded at steady state in
each subfrequency range of the forward and backward sine sweep. Maximum excursion values Emax = (Dmax



− Dmin) were recorded at steady state in each subfrequency range of the forward and backward sine sweep;
(Dmax − Dmin) is the difference between the maximum positive displacement Dmax and the negative minimum
displacement Dmin. The largest values of acceleration and excursion were attained in the forward sweep, at the
so-called pseudoresonance frequency. The displacement of the mass was measured by the laser transducer,
as shown in Figure 1. Data acquisition and filtering was performed by means of the KRYPTONw-3xSTG and
KRYPTON-4xACC systems by Dewesoft company. The experimental data were acquired with a sampling rate
of 2,048 Hz and a second-order Butterworth band pass filter was applied with limiting frequencies of 30.00
and 0.16 Hz.

The series of experimental investigations has considered two distinct configurations: (a) NB and (b) YB.

In the experimental test campaign, the tests carried out deal with several combinations between different
situations in terms of absence–presence of the bumpers, type of bumpers, peak acceleration of the table, and
amplitude of the gap; therefore, the investigated cases lend themselves to a sufficiently in-depth discussion
of the scenarios highlighted in the forced dynamic response of the system. For reader's convenience, Table 1
reports the summary of the tested cases, denoted by “x,” where aG = AG/g. The symbol (*) denotes the common
cases between this paper and Andreaus et al.[60, 61]; the symbol (#) denotes the case taken into consideration
only in Andreaus et al.[60, 61]; the symbol (o) denotes the cases common to this paper and Andreaus et al.[61];
and the symbol (+) denotes the case studied only in Andreaus et al.[61]

The case AG = 0.07 g was presented only in cases G3 and G4 because for smaller gaps were observed on one
hand a pinball effect consisting in the fact that the mass has a oscillation number greater than that of the table
even in opposition phase that generated such high contact forces to influence the input of the table, so as to
obtain a table acceleration that was inconsistent with the input we wanted to impose. In support of this, the
simulation results in Komodromos et al.[11] indicate that the response may be significantly increased in case
of a moat wall on both sides of the building. This behavior is usually more pronounced when the seismic gap is
very narrow, in which case it seems that there is a risk of the building bouncing between the two moat walls in
a kind of resonance with the earthquake excitation.

3 EXPERIMENTAL RESULTS AND DISCUSSION

With regard to the meaning of the symbols, the colors and the style of the lines, and indicators used in
the following figures, the reader is referred to Appendix. In the following, the symbol aG = AG/g denotes the
nondimensional acceleration amplitude of the shaking table. The exciting action frequency is normalized with
respect to the pseudoresonance value relative to the configuration in the absence of bumpers for aG = 0.1, that
is, fR ≅ 1.0 Hz; this case corresponds to a deformation of the damper equal to about 100%; the normalized
frequency is indicated by the symbol ν. Both acceleration and excursion are normalized and indicated by the
symbols α and η, respectively. Table 2 numerically reports in dimensional form the experimental results that
will be graphically shown—in dimensionless form—in Figures 3–8 presented and discussed in the following
Sections 3.1 and 3.2.

Figure 3 Response in terms of increasing Bumpers' stiffness (acceleration, solid lines; excursion, dashed
lines). (a) aG = 0.03, (b) aG = 0.04, and (c) aG = 0.05



Figure 4 Response in terms of total gap's inverse (acceleration, solid lines; excursion, dashed lines). (a)
aG = 0.03, (b) aG = 0.04, and (c) aG = 0.05

Figure 5 Response in terms of table's acceleration (acceleration, solid lines; excursion, dashed lines). (a)
G1, (b) G2, (c) G3, and (d) G4

Figure 6 Response in terms of bumpers' stiffness: Acceleration (solid lines) and excursion (dashed lines).
(a) aG = 0.03, (b) aG = 0.04, and (c) aG = 0.05

Figure 7 Response in terms of total gap's inverse (acceleration, solid lines; excursion, dashed lines). (a)
aG = 0.03, (b) aG = 0.04, and (c) aG = 0.05



Figure 8 Response in terms of table's acceleration (acceleration, solid lines; excursion, dashed lines). (a)
G1, (b) G2, (c) G3, and (d) G4

In the present work, two problems have been identified and studied, with reference to the type of elaboration
of the results provided by the experiments and to the aims that with such elaboration arise.

•The First Problem (see Section 3.1) concerns the control of excessive displacements; on the other hand,
if the displacements are limited by placing an obstacle, accelerations because of the impact increase. The
comparison is made with respect to the situation of absence of obstacle (free flight, NB, or bumper B0).
Therefore, normalization is made with respect to the excursion (η0) and to the acceleration (α0) in the absence
of an obstacle. In the analysis of the response, we consider first η0 and then α0, in the sense of fixing (or
limiting) admissible values of the excursion (to avoid—for example—possible damage to the damper) while
limiting the maximum acceleration values below pre-established thresholds (see Section 3.1 below).

•The Second Problem (see Section 3.2) relates to the control of excessive accelerations that occur when
the displacements are to be limited by inserting a rigid obstacle or—as in reality—a bumper with very high
relative stiffness; with the insertion of more deformable bumpers, it is possible to limit the accelerations, but
one pays the price of an increase in displacement. The normalization is therefore made with respect to the
acceleration (αR) and the excursion (ηR) that occur in the presence of a relatively rigid obstacle (bumper B4).
Attention is first paid to the parameter αR and then to ηR, in the sense of fixing (or limiting) admissible values
of acceleration (which could cause possible damage to structural and nonstructural elements, to equipment,
etc.) containing the maximum values of displacements below appropriate thresholds (see Section 3.2).

The first and second normalizations are primarily intended for application and can be read in a dual manner.

The results presented in the following are organized according to two problems previously outlined and to
the consequential normalizations.

3.1 First problem: Control of excessive displacements

This section is devoted to report and comment mass excursions and accelerations in terms of bumpers'
stiffness, gap width, and table acceleration, according to the second type of normalization, that is, with respect
to maximum values of excursion and acceleration attained in absence of bumpers (NB/B0). In more detail,
the ratio between maximum excursions of mass in presence (Emax) and in absence (E0max) of bumpers will
be denoted with the symbol η0 = Emax/E0max, and the ratio between maximum accelerations of mass in
presence (Amax) and in absence (A0max) of bumpers will be denoted with the symbol α0 = Amax/Amax0. The mass
excursion in the presence of a deformable obstacle is less than that in the absence of an obstacle in the interval
η0 < 1. The acceleration of the mass in the presence of a deformable obstacle is amplified with respect to the
absence of an obstacle in the interval α0 > 1. Both excursion η0 (dashed line) and acceleration α0 (solid line)
are reported in Figures 3–5.

Figure 3 shows the two quantities in terms of bumpers' stiffness for three different values of the table
acceleration aG = 0.03 (a), 0.04 (b), and 0.05 (c). The symbol B0 means no bumpers, whereas the bumper



B4 can be considered to represent a relatively very stiff obstacle. Excursion and acceleration obviously assume
unit values for B0 (absence of bumpers).

Figure 4 reports excursion and acceleration in terms of the inverse of the gap, for three different values of the
table acceleration aG = 0.03 (a), 0.04 (b), and 0.05 (c). The value 1/G = 0 represents the absence of bumpers
(G∞ = gap of infinite width), whereas the value 0.07 represents the smallest gap G1. The colors indicate the
different bumpers, according to the convention adopted in the Appendix.

Figure 5 shows excursion and acceleration in terms of the three values of the table accelerations aG = 0.03
(a), 0.04 (b), and 0.05 (c), for the four different values of the gaps. Furthermore, the bumpers stand out, as
usual, for the different colors.

3.1.1 Partial conclusions

The range of variations of η0 and α0 are approximately η0 ≅ 0.26 (bumper B4, aG = 0.05, gap G1)–1.0 (G∞)
and α0 ≅ 1.0 (G∞)–4.7 (bumper B4, aG = 0.04, gap G3), respectively. The excursion has a maximum value of 1
and a minimum value of about 0.25; the acceleration has a minimum value of 1 and a maximum value of 4.7.
In general, it is found that excursion decreases while acceleration increases with the presence of the bumpers
compared with free flight.

Examining the system's response in terms of bumpers' stiffness (Figure 3) shows that excursion decreases
with increasing stiffness of the bumpers. Acceleration, however, increases with the stiffness of the bumpers,
but in some cases (bumper B3), relative minima are obtained, more and more accentuated with the growth
of aG. As aG increases, excursion decreases and acceleration increases. Moreover, for the bumpers B2 and B3,
zones where excursion and acceleration vary little do exist, even if in some cases the acceleration has a relative
minimum.

Analyzing the system's response in terms of total gap's inverse 1/G (Figure 4) reveals that as gap clearance
decreases, excursions decrease, while acceleration increases with increasing aG, according to a curve that
exhibits a downward concavity in some cases (aG = 0.05, B1, B2, B4). For the other gaps, it is not possible to
observe the same behavior because the grid of gap and acceleration values experimentally investigated is not
sufficiently dense and extensive to allow it.

Studying the system's response in terms of table acceleration aG (Figure 5) indicates that excursion
decreases and acceleration increases, as aG and gap clearance increase. It is therefore understood that some
(both ascending and descending) branches of the curves exhibiting a downward concavity are not visible
because some combinations of gap widths and table accelerations could not be implemented because of
technical reasons; in fact, the performed campaign of experimental investigations was relatively extensive
because of the table's performances and to the characteristics of the experimental setup, as illustrated in
Section 2.

The excursion η0 obviously decreases with increasing stiffness of the bumpers; in particular, η0 attains
the largest and smallest values for B1 and B4, respectively, whereas B2 and B3 remain confined in the band
between B1 and B4; η0 grows as the gap width increases. The trend of η0 is almost linear, starting from values
smaller than 1 in aG = 0.03 and when G increases; it reaches 1 (again for aG = 0.03) and “rotates” clockwise as
G increases in the sense that the slope decreases, that is, η0 decreases with the growth of aG. Thus, the higher
aG, the greater the benefit, as G increases. In particular, η0 is almost independent of aG, and there is a constant
benefit with respect to aG for G1.

In a dual way with respect to excursion, acceleration obviously increases as the bumpers' stiffness increases
(α0 attains minimum and maximum values for B1and B4, respectively); bumpers B1 and B2 remain confined in
the band between B1and B4 and intersect at different points depending on G. As for the excursion, α0 translates
from top to bottom (up to the value 1 for G4), and “rotates” counterclockwise, in aG = 0.03 and as G increases.



The bumper B1 appears to be optimal from the point of view of both η0 and of α0, for gap clearances that tend
to be small, because η0 is comprised within the range 0.5–1.0, whereas α0 remains below 1.5 for any G and aG.
Ultimately, the maximum benefit is achieved when B is soft (bumper B1), G is small (gap G1), and aG is large
(aG = 0.05). We emphasize the importance of the fact that it is more rewarding to obtain larger benefits for
large accelerations than for small ones. In fact, the combination of bumper B1 with gap G1 permits to achieve
a good compromise between acceleration increase and excursion reduction. This conjuncture corresponds to
an optimal situation in the presence of conflicting objectives when the primary objective of controlling the
excursions comes into conflict with the unwanted collateral effect of an increase in acceleration.

3.2 Second problem: Control of excessive accelerations

The normalization of the accelerations Amax and excursions Emax for the various bumpers is now carried out
with respect to the corresponding accelerations ARmax and excursions ERmax of the stiffest bumper (B4) that, as
an approximation, can be assumed to represent the rigid obstacle and leads to the definition of the respective
parameters αR = Amax/ARmax and ηR = Emax/ERmax. The problem that arises is the excessive acceleration
that occurs during the impact with a very (in the limit, infinitely) rigid obstacle. The insertion of deformable
bumpers (less rigid than the reference one) allows to limit the accelerations (source of possible damage to
structural and nonstructural elements, to equipment, etc.) to the price of accepting a modest increase in
the excursions. Thus, attention is first paid to the parameter αR and then to ηR. The values of αR and ηR

are reported in the ordinates of the Figures 6–8, which are presented and discussed below in analogy with
Figures 3–5 of Section 3.1.

The unit value of αR indicates that the acceleration is equal to that obtained with the rigid obstacle, whereas
a unit value of ηR indicates that the excursion is equal to that of the case of the rigid obstacle. With this
normalization, it is observed that the accelerations are always between 0 and 1, whereas the excursions are
always larger than one. The acceleration of the mass in the presence of a deformable obstacle is reduced
with respect to the presence of a rigid obstacle in the interval αR < 1. The mass excursion in the presence
of a deformable obstacle is larger than that in the presence of a rigid obstacle in the interval ηR > 1. This
means that for the accelerations, there is always an improvement, whereas for the excursions, there is always
a deterioration.

The abscissa axis of Figure 6 shows the various bumpers ordered in the direction of increasing stiffness, and
figure parts a, b, and c refer to the three values of aG = 0.03 (a), 0.04 (b), and 0.05 (c), respectively. Bumper
B4 represents the rigid obstacle.

The abscissas of Figure 7a–c show the inverse of the gap width (1/G), and figure parts a, b, and c refer to the
three values of aG = 0.03, 0.04, and 0.05. Read Figure 7a–c from right to left, that is, in the direction of the
decreasing abscissae and therefore of the increasing gap.

The table acceleration aG is given in the abscissas of Figure 8a–d, and figure parts a, b, c, and d refer to the
four gap values G1–G4.

3.2.1 Partial conclusions

The above observations made on Figures 6–8 can be synthetized as follows. It is observed (Figures 6–8)
that both αR and ηR have an S-shape in a counterphase (in some cases, there are maxima and minima; in
others, only concavity changes); more precisely, a minimum (upward concavity) and a maximum (downward
concavity) of ηR correspond to a maximum (downward concavity) and a minimum (upward concavity) of αR,
at varying stiffness and for a given gap.

In absence of bumpers, acceleration (for all gaps) is included in the intervals αR = 0.28–1.0, 0.21–0.26, and
0.25–0.21 and the excursion in the intervals ηR = 1.9–1.0, 2.7–1.44, and 3.8–2.0, for aG = 0.03, 0.04, and 0.05,



respectively. The unit value of αR and ηR for G4 (the largest gap) and aG = 0.03 (the lowest acceleration of
the table) signals the phenomenon of grazing. In presence of bumpers, if we look first of all at the acceleration
as a function of the stiffness of the bumpers (Figure 6), we notice a minimum at the bumper B3 and the
gap G3, in all the table accelerations but more accentuated with the growth of aG. Then, going to consider
also the excursion in a second moment, we realize that we can make the same observation (made above for
acceleration) also for ηR, even if the minimum is less conspicuous, given the flattening of the curves.

Let us now look at the problem in terms of αR and ηR as a function of G (Figure 7) for the three values of aG =
0.03, 0.04, and 0.05. For aG = 0.03, the minimum of αR for G3 of both B1 (0.33) and B2 (0.43) and B3 (0.46)
stands out, whereas ηR = 1.1, 1.03, and 1.06 for B1–B3. For aG = 0.04, the minimum of αR = 0.32, 0.55, and
0.23 stands out for B1–B3 at G3, whereas ηR = 1.36, 1.16, and 1.02 for B1–B3. For aG = 0.05, αR = 0.33, 0.56,
and 0.24 for B1–B3, whereas ηR = 1.63, 1.18, and 1.0 for B1–B3.

From the reading of αR and ηR in terms of aG for the various gaps G1–G4 (Figure 8), it is clear that at the
gap G3, αR remains around 0.4 (0.38–0.46) for all the table accelerations, whereas ηR of bumper B3 in G3 is
practically equal to 1 (1.0–1.06), coinciding approximately with the excursion limited by the stiffest bumper
(B4).

From the comparison of the bumpers B1–B3 at gap G3, we see that the pair B3/G3, compared with the
other two pairs B1/G3 and B2/G3, provides a substantial and constant reduction at high (most important)
accelerations for both αR and ηR, showing that the mitigation is stronger in terms of ηR.

The combination between bumper B3 and gap G3 is particularly convenient for all the accelerations
examined, as it shows a significant acceleration reduction (0.4–0.5) compared with a modest increase in the
excursion (1–1.1), attaining a relative minimum of both αR and ηR independently of the table acceleration

Thus, it can be stated with reasonable accuracy that from the experimental point of view, there is a
particularly significant configuration identified by the pair constituted by the bumper B3 and the gap G3
from the point of view of a significant reduction in accelerations accompanied by a negligible increase in the
excursions with respect to the reference response, provided in the case of a rigid obstacle, for all the values of
the acceleration of the table that were investigated.

4 COMPARISON BETWEEN EXPERIMENTAL AND NUMERICAL
RESULTS

When the mass M is oscillating, three situations exist, and they can be described as follows:

1.
The mass is not in contact with any of the bumpers:

{ M
¨
Dd + Cd

̇
Dd + Rd = − MAGsin(Ωt)

Cbj
̇

Dbj + KbjDbj = 0
(1a)

with Gj(t) > 0, j = R, L; and

Gj(t) = G0j(t) + ΔDj(t)

ΔDR(t) = DbR(t) − Dd(t)

ΔDL(t) = Dd(t) − DbL(t);



5 THE MASS IS IN CONTACT WITH THE RIGHT BUMPER (R):

{ M
¨
Dd + Cd

̇
Dd + Rd + CbR

̇
DbR + KbRDbR = − MAGsin(Ωt)

CbL
̇

DbL + KbLDbL = 0
(1b)

with GR(t) = 0 and DbR = Dd − G0R;

6 THE MASS IS IN CONTACT WITH THE LEFT BUMPER (L):

{ M
¨
Dd + Cd

̇
Dd + Rd + CbL

̇
DbL + KbLDbL = − MAGsin(Ωt)

CbR
̇

DbR + KbRDbR = 0
(1c)

with GL(t) = 0 and DbL = Dd − G0L.

In Equation,[1] Dd is the relative displacement of the damper; DbR and DbL are the relative displacements of
right and left bumpers, respectively; Kbj and Cbj are, respectively, elastic stiffness and damping coefficient of
bumpers j = R, L; Gj are the gap functions of bumpers j = R, L; G0j are the initial gaps of bumpers j = R, L; and
AG and Ω are peak and frequency of the acceleration input applied by the table.

The definition of Rd appearing in Equation[1] above will be given in Equation[2] below.

The piecewise-linear restoring force of the damper obeys the following constitutive law in the (Dd ≥ 0, Rd ≥
0) region:

Rd = Kd1Dd 0 ≤ Rd ≤ Rd1 1st elastic branch (2a)

Rd = Rd1 + Kd2(Dd − Dd1) Rd1 ≤ Rd ≤ Rd2 2nd elastic branch (2b)

Rd = Rd2 + Kd3(Dd − Dd2) Rd2 ≤ Rd 3rd elastic branch, (3c)

where Dd and Rd are the current values of displacement and force; Dd1 and Dd2 are the displacements
corresponding to forces Rd1 and Rd2. Analogous laws hold in the (Dd ≤ 0, Rd ≤ 0)-region. Each bumper is
massless and exerts on the mass (in the contact phase) a linearly elastic restoring force characterized by elastic
stiffness Kbj (j = R, L).

The values of mechanical parameters characterizing the constitutive laws of damper and bumpers B1 and B2
that have been identified and then adopted in the numerical model to simulate sample experimental results by
using a general-purpose computer code (Sap2000 v.20) are reported in this section; the identification of the
above-mentioned bumpers had not been presented in Andreaus et al.[60, 61] In this paper, the experimental
and numerical responses of the system was analyzed and compared in the configuration characterized by low-
middle stiffness bumpers B1 and B2 and the low-middle gap G2, under a step-wise forward and backward
sine sweep (ranges f = 0.5–5.0–0.5 Hz and step-size Δf = 0.1 Hz), characterized by constant AG = 0.05 g,
performing a sufficient number of cycles to reach the steady state. The piece-wise tri-linear elastic behavior
of the damper was modeled with stiffness Kd1 = 20 kN/m between displacements Dd1 = 0 and Dd2 = 8 mm,
and forces Rd1 = 0 and Rd2 = 0.160 kN, Kd2 = 18 kN/m between displacements Dd2 = 8 and Dd3 = 40 mm,
and forces Rd2 = 0.160 and Rd3 = 0.736 kN, Kd3 = 2 kN/m for Dd > Dd3 = 40 mm and Rd > Rd3 = 0.736 kN;
analogous laws hold in the (Dd ≤ 0, Rd ≤ 0) region. The linear viscous behavior of damper was identified by the
damping coefficient Cd = 1.1 kNs/m. The linear elastic behavior of the bumpers was modeled with a stiffness
KB1 = 33 kN/m for bumper B1 and KB2 = 175 kN/m for bumper B2; the linear viscous behavior of the bumpers



was identified by the damping coefficients CB1 = 0.3 kNs/m and CB2 = 0.5 kNs/m, for the bumpers B1 and B2,
respectively.

The proposed numerical model has been implemented in the SAP2000 v.20 proprietary code; the system
was subject to a table input consisting in a step-wise displacement, which is characterized by the forward and
backward sine sweep shown in Figure 9, along the frequency ranges f = 0.5–5.0 Hz in forward sweep and f =
5.0–0.5 Hz in backward sweep, with step-size Δf = 0.1 Hz and which corresponds to a constant acceleration
peak AG = 0.05 g.

Figure 9 Forward and backward sine sweep of table input displacement (f = 0.5–5.0–0.5 Hz, AG = 0.05
g, Δf = 0.1 Hz)

Two cases were examined, namely, bumpers B1 and B2 with gap G2 and table acceleration A3, and the
numerical results were compared with the experimental ones in terms of (a) displacement and acceleration
time histories along the total time ranges, (b) pseudoresonance curves along the frequency ranges f = 0.5–5.0
Hz in forward sweep and f = 5.0–0.5 Hz in backward sweep, and (c) hysteresis loops and phase portraits at
pseudoresonance, which is understood as the frequency where the maximum response is attained, that is, the
largest amplitude oscillation is exhibited in the forward portion of the applied sine sweep; the hysteresis loops
plot absolute acceleration in terms of relative displacement of the mass; the absolute acceleration is related to
the inertia force and hence to the total force acting on the mass.

In particular, Figures 10 and 11 (bumper B1) show forward and backward time histories of experimental
(Figure 10) and numerical (Figure 11) responses for (a) absolute acceleration and (b) excursion of relative
displacement. Figure 12 (bumper B1) shows the forward and backward pseudoresonance curves for (a)
absolute value of absolute acceleration and (b) excursion of relative displacement. Figures 13 (bumper B1) and
14 (bumper B2) show hysteresis loops (a) and phase portraits (b) at resonance.



Figure 10 Forward and backward time-histories of experimental responses (bumper B1). (a) Absolute
acceleration and (b) relative displacement

Figure 11 Forward and backward time-histories of numerical responses (bumper B1). (a) Absolute
acceleration and (b) relative displacement

Figure 12 Pseudoresonance curves (bumper B1). (a) Acceleration and (b) excursion

Figure 13 Experimental and numerical maximum responses (bumper B1). (a) Hysteresis loops and (b)
phase portraits

A suitable model has been developed to numerically simulate the behavior of the system by using a general-
purpose computer code, achieving a good agreement with the experimental results.

As far as the case B1 is concerned, comparing pseudoresonance curves (Figure 12), hysteresis loops of
absolute acceleration versus relative displacement at resonance (Figure 13a) and phase portraits (relative
velocity vs. relative displacement) at resonance (Figure 13b) shows a good agreement between numerical and
experimental results.

In Figure 12, experimental and numerical results are indicated by solid and dashed lines respectively,
whereas forward (red color) and backward (blue color) sweeps are denoted by thick and thin lines, respectively.

In Figure 13, experimental and numerical results are indicated by solid and dashed lines, respectively.



Figure 14 Experimental and numerical maximum responses (bumper B2). (a) Hysteresis loops and (b)
phase portraits

As far as the case B2 is concerned, comparing hysteresis loops of absolute acceleration versus relative
displacement at resonance (Figure 14a) and phase portraits (relative velocity vs. relative displacement) at
resonance (Figure 14b) shows a good agreement between numerical and experimental results.

7 CONCLUSIONS

In this paper, an experimental investigation is presented about two-sided damping constraint technique for
end-stop impact protection, when the system is subjected to base harmonic excitation. The physical model of
the SDOF system with double-side unilateral constraints under consideration consists of a rigid body that can
be treated as a lumped mass, an elastomeric isolator (the so-called damper), and some kinds of elastomeric
shock absorbers (the so-called bumpers), mounted symmetrically on steel stands that are bolted onto the base
plate. The damper is centrally located with respect to the mass, whereas the clearance between bumpers and
mass, the so-called gap, was varied within a suitable range.

A first result obtained in the present work was that of having given a bibliographic framework of the
recent scientific literature on the subject of structural pounding of isolated structures at the base, on the basis
of some key words, such as pounding between adjacent structures, pounding of the structure against moat
walls at the base, pounding between adjacent structures and with moat walls, numerical and/or experimental
approach, one or more degrees of freedom, 2-D/3-D, sinusoidal action and/or seismic action, theoretical
and/or applicative papers, and linear or nonlinear behavior of isolators.

The experimental tests on the vibrating table have considered two different configurations: the absence
of bumpers and the presence of bumpers. Four different values of the table acceleration peak were applied,
four different amplitude values of the total gap between mass and bumpers were considered, and finally,
also four different types of bumpers were employed. The performed tests are summarized in Table 2; they
contemplate several combinations among the different situations in terms of the absence–presence of the
bumpers, type of bumpers, gap clearance, and acceleration peak of the table. The campaign of experimental
investigations carried out in the present work is relatively extensive, limited to the table's performances and to
the characteristics of the experimental setup. From the information given in Table 1, it can be deduced that the
cases studied in the present work are about five times those studied in the previous articles.[60, 61]

The processing of the system's response was conducted by addressing two fundamental problems illustrated
in Sections 3.1 and 3.2, respectively.

Section 3.1 concerns the control of excessive displacements; on the other hand, if the displacements are
limited by placing an obstacle, accelerations because of the impact increase. The comparison is made with
respect to the situation of absence of obstacle, that is, free flight. The indication can be given that a soft bumper
(B1) and a small gap (G1) are a good compromise between acceleration increase and excursion reduction for
this problem, within the limitations of the performed experimental tests.



Section 3.2 relates to the control of excessive accelerations that occur when the displacements are to be
limited by inserting a rigid obstacle or—as in reality—a bumper with very high relative stiffness, that is, the
stiffest bumper B4; with the insertion of more deformable bumpers, it is possible to limit the accelerations, but
one pays the price of an increase in displacement. Intermediate bumpers' stiffnesses (e.g., bumper B3) and gap
widths (e.g., gap G3) could be a satisfactory choice for this second problem.

Definitively, as for experimental investigation, the results obtained in the two examined problems suggest
an acceptable trade-off between conflicting objectives.

Finally, a suitable numerical model based on a trilinear elastic and linearly viscous isolator and on linear
viscous-elastic bumpers has been proposed and implemented in a general-purpose calculation code,
identifying the values of the constitutive parameters on the basis of the available experimental results. The
comparison between the numerical results thus obtained, and the experimental results had a satisfactory
outcome also relatively to the two new bumpers examined in this paper.
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APPENDIX A.:

The meaning of the symbols, the colors and the style of the lines and indicators used in the figures of Section
4 is explained in the following legenda.

Bumper B (line color, increasing stiffness K, L length of the bumper [mm])

B1 MB 60 × 52 L100

B2 MB 60 × 52 L400

B3 MB 40 × 22 L400

B4 AP 65 × 52 L400

Gap G (indicator form, increasing amplitude G)

G1 15 mm □

G2 20 mm ◊

G3 25 mm △

G4 30 mm ○

Acceleration aG (line style)

aG1 0.03

aG2 0.04



aG3 0.05

aG4 0.07

Acceleration aG (indicator size, increasing amplitude of aG)

G1 □ □ □ □

G2 ◊ ◊ ◊ ◊

G3 △ △ △ △

G3 ○ ○ ○ ○


