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Abstract. We consider a reaction-diffusion equation with a nonlinear term of the Fisher-KPP-
type, depending on time t and admitting two limits as t → ±∞. We derive the set of admissible
asymptotic past and future speeds of transition fronts for such an equation. We further show that
any transition front which is noncritical as t → −∞ always admits two asymptotic past and future
speeds. We finally describe the asymptotic profiles of the noncritical fronts as t → ±∞.
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1. Introduction and main results. This paper is concerned with asymp-
totic dynamical properties of front-like solutions for time-dependent reaction-diffusion
equations of the type

(1.1) ut = uxx + f(t, u), t ∈ R, x ∈ R.

We focus here on the case where the reaction term f admits some limits as t → ±∞.
These limits are in general different, and the medium is thus in general not uniquely
ergodic. Actually, even if the limits of f(t, u) as t → ±∞ are equal, the medium is in
general truly time-dependent and is not periodic, almost-periodic, or even recurrent.
We prove the existence of solutions which move with some—in general different—
speeds as t → ±∞, and we also characterize the set of all admissible asymptotic
speeds as t → ±∞ among all time-global front-like solutions.

Throughout the paper, the reaction term f : R × [0, 1] → R is assumed to be
uniformly Hölder continuous, of class C1, and such that ∂uf := ∂f

∂u is bounded in
R× [0, 1]. We will further require that

(1.2)

⎧⎪⎪⎨⎪⎪⎩
f(t, 0) = f(t, 1) = 0 ∀ t ∈ R,

f(t, u) ≥ 0 ∀ (t, u) ∈ R× [0, 1],

f(t, u)

u
is nonincreasing with respect to u ∈ (0, 1]∀ t ∈ R
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and that there are two C1 functions f± : [0, 1] → R such that

(1.3)

⎧⎨⎩
f±(0) = f±(1) = 0, f±(u) > 0 ∀ u ∈ (0, 1),

f(t, u)

f±(u)
→ 1 as t → ±∞, uniformly for u ∈ (0, 1).

Notice that the hypotheses imply in particular that the functions u �→ f±(u)/u are
nonincreasing with respect to u ∈ (0, 1] and that f ′

±(0) > 0. We denote

(1.4) μ± := f ′
±(0) > 0 and μ := min(μ−, μ+) > 0.

In order to derive the existence result, we will also need the following regularity
property:

(1.5) f(t, u) ≥ ∂uf(t, 0)u− Cu1+ω ∀ (t, u) ∈ R× (0, δ)

for some C > 0 and δ, ω ∈ (0, 1].
Such nonlinearities f(t, u) are said to be of the Fisher- or KPP-type for Kol-

mogorov, Petrovski, and Piskunov, by analogy with the time-independent case f(u),
which was first considered in [11, 19]. It follows from assumption (1.3) that f(t, ·) > 0
in (0, 1) for all |t| large enough. However, no strict sign assumption is made on f for
intermediate times t. In particular, the functions f(t, ·) may well be identically equal
to 0 on [0, 1] for some times t belonging to a nonempty bounded set.

A typical example of a function f(t, u) satisfying all above assumptions is

f(t, u) = μ̃(t) f̃(u),

where f̃ : [0, 1] → R is of class C1,ω, f̃(0) = f̃(1) = 0, f̃ > 0 on (0, 1), u �→ f̃(u)/u
is nonincreasing with respect to u ∈ (0, 1], and the function μ̃ : R → [0,+∞) is
of class C1 and admits some limits μ̃± = limt→±∞ μ̃(t) in (0,+∞). In this case,

f±(u) = μ̃±f̃(u) for all u ∈ [0, 1] and μ± = μ̃±f̃ ′(0).

1.1. Notions of transition fronts and asymptotic mean speeds. Equa-
tions of the type (1.1) are known to be good models to describe the propagation of
fronts connecting the steady states 0 and 1; see, e.g., [10, 25, 41]. The solution u
typically stands for the density of a species invading an open space, and the fronts are
known to play a fundamental role in the description of the dynamical properties of
the solutions of (1.1). We will recall a bit later some of the main results about the ex-
istence and dynamical properties of known front-like solutions of particular equations
of the type (1.1).

From a mathematical point of view, for problem (1.1), using the same terminology
as in [4, 5], the front-like solutions connecting 0 (say, on the right) and 1 (on the left)
are called transition fronts and are defined as follows.

Definition 1.1. For problem (1.1), a transition front connecting 0 and 1 is a
time-global classical solution u : R × R → [0, 1] for which there exists a function X :
R → R such that

(1.6)

{
u(t,X(t) + x) → 1 as x → −∞,

u(t,X(t) + x) → 0 as x → +∞,
uniformly in t ∈ R.
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Several comments on this definition are in order. First, it is actually a particular
case of a more general definition given in [4, 5] in a broader framework. For the one-
dimensional equation (1.1), the transition fronts connecting 0 and 1 correspond to the
“wave-like” solutions defined in [36, 37]. (See also [24] for a different notion involving
the continuity with respect to the environment around the front position.) Roughly
speaking, condition (1.6) means that the diameter of the transition zone between the
sets where u � 1 and u � 0 is uniformly bounded in time: the fundamental property
in (1.6) is the uniformity of the limits with respect to time t ∈ R. The limits (1.6)
imply in particular that, given any real numbers a and b such that 0 < a ≤ b < 1,
there is a constant C = C(u, a, b) ≥ 0 such that, for every t ∈ R,

{
x ∈ R; a ≤

u(t, x) ≤ b
} ⊂ [X(t) − C,X(t) + C

]
. Standard parabolic estimates and the strong

maximum principle also easily imply that, for any transition front u connecting 0 and
1, and for every C ≥ 0,

(1.7) 0 < inf
t∈R, x∈[X(t)−C,X(t)+C]

u(t, x) ≤ sup
t∈R, x∈[X(t)−C,X(t)+C]

u(t, x) < 1.

Notice furthermore that, for a given transition front u connecting 0 and 1, the family
(X(t))t∈R is not uniquely defined since, for any bounded function ξ : R → R, the
family (X(t) + ξ(t))t∈R satisfies (1.6) if (X(t))t∈R does. Hence, one can choose for
instance as X(t) one point x such that u(t, x) = 1/2. On the other hand, if (X(t))t∈R

and (X̃(t))t∈R are associated to a given transition front u connecting 0 and 1 in the
sense of (1.6), then it can be immediately seen that

(1.8) sup
t∈R

∣∣X(t)− X̃(t)
∣∣ < +∞.

Last, it is shown in Proposition 4.2 of [16], in the case of general space-time dependent
reaction-diffusion equations, that for any transition front u connecting 0 and 1, any
function X such that (1.6) holds has uniformly bounded local oscillations, that is,

(1.9) ∀ τ ≥ 0, sup
(t,s)∈R2, |t−s|≤τ

|X(t)−X(s)| < +∞.

When the function f = f(u) does not depend on the time variable, the most
typical examples of transition fronts connecting 0 and 1 are the standard traveling
fronts u(t, x) = φ(x− ct) with 0 = φ(+∞) < φ(ξ) < φ(−∞) = 1 for all ξ ∈ R. Under
the Fisher-KPP hypothesis, such traveling fronts exist if and only if c ≥ 2

√
f ′(0)

and, for each c ≥ 2
√
f ′(0), the function φ = φc is decreasing and unique up to

shifts [2, 19]. Furthermore, these fronts φc(x − ct) are known to be stable with
respect to perturbations in some suitable weighted spaces and to attract the solutions
of the associated Cauchy problem for a large class of exponentially decaying initial
conditions; see, e.g., [3, 6, 9, 13, 18, 19, 20, 33, 42]. When the function f = f(t, u)
depends periodically on time t, the standard traveling fronts do not exist anymore in
general and the notion of traveling fronts is replaced by that of pulsating traveling
fronts φ(t, x− ct), where φ is periodic in its first variable and converges to 1 (resp., 0)
as x − ct → −∞ (resp., as x − ct → +∞). The existence, uniqueness, and stability
properties of such pulsating traveling fronts have been established in [15, 21, 22,
23, 26, 31, 43]. The notions of pulsating traveling fronts can also be extended in
time almost-periodic, almost-automorphic, recurrent, or uniquely ergodic media; we
refer to [17, 34, 35, 36, 38, 39, 40] for further existence, qualitative, and asymptotic
properties in such media.
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In the present paper, due to the time-dependence and assumption (1.3), (1.1) is
not assumed to be periodic, almost-periodic, recurrent, or uniquely ergodic in time,
and the standard traveling or pulsating traveling fronts no longer exist in general.
The notion of transition fronts satisfying (1.6) provides a good framework to de-
scribe the propagation of more general front-like solutions. This notion has already
been used in various contexts. For instance, particular transition fronts have recently
been constructed for monostable equations (1.1) in [5, 28]. (See the comments after
Theorem 1.3 below.) Recently, transition fronts for reaction-diffusion equations with
general nonperiodic monostable x-dependent nonlinearities f(x, u) have also been
constructed in [27, 30, 44, 45].

The time-dependent monostable equation (1.1) considered here, with f(t, u) hav-
ing some limits as t → ±∞, is one of the simplest examples of heterogeneous equations
which are not periodic, recurrent, or uniquely ergodic in time. Nevertheless, (1.1) al-
ready captures new interesting propagating front-like solutions. In particular, we will
prove the existence of transition fronts which had not been considered in [5, 28]. We
will characterize the set of all admissible rates of propagation, as well as the asymp-
totic profiles of the noncritical fronts.

As for the possible rates of propagation, an important notion associated to the
transition fronts is that of their possible speed. Namely, we say that a transition
front connecting 0 and 1 for (1.1), in the sense of Definition 1.1, has a global mean
speed γ if

(1.10)
X(t)−X(s)

t− s
→ γ as t− s → +∞,

that is, (X(t + τ) − X(t))/τ → γ as τ → +∞ uniformly in t ∈ R.1 Applying
recursively property (1.9) with, say, τ = 1, one readily sees that the function τ �→
(X(t+τ)−X(t))/τ is bounded on [1,+∞), independently of t, hence the global mean
speed cannot be infinite.

If a transition front connecting 0 and 1 has a global mean speed γ, then this
speed does not depend on the family (X(t))t∈R, due to the property (1.8). But the
global mean speed, if any, does depend on the transition front. This is seen already in
homogeneous media, where f = f(u). Indeed, any standard traveling front φ(x − ct)
in a homogeneous medium has a global mean speed equal to c, and then the set of ad-
missible speeds in the class of all standard traveling fronts is equal to [2

√
f ′(0),+∞).

This property remains true if one considers the whole class of transition fronts, be-
cause the global mean speed cannot be smaller than the spreading speed for the
Cauchy problem with compactly supported initial datum, which is 2

√
f ′(0); see [2].

In the nonhomogeneous case considered in the present paper, the picture is more
complicated and may be radically different. Namely, under some slightly stronger
assumptions than (1.2)-(1.3), Corollary 1.6 below asserts that the set of global mean
speeds among all transition fronts coincides with [2

√
μ−,+∞) if μ+ ≤ μ−, whereas it

is empty if μ+ > μ−.
It is important to realize at this stage that, in general, a given transition front

connecting 0 and 1 may not have any global mean speed, even for some homogeneous
equations (1.1) with f = f(u). More precisely, it follows from [12], as shown in [16],
that for a C2 concave f : [0, 1] → R such that f(0) = f(1) = 0 < f(s) on (0, 1) and

1We point out that this definition slightly differs from the one used in [4, 5], but, in this one-
dimensional situation and given Definition 1.1, it is quite easy to see that the two definitions coincide.
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for any real numbers c1 and c2 such that 2
√
f ′(0) ≤ c1 < c2, there exist transition

fronts u connecting 0 and 1 such that

(1.11)

{
u(t, x)− φc1(x− c1t) → 0 as t → −∞,

u(t, x)− φc2(x− c2t) → 0 as t → +∞,
uniformly in x ∈ R,

where φc1(x − c1t) and φc2(x − c2t) are any two given standard traveling fronts con-
necting 0 and 1 with speeds c1 and c2, respectively. This result implies in particular
that, even in a homogeneous medium, the notion of transition fronts is necessary
to describe front-like solutions that are not standard traveling fronts. Furthermore,
the transition fronts satisfying (1.11) for (1.1) with f = f(u) do not have a global
mean speed as soon as c1 �= c2 since, whatever X(t) may be, one has X(t)/t → c1
as t → −∞ and X(t)/t → c2 as t → +∞ for these transition fronts. Nevertheless,
it is natural to say that these fronts have an asymptotic speed, c1, as t → −∞, and
another asymptotic speed, c2, as t → +∞.

These facts lead us naturally to the definition of the notion of possible asymptotic
past and future mean speeds, as t → −∞ and as t → +∞, for the general time-
dependent equation (1.1).

Definition 1.2. We say that a transition front connecting 0 and 1 for (1.1) has
an asymptotic past speed c− ∈ R, respectively, an asymptotic future speed c+ ∈ R, if

(1.12)
X(t)

t
→ c− as t → −∞, respectively,

X(t)

t
→ c+ as t → +∞.

Notice that, for a given transition front, these signed speeds, if any, do not depend
on the family (X(t))t∈R, due to (1.8) again. Clearly, if a transition front admits a
global mean speed γ in the sense of (1.10), then it has asymptotic past and future
speeds equal to γ. It is natural to ask if the reverse property holds true. Namely, if a
front has past and future speeds both equal to some γ, does it admit a global mean
speed equal to γ? We partially answered this question in Remark 4.1 of [16] in the
homogeneous case: the answer is yes provided γ > 2

√
f ′(0), but it is not known if

γ = 2
√
f ′(0). Here, we extend this result to (1.1), under some stronger hypotheses

on the convergences f → f± as t → ±∞, showing that the answer is yes provided
γ > 2

√
μ−. This can be derived from the last statement of Theorem 1.4 below about

the convergence of the profile to that of standard fronts, as shown in section 2.4. We
point out that the answer to the above question in general is no for a nonlinearity
f(t, u), which does not satisfy (1.3); see Remark 2.2 below.

The asymptotic past and future speeds characterize the rate of expansion of the
front at large negative or positive times. These asymptotic speeds might not exist a
priori, and one could wonder whether these notions of speeds as t → ±∞ would be
sufficient to describe the large time dynamics of all transition fronts for (1.1). As a
matter of fact, one of the main purposes of the present paper will be to characterize
completely the set of all admissible asymptotic speeds and to show that the asymptotic
speeds exist for all fronts which are supercritical as t → −∞, in a sense which will be
made more precise in Theorem 1.4 below.

1.2. Existence of transition fronts. We first show the existence of some tran-
sition fronts with asymptotic speeds c± as t → ±∞ ranging in some explicitly given
semi-infinite intervals.
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Theorem 1.3. Under the assumptions (1.2), (1.3), and (1.5), let μ± be defined
as in (1.4) and c± be any two real numbers such that

(1.13) c− ≥ 2
√
μ− and c+ ≥ κ+

μ+

κ
with κ = min

(√
μ+,

c− −
√
c2− − 4μ−

2

)
> 0.

Then (1.1) admits some transition fronts u connecting 0 and 1 with asymptotic past
and future speeds c±, that is, such that (1.12) holds. Furthermore, u satisfies ux(t, x) <
0 for all (t, x) ∈ R × R. Last, in all cases, except possibly when μ+ > μ− and c±
satisfy c− = 2

√
μ− and c+ =

√
μ− + μ+√

μ−
, there exists a bounded function ξ : R → R

such that

(1.14) u(t,X(t) + ξ(t) + ·) → φc± in C2(R) as t → ±∞,

where φc±(x − c±t) are standard traveling fronts connecting 0 and 1 for the limiting
equations with nonlinearities f±.

Concerning the missing case for the last statement of Theorem 1.3, we show that
(1.14) holds as t → −∞, but we derive the convergence to φc+ only along a particular
sequence tn → +∞, under the additional assumption that f+ is C2 and concave;
see Proposition 2.5 below. This allows us to exhibit an example showing that the
profile of the critical front is not stable in general with respect to perturbations of the
coefficients; see Remark 2.6 below.

A first obvious observation following (1.13) is that c+ ≥ 2
√
μ+. This relation is

not at all surprising and is actually immediately necessary, since 2
√
μ+ is the spread-

ing speed of the solutions u of the Cauchy problem (1.1) with compactly supported
nonzero initial conditions 0 ≤ u0 ≤ 1, in the sense that maxR\(−ct,ct) u(t, ·) → 0
as t → +∞ for every c > 2

√
μ+ and min[−ct,ct] u(t, ·) → 1 as t → +∞ for every

0 ≤ c < 2
√
μ+. (This asymptotic result can be easily obtained from the maximum

principle and the facts that u(t, x) has a Gaussian decay as x → ±∞ at every time
t > 0, and initial conditions with Gaussian decay spread at the speed 2

√
f ′(0) in the

time-independent case [2, 42].) We also refer to Proposition 2.4 below for a direct
proof of the bounds c± ≥ 2

√
μ±.

A second observation is a comparison between the range of asymptotic past and
future speeds provided by Theorem 1.3 and the sets of admissible speeds for the
limiting problems as t → −∞ and t → +∞, which are given by [2

√
μ−,+∞) and

[2
√
μ+,+∞), respectively. On the one hand, the range of past speeds in Theorem 1.3

coincides with [2
√
μ−,+∞), no matter what the relation between μ− and μ+ is. On

the other hand, the range of future speeds coincides with [2
√
μ+,+∞) if and only if

κ in (1.13) coincides with
√
μ+ for some c− ≥ 2

√
μ−, and this happens if and only if

μ+ ≤ μ−. Indeed, if μ+ > μ−, then the minimal future speed given by Theorem 1.3
is strictly larger than 2

√
μ+, namely, it is larger than the spreading speed for the

solutions of the Cauchy problem with compactly supported initial conditions.
The set of asymptotic speeds c± provided by Theorem 1.3, that is, satisfy-

ing (1.13), can be equivalently expressed by

(1.15) c± = κ± +
μ±
κ±

, κ− ∈ (0,√μ−
]
, κ+ ∈ (0,min(κ−,

√
μ+)
]
.

The admissible pairs (κ−, κ+) in (1.15) are represented by the shaded region in
Figure 1. The expression (1.15) yields an immediate interpretation of the asymp-
totic speeds: μ± reflect the characteristics of the medium as t → ±∞, while κ± are
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(a) μ+ < μ− (b) μ+ ≥ μ−

Fig. 1. The set K of admissible exponential decays.

the exponential decaying rates (as x → +∞) of the asymptotic profiles φc± of the
front as t → ±∞. Thus, when t passes from −∞ to +∞, the rate of decay of the
profile of the fronts in Theorem 1.3 cannot increase. In particular, if μ+ > μ−, then
the range of admissible values for κ+ is smaller than (0,

√
μ+], which is the range of

admissible decaying rates for standard fronts of the limiting problem as t → +∞.
This can be viewed as the real reason why the set of future speeds is smaller than
that of admissible speeds for the limiting problem as t → +∞ in that case.

Based on the formulation (1.15), let us now compare the asymptotic past and
future speeds c± given by Theorem 1.3 with each other. If μ+ > μ−, the decreasing
monotonicity of k �→ k + μ+/k in (0,

√
μ+] yields

(1.16) c+ = κ+ +
μ+

κ+
≥ κ− +

μ+

κ−
> κ− +

μ−
κ−

= c−,

hence the transition fronts always strictly globally accelerate, in the sense that the
asymptotic future speed c+ is strictly larger than the past one c−. If μ+ = μ− = μ
(as, for instance, if f does not depend on t), then c+ = κ++μ/κ+ ≥ κ−+μ/κ− = c−,
hence the transition fronts always globally accelerate in this case. Last, if μ+ < μ−,
then the transition fronts may globally accelerate because c+ can be as large as wanted
for a given c−, but they may also strictly decelerate for any choice of admissible c−:
indeed, for any κ− ∈ (0,

√
μ−], taking κ+ = min(κ−,

√
μ+) we deduce from the fact

that k �→ k + μ−/k attains its minimum at κ =
√
μ− that c+ = κ+ + μ+/κ+ <

κ+ + μ−/κ+ ≤ κ− + μ−/κ− = c−.
As a matter of fact, because of the convergence (1.14) to the limiting fronts φc±

as t → ±∞, the solutions constructed in Theorem 1.3 above satisfy more than (1.12).
Namely, except possibly when μ+ > μ− and the speeds c± satisfy c− = 2

√
μ− and

c+ =
√
μ− + μ+/

√
μ−, the solutions u of Theorem 1.3 are such that

(1.17)

⎧⎪⎪⎨⎪⎪⎩
lim

τ→+∞

(
sup
t≤0

∣∣∣X(t)−X(t− τ)

τ
− c−
∣∣∣) = 0,

lim
τ→+∞

(
sup
t≥0

∣∣∣X(t+ τ)−X(t)

τ
− c+

∣∣∣) = 0;
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see section 2.3 for the proof of this property. The speeds c± are thus truly asymptotic
mean speeds as t → ±∞. In part 1 of Theorem 2.3 of [28], some transition fronts
connecting 0 and 1 were constructed for problem (1.1) under more general assumptions
on f . (In particular, f(t, ·) is not assumed to converge to the profiles f± as t → ±∞
and f(t, u)/u decreasing is relaxed to f(t, u) ≤ ∂uf(t, 0)u for u > 0.) With the
assumptions of the present paper, the transition fronts given in [28] are special cases
of the ones of Theorem 1.3 above, namely, those for which (1.15) holds with κ− =
κ+ ∈ (0,

√
μ). Thus, on the one hand, the assumptions of [28] are more general,

but, on the other hand, the choice of possible asymptotic speeds c± provided in the
present paper is larger than in [28]. In particular, the speed c− can here be as close
as wanted to 2

√
μ− and can even be equal to the critical value 2

√
μ−, whereas the

corresponding c− of [28] is strictly larger than
√
μ+μ−/

√
μ (≥ 2

√
μ−). Furthermore,

once the past speed c− is assigned, the future speed c+ can be here as large as
wanted, whereas, in [28], it is uniquely determined by c− through the formula c+ =

c−+2(μ+−μ−)/(c−−
√
c2− − 4μ−). Let us also remark that, here, the future speed c+

can also be equal to the critical speed 2
√
μ+ for the limiting problem as t → +∞,

provided μ+ ≤ μ− and c− is not too large, whereas, in [28], c+ is always strictly larger
than 2

√
μ+. Actually, one should think about the fronts of [28] as the analogues of

the standard fronts φ(x− ct) for homogeneous equations, because they have constant
exponential decaying rate. These fronts are the keystone we use to construct other
fronts which change their exponential decay in time, at least in the supercritical case
c± > 2

√
μ±. The analysis of the critical cases requires special attention, and the

method used in the present paper to cover these cases is actually completely different
from [28].

The hypothesis f(t, u)/u decreasing is crucial for our method to work. However,
a partial result compared with Theorem 1.3 can be obtained with different arguments
when such hypothesis is replaced by 0 < f(t, u) ≤ ∂uf(t, 0)u for 0 < u < 1. Namely,
using Lemma 2.1 of [44] it is possible to construct fronts with asymptotic speeds c±
satisfying c− >

√
inft ∂uf(t, 0)+μ−/

√
inft ∂uf(t, 0) (which is larger than or equal to

2
√
μ−) and c+ as in (1.13).

1.3. A priori bounds on the asymptotic speeds, and asymptotic
profiles. The second main result is almost the converse of Theorem 1.3: it shows, in
general, the existence of the asymptotic speeds c± and the optimality of the relations
(1.13).

Theorem 1.4. Assume that (1.2) and (1.3) hold, that f− is of class C2 and
concave on [0, 1], and that there exists a continuous function ζ : (−∞, 0) → R such
that

(1.18) ζ ∈ L1(−∞, 0) and sup
s∈(0,1)

∣∣∣f(t, s)
f−(s)

− 1
∣∣∣ ≤ ζ(t)∀ t < 0.

Then, for any transition front u connecting 0 and 1 for problem (1.1), there holds

(1.19)

⎧⎪⎪⎨⎪⎪⎩
2
√
μ− ≤ c− := lim inf

t→−∞
X(t)

t
≤ lim sup

t→−∞
X(t)

t
< +∞,

κ+
μ+

κ
≤ c+ := lim inf

t→+∞
X(t)

t
≤ lim sup

t→+∞
X(t)

t
< +∞,

where κ is as in (1.13). Furthermore, if c− > 2
√
μ−, then the liminf and limsup

in (1.19) are limits, that is, u has asymptotic past and future speeds c± satisfying (1.13).
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Last, if c− > 2
√
μ− and if there exists a continuous function ζ̃ : (0,+∞) → R such

that

(1.20) ζ̃ ∈ L1(0,+∞) and sup
s∈(0,1)

∣∣∣f(t, s)
f+(s)

− 1
∣∣∣ ≤ ζ̃(t)∀ t > 0,

then there exists a bounded function ξ : R → R for which (1.14) holds true.
This result improves Theorem 1.7 of [16], which dealt with homogeneous equa-

tions. Two of the main interests of Theorem 1.4 are to prove the existence of the
asymptotic past and future speeds of any transition front connecting 0 and 1, pro-
vided that lim inf t→−∞ X(t)/t is not critical (that is, larger than 2

√
μ−) on one hand,

and to show the sharpness of the bounds (1.13) for the asymptotic speeds on the
other hand. Thus, even if the family of fronts constructed in the proof of Theo-
rem 1.3 does not exhaust the whole class of transition fronts connecting 0 and 1, it
completely covers the range of possible asymptotic past and future speeds. Therefore,
the observations and the comparisons between the speeds following the statement of
Theorem 1.3 apply to arbitrary transition fronts connecting 0 and 1 for problem (1.1).

When c− := lim inft→−∞ X(t)/t is not critical, Theorem 1.4 excludes in particular
the existence of more complex dynamics for which the set of limiting values of X(t)/t
as t → −∞ and t → +∞ would not be reduced to a singleton. The only open
question is the existence of the asymptotic speeds when lim inft→−∞ X(t)/t = 2

√
μ−.

We conjecture that the asymptotic speeds still exist in this case and that (1.14) holds
without any restrictions on c±.

Remark 1.5. The technical conditions (1.18) and (1.20) used in Theorem 1.4
mean that f(t, u) converges to f±(u) sufficiently fast as t → ±∞. We do not know
whether (1.18) is necessary or not for the first part of Theorem 1.4 to hold, and
(1.18) and (1.20) for the last part. Actually, as far as (1.19) is concerned, assump-
tion (1.18) is only needed for the first inequality in the second line of (1.19). This
inequality is the core of (1.19), since the other inequalities follow from some indepen-
dent spreading results and from some properties related to the definition of transition
fronts. Notice that if, in addition to the hypotheses that f and f± are of class
C1 and satisfy (1.2), (1.3) (which imply f ′

±(0) > 0), one assumes that f ′
±(1) < 0

(which is automatically fulfilled if f− is assumed to be concave), then the functions
ζ± : t �→ supu∈(0,1)

∣∣f(t, u)/f±(u) − 1
∣∣ are continuous in R and the conditions (1.18)

and (1.20) are therefore equivalent to ζ± ∈ L1(R±). This is immediately seen by
noticing that the functions (t, u) �→ f(t, u)/f±(u) are continuously extended at (t, 0)
by ∂uf(t, 0)/f

′
±(0) and at (t, 1) by ∂uf(t, 1)/f

′
±(1). Last, a typical example for which

conditions (1.18) and (1.20) are fulfilled is when f is of the type f(t, u) = μ̃(t) f̃(u)
with limt→±∞ μ̃(t) = μ̃± ∈ (0,+∞) and μ̃− μ̃± ∈ L1(R±).

1.4. The set of admissible asymptotic and global mean speeds. We de-
rive here an immediate corollary of Theorems 1.3 and 1.4 and of formula (1.17). It
is about the characterization of the set of all admissible asymptotic past and future
speeds and global mean speeds of transition fronts connecting 0 and 1 for prob-
lem (1.1).

Corollary 1.6. If (1.2), (1.3), (1.5), (1.18) hold and f− is of class C2 and
concave, transition fronts connecting 0 and 1 and having asymptotic past and future
speeds c± exist if and only if c− and c+ fulfill (1.13), or, equivalently, (1.15). Fur-
thermore, transition fronts connecting 0 and 1 and having a global mean speed γ, in
the sense of (1.10), exist if and only if μ+ ≤ μ− and γ ≥ 2

√
μ−.



ADMISSIBLE SPEEDS OF TRANSITION FRONTS 3351

Proof. The first sentence is an immediate consequence of Theorems 1.3 and 1.4.
Thus, a transition front connecting 0 and 1 with a global mean speed γ exists only
if c± := γ satisfy (1.13), or, equivalently, c± := γ can be written in the form (1.15).
If μ+ > μ−, then c± in (1.15) always satisfy c+ > c−, as already emphasized in (1.16),
and therefore a transition front with a global mean speed cannot exist.

Suppose now that μ+ ≤ μ− and take γ ≥ 2
√
μ−. Let us show that c± := γ can be

written in the form (1.15). The choice of κ− ∈ (0,
√
μ−] is uniquely determined by the

condition c− = γ, i.e., κ−+μ−/κ− = γ. Then, the equation κ++μ+/κ+ = γ admits a
solution κ+ ∈ (0,min(κ−,

√
μ+)] because the function Γ : κ �→ κ+μ+/κ is continuous

on (0,+∞) and satisfies Γ(0+) = +∞, Γ(κ−) = κ− + μ+/κ− ≤ κ− + μ−/κ− = γ
and Γ(

√
μ+) = 2

√
μ+ ≤ 2

√
μ− ≤ γ. It then follows from Theorem 1.3 that there

exists a transition front u connecting 0 and 1 and having asymptotic past and future
speeds both equal to γ. Since μ+ ≤ μ−, we know that the fronts given by Theorem 1.3
satisfy (1.14), which, in turn, yields (1.17), as shown in section 2.4. This implies that,
for the front u, (1.10) holds whenever s and t have the same sign, whereas, in the case
s < 0 < t, one writes∣∣∣∣X(t)−X(s)

t− s
− γ

∣∣∣∣ ≤ |X(t)− γt|
t− s

+
|X(s)− γs|

t− s

and readily sees that both terms in this sum go to 0 as t−s → +∞ becauseX(t)/t → γ
as t → ±∞ by (1.17), and X is locally bounded by (1.9). The proof of Corollary 1.6
is thereby complete.

1.5. A sufficient condition for an entire solution to be a transition front.
Our last main result provides a sufficient condition for an entire solution of (1.1) to
be a transition front.

Theorem 1.7. Assume that f satisfies (1.2), (1.3), (1.18), and (1.20) with f−
concave and in C2([0, 1]). Let 0 < u < 1 be a solution of (1.1) such that

(1.21) ∃ c > 2
√
μ−, max

[−c|t|,c|t|]
u(t, ·) → 0 as t → −∞.

Then the limit

λ := − lim
x→+∞

lnu(0, x)

x

exists and satisfies λ ∈ [0,√μ−
)
, and u is a transition front connecting 0 and 1 if

and only if λ > 0. Furthermore, if λ > 0, then the transition front u admits some
asymptotic past and future speeds c− and c+ given by

(1.22)

⎧⎪⎨⎪⎩
2
√
μ− < c− = sup

{
γ ≥ 0, lim

t→−∞ max
[−γ|t|,γ|t|]

u(t, ·) = 0
}
,

c+ = min(λ,
√
μ+) +

μ+

min(λ,
√
μ+)

,

and (1.14) holds for some bounded function ξ : R → R.
The above result provides a characterization of transition fronts, in the class of

entire solutions 0 < u < 1 satisfying (1.21), in terms of the profile of u at time 0 (or,
equivalently, after shifting times, at another arbitrary time t0; as a matter of fact,
we show in the proof of Theorem 1.7 that lnu(t, x) ∼ −λx as x → +∞ for all t ∈ R

with λ ∈ [0,
√
μ−) independent of t). The hypothesis (1.21) is used to apply some
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results of [12]. This is not such a restrictive assumption in general, because the limit
in (1.21) automatically holds for any 0 ≤ c < 2

√
μ−, as an easy consequence of the

spreading result.

Remark 1.8. In [30], the authors consider the reaction-diffusion (1.1) with x-
dependent KPP-type nonlinearities f(x, u), instead of time-dependent ones f(t, u).
Among other things, they prove the following striking result: if, say, fu(x, 0) :=
∂f
∂u (x, 0) → m ∈ (0,+∞) as x → ±∞ and fu(·, 0)−m is nonnegative and compactly
supported, then transition fronts connecting 0 and 1, in the sense of (1.6), do not exist
if λ > 2m, where λ is the supremum of the spectrum of the operator ∂xx + fu(x, 0).
On the other hand, transition fronts with global mean speed γ exist when 2m >
λ(≥ m) for every speed γ ∈ (2

√
m,λ/

√
λ−m). (The existence for the critical speeds

is unclear.) More general x-dependent equations have been considered in [44], and
more general existence results have been obtained under a similar smallness condition
for a quantity which is similar to λ. The time and space variables obviously play
a different role in equations of type (1.1). But if we wanted to make an analogy
between the transition fronts for x or t-dependent equations, we could make the
following two comparisons. First, transition fronts always exist for our time-dependent
equation (1.1), whereas they do not exist in general for the associated x-dependent
one. Second, under the assumption fu(t, 0) → μ = μ± as t → ±∞ (or, more generally,
when μ+ ≤ μ−) in (1.1), transition fronts with global mean speeds always exist,
whatever the temporal range of the transition between the limiting profiles f± may
be and whatever the amplitude of f(t, ·) for the intermediate times t may be, and the
set of admissible speeds is a closed semi-infinite interval including the critical speed,
whereas transition fronts may not exist in general for the x-dependent equation, and,
even if they exist, the set of admissible global mean speeds c is a bounded interval.

1.6. Time-dependent diffusivity. We conclude this first section by showing
that by changing the time-variable, one can extend Theorems 1.3 and 1.4 to equations
with time-dependent diffusivities. Namely, we consider the equation

(1.23) ut = σ(t)uxx + f(t, u), t ∈ R, x ∈ R,

with σ ∈ C1(R) being bounded from below away from 0. Writing ũ(t, x) = u(τ−1(t), x)

with τ(t) :=
∫ t
0
σ(s)ds leads to the equation

(1.24) ũt = ũxx +
f(τ−1(t), ũ)

σ(τ−1(t))
, t ∈ R, x ∈ R.

We can apply Theorems 1.3 and 1.4 to this equation, provided the nonlinear term
satisfies the hypotheses there, and then derive a characterization of the asymptotic
past and future speeds of transition fronts connecting 0 and 1 for (1.24). Notice
that ũ is a transition front for (1.24) satisfying (1.6) with X = X̃ if and only if
u(t, x) = ũ(τ(t), x) is a transition front for (1.1) with X(t) = X̃(τ(t)). Therefore,
if ũ has past and future speeds equal to c̃±, then u has past and future speeds
equal to

(1.25) c± := lim
t→±∞

X(t)

t
= lim

t→±∞
X̃(τ(t))

τ(t)

τ(t)

t
= c̃± lim

t→±∞
1

t

∫ t

0

σ(s)ds,

provided the latter exist. (Notice that τ(t) → ±∞ as t → ±∞ because inf σ > 0.)
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A situation where these arguments apply is when f satisfies the hypotheses (1.2),
(1.3), (1.5), and (1.18) of Theorems 1.3 and 1.4 and σ ∈ C1(R) is such that

(1.26) σ > 0 in R, σ(t) → σ± > 0 as t → ±∞ and t �→ (σ(t) − σ−) ∈ L1(−∞, 0).

Indeed, the new nonlinear term f̃(t, u)=f(τ−1(t), u)/σ(τ−1(t)) satisfies (1.2) and (1.3)
with f± replaced by f±/σ±, as well as (1.5) with C replaced by C/ inf σ. It also fulfils
the hypothesis (1.18) of Theorem 1.4, since

sup
s∈(0,1)

∣∣∣∣f(τ−1(t), s)

σ(τ−1(t))

σ−
f−(s)

− 1

∣∣∣∣ ≤ σ−
inf σ

ζ(τ−1(t)) +

∣∣∣∣ σ−
σ(τ−1(t))

− 1

∣∣∣∣ ,
and this term belongs to L1(−∞, 0) because ζ does and because∫ 0

−∞

∣∣∣∣ σ−
σ(τ−1(t))

− 1

∣∣∣∣ dt = ∫ 0

−∞
|σ− − σ(z)| dz < ∞.

One can therefore derive the results for (1.23) from the ones for (1.24), noticing that,
in virtue of (1.25), when coming back to the original time-variable, the asymptotic
speeds are multiplied by σ±. For instance, applying Corollary 1.6, we can characterize
the admissible past and future speeds c̃± for (1.24) by

c̃−≥2
√
μ−/σ− and c̃+≥κ+

μ+

κσ+
, where κ = min

⎛⎝√μ+/σ+,
c̃−−
√
c̃2− − 4μ−/σ−

2

⎞⎠,
and thus derive the following.

Corollary 1.9. Assume that f satisfies (1.2), (1.3), (1.5), and (1.18) and that
σ ∈ C1(R) satisfies (1.26). Then transition fronts connecting 0 and 1 for (1.23)
having asymptotic past and future speeds c± exist if and only if

c−≥2
√
σ−μ− and c+≥κ+

σ+μ+

κ
, where κ=min

⎛⎝√σ+μ+,
σ+

σ−
×
c−−
√
c2−−4σ−μ−

2

⎞⎠.
Remark 1.10. Some transition fronts have been constructed in [29] for equations

with coefficients depending in general fashion in t and periodically in x. It is left
as an open question there whether such fronts recover the whole range of admissible
speeds for the equation. Corollary 1.9 above shows that the answer is no in general.
Namely, one can check that under the assumptions of Corollary 1.9, with in addition
f independent of t, the minimal asymptotic speed among all fronts constructed in [29]
(there, the asymptotic speed is understood in terms of the least mean of the speed,
which simply reduces to min(c−, c+) if the front admits asymptotic past and future
speeds c±) is

c∗ =

√
f ′(0)

max(σ−, σ+)
(σ− + σ+).

When σ− ≥ σ+, this quantity coincides with the minimal asymptotic (future) speed
given by Corollary 1.9. On the other hand, if σ− < σ+, then the minimal past



3354 FRANÇOIS HAMEL AND LUCA ROSSI

speed in Corollary 1.9 is 2
√
σ−f ′(0), which is strictly smaller than c∗, and there-

fore the range of admissible speeds provided by Corollary 1.9 is actually larger than
in [29].

Outline of the paper. Section 2 is concerned with the proof of Theorem 1.3.
More precisely, section 2.1 deals with the existence of transition fronts of (1.1) for
noncritical asymptotic speeds c±, while the critical cases are considered in section 2.2.
Section 3 is devoted to the proofs of Theorems 1.4 and 1.7: after recalling in section 3.1
some known useful results on the transition fronts in the homogeneous case, we prove
in section 3.2 the a priori bounds on the asymptotic speeds of any transition front
connecting 0 and 1 for (1.1), as well as the asymptotic behavior of all noncritical
fronts. Last, Theorem 1.7 is proved in section 3.3.

2. Existence of transition fronts: Proof of Theorem 1.3. This section
is dedicated to the proof of Theorem 1.3. In section 2.1, we derive the existence of
transition fronts having supercritical past and future speeds c±, that is, such that c± >
2
√
μ±. Recall that the set of asymptotic past and future speeds c± satisfying (1.13)

can be expressed by (1.15), with (κ−, κ+) belonging to the set

K :=
{
(k1, k2); 0 < k1 ≤ √

μ−, 0 < k2 ≤ min(k1,
√
μ+)
}
;

see Figure 1. Supercritical speeds are the ones for which (κ−, κ+) ∈ K and κ± <
√
μ±.

Actually, the case κ− = κ+ <
√
μ = min(

√
μ−,

√
μ+), that is, the oblique open

segment in Figure 1, has been treated in [28]. In section 2.1 of the present paper,
we will construct a supercritical front associated with any choice of 0 < κ− <

√
μ−

and 0 < κ+ < min(κ−,
√
μ+) using two distinct fronts of [28].

In section 2.2, we deal with the case where at least one between c− and c+ is
critical. We start with c− > 2

√
μ− and c+ = 2

√
μ+. Next, we make use of the

critical front provided by the recent paper [27], which, roughly speaking, has the
slowest admissible past and future speeds. In particular, being slower than any front
with supercritical speed, its past and future speeds c± satisfy the equalities in (1.13),
namely, c− = 2

√
μ− and c+ =

√
μ+ μ+/

√
μ. Finally, using the critical front and the

same method as in section 2.1, we construct fronts such that c− = 2
√
μ− and that c+

satisfies the strict inequality c+ >
√
μ+ μ+/

√
μ in (1.13).

To summarize, the construction of the fronts corresponding to the different por-
tions of the set K in Figure 1 is derived in

• [28] (see also Proposition 2.1 below): the oblique boundary portion;
• Section 2.1: the interior of K;
• Section 2.2.2: the segment (BC] (in the case μ+ < μ−), without the point B;
• Section 2.2.3: the point B;
• Section 2.2.4: the segment (AB).

In section 2.3, we show some exponential lower bounds which are used in the
construction of the transition front with critical asymptotic speeds and which are also
of independent interest. Finally, the slightly stronger properties (1.17) are proved in
section 2.4.

2.1. Interior of K : Supercritical speeds. We will make use of the existence
result of [28, Theorem 2.3 part 1]. That result applies to a general time-dependent
nonlinearity f and is expressed in terms of the least mean of the function μ(t) :=
∂uf(t, 0); see Definition 2.2 in [28]. Under the hypotheses (1.3), (1.4) considered
in the present paper, the least mean of μ coincides with μ = min(μ−, μ+). This



ADMISSIBLE SPEEDS OF TRANSITION FRONTS 3355

is a consequence of the fact that μ(t) → μ± as t → ±∞, which, in turn, follows
immediately from (1.3), after writing

f(t, u)

u
=

f(t, u)

f±(u)
× f±(u)

u
.

Actually, in [28] it is assumed that f(t, u) > 0 for u ∈ (0, 1). However, it is shown
in [32]—where more general coefficients depending also on x are considered—that the
construction in [28] works only requiring that f(·, u) is nonnegative and has positive
least mean for any u ∈ (0, 1). Under the hypothesis (1.3), the least mean of f(·, u) is
equal to min(f−(u), f+(u)), and then it is positive for u ∈ (0, 1). Thus, Theorem 1.3
in [32] yields the following.

Proposition 2.1. Assume that f satisfies (1.2), (1.5), that μ(t) = ∂uf(t, 0)
admits positive limits μ(±∞) as t → ±∞, and that, for every u ∈ (0, 1), the least
mean of f(·, u) is positive. Then, for every κ ∈ (0,√min(μ(−∞), μ(+∞))

)
, there

exists a transition front u connecting 0 and 1 such that

(2.1) X(t) =

∫ t

0

(
κ+

μ(s)

κ

)
ds ∀t ∈ R.

Furthermore, ux(t, x) < 0 for all (t, x) ∈ R× R and

(2.2) u(t, x+X(t)) eκx → 1 as x → +∞, uniformly in t ∈ R.

Remark 2.2. The fronts constructed in [28] still satisfy (2.1), even when (1.3)
does not hold (and μ is bounded). Hence, they admit a global mean speed γ if and
only if

1

t

∫ s+t

s

μ(τ)dτ → (γ − κ)κ as t → ±∞, uniformly in s ∈ R.

In order to admit past and future speeds, it is instead sufficient that the above limits
exist, not necessarily coinciding, for a given s ∈ R (and then for every s ∈ R because
μ is bounded). This shows that in the case of a general time-dependent reaction term,
the asymptotic past and future speeds may or may not exist, and even if they exist
and coincide, this does not imply the existence of a global mean speed.

We now derive the existence result in the supercritical case.

Proposition 2.3. Under the assumptions (1.2), (1.3), and (1.5), for every
(κ−, κ+) ∈ K such that κ± <

√
μ±, (1.1) admits a transition front u connecting 0 and

1 with asymptotic past and future speeds

c± := κ± +
μ±
κ±

.

Furthermore, ux(t, x) < 0 for all (t, x) ∈ R × R, and there exists a bounded function
ξ : R → R such that (1.14) holds true.

Proof. The proof is divided into four steps.
Step 1. Construction of the transition front. Let (κ−, κ+) ∈ K satisfy κ± <

√
μ±.

If κ− = κ+, the front is directly provided by Proposition 2.1. Let us consider the other
case, that is, κ+ < κ−. We introduce the following symmetrization of f : f̃(t, u) :=
f(−|t|, u). The function μ̃(t) := ∂uf̃(t, 0) satisfies μ̃(±∞) = μ−. By Proposition 2.1,
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there exists a transition front u1 for the nonlinearity f̃ such that (1.6) holds with
X = X1 given by

(2.3) X1(t) :=

∫ t

0

(
κ− +

μ̃(s)

κ−

)
ds ∀t ∈ R.

In particular, u1 is a solution of (1.1) for t < 0. Since 0 < κ+ = min(κ−, κ+) <√
min(μ−, μ+), Proposition 2.1 also provides a transition front u2 for the original

equation (1.1), which satisfies (1.6) with X = X2 given by

(2.4) X2(t) :=

∫ t

0

(
κ+ +

μ(s)

κ+

)
ds ∀t ∈ R.

By (2.2), we know that u1 and u2 satisfy

(2.5)
u1(t, x+X1(t))e

κ−x → 1 and u2(t, x+X2(t))e
κ+x→1 as x→+∞, uniformly in t ∈ R.

Let us set

u(t, x) := max(u1(t, x), u2(t, x)) and u(t, x) := min(u1(t, x) + u2(t, x)), 1).

The function u is a generalized subsolution of (1.1) for t < 0. On the other hand,
since by (1.2),

∀ t ∈ R, ∀ 0 < α ≤ β ≤ 1−α, f(t, α+β)≤ f(t, β)

β
(α+β)

=
f(t, β)

β
α+f(t, β)≤f(t, α)+f(t, β),

it follows that u is a generalized supersolution of (1.1) for t < 0. For n ∈ N, let un

denote the (bounded) solution of (1.1) for t > −n with initial datum un(−n, x) =
u(−n, x). The parabolic comparison principle yields u ≤ un ≤ u in (−n, 0)× R, and,
moreover, un ≥ u2 in the whole (−n,+∞)×R. Using interior parabolic estimates, we
see that, up to extraction of a subsequence, the sequence (un)n∈N converges locally
uniformly to an entire solution u of (1.1) satisfying 0 < u ≤ u ≤ u ≤ 1 in (−∞, 0)×R,
as well as u ≥ u2 in R×R. Furthermore, u is nonincreasing in x because this is true
for u, hence for the un by the comparison principle.

We now claim that u is a transition front connecting 0 and 1 for (1.1), such
that (1.6) holds with

(2.6) X(t) =

{
X1(t) if t < 0,

X2(t) if t ≥ 0.

Since μ(±∞) = μ±, as seen at the beginning of the section, (2.6) will then imply that
u has the desired past and future speeds c± = κ± + μ±/κ±. Let us start to check it
for large negative times. The inequalities 0 < κ+ < κ− <

√
μ− yield

lim
t→−∞

X1(t)

t
= κ− +

μ−
κ−

< κ+ +
μ−
κ+

= lim
t→−∞

X2(t)

t
.

Thus, since u2(t, x+X2(t)) → 0 = inf u1 as x → +∞ and u1(t, x+X1(t)) → 1 = supu2

as x → −∞ uniformly in t ∈ R, we infer that

sup
x∈R

∣∣u(t, x)− u1(t, x)
∣∣→ 0 and sup

x∈R

∣∣u(t, x)− u1(t, x)
∣∣→ 0 as t → −∞.
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Hence, u(t, x) − u1(t, x) → 0 as t → −∞ uniformly in x ∈ R, because u ≤ u ≤ u in
(−∞, 0)×R. It follows that, for given ε > 0, there exist Tε < 0 and Rε > 0 such that

(2.7) inf
t<Tε, x<−Rε

u(t, x+X1(t)) > 1− ε and sup
t<Tε, x>Rε

u(t, x+X1(t)) < ε.

We now focus on positive times. Using (2.5) with 0 < κ+ < κ− and the limit
u2(t, x + X2(t)) → 1 as x → −∞, we deduce the existence of Mε ≥ 1 such that
Mεu2(Tε, x) ≥ u1(Tε, x) for all x ∈ R. Consequently,

∀x ∈ R, u(Tε, x) ≤ u(Tε, x) ≤ min
(
(Mε + 1)u2(Tε, x), 1

)
.

As for u, the function min((M +1)u2, 1) is a generalized supersolution of (1.1) by the
last hypothesis in (1.2). Hence, by comparison,

(2.8) ∀ t ∈ [Tε,+∞), ∀x ∈ R, u2(t, x) ≤ u(t, x) ≤ min
(
(Mε + 1)u2(t, x), 1

)
.

Since u2 satisfies (1.6) with X = X2, we find a constant R′
ε > 0 such that

inf
t≥Tε, x<−R′

ε

u(t, x+X2(t)) > 1− ε, sup
t≥Tε, x>R′

ε

u(t, x+X2(t)) < ε.

This and (2.7) prove the claim, because X1 and X2 are locally bounded.
Step 2. ux < 0 in R × R. We know that ux(t, x) ≤ 0 for all (t, x) ∈ R × R.

Differentiating (1.1) with respect to x, we find that the function ux is an entire solution
of a linear parabolic equation. Being nonpositive, the parabolic strong maximum
principle implies that it is either strictly negative, or identically equal to 0. The latter
case is ruled out because, as a transition front connecting 0 and 1, u is such that
u(t,−∞) = 1, u(t,+∞) = 0 for every t ∈ R.

Step 3. Convergence to a standard front as t → +∞. We finally need to show
that there exists a bounded function ξ such that (1.14) holds when t → ±∞, where
u, X , and c± are defined in Step 1. The function ξ is chosen in such a way that
u(t,X(t)+ ξ(t)) = 1/2 for t ∈ R. Notice that ξ is bounded by (1.6). Let us first prove
here the convergence (1.14) as t → +∞. To do so, consider an arbitrary sequence
(tn)n∈N in R diverging to +∞. As n → +∞, the functions u(t+ tn, x+X(tn)+ ξ(tn))
converge (up to subsequences) locally uniformly in (t, x) ∈ R × R to a solution 0 ≤
ũ ≤ 1 of (1.1) with f replaced by f+, satisfying ũ(0, 0) = 1/2 and ũx ≤ 0 in R× R.

We now derive the exponential decay of ũ. By (2.5) and (2.8), the profile of u
decays as x → +∞ with exponential rate κ+, in the sense that there are R > 0 and
M > 1 such that

(2.9) ∀ t ≥ 0, ∀x > R, M−1 ≤ u(t, x+X2(t)) e
κ+x ≤ M.

For fixed (t, x) ∈ R× R, we want to estimate

ũ(t, x+ c+t) = lim
n→+∞u(t+ tn, x+ c+t+X(tn) + ξ(tn)).

We know that X(tn) = X2(tn) for n large enough and, by (2.4) and c+ = κ++μ+/κ+,
c+t+X2(tn)−X2(t+ tn) → 0 as n → ∞. As a consequence, if x > R+ ‖ξ‖L∞(R), we
can apply (2.9) and deduce

(2.10) M̃−1 ≤ ũ(t, x+ c+t) e
κ+x ≤ M̃
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with M̃ = M eκ+‖ξ‖L∞(R) . Let φc+(x − c+t) be the standard traveling front for the
nonlinearity f+, connecting 0 and 1 and moving with speed c+ = κ++μ+/κ+ > 2

√
μ+,

normalized by φc+(0) = 1/2. We know from [2] that φc+ has the same exponential
decay κ+ as ũ, in the sense that there exists A ≥ 1 such that A−1 ≤ φc+(y) e

κ+y ≤
A for all y ≥ 0. It then follows from Proposition 4.3 in [28] that there is a ≥ 0
such that

∀ (t, x) ∈ R× R, φc+(x− c+t+ a) ≤ ũ(t, x) ≤ φc+(x− c+t− a).

This allows us to apply a Liouville-type result from [4, Theorem 3.5] (see also
Lemma 8.2 of [14], adapted here to the homogeneous case) and infer the existence of
b ∈ R such that ũ(t, x) = φc+(x − c+t − b) for all (t, x) ∈ R × R. Since ũ(0, 0) =
1/2 = φc+(0) and φc+ is strictly decreasing, we derive b = 0. We have shown in
particular that (up to subsequences) u(tn, x +X(tn) + ξ(tn)) → φc+(x) as n → +∞
locally uniformly in x ∈ R. Since the limit φc+(x) does not depend on the particular
sequence (tn)n∈N diverging to +∞, we deduce that u(t, x + X(t) + ξ(t)) → φc+(x)
as t → +∞ locally uniformly in x ∈ R. The convergence actually holds uniformly in
x ∈ R—hence in C2(R) by parabolic estimates—because 0 < u(t, x) < 1 is decreasing
with respect to x ∈ R for any t ∈ R and φc+(−∞) = 1, φc+(+∞) = 0.

Step 4. Convergence to a standard front as t → −∞. Consider here a sequence
(tn)n∈N diverging to −∞ and let ũ be as in Step 3. In order to apply the previous
arguments to show that ũ coincides with the standard traveling front φc−(x − c−t)
for the nonlinearity f−, normalized by φc−(0) = 1/2, and thus to conclude the proof,

it is sufficient to check that there exists M̃ ≥ 1 such that, for x large enough, (2.10)
holds with c+ and κ+ replaced by c− and κ−. Since u(t, x)−u1(t, x) → 0 as t → −∞
uniformly in x ∈ R and X = X1 on R−, for fixed (t, x) ∈ R× R we see that

ũ(t, x+ c−t) eκ−x = lim
n→+∞u(t+ tn, x+ c−t+X(tn) + ξ(tn)) e

κ−x

= lim
n→+∞u1(t+ tn, x+ c−t+X1(tn) + ξ(tn)) e

κ−x.
(2.11)

Now, we know, the one hand, that c−t+X1(tn)−X1(t+ tn) → 0 as n → +∞ by (2.3)
and c− = κ− + μ−/κ−, and, on the other hand, that there exists R′ > 0 such that

∀ t ∈ R, ∀n ∈ N, ∀ y > R′,
1

2
≤ u1(t+ tn, y +X1(t+ tn))e

κ−y ≤ 2.

As a consequence, for every t ∈ R and x > R′ + ‖ξ‖L∞(R), (2.11) yields

e−κ−‖ξ‖L∞(R)

2
≤ ũ(t, x+ c−t) eκ−x ≤ 2 eκ−‖ξ‖L∞(R) ,

that is, (2.10) holds with c+ and κ+ replaced by c− and κ−. The proof of Proposi-
tion 2.3 is thereby complete.

2.2. Critical asymptotic past or future speeds. In this subsection, we con-
struct transition fronts connecting 0 and 1 with either critical past speed c− or critical
future speed c+, that is, c− = 2

√
μ− or c+ = 2

√
μ+. This will conclude the proof of

Theorem 1.3.

Until the end of section 2.2, we assume that f satisfies (1.2), (1.3), and (1.5).
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2.2.1. A lower bound on the asymptotic past and future speeds. We
first derive an easy consequence of the spreading result of [2].

Proposition 2.4. Any transition front u connecting 0 and 1 for (1.1) satisfies

lim inf
t→±∞

X(t)

t
≥ 2

√
μ±.

In particular, if u has some asymptotic past or future speeds c±, then c± ≥ 2
√
μ±.

Proof. By hypothesis (1.3), for any ε ∈ (0, 1/2), there is Tε ∈ R such that
f(t, u) ≥ (1 − ε)f+(u) for all t > Tε and u ∈ (0, 1). Let u be a transition front
connecting 0 and 1 for (1.1). Hence, u is a supersolution of the problem

(2.12) wt = wxx + (1− ε)f+(w)

for t > Tε, x ∈ R. It then follows from [2] that

u(t, 2
√
(1− 2ε)μ+ t) → 1 as t → +∞,

hence, by (1.6), lim inft→+∞
(
X(t)− 2

√
(1 − 2ε)μ+ t

)
> −∞. The desired inequality

lim inft→+∞ X(t)/t ≥ 2
√
μ+ then follows from the arbitrariness of ε ∈ (0, 1/2).

The case t → −∞ is similar: take ε ∈ (0, 1/2) and let Tε ∈ R be such that u is a
supersolution of the problem

(2.13) wt = wxx + (1− ε)f−(w)

for t < Tε, x ∈ R. By (1.6), there exists a continuous function v0 : R → [0, 1] which is
not identically equal to 0 and satisfies u(t,X(t) + x) ≥ v0(x) for all t ∈ R and x ∈ R.
Let v be the solution of vt = vxx+(1−ε)f−(v), t > 0, x ∈ R, emerging from the initial
datum v0. By [2], we know that v(t, 2

√
(1− 2ε)μ− t) → 1 as t → +∞. Therefore,

one infers by comparison that, for any s < Tε,

1 ≥ u
(
Tε, X(s) + 2

√
(1 − 2ε)μ−(Tε − s)

)
≥ v
(
Tε − s, 2

√
(1− 2ε)μ−(Tε − s)

)→ 1 as s → −∞.

It follows then from (1.6) that lim sups→−∞
(
X(s) + 2

√
(1 − 2ε)μ−(Tε − s)

)
< +∞, which concludes the proof of the proposition due to the arbitrariness of
ε ∈ (0, 1/2).

2.2.2. Segment (BC): Supercritical past speed and critical future speed.
We now construct fronts with asymptotic speeds c± satisfying (1.15) with the restric-
tions

κ− <
√
μ− and κ+ =

√
μ+.

Since
√
μ+ = κ+ ≤ κ−, this case is allowed only if μ+ < μ−. We know from

Proposition 2.1 that, for κ ∈ (0,
√
μ+), there is a transition front uκ connecting 0 and

1 satisfying (1.6) with

X(t) = Xκ(t) :=

∫ t

0

(
κ+

μ(s)

κ

)
ds ∀t ∈ R,

and such that uκ is decreasing with respect to x. We need some additional prop-
erties of the transition fronts (uκ)0<κ<

√
μ+ , which are derived in their construction
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in the proof of Theorem 2.3 part 1 of [28] or Theorem 1.3 of [32]. Let us recall the
construction. For κ ∈ (0,

√
μ+), set

(2.14) Uκ(x) := min(e−κx, 1).

For n ∈ N, let un
κ be the bounded solution of (1.1) for t > −n, emerging from

un
κ(−n, x) = Uκ(x− xn), where xn :=

∫ −n

0

(
κ+

μ(s)

κ

)
ds.

Then uκ is the locally uniform limit of (a subsequence of) (un
κ)n∈N.

We claim that, performing the same construction, but taking κ = κ− ∈ [
√
μ+,√

μ−), one obtains a transition front with the desired asymptotic past and future
speeds c±. Call u := uκ− the function constructed in such a way. The exponential
decay κ = κ− is admissible in the construction of [28, 32] if one replaces the nonlin-
earity f with f̃(t, s) := f(−|t|, s). For t < 0, f̃ = f , and therefore u coincides with a
transition front connecting 0 and 1 for the nonlinearity f̃ , and it satisfies (1.6) with
X such that X ′(t) = κ− + μ(t)/κ− for t < 0. This implies that u satisfies (1.6) for
t < 0 with X such that X(t)/t → κ− + μ−/κ− as t → −∞. In particular, u has an
asymptotic past speed equal to κ− + μ−/κ− = c−.

In order to investigate the properties of u for positive times, consider the family
(Uκ)0<κ<

√
μ+ defined in (2.14). Fix κ ∈ (0,

√
μ+) and, for ρ ∈ R, call Uρ

κ the translated
of Uκ by ρ, that is, Uρ

κ(x) := Uκ(x+ρ). Since 0 < κ <
√
μ+ = κ+ ≤ κ−, any translated

Uρ
κ is less steep than Uκ−(x) := min(e−κ−x, 1), in the sense that there is ζρ ∈ R such

that

Uκ− ≥ Uρ
κ in (−∞, ζρ] and Uκ− < Uρ

κ in (ζρ,+∞).

Thus, the classical result about the number of zeros of solutions of linear parabolic
equations (see [1] and also [8, 7, 20]) implies that, for any ρ and t ∈ R, there exists
ζρt ∈ R ∪ {±∞} for which

(2.15) u(t, x) ≥ uκ(t, x+ ρ) if x ≤ ζρt and u(t, x) ≤ uκ(t, x+ ρ) if x ≥ ζρt .

This readily implies that, for any t ∈ R and 0 < a < b < 1, the diameter of the
transition zone {x ∈ R; a ≤ u(x, t) ≤ b} cannot be bigger than that of {x ∈ R; a ≤
uκ(x, t) ≤ b}. Thus, since transition fronts are characterized by the uniform bound-
edness in time of transition zones, and 0 < u < 1 by the strong maximum principle,
we deduce that u is a transition front for (1.1), as uκ is. Namely, (1.6) holds for some
function X : R → R. Moreover, the second inequality in (2.15) implies that we can
choose a large negative ρ in such a way that

u(0, x) ≤ uκ(0, x+ ρ) ∀x ≥ 0.

On the other hand, uκ(0, x + ρ) ≥ uκ(0, ρ) > 0 for x ≤ 0 since uκ is decreasing with
respect to x. As a consequence, there exists M ≥ 1 such that u(0, x) ≤ Muκ(0, x+ρ)
for all x ∈ R. Hence, by comparison,

u(t, x) ≤ min(Muκ(t, x+ ρ), 1) ∀(t, x) ∈ R+ × R,

because min(Muκ, 1) is a generalized supersolution of (1.1) by the last hypothesis
in (1.2). Therefore, from the fact that uκ admits future speed equal to κ+μ+/κ, one
easily gets that the function X for which u satisfies (1.6) verifies

(2.16) lim sup
t→+∞

X(t)

t
≤ κ+

μ+

κ
.
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Since this holds for all κ ∈ (0,
√
μ+), we derive lim supt→+∞ X(t)/t ≤ 2

√
μ+. Owing

to Proposition 2.4, we eventually infer that u has a future speed equal to
c+ = 2

√
μ+.

It remains to show that u satisfies ux(t, x) < 0 for all (t, x) ∈ R × R, as well
as (1.14) for some bounded function ξ. Consider again the family of supercritical
fronts (uκ)0<κ<

√
μ+ given by Proposition 2.1. These are the same fronts provided by

Proposition 2.3 in the cases where κ− = κ+, and therefore they satisfy the same type
of properties we want to derive for u. The fact that u satisfies everywhere ux < 0
then follows immediately from (2.15). Indeed, for a given (t, x) ∈ R×R, let ρ ∈ R be
such that u(t, x) = uκ(t, ρ). Then ux(t, x) > (uκ)x(t, ρ) would violate (2.15), hence
ux(t, x) ≤ (uκ)x(t, ρ) < 0.

The convergence in (1.14) as t → −∞ is a consequence of Proposition 2.3. Indeed,
u coincides for t < 0 with the supercritical front for the nonlinearity f̃ with past and
future speeds both equal to c− = κ−+μ−/κ− given by Proposition 2.1 or, equivalently,
by Proposition 2.3, and such a front satisfies the desired convergence as t → −∞ by
the last statement of Proposition 2.3.

We now deal with the convergence as t → +∞. Let X be such that u satis-
fies (1.6). Up to perturbing X by adding a bounded function, we can assume without
loss of generality that u(t,X(t)) = 1/2 for all t ∈ R. For given (tn)n∈N diverging
to +∞, the functions (u(· + tn, · + X(tn)))n∈N converge (up to subsequences) lo-
cally uniformly to a solution ũ of the limit equation with nonlinearity f+. Moreover,
ũ(0, 0) = 1/2. Let (Xκ)0<κ<

√
μ+ be the family of functions for which the transition

fronts (uκ)0<κ<
√
μ+ satisfy (1.6), together with uκ(t,Xκ(t)) = 1/2 for all t ∈ R. (The

real numbers Xκ(t) are then uniquely defined, since the functions uκ are continuously
decreasing in x.) We know by Proposition 2.3 that there exists a family of bounded
functions (ξκ)0<κ<

√
μ+ such that

(2.17) ∀κ ∈ (0,
√
μ+), uκ(t,Xk(t) + ξκ(t) + ·) → φcκ in C2(R) as t → +∞,

where cκ = κ+ μ+/κ and φcκ(x − cκt) is a standard traveling front for the equation
with nonlinearity f+. Fix any given κ ∈ (0,

√
μ+). By adding a constant to ξκ

if need be, we can reduce without loss of generality to the case where φcκ satisfies
φcκ(0) = 1/2. We then have

1

2
= lim

t→+∞uκ(t,Xk(t)) = lim
t→+∞φcκ(−ξκ(t)),

hence ξκ(+∞) = 0 by the strict monotonicity of φcκ. It then follows from the uniform
continuity of the uκ and their space derivatives up to order 2 that (2.17) holds with
ξκ ≡ 0. Now, for any ε > 0, we have u(t,X(t) + ε) < 1/2 = uκ(t,Xκ(t)) for all t ∈ R

and thus, owing to (2.15),

∀ t ∈ R, ∀x ≥ 0, u(t, x+X(t) + ε) ≤ uκ(t, x+Xκ(t)).

The arbitrariness of ε > 0 implies that u(t, x+X(t)) ≤ uκ(t, x +Xκ(t)) for all t ∈ R

and x ≥ 0. The reverse inequality for x ≤ 0 is obtained in analogous way. Using
these inequalities at t = tn and letting n → +∞, we eventually derive by (2.17) (with
ξκ ≡ 0)

∀κ ∈ (0,
√
μ+), ũ(x, 0) ≥ φcκ(x) for x ≤ 0 and ũ(x, 0) ≤ φcκ(x) for x ≥ 0.
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On the other hand, as κ → √
μ+, the standard traveling fronts φcκ converge uniformly

in R to the (unique) critical traveling front φ2
√
μ+ for the nonlinearity f+, normalized

by φ2
√
μ+

(0) = 1/2. We infer that

(2.18) ũ(x, 0) ≥ φ2
√
μ+

(x) for x ≤ 0, ũ(x, 0) ≤ φ2
√
μ+

(x) for x ≥ 0.

This means that ũ is steeper than φ2
√
μ+ at time 0. But it is known that φ2

√
μ+(x−

2
√
μ+t) is the steepest entire solution of the equation with nonlinearity f+. Indeed, it

is the limit of the solutions vn(t, x) of the corresponding Cauchy problems emerging
from vn(−n, ·) = �(−∞,xn) at time −n for some sequence (xn)n∈N, where �(−∞,xn) de-
notes the characteristic function of the interval (−∞, xn), and the Heaviside function
is steeper than any function ranging in [0, 1] (see, e.g., [16, 19, 27]). Therefore, the
reverse inequalities of (2.18) hold true as well, because ũ(0, 0) = 1/2 = φ2

√
μ+

(0). We
have eventually shown that, up to subsequences, u(tn, X(tn)+·) converges locally uni-
formly to φ2

√
μ+ as n → +∞. Since this holds for any sequence (tn)n∈N diverging to

+∞, we deduce that u(t, ·+X(t)) → φ2
√
μ+

as t → +∞ locally uniformly in x ∈ R.

The convergence actually holds uniformly in x ∈ R—hence in C2(R) by parabolic
estimates—because 0 < u(t, ·) < 1 is decreasing for any t ∈ R and φ2

√
μ+

(−∞) = 1,
φ2

√
μ+(+∞) = 0. This concludes the proof of Theorem 1.3 in this case.

2.2.3. Point B: Minimal past and future speeds. We deal with the case
κ− =

√
μ− and κ+ = min(

√
μ−,

√
μ+) =

√
μ , that is, asymptotic speeds c± given by

(2.19) c− = 2
√
μ− and c+ =

⎧⎨⎩2
√
μ+ if μ− ≥ μ+,√
μ− +

μ+√
μ−

otherwise.

To this aim, we make use of the “critical” transition front u connecting 0 and 1
for (1.1), which can be constructed as in [27]. Namely, there is a sequence (xn)n∈N in R

such that the solutions un of (1.1) for t > −n and emerging from un(−n, ·) = �(−∞,xn)

at time −n converge locally uniformly in R × R, up to extraction of a subsequence,
to an entire solution 0 < u < 1 of (1.1) such that u(0, 0) = 1/2 and u is decreasing
in x. Furthermore, since the Heaviside function is steeper than any function ranging
in [0, 1], it follows from [1] that u is critical in the following sense: if 0 < v < 1 is
any solution of (1.1) coinciding with u at some (t0, x0) ∈ R×R, then either v ≡ u in
R × R, or u(t0, x) > v(t0, x) for x < x0 and u(t0, x) < v(t0, x) for x > x0. In other
words, u is steeper than any entire solution 0 < v < 1 of (1.1). Taking as v a suitable
translation of one of the transition fronts (uκ)0<κ<√μ connecting 0 and 1 for (1.1)

provided by Proposition 2.1, we conclude, as in (2.15), that u is a transition front
connecting 0 and 1.

From this, one claims that, if X is a function for which the critical front u sat-
isfies (1.6), and v is transition front connecting 0 and 1 with asymptotic past and
future speeds c̃±, then

(2.20) lim sup
t→±∞

X(t)

t
≤ c̃±.

More precisely, the inequality lim supt→+∞ X(t)/t ≤ c̃+ can be established as in (2.16).
On the other hand, if we assume by contradiction that lim supt→−∞ X(t)/t > c̃− and

if X̃ : R → R denotes a function for which (1.6) holds for the transition front v, then
there is a sequence (tn)n∈N in R diverging to −∞ and such that X(tn)−X̃(tn) → −∞
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as n → +∞. Let ρ > 0 be any positive real number. It follows then from (1.7) for
X and (1.6) for X̃ that u(tn, X(tn)) < v(tn, X(tn) + ρ) for n large enough, hence
u(tn, x) < v(tn, x + ρ) for all x ≥ X(tn) by the criticality of u. Since u < 1 in
R × R and since infx≤X(tn) v(tn, x + ρ) → 1 as n → +∞ by (1.6) for X̃, one infers
that u(tn, ·) ≤ 2v(tn, · + ρ) in R for all n large enough. Hence, for n large enough,
u(t, x) ≤ min

(
2v(t, x + ρ), 1

)
for all t ≥ tn and x ∈ R by the maximum principle,

since min
(
2v(t, x+ρ), 1

)
is a generalized supersolution of (1.1) by the last hypothesis

in (1.2). By letting n → +∞, one concludes in particular that 0 < u(0, 0) ≤ 2v(0, ρ)
and the limit ρ → +∞ leads to a contradiction, since v(0,+∞) = 0.

As a consequence of (2.20), by considering all fronts v given by Proposition 2.3,
one derives

lim sup
t→±∞

X(t)

t
≤ c±

with c± given by (2.19). Proposition 2.4 therefore implies that u has the desired
asymptotic past speed c− = 2

√
μ−, as well as the desired asymptotic future speed

c+ = 2
√
μ+ in the case μ− ≥ μ+.

Suppose now that μ− < μ+. In this case, the future speed of u will not coincide
with the critical speed 2

√
μ+ for the limiting problem as t → +∞, and thus the

spreading property given by Proposition 2.4 does not allow us to conclude. In order
to show that u has the desired future speed in this case, we make use of the following
lower bound on the exponential decay of the transition front u:

(2.21) ∀ t ∈ R, ∀λ >
√
μ−, inf

x>0
eλxu(t, x) > 0.

We postpone the proof of this estimate until the next subsection (see Corollary 2.9
below) and complete the proof of the limit

X(t)

t
→ c+ =

√
μ− +

μ+√
μ−

as t → +∞.

By hypothesis (1.3), for ε ∈ (0, 1), there exists Tε ∈ R such that f(t, s) ≥ (1− ε)f+(s)
for all t > Tε and s ∈ (0, 1). For any given κ ∈ (0,

√
(1− ε)μ+), the homogeneous

problem (2.12) admits a standard traveling front φκ,ε(x − cκ,εt) connecting 0 and 1
with speed

cκ,ε = κ+
(1 − ε)μ+

κ
.

The function φκ,ε(x − cκ,εt) is thus a subsolution to (1.1) for t > Tε, x ∈ R. It is
also well known [2, 42] that φκ,ε decays like e−κx as x → +∞. Consequently, for all

choices of ε ∈ (0, 1) and κ satisfying
√
μ− < κ <

√
(1 − ε)μ+, we deduce from (2.21)

that u(Tε, x) > φκ,ε(x) for x larger than some xκ,ε. Hence, since infx≤xκ,ε u(Tε, x) > 0
by (1.6) and the continuity and positivity of u, there exists δκ,ε ∈ (0, 1) such that
u(Tε, ·) > δκ,εφκ,ε in R. Notice that δκ,εφκ,ε(x − cκ,εt) is also a subsolution to (1.1)
for t > Tε and x ∈ R, by the last hypothesis in (1.2). The parabolic comparison
principle then yields u(t, x) ≥ δκ,εφκ,ε(x− cκ,ε(t−Tε)) for all t > Tε and x ∈ R. This
eventually implies

(2.22) lim inf
t→+∞

X(t)

t
≥ cκ,ε = κ+

(1− ε)μ+

κ
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for all 0 < ε < 1 and κ satisfying
√
μ− < κ <

√
(1− ε)μ+, from which the desired

result follows by letting κ → √
μ− and then ε → 0.

The convergence to the profile of the critical standard front for the homogeneous
nonlinearities f− as t → −∞ follows from the criticality property, analogously to the
convergence as t → +∞ in the case of critical future speed treated above. The same
situation holds for the convergence as t → +∞ in the case μ+ ≤ μ+. As mentioned
after the statement of Theorem 1.3, in the case μ+ > μ− we derive the following
weaker result.

Proposition 2.5. In addition to the hypotheses of Theorem 1.3, assume that f+
is C2 and concave and that μ+ > μ−. Then there exists a sequence (tn)n∈N diverging
to +∞ and a bounded function ξ : R → R such that the critical transition front u with
asymptotic speeds c− = 2

√
μ− and c+ =

√
μ− + μ+√

μ−
given by Theorem 1.3 satisfies

u(tn, X(tn) + ξ(tn) + ·) → φc+ in C2(R) as n → +∞.

Proof. We keep the same notation as above. Property (1.9) implies that the
linear interpolation of the function Z � z �→ X(z) is Lipschitz-continuous and that
the difference between such function and X is bounded on R. Hence, it is not re-
strictive to assume that u satisfies (1.6) with X Lipschitz-continuous. It then makes
sense to consider the a.e. defined derivative of X , which can be interpreted as an
instantaneous speed of u. We will apply to the function X ′ a result quoted from [29]
concerning its upper mean. We recall that the upper mean of a function g ∈ L∞(R) is
defined by

�g� := lim
t→+∞ sup

τ∈R

1

t

∫ τ+t

τ

g(s)ds.

In order to focus on positive times, we actually define

c(t) :=

{
X ′(t) for a.e. t > 0,

0 for t ≤ 0.

Applying Proposition 4.4 of [29] to the function t �→ −c(−t), we infer the existence of
a sequence (tn)n∈N such that c(tn + ·) converges as n → +∞, in the L∞(R) weak-�
topology, to some function c̃ ∈ L∞(R) such that

1

t

∫ t

0

c̃(s)ds → �c� as t → −∞.

Since

�c� ≥ lim
t→+∞

1

t

∫ t

0

c(s)ds = lim
t→+∞

X(t)−X(0)

t
= c+ > 0,

the sequence (tn)n∈N necessarily diverges to +∞ as n → +∞. As n → +∞, (a
subsequence of) u(tn+ ·, X(tn)+ ·) converges locally uniformly in R×R to a solution
0 ≤ ũ ≤ 1 of the limiting equation with nonlinearity f+. We claim that ũ is a
transition front connecting 0 and 1 for that equation, satisfying (1.6) with

X̃(t) =

∫ t

0

c̃(s)ds.
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Indeed, for any given ε ∈ (0, 1), let M ≥ 0 be such that u(τ,X(τ) + x) ≥ 1− ε (resp.,
u(τ,X(τ) + x) ≤ ε) for all t ∈ R and x ≤ −M (resp., x ≥ M). Now, for any t ∈ R

and x ≤ −M ,

ũ(t, X̃(t) + x) = lim
n→+∞u

(
tn + t,X(tn) +

∫ t

0

c̃(s)ds+ x

)
= lim

n→+∞u
(
tn + t,X(tn) +

∫ t

0

c(tn+s)ds+ x
)
.

But, for n large enough, one has X(tn) +
∫ t
0 c(tn + s)ds = X(tn + t) since tn → +∞,

hence u(tn + t,X(tn) +
∫ t
0 c(tn + s)ds + x) = u(tn + t,X(tn + t) + x) ≥ 1 − ε for

n large enough. Therefore, ũ(t, X̃(t) + x) ≥ 1 − ε. Similarly, one can prove that
ũ(t, X̃(t) + x) ≤ ε for all t ∈ R and x ≥ M .

As a consequence, the transition front ũ admits an asymptotic past speed equal to
limt→−∞ X̃(t)/t = �c� with �c� ≥ c+ =

√
μ− + μ+/

√
μ− > 2

√
μ+. (Remember that

0 < μ− < μ+ here.) We then know from Theorem 1.7 of [16] that the transition front
ũ also admits an asymptotic future speed c̃+ = limt→+∞ X̃(t)/t which is larger than
or equal to the past speed, namely, c̃+ ≥ �c�. The reverse inequality is a consequence
of the definition of upper mean, and therefore ũ has past and future speeds both equal
to �c�. It follows then from Remark 4.1 of [16] that ũ is a standard traveling front of
the type ũ(t, x) = φ�c(x−�c�t) for the limiting equation with nonlinearity f+. Since
φ�c(−∞) = 1, φ�c(+∞) = 0 and 0 < u < 1 is decreasing in x, the (subsequence of)
u(tn, X(tn) + ξ(tn) + ·) actually converges to φ�c uniformly in R and then in C2(R)
by parabolic estimates.

It then only remains to show that �c� = c+, i.e., that �c� ≤ c+. Consider the
same family (uκ)0<κ<

√
μ− as in Proposition 2.1. For κ ∈ (0,

√
μ−), call

Xκ(t) :=

∫ t

0

(
κ+

μ(s)

κ

)
ds ∀t ∈ R,

and let ξκ be a bounded function such that uκ(t,Xκ(t) + ξκ(t)) = 1/2 for all t ∈ R.
It follows from the monotonicity in x of uκ that uκ(t,Xκ(t) + ξκ(t) + x) ≥ 1/2 for all
(t, x) ∈ R × R−. Moreover, letting L ∈ R be such that u(t,X(t) + L) < 1/2 for all
t ∈ R, the steepness property of the critical front u yields uκ(t,Xκ(t) + ξκ(t) + x) ≥
u(t,X(t) + L+ x) for all (t, x) ∈ R× R+. Hence,

2uκ(τ,Xκ(τ) + ξκ(τ) + x) ≥ u(τ,X(τ) + L+ x) ∀τ ∈ R, x ∈ R.

The comparison principle then yields

2uκ(τ + t,Xκ(τ) + ξκ(τ) + x) ≥ u(τ + t,X(τ) + L+ x) ∀τ ∈ R, (t, x) ∈ R+ × R.

From this inequality and the fact that uκ and u fulfil (1.6)-(1.7) with Xκ and X ,
respectively, one readily deduces the existence of a positive constant C such that

X(τ + t)−X(τ)≤Xκ(τ + t)−Xκ(τ)+C=

∫ τ+t

τ

(
κ+

μ(s)

κ

)
ds+C ∀τ ∈ R, t ∈ R+.

As a consequence, recalling that c = 0 on R−, we derive �c� ≤ κ+ μ+/κ, from which
�c� ≤ c+ follows by letting κ ↗ √

μ−.
Remark 2.6. From Proposition 2.5, and under the same assumptions, we deduce

that the profile of the critical transition front un for the translation of the equation
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(1.1) by tn, that is, with f(t, ·) replaced by f(t+ tn, ·), does not approach as n → +∞
the profile φ = φ2

√
μ+ of the critical traveling front φ(x−2

√
μ+t) for the limit equation

with reaction term f+. More precisely, if (ξn)n∈N is such that un(0, ξn) = φ(0), then

∀x < 0 (resp., > 0), lim
n→+∞ un(0, x+ ξn) < φ(x) (resp., > φ(x)).

This property is readily obtained by noticing that, owing to the criticality property,
un(t, x) = u(t+ tn, x+ ξ′n) for some ξ′n ∈ R and all (t, x) ∈ R

2, hence

lim
n→+∞ un(0, x+ ξn) = φc+(x + φ−1

c+ (φ(0))),

and we know that φc+ is “less steep” than φ = φ2
√
μ+ since c+ > 2

√
μ+.

2.2.4. Segment (AB): Critical past speed and nonminimal future
speed. It remains to consider the case κ− =

√
μ− and 0 < κ+ < min(

√
μ−,

√
μ+),

that is,

c− = 2
√
μ− and c+ = κ+ +

μ+

κ+
with 0 < κ+ <

√
μ.

We define the front u as in the proof of Proposition 2.3, taking as u1 the front with
minimal past and future speeds of the previous case and as u2 the front given by
Proposition 2.1 with κ = κ+. Notice that u1 has strictly slower asymptotic past and
future speeds than u2. Moreover, by the criticality property, u1(0, x) ≤ u2(0, x) for
x larger than some x0, hence there is M ≥ 1 such that u1(0, x) ≤ Mu2(x, 0) for all
x ∈ R. These are the properties that allow one to apply the arguments of the first
step in the proof of Proposition 2.3 and to conclude that u has the desired past and
future speeds.

Property (1.14) is also a consequence of the arguments in the proof of Proposi-
tion 2.3. More precisely, we have seen there that |u(t, x) − u1(t, x)| → 0 as t → −∞
uniformly in x ∈ R, and thus the convergence as t → −∞ in (1.14) follows because we
know from the previous case that it is satisfied by u1. The convergence as t → +∞
is proved in Step 3 of the proof of Proposition 2.3.

2.3. Exponential behavior of supersolutions. In this subsection, we derive
a sharp lower bound on the exponential decay of supersolutions of homogeneous equa-
tions, in the spirit of Lemma 3.1 in [32]. Let us mention that the arguments can be
extended to higher dimensional cases.

Theorem 2.7. Let u be a nonnegative classical supersolution of

ut = uxx + g(u), t ≤ 0, x ∈ R,

with g : R → R of class C1 such that g(0) = 0 and g′(0) > 0, and assume that there
exists a function X : (−∞, 0] → R for which

(2.23) inf
t≤0, x≤0

u(t, x+X(t)) > 0 and c := lim sup
t→−∞

X(t)

t
< +∞.

Then, either c < 2
√
g′(0) and inf t≤0, x∈R u(t, x) > 0, or c ≥ 2

√
g′(0) and

∀λ >
c+
√
c2 − 4g′(0)
2

, inf
x≥0

eλxu(0, x) > 0.
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Proof. We distinguish the two cases. The interesting case is c ≥ 2
√
g′(0), the

other one being a consequence of the standard spreading result.
Case c < 2

√
g′(0). Call

m := inf
t≤0, x≤0

u(t, x+X(t)) > 0,

and let v be the solution of the Cauchy problem vt = vxx + g(v), t > 0, x ∈ R, with
initial datum v(0, x) = m�(−∞,0](x), x ∈ R. Take γ ∈ (c, 2

√
g′(0)). The spreading

result [2] and the fact that v is nonincreasing in x, because so is its initial datum,
imply

(2.24) m′ := lim inf
t→+∞

(
inf
x≤γt

v(t, x)
)
> 0.

For any s ≤ 0, the function v−s(t, x) := v(t− s, x−X(s)) lies below u at time t = s.
Then, by the comparison principle, we derive

∀ s ≤ t ≤ 0, ∀x ∈ R, u(t, x) ≥ v(t− s, x−X(s)).

From this, since for fixed t ≤ 0 and x ∈ R, x −X(s) ≤ γ(t− s) for −s large enough,
letting s → −∞ and using (2.24), we get u(t, x) ≥ m′.

Case c ≥ 2
√
g′(0). Take λ > (c +

√
c2 − 4g′(0))/2 > 0. Let (ηn)n≥2 be the

sequence of functions defined by

ηn(t, x) :=

(
1− x

ln(t+ 2n)

)λ ln(t+2n)

for t ≥ −n, 0 ≤ x < ln(t+ 2n).

For ε > 0 and n ≥ 2, calling for short ρ := 1− x/ ln(t + 2n) ∈ (0, 1], we find that ηn
satisfies in its domain of definition

∂tηn−∂xxηn−(c+ε)∂xηn
ηn

=
λ

t+2n
(ln ρ+ρ−1−1)−λ2ρ−2+

λ

ln(t+ 2n)
ρ−2 + λ(c + ε)ρ−1

≤ λρ−2

(
ρ− ρ2

t+ 2n
+

1

ln(t+ 2n)

)
− λ2ρ−2 + λ(c+ ε)ρ−1.

For any given n ≥ 2, there exists then hn > 0 independent of t ≥ −n and x ∈
[0, ln(t+ 2n)) such that

∂tηn − ∂xxηn − (c+ ε)∂xηn
ηn

≤ λ
c+ ε

ρ
− λ2 − λhn

ρ2
, t > −n, 0 ≤ x < ln(t+ 2n),

with hn → 0 as n → +∞. If hn < λ, then the right-hand side above is increasing
in ρ ∈ (0, 2(λ − hn)/(c + ε)]. Notice that 2λ/(c + ε) > 1 for ε > 0 small enough,
because λ > c/2. Hence, for ε > 0 small enough, 2(λ − hn)/(c + ε) > 1 for n large,
and thus, since ρ ∈ (0, 1], under such conditions we find that

∂tηn − ∂xxηn − (c+ ε)∂xηn
ηn

≤ cλ− λ2 + λ(ε+ hn), t > −n, 0 ≤ x < ln(t+ 2n).

On the other hand, one has cλ− λ2 < g′(0), hence there exist k > 0 and ε > 0 small
enough, and n0 ∈ N large enough, such that, for all n ≥ n0, the function ηn satisfies

∂tηn − ∂xxηn − (c+ ε)∂xηn ≤ (g′(0)− k)ηn, t > −n, 0 ≤ x < ln(t+ 2n).
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Notice that ηn is bounded by 1, and thus, for β > 0 small enough independent of n
(large enough), the function un defined by

un(t, x) :=

{
β ηn(t, x − (c+ ε)t) if t ≥ −n, 0 ≤ x− (c+ ε)t < ln(t+ 2n),

0 if t ≥ −n, x− (c+ ε)t ≥ ln(t+ 2n)

is a generalized subsolution of vt = vxx+g(v) in the domain −n < t < 0, x > (c+ε)t.
We claim that β can be chosen in such a way that, for n large enough, un lies below
u on the parabolic boundary of this (t, x)-domain. For the initial time t = −n, we see
that

∀x ≥ −(c+ ε)n, un(−n, x) ≤ β × �[−(c+ε)n,−(c+ε)n+lnn](x),

whereas, at the boundary x = (c+ ε)t, un(t, (c+ ε)t) = β for all −n < t < 0. On the
other hand, by (2.23) there exists T < 0 such that

inf
t≤T, (c+ε)t≤x≤(c+ε)t+ln(−t)

u(t, x) > 0.

Last, inf−T≤t≤0 u(t, (c + ε)t) > 0 by the strong maximum principle, and thus the
claim follows. We can therefore apply the comparison principle and infer that, for n
large enough, un(t, x) ≤ u(t, x) for all −n ≤ t ≤ 0 and x ≥ (c+ ε)t. In particular,

∀x ∈ [0, ln(2n)), u(0, x) ≥ βηn(0, x) = β

(
1− x

ln(2n)

)λ ln(2n)

,

from which we eventually derive u(0, x) ≥ βe−λx for x ≥ 0, by letting n → +∞.
Remark 2.8. One cannot expect to get in general a better lower bound for the

exponential decay rate of supersolutions than the one in Theorem 2.7. Indeed, if g is a
positive constant, then for all c ≥ 2

√
g, the function u defined by u(t, x) := e−λ(x−ct)

with λ = (c+
√
c2 − 4g)/2 satisfies ut = uxx+gu. Instead, if one restricts to transition

fronts, the result is far from optimal: if g is a KPP-type nonlinearity such that g(0) =
g(1) = 0 and 0 < g(s) ≤ g′(0)s for all s ∈ (0, 1), standard traveling fronts φ(x − ct)
with speed c decay exponentially as x → +∞ with exponent (c−√c2 − 4g′(0))/2 in

the sense that limx→+∞(lnφ(x))/x = −(c−√c2 − 4g′(0))/2. This exponent coincides
with our bound only in the critical case c = 2

√
g′(0). The smallest bound

√
g′(0)

in Theorem 2.7 is provided by the slowest traveling front, i.e., the critical one, for
which the bound is sharp. Then, as shown in Corollary 2.9 below, the property of the
critical front allows one to derive the same bound for all other transition fronts, but
it is not sharp in those cases.

Corollary 2.9. Under the assumptions (1.2) and (1.3), any solution 0 < u < 1
to (1.1) satisfies (2.21).

Proof. Suppose first that u is the “critical” transition front of [27], introduced
in section 2.2.3 for constructing a front with minimal past and future speeds. In
particular, letting X be the function for which u satisfies (1.6), the first condition
in (2.23) holds by (1.6) and (1.7), and the second one holds with c = 2

√
μ−. Moreover,

by (1.3), for any 0 < ε < 1, there exists Tε ∈ R such that u is a supersolution of
ut = uxx + (1 − ε)f−(u) for t ≤ Tε and x ∈ R. Thus, for τ ≤ Tε, we can apply
Theorem 2.7 to the function u(· + τ, ·), and, since c = 2

√
μ− ≥ 2

√
(1− ε)f ′−(0), we

infer that infx≥0 e
λxu(τ, x) > 0 for any λ such that

λ >
2
√
μ− +

√
4μ− − 4(1− ε)μ−

2
= (1 +

√
ε)
√
μ−.
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It is easy to see that the property infx≥0 e
λxu(τ, x) > 0 for such a λ is preserved for

τ > Tε, by comparing u with the function k e−λx for k > 0 small enough, on the
domain t ∈ (Tε, τ), x > 0. Indeed, such a function is a subsolution of (1.1), and k > 0
can be chosen in such a way that this function lies below u on the parabolic boundary
({Tε}× [0,+∞))∪ ([Tε, τ ]×{0}). Due to the arbitrariness of ε ∈ (0, 1), this concludes
the proof of the corollary in the case where u is the critical transition front.

Let now 0 < v < 1 be a solution to (1.1). Fix t ∈ R. Up to translating the critical
transition front u in space, it is not restrictive to assume that u(t, 0) = v(t, 0). Hence,
the criticality property recalled in the previous subsection yields v(t, x) ≥ u(t, x) for
x ≥ 0, hence v satisfies (2.21) because u does.

2.4. Proof of (1.17). In Theorem 1.3, we proved the existence of transition
fronts connecting 0 and 1 for (1.1) and having asymptotic past and future speeds
c± given by (1.13). We prove here the stronger property (1.17), except possibly
when μ+ > μ− and the speeds c± satisfy c− = 2

√
μ− and c+ =

√
μ− + μ+/

√
μ−.

Actually, in the case where c± > 2
√
μ±, the limits (1.17) follow immediately from the

definitions (2.3), (2.4), and (2.6) used in the proof of Proposition 2.3. In the general
case, which is treated here, the property will follow from the convergence (1.14).

Let us only prove the second limit in (1.17), since the first one can be shown
similarly. Let u be a transition front constructed in Theorem 1.3 (in all cases except
when μ+ > μ− and the speeds c± satisfy c− = 2

√
μ− and c+ =

√
μ− + μ+/

√
μ−)

and let ξ : R → R be a bounded function such that u(t,X(t) + ξ(t) + ·) → φc+ in
C2(R) as t → +∞. As done in Step 3 of the proof of Proposition 2.3, for any sequence
(tn)n∈N in R diverging to +∞, the functions (τ, x) �→ u(tn + τ,X(tn) + ξ(tn) + x)
converge, up to extraction of a subsequence, locally uniformly in R× R to an entire
solution 0 ≤ u∞(τ, x) ≤ 1 of (1.1) with nonlinearity f+, such that u∞(0, x) = φc+(x).
By uniqueness of the solution of the Cauchy problem associated with this limiting
equation, one infers that u∞(τ, x) = φc+(x− c+τ) for all τ > 0 and x ∈ R. Since the
limit is uniquely determined, it follows that, for any τ > 0,

(2.25) u(t+ τ,X(t) + ξ(t) + x) → φc+(x− c+τ) as t → +∞

locally uniformly in x ∈ R (and then uniformly in R, by (1.6), (1.9), φc+(−∞) = 1,
and φc+(+∞) = 0). This limit, together with (1.14) applied with t+ τ and the fact
that the function φc+ is decreasing, implies that, for any τ > 0,

X(t+ τ)−X(t) + ξ(t+ τ) − ξ(t) → c+τ as t → +∞, 2

hence

(2.26) lim sup
t→+∞

∣∣X(t+ τ)−X(t)− c+τ
∣∣ ≤ 2‖ξ‖L∞(R).

Assume now by contradiction that the second property in (1.17) does not hold.
Since X is locally bounded and since X(s)/s → c+ as s → +∞, this means that
there exist ε > 0 and some sequences (tn)n∈N and (τn)n∈N of positive real numbers
diverging to +∞ and such that

(2.27)

∣∣∣∣X(tn + τn)−X(tn)

τn
− c+

∣∣∣∣ ≥ ε ∀n ∈ N.

2Notice that this limit also holds for τ < 0, by setting t′ = t+ τ and writing t = t′ + |τ |.
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Choose now τ > 0 such that 2‖ξ‖L∞(R)/τ < ε/2. By (2.26), let T > 0 be such that∣∣X(t+ τ) −X(t)− c+τ
∣∣ ≤ 2‖ξ‖L∞(R) +

ετ

2
∀t ≥ T,

and let n0 ∈ N such that tn ≥ T for all n ≥ n0. For such n, write τn = knτ + τ ′n with
kn ∈ N and 0 ≤ τ ′n < τ . It follows that, for all n ≥ n0,∣∣X(tn + τn)−X(tn)− c+τn

∣∣
≤ ∣∣X(tn+τn)−X(tn+knτ)−c+τ

′
n

∣∣+ kn−1∑
k=0

∣∣X(tn+(k+1)τ)−X(tn+kτ)−c+τ
∣∣

≤ ∣∣X(tn + knτ + τ ′n)−X(tn + knτ) − c+τ
′
n

∣∣+ (2‖ξ‖L∞(R) +
ετ

2

)
kn.

Since the sequence (τ ′n)n≥n0 is bounded and since τn → +∞ and kn/τn → 1/τ as
n → +∞, one infers from (1.9) that

lim sup
n→+∞

∣∣∣∣X(tn + τn)−X(tn)− c+τn
τn

∣∣∣∣ ≤ (2‖ξ‖L∞(R)+
ετ

2

)
× 1

τ
=

2‖ξ‖L∞(R)

τ
+

ε

2
< ε,

the last inequality being due to the choice of τ . This contradicts (2.27), and the proof
is thereby complete. �

3. A priori bounds and asymptotic limits of transition fronts. This sec-
tion is chiefly devoted to the proof of Theorem 1.4 (done in section 3.2) on the opti-
mality of the bounds (1.13) for the asymptotic past and future speeds c± as t → ±∞
of any transition front connecting 0 and 1 for (1.1). We also show the existence of the
asymptotic speeds and the convergence to some asymptotic profiles for any supercrit-
ical front. We first recall in section 3.1 some useful results of [12, 16] on transition
fronts in the case of homogeneous concave nonlinearities f = f(u). Finally, section 3.3
is devoted to the proof of Theorem 1.7.

3.1. Transition fronts in the time-independent case. In this section, we
focus on a particular time-independent version of (1.1). Namely, let g : [0, 1] → R be
any C2 concave function such that g(0) = g(1) = 0 and g(u) > 0 for all u ∈ (0, 1).
Consider (1.1) with f(t, u) = g(u), that is,

(3.1) ut = uxx + g(u), t ∈ R, x ∈ R.

For (3.1), standard traveling fronts ϕc(x − ct) such that ϕc(−∞) = 1 > ϕc >
ϕc(+∞) = 0 exist if and only if c ≥ c∗ := 2

√
g′(0); see [2, 19]. Furthermore, the

functions ϕc are decreasing, unique up to shifts, and one can assume without loss of
generality that they satisfy

(3.2)

{
ϕc(ξ) ∼ e−λcξ for c > c∗,
ϕc∗(ξ) ∼ ξ e−λc∗ξ for c = c∗,

as ξ → +∞,

where

(3.3) λc =
c−√c2 − 4g′(0)

2
for c ≥ c∗.

Notice in particular that λc∗ =
√
g′(0) = c∗/2 =: λ∗. With the normalization (3.2),

it is known that ϕc(ξ) ≤ e−λcξ for all c > c∗ and for all ξ ∈ R. Last, let θ : R → (0, 1)
be the unique solution of θ′(t) = g(θ(t)), t ∈ R such that θ(t) ∼ eg

′(0)t as t → −∞.
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The standard traveling fronts ϕc(±x−ct) are entire solutions ranging in (0, 1), and
they are the keystones in the construction of many other solutions. More precisely,
following [12], let Ψ be the bijection defined by

Ψ : [−λ∗, λ∗] = [−√g′(0),
√
g′(0)] → X :=

(
R\(−c∗, c∗)

) ∪ {∞},
λ �= 0 �→ λ+

g′(0)
λ

,

λ = 0 �→ ∞,

and let us endow X with the topology induced by the image by Ψ of the Borel topology
of [−λ∗, λ∗]. In other words, a subset O of X is open if Ψ−1(O) is open relatively
in [−λ∗, λ∗]. Now, let M be the set of all nonnegative Borel measures μ on X such
that 0 < μ(X ) < +∞. It follows then from Theorem 1.2 of [12] and formula (30)
of [12] that there is a one-to-one map

μ �→ uμ

from M to the set of solutions 0 < u < 1 of (3.1). Furthermore, for each μ ∈ M,
calling M = μ

(X\{−c∗, c∗}), the solution uμ satisfies

(3.4)

max
(
ϕc∗
(
x− c∗t− c∗ lnμ(c∗)

)
, ϕc∗
(− x− c∗t− c∗ lnμ(−c∗)

)
,

M−1

∫
R\[−c∗,c∗]

ϕ|c|
(
(sgn c)x−|c|t−|c| lnM) dμ(c) + M−1θ(t+lnM)μ(∞)

)
≤ uμ(t, x) ≤ ϕc∗

(
x− c∗t− c∗ lnμ(c∗)

)
+ ϕc∗

(− x− c∗t− c∗ lnμ(−c∗)
)

+M−1

∫
R\[−c∗,c∗]

e−λ|c|((sgn c)x−|c|t−|c| lnM)dμ(c)+M−1eg
′(0)(t+lnM)μ(∞)

for all (t, x) ∈ R
2, under the convention that the terms involving M are not present

if M = 0, that μ(±c∗) = μ
({±c∗}) and μ(∞) = μ

({∞}), and that ln 0 = −∞.
The estimate (3.4) reflects different types of contributions weighted by μ: criti-
cal standard fronts, supercritical standard fronts, and the spatially homogeneous
solution. The solutions uμ are decreasing (resp., increasing) with respect to x if
μ
(
(−∞,−c∗] ∪ {∞}) = 0, that is, if uμ is a measurable interaction of right-moving

spatially decreasing traveling fronts ϕc(x − ct) (resp., if μ
(
[c∗,+∞) ∪ {∞}) = 0,

that is, if uμ is a measurable interaction of left-moving spatially increasing traveling
fronts ϕ|c|(−x − |c|t)). Last, we point out that these solutions uμ almost describe
the set of all solutions of (3.1). Indeed, on the one hand, it follows from [2] that
any solution 0 < u < 1 of (3.1) is such that max[−c|t|,c|t|] u(t, ·) → 0 as t → −∞ for
every c ∈ [0, c∗), while, on the other hand, the following almost-uniqueness result was
proved in [12]: if a solution 0 < u(t, x) < 1 of (3.1) is such that

(3.5) ∃ c > c∗, max
[−c|t|,c|t|]

u(t, ·) → 0 as t → −∞,

then there is a measure μ ∈ M such that u = uμ and the support of μ does not
intersect the interval (−c, c). For the one-dimensional equation (3.1), it is conjectured
that any solution 0 < u(t, x) < 1 is of the type uμ, even without (3.5).

In [16, Theorems 1.11 and 1.14], we showed a necessary and sufficient condition for
a solution of the type uμ to be a transition front connecting 0 and 1 for problem (3.1),
and we characterized the asymptotic past and future speeds in this case.
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Theorem 3.1 (see [16]). Let g : [0, 1] → R be any C2 concave function such that
g(0) = g(1) = 0 and g > 0 on the interval (0, 1).

(i) Under the above notation, a solution uμ of (3.1) associated with a measure μ ∈
M is a transition front connecting 0 and 1 if and only if the support of μ is bounded
and is included in [c∗,+∞) = [2

√
g′(0),+∞).

(ii) Assume here that the support of μ is compactly included in [c∗,+∞) and let
c− and c+ denote the leftmost and rightmost points of the support of μ. Then uμ

has asymptotic past and future speeds equal to c± in the sense of (1.6) and (1.12).
Furthermore, if c− > c∗, then there is a bounded function ξ : R → R such that
uμ(t,X(t) + ξ(t) + ·) → ϕc± in C2(R) as t → ±∞.

It has also been proved in [16] that, under the assumptions of part (ii) above, there
holds lim supt→−∞ |X(t) − c−t| < +∞ if μ(c−) := μ

({c−}) > 0 and X(t) − c−t →
−∞ as t → −∞ if μ(c−) = 0, while lim supt→+∞ |X(t) − c+t| < +∞ if μ(c+) :=
μ
({c+}) > 0) and X(t) − c+t → −∞ as t → +∞ if μ(c+) = 0. On the other hand,

Theorem 3.1 also implies that not all solutions 0 < u(t, x) < 1 of (3.1) such that
u(t,−∞) = 1 and u(t,+∞) = 0 for all t ∈ R are transition fronts: namely, any
solution of the type u = uμ for which the support of μ is included in [c∗,+∞) but
is not compact satisfies the above limits. (Roughly speaking, for such solutions, the
transition region between 0 and 1 is not uniformly bounded in time.) As another
corollary of Theorem 3.1 (see Theorem 1.6 in [16]), it follows that transition fronts
connecting 0 and 1 for (3.1) and having asymptotic past and future speeds c± exist if
and only if c∗ ≤ c− ≤ c+ < +∞. For further results and comments on the transition
fronts for homogeneous equation (3.1), we refer to [16].

To complete this subsection, we include an additional comparison result (see
Proposition 2.1 in [16]) which has its own interest and will be used in particular in
the proof of Theorem 1.4 in section 3.2. It provides uniform lower and upper bounds
of a solution uμ of (3.1) on the left and right of its level sets, when the measure μ ∈ M
is compactly supported in [c∗,+∞). These bounds say that the uμ is steeper than
the standard front associated to any speed larger than its support.

Proposition 3.2 (see [16]). Let g : [0, 1] → R be any C2 concave function such
that g(0) = g(1) = 0 and g > 0 on the interval (0, 1). Let μ be any measure in M that
is supported in [c∗, γ] = [2

√
g′(0), γ] for some γ ∈ [c∗,+∞), and let 0 < uμ < 1 be

the solution of (3.1) that is associated to the measure μ. Then, for every (t, y) ∈ R
2,

(3.6)

{
uμ(t, y + x) ≥ ϕγ

(
ϕ−1
γ (uμ(t, y)) + x

) ∀x ≤ 0,

uμ(t, y + x) ≤ ϕγ

(
ϕ−1
γ (uμ(t, y)) + x

) ∀x ≥ 0,

where ϕ−1
γ : (0, 1) → R denotes the reciprocal of the function ϕγ .

3.2. Proof of Theorem 1.4. In this section, f : R × [0, 1] → R is any func-
tion satisfying the assumptions of Theorem 1.4, and u denotes any transition front
connecting 0 and 1 for problem (1.1), satisfying (1.6) for some X : R → R. First, it
follows from (1.9) and Proposition 2.4 that

(3.7) 2
√
μ± ≤ c± := lim inf

t→±∞
X(t)

t
≤ lim sup

t→±∞
X(t)

t
< +∞.

The general strategy to prove Theorem 1.4 will be to compare u on some time-intervals
of the type (−∞, τ ] with the solution v of the homogeneous reaction-diffusion equa-
tion (3.1) with g = f−. Then we derive a uniform exponential lower bound for v, and
hence for u, by applying some results of section 3.1. Furthermore, the results on the
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qualitative properties of solutions of (3.1) with g = f− will provide the exact exponen-
tial decay rate of u(t, ·) at +∞ if lim inft→−∞ X(t)/t > 2

√
μ−. Last, by comparing

u, for large positive times, with the solutions of some homogeneous reaction-diffusion
equations with nonlinearities close to f+, we get the bound (1.19) for c+, and some
passages to the limits will yield (1.14) in the supercritical case.

3.2.1. Step 1: Construction of a solution v of a time-independent equa-
tion. For every n ∈ N, let vn be the solution of the Cauchy problem

(3.8)

{
(vn)t = (vn)xx + f−(vn), t > −n, x ∈ R,

vn(−n, x) = u(−n, x), x ∈ R.

Since 0 < u < 1 in R
2 and f−(0) = f−(1) = 0, the maximum principle yields

0 < vn(t, x) < 1 for all n ∈ N and (t, x) ∈ [−n,+∞) × R. From standard parabolic
estimates, it follows that, up to extraction of a subsequence, the functions vn converge
locally uniformly in R

2 to a solution v of the homogeneous equation

(3.9) vt = vxx + f−(v), t ∈ R, x ∈ R,

such that 0 ≤ v(t, x) ≤ 1 for all (t, x) ∈ R
2.

3.2.2. Step 2: Comparisons between v and u. Let us recall here the exis-
tence of a continuous L1(−∞, 0) function ζ such that the assumption (1.18) holds.
Furthermore, since the C1(R× [0, 1]) function f vanishes on R× {0, 1} and since f−
is positive in (0, 1) and concave in [0, 1] (one has in particular f ′

−(0) > 0 > f ′
−(1)), it

follows, as said in Remark 1.5, that the function ζ− : t �→ sups∈(0,1)

∣∣f(t, s)/f−(s)−1
∣∣

is continuous. Therefore, even if it means changing ζ into ζ− on the whole R, one
can assume without loss of generality that there exists a nonnegative continuous func-
tion ζ : R → R such that (1.18) holds for all t ∈ R, that is,

(3.10) (1 − ζ(t)) f−(s) ≤ f(t, s) ≤ (1 + ζ(t)) f−(s)∀t ∈ R and s ∈ [0, 1],

and ζ ∈ L1(−∞, τ) for all τ ∈ R. Let us now define

(3.11) Θ(t) =

∫ t

−∞
ζ(τ)dτ for t ∈ R.

Lemma 3.3. There holds

(3.12) u(t, x) e−μ−Θ(t) ≤ v(t, x) ≤ u(t, x) eμ−Θ(t) ∀(t, x) ∈ R
2.

Proof. For every n ∈ N, let ϕn be the function defined in [−n,+∞) by

ϕn(t) = exp
(
μ−
∫ t

−n

ζ(τ)dτ
)

for t ∈ [−n,+∞).

For the proof of the upper bound in (3.12), denote wn(t, x)=u(t, x)ϕn(t) for (t, x)∈
[−n,+∞) × R. Let us check that the function wn is a supersolution for the equa-
tion (3.8) satisfied by vn in [−n,+∞) × R. First, we observe that wn(−n, x) =
u(−n, x) = vn(−n, x) for all x ∈ R and that vn < 1 in [−n,+∞) × R. For every
(t, x) ∈ (−n,+∞)× R such that wn(t, x) < 1, there holds

(wn)t(t, x)− (wn)xx(t, x)− f−(wn(t, x))

= ut(t, x)ϕn(t) + u(t, x)ϕ′
n(t)− uxx(t, x)ϕn(t)− f−

(
u(t, x)ϕn(t)

)
= f
(
t, u(t, x)

)
ϕn(t) + μ− ζ(t)u(t, x)ϕn(t)− f−

(
u(t, x)ϕn(t)

)
.
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But, for such (t, x), one has f(t, u(t, x)) ≥ (1 − ζ(t)) f−(u(t, x)) by (3.10), while

f−
(
u(t, x)ϕn(t)

) ≤ f−
(
u(t, x)

)
ϕn(t) and f−(u(t, x)) ≤ f ′

−(0)u(t, x) = μ−u(t, x)

since 0 < u(t, x) ≤ u(t, x)ϕn(t) < 1 and s �→ f−(s)/s is nonincreasing on (0, 1).
Therefore,

(wn)t(t, x) − (wn)xx(t, x) − f−(wn(t, x))

≥ (1− ζ(t)) f−(u(t, x))ϕn(t) + μ−ζ(t)u(t, x)ϕn(t)− f−(u(t, x))ϕn(t)

=
(
μ−u(t, x)− f−(u(t, x))

)
ζ(t)ϕn(t)

≥ 0

for every (t, x) ∈ (−n,+∞) × R such that wn(t, x) < 1. It follows then from the
maximum principle that wn(t, x) ≥ vn(t, x) for all (t, x) ∈ [−n,+∞)× R, that is,

vn(t, x) ≤ u(t, x) exp
(
μ−
∫ t

−n

ζ(τ)dτ
)
∀(t, x) ∈ [−n,+∞)× R.

By passing to the limit as n → +∞ and using the definition (3.11), one infers that
v(t, x) ≤ u(t, x) eμ−Θ(t) for all (t, x) ∈ R

2, that is, the upper bound in (3.12) has been
shown.

The proof of the lower bound in (3.12) uses a similar method. Namely, we set
zn(t, x) = vn(t, x)ϕn(t) for (t, x) ∈ [−n,+∞) × R, and we will check that zn is
a supersolution for the equation satisfied by u in [−n,+∞) × R. First, we note
that zn(−n, x) = vn(−n, x) = u(−n, x) for all x ∈ R and that u < 1. Moreover, for
every (t, x) ∈ (−n,+∞)× R such that zn(t, x) < 1, there holds

(zn)t(t, x)−(zn)xx(t, x)−f(t, zn(t, x))

= (vn)t(t, x)ϕn(t)+vn(t, x)ϕ
′
n(t)−(vn)xx(t, x)ϕn(t)− f

(
t, vn(t, x)ϕn(t)

)
= f−

(
vn(t, x)

)
ϕn(t) + μ−ζ(t) vn(t, x)ϕn(t)− f(t, vn(t, x)ϕn(t)).

But, as it was done for wn in the last paragraph,

f
(
t, vn(t, x)ϕn(t)

) ≤ (1 + ζ(t)) f−
(
vn(t, x)ϕn(t)

)
≤ f−

(
vn(t, x)ϕn(t)

)
+ ζ(t)μ− vn(t, x)ϕn(t)

≤ f−
(
vn(t, x)

)
ϕn(t) + ζ(t)μ− vn(t, x)ϕn(t),

hence (zn)t(t, x)−(zn)xx(t, x)−f(t, zn(t, x)) ≥ 0 for every (t, x) ∈ (−n,+∞)×R such
that zn(t, x) < 1. It follows then from the maximum principle that zn(t, x) ≥ u(t, x)
for all (t, x) ∈ [−n,+∞)× R, that is,

vn(t, x) ≥ u(t, x) exp
(
− μ−

∫ t

−n

ζ(τ)dτ
)
∀(t, x) ∈ [−n,+∞)× R.

By passing to the limit as n → +∞ and using the definition (3.11), one concludes
that v(t, x) ≥ u(t, x) e−μ−Θ(t) for all (t, x) ∈ R

2 and the proof of Lemma 3.3 is thereby
complete.

Remark 3.4. One could wonder whether a comparison similar to that of
Lemma 3.3 would hold or not for the functions ũ := 1 − u and ṽ := 1 − v. Actually,
such a comparison between ũ and ṽ is not clear. Indeed, for instance, the function ṽ
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obeys ṽt = ṽxx + g−(ṽ) in R
2, where g−(s) = −f−(1 − s) on [0, 1]. But 0 is a stable

point of g−, and the arguments used in the proof of Lemma 3.3 to compare u and v
do not work as such for ũ and ṽ. As a matter of fact, a comparison of the type (3.12)
for 1−u and 1−v is not needed, since only the exponential decay of u(t, x) and v(t, x)
as x → +∞ will determine the asymptotic speeds of u and v, as will be shown in the
following steps.

3.2.3. Step 3: v is a transition front for (3.9) in (−∞, τ ]× R for every
τ ∈ R with the same family (X(t))t≤τ . Since 0 < u < 1 in R

2 and u(t,+∞) = 0
for every t ∈ R, it follows immediately from Lemma 3.3 that 0 < v(t0, x0) < 1 for
at least a point (t0, x0) ∈ R

2. Since 0 ≤ v ≤ 1 in R
2, the strong maximum principle

actually implies that 0 < v(t, x) < 1 for all (t, x) ∈ R
2. The estimates (3.12) and the

stability of 1 will then imply that v is a transition front connecting 0 and 1 for (3.9)
with the same family (X(t)) as u in any set of the type (−∞, τ ] × R, in the sense of
the following lemma.

Lemma 3.5. For every τ ∈ R, there holds{
v(t,X(t) + x) → 1 as x → −∞,

v(t,X(t) + x) → 0 as x → +∞,
uniformly in t ∈ (−∞, τ ].

Proof. First, since the function Θ given in (3.11) is bounded in (−∞, τ ], it follows
immediately from (1.6) and Lemma 3.3 that v(t,X(t)+x) → 0 as x → +∞, uniformly
in t ∈ (−∞, τ ].

In order to show the other part of the conclusion, let us assume on the contrary
that there are ε > 0 and a sequence (tn, xn)n∈N in (−∞, τ ] × R such that xn → −∞
as n → +∞ and v(tn, X(tn) + xn) ≤ 1 − ε for all n ∈ N. Define, for all n ∈ N and
(t, x) ∈ R

2, ṽn(t, x) = v(t + tn, x +X(tn) + xn). Up to extraction of a subsequence,
the functions ṽn converge locally uniformly in R

2 to a solution v∞ of (3.9) such that
0 ≤ v∞ ≤ 1 in R

2 and v∞(0, 0) ≤ 1 − ε. On the other hand, since xn → −∞
as n → +∞, it follows from (1.6) and (1.9) that

u(t+ tn, x+X(tn) + xn) → 1 as n → +∞, locally uniformly in (t, x) ∈ R
2.

Since Θ is bounded in (−∞, τ ], hence Θ ≤ Aτ in (−∞, τ ] for some Aτ ∈ R, the first
inequality in (3.12) yields

v∞(t, x) ≥ e−μ−Aτ ∀(t, x) ∈ (−∞, 0]× R.

One infers from the maximum principle that, for every s < t ≤ 0 and x ∈ R, one
has v∞(t, x) ≥ ρ(t − s), where ρ : R → (0, 1) denotes the solution of the ordinary
differential equation ρ′ = f−(ρ) in R with ρ(0) = e−μ−Aτ ∈ (0, 1). Since ρ(+∞) = 1,
one concludes, by passing to the limit as s → −∞, that v∞(t, x) ≥ 1 (and then = 1)
for all (t, x) ∈ (−∞, 0]× R. This contradicts v∞(0, 0) ≤ 1− ε < 1. Finally, the proof
of Lemma 3.5 is complete.

3.2.4. Step 4: Completion of the proof of Theorem 1.4 in the case
c− = 2

√
μ−. In this case, remembering (3.7), it only remains to show the second

assertion in (1.19), namely,

c+ := lim inf
t→+∞

X(t)

t
≥ κ+

μ+

κ
,
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where κ = min
(√

μ+, (c− −
√
c2− − 4μ−)/2

)
= min

(√
μ+,

√
μ−
)

=
√
μ. In the

case 0 < μ+ ≤ μ−, then κ =
√
μ+, while c+ ≥ 2

√
μ+ = κ+ μ+/κ by Proposition 2.4.

Hence, the proof is done in this case.
Consider now the case 0 < μ− < μ+. In other words, κ =

√
μ−, and one shall

show in this case that c+ ≥ √
μ− + μ+/

√
μ−. Let ε be any real number such that

0 < ε < 1 and (1−ε)μ+ > μ−, and let Tε ∈ R be such that f(t, s) ≥ (1−ε)f+(s) for all
(t, s) ∈ [Tε,+∞)× [0, 1]. One makes use of the estimate (2.21) provided by Corollary
2.9, which, applied with t = Tε and λ = κ satisfying

√
μ− < κ <

√
(1− ε)μ+, allows

one to derive (2.22), as done in section 2.2.3. The desired result follows by letting
κ → √

μ− and then ε → 0 in (2.22). To sum up, the proof of Theorem 1.4 is complete
in the case c− = 2

√
μ−.

3.2.5. Step 5: Completion of the proof of Theorem 1.4 if c− > 2
√
μ−.

In this case, one has to show that the asymptotic past and future speeds of u exist
and are equal to c±, in the sense that X(t) ∼ c±t as t → ±∞, and that the solution u
converges to some well-identified profiles along its level sets as t → ±∞. We assume
throughout this subsection that c− > 2

√
μ− and that (1.20) holds. The proof of

Step 5 is itself divided into several substeps. Under the notation of section 3.1, we
first identify a measure μ such that v = uμ for the (3.9), and we show some properties
of the support of μ. Then, we identify the leftmost point of the support of μ and
apply Theorem 3.1 to determine the asymptotic past speed of u and its asymptotic
behavior along its level sets. Last, we will compare u at large positive times to a
solution of the homogeneous equation (3.9) with nonlinearity f+ instead of f−, and
we will again apply Theorem 3.1 to determine the asymptotic future speed of u.

Substep 5.1. Identification and elementary properties of a measure μ such that
v = uμ.
Since c− := lim inft→−∞ X(t)/t > 2

√
μ−, property (1.6) implies that sup[ct,+∞) u(t, ·)

→ 0 as t → −∞ for every 2
√
μ− < c < c−. Hence,

sup
[ct,+∞)

v(t, ·) → 0 as t → −∞

from Lemma 3.3 and the fact that the function Θ is bounded in, say, (−∞, 0]. In
particular, v satisfies (3.5) with c∗ = 2

√
μ− = 2

√
f ′−(0), and thus, since it is a time-

global solution of (3.9) and f− is a C2 concave function such that f−(0) = f−(1) = 0
and f− > 0 on (0, 1), it follows from Theorem 1.4 of [12] that for problem (3.9),
i.e. (3.1) with g = f−, v can be represented as v = uμ with μ ∈ M supported
in (−∞, c] ∪ [c,+∞) ∪ {∞} for every 2

√
μ− < c < c−. Therefore, μ is supported

in (−∞, c−] ∪ [c−,+∞) ∪ {∞} and, in this case, the inequalities (3.4) amount to

M−1

∫
(−∞,−c−]∪[c−,+∞)

ϕ−
|c|
(
(sgn c)x− |c|t− |c| lnM) dμ(c) +M−1θ−(t+ lnM)μ(∞)

≤ v(t, x) ≤ M−1

∫
(−∞,c−]∪[c−,+∞)

e
−λ−

|c|((sgn c)x−|c|t−|c| lnM)
dμ(c)

+M−1eμ−(t+lnM)μ(∞)

for all (t, x) ∈ R
2, where M = μ

(
(−∞, c−] ∪ [c−,+∞) ∪ {∞}) > 0 and the functions

ϕ−
c (x− ct) with c ≥ c∗− = 2

√
f ′−(0) = 2

√
μ− denote the traveling fronts connecting 0

and 1 for (3.9) with the normalization (3.2) and

(3.13) λ−
c =

c−√c2 − 4μ−
2
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in place of λc in (3.3). Furthermore, θ− : R → (0, 1) denotes the unique solu-
tion of (θ−)′(t) = f−(θ−(t)) in R such that θ−(t) ∼ eμ−t as t → −∞. Now, if
μ
(
(−∞,−c−] ∪ {∞}) > 0, then Lebesgue’s dominated convergence theorem implies

that lim infx→+∞ v(t, x) ≥ M−1μ
(
(−∞,−c−]

)
+M−1θ−(t+lnM)μ(∞) > 0 for every

t ∈ R, which is ruled out by Lemma 3.5. Therefore, μ
(
(−∞,−c−] ∪ {∞}) = 0, that

is, the support of μ is included in [c−,+∞) and

(3.14)

M−1

∫
[c−,+∞)

ϕ−
c

(
x−ct−c lnM

)
dμ(c) ≤ v(t, x) ≤ M−1

∫
[c−,+∞)

e−λ−
c (x−ct−c lnM) dμ(c)

for all (t, x) ∈ R
2 with M = μ

(
[c−,+∞)

)
> 0.

The following lemma gives an exponential lower bound of u(t, x) and v(t, x) as
x → +∞ in terms of the support of μ. It will used several times in what follows.

Lemma 3.6. If μ
(
[c,+∞)

)
> 0 for some c ≥ c−, then

lim inf
x→+∞

(
eλ

−
c xu(t, x)

)
> 0 and lim inf

x→+∞
(
eλ

−
c xv(t, x)

)
> 0

for every t ∈ R, where λ−
c is given in (3.13).

Remark 3.7. Lemma 3.6 improves Corollary 2.9 under the additional assumption
that u is noncritical as t → −∞, i.e., c− := lim inft→−∞ X(t)/t > 2

√
μ−. Indeed,

the upper bound for the exponential decay rate given by (2.21) is
√
μ−, whereas the

one in Lemma 3.6 is λ−
c− = (c− −

√
c2− − 4μ−)/2, which is smaller than

√
μ− because

c− > 2
√
μ−.

Proof of Lemma 3.6. From Lemma 3.3, it is sufficient to show the conclusion for
the function v. Let t ∈ R be arbitrary. It follows from (3.14) that

eλ
−
c xv(t, x) ≥ M−1

∫
[c,+∞)

min
(
eλ

−
c xϕ−

c′(x− c′t− c′ lnM), 1
)
dμ(c′) ∀x ∈ R.

For every c′ > c (≥ c− > 2
√
μ−), one has ϕ−

c′(x − c′t− c′ lnM) ∼ e−λ−
c′ (x−c′t−c′ lnM)

as x → +∞ with 0 < λ−
c′ < λ−

c (≤ λc− <
√
μ−), hence min

(
eλ

−
c xϕ−

c′(x − c′t −
c′ lnM), 1

)→ 1 as x → +∞. On the other hand, min
(
eλ

−
c xϕ−

c (x− ct− c lnM), 1
)
→

min
(
eλ

−
c (ct+c lnM), 1

)
as x → +∞. Finally, Lebesgue’s dominated convergence theo-

rem implies that

lim inf
x→+∞

(
eλ

−
c xv(t, x)

) ≥ M−1 min
(
eλ

−
c (ct+c lnM), 1

)
μ
(
[c,+∞)

)
> 0,

which is the desired conclusion.
Next, we show that the measure μ is compactly supported in [c−,+∞).
Lemma 3.8. There is c̃+ ∈ [c−,+∞) such that the support of μ is included in

[c−, c̃+]. Furthermore, without loss of generality, c̃+ can be chosen as the rightmost
point of the support of μ, in the sense that μ

(
(c̃+,+∞)

)
= 0 and μ

(
[c′,+∞)

)
> 0 for

every c′ < c̃+.
Remark 3.9. Notice that Lemma 3.8 does not follow immediately from Theo-

rem 3.1, since one does not know a priori that v = uμ is a transition front connecting
0 and 1 for (3.9). We point out that Lemma 3.5 above only shows that the lim-
its (0 and 1) of v(t,X(t) + x) as x → ±∞ are uniform in any time-interval of the
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type (−∞, τ ] with τ ∈ R. But the uniformity of the limits may depend on τ in
general. Actually, with similar ideas as in the proof of Lemma 3.8, it is not compli-
cated to show the existence of solutions 0 < ṽ < 1 of (3.9) satisfying Lemma 3.5 for

some family (X̃(t))t∈R and which are not transition fronts. For instance, consider the
function ṽ = uμ̃ associated to the measure μ̃ =

∑+∞
n=0 2

−nδc0+n, where c0 is any real

number in [2
√
μ−,+∞). The solution ṽ satisfies Lemma 3.5 with, say, X̃(t) = c0t for

all t ∈ R, but inf(−∞,ct] ṽ(t, ·) → 1 as t → +∞ for every c ∈ R. Roughly speaking,
the function ṽ has an infinite asymptotic future speed. Because of (1.9), it cannot be
a transition front for (3.9) in the sense of (1.6) for any family (X(t))t∈R.

Proof of Lemma 3.8. Assume by way of contradiction that μ is not compactly
supported. Pick any c ∈ [c−,+∞). Then μ

(
[c,+∞)

)
> 0, and therefore it follows

from Lemma 3.6, together with (1.6) and the positivity and continuity of u, that for
any T ∈ R, there is β ∈ (0, 1) such that

(3.15) ∀x ∈ R, u(T, x) ≥ min
(
β, β e−λ−

c x
)
.

Notice that λ−
c ↘ 0 as c → +∞. Thus, for c large enough, we have that

λ−
c <

√
μ+

2
=

√
f ′
+(0)

2
,

hence equation (3.1) with g = f+/2 admits a standard traveling front ϕ̃(x − γct)

connecting 0 and 1 satisfying ϕ̃(ξ) ∼ e−λ−
c ξ as ξ → +∞, where γc := λ−

c +μ+/(2λ
−
c ) →

+∞ as c → +∞. By (1.3), there exists T ∈ R such that f(t, s) ≥ f+(s)/2 for all
(t, s) ∈ [T,+∞) × [0, 1]. This implies that ϕ̃(x − γct) is a subsolution to (1.1) for
t > T , and then the same is true for β̃ϕ̃(x − γct), for any β̃ ∈ (0, 1). Furthermore,
by (3.15), β̃ ∈ (0, 1) can be chosen in such a way that β̃ϕ̃(x − γcT ) ≤ u(T, x) for all
x ∈ R. It then follows from the maximum principle that u(t, γct) ≥ β̃ϕ̃(0) > 0 for
all t > T , from which, owing to (1.6) or (1.7), we derive c+ = lim inft→+∞ X(t)/t ≥ γc.
Since this inequality holds for all c large enough, letting c → +∞ we eventually get
lim inft→+∞ X(t)/t = +∞, which is ruled out by (3.7).

Finally, the support of μ is bounded and there is c̃+ ∈ [c−,+∞) as in Lemma 3.8,
that is, c̃+ is the rightmost point of the support of μ. The proof of Lemma 3.8 is
thereby complete.

Substep 5.2. c− is the asymptotic past speed of u, and u converges to ϕ−
c− along

its level sets as t → −∞.
Let us first show here that X(t)/t → c− as t → −∞. We already know by definition
that lim inf t→−∞ X(t)/t = c−. From part (i) of Theorem 3.1 and from Lemma 3.8,
the solution v = uμ of (3.9) is actually a transition front connecting 0 and 1 for this

equation. In other words, there is a family (X̃(t))t∈R of real numbers such that (1.6)

holds for v and (X̃(t))t∈R. Furthermore, from part (ii) of Theorem 3.1, the transition
front v has some asymptotic past and future speeds, which are the leftmost and
rightmost points of the support of μ. Having in hand that the measure μ is supported
in [c−, c̃+] ⊂ (2

√
μ−,+∞) from Lemma 3.8, the leftmost point c̃− of the support of μ

satisfies 2
√
μ− = c∗− < c− ≤ c̃− ≤ c̃+. Part (ii) of Theorem 3.1 implies in particular

that X̃(t)/t → c̃− as t → −∞ and that there is a bounded function ξ̃ : R → R such
that

(3.16) v(t, X̃(t) + ξ̃(t) + x) → ϕ−
c̃−(x) as t → −∞ uniformly in x ∈ R.
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But 0 < inft∈R v(t, X̃(t)) ≤ supt∈R v(t, X̃(t)) < 1 from (1.7) applied to the tran-

sition front v, hence 0 < lim inft→−∞ u(t, X̃(t)) ≤ lim supt→−∞ u(t, X̃(t)) < 1 by
Lemma 3.3 and the fact that Θ(t) → 0 as t → −∞. Together with (1.6), one infers
that

(3.17) lim sup
t→−∞

∣∣X(t)− X̃(t)
∣∣ < +∞.

Therefore, X(t)/t → c̃− as t → −∞. Remembering that c− = lim inft→−∞ X(t)/t,
one gets that

c̃− = c− and
X(t)

t
→ c− as t → −∞.

In other words, u has an asymptotic past speed, which is equal to c−.
Finally, setting

(3.18) ξ(t) = X̃(t)−X(t) + ξ̃(t) for t ≤ 0,

it follows from (3.17), the boundedness of ξ̃, and the local boundedness of X and X̃
that ξ is bounded in (−∞, 0]. Furthermore,

u(t,X(t) + ξ(t) + x)− ϕ−
c−(x) = u(t, X̃(t) + ξ̃(t) + x)− v(t, X̃(t) + ξ̃(t) + x)

+ v(t, X̃(t) + ξ̃(t) + x) − ϕ−
c−(x)

→ 0 as t → −∞ uniformly in x ∈ R,

from (3.16) and Lemma 3.3, together with limt→−∞ Θ(t) = 0. Standard parabolic
estimates also imply that

(3.19) u(t,X(t) + ξ(t) + ·) → ϕ−
c− in C2(R) as t → −∞.

Substep 5.3. c+ is the asymptotic future speed of u.

Here, we prove the existence of the asymptotic future speed of u. This speed, which
will be equal to c+, will be determined obviously by the limiting nonlinearity f+
(namely, by μ+ = f ′

+(0)) but also by the rightmost point c̃+ of the support of μ. To
do so, we will identify the exponential decay rate of u(t, x) and v(t, x) as x → +∞ in
terms of c̃+ for some suitably chosen times t.

Lemma 3.10. There holds

(3.20)
X(t)

t
→ c+ = κ̃+

μ+

κ̃
≥ κ+

μ+

κ
as t → +∞

with

0 < κ̃ = min

(
c̃+ −√(c̃+)2 − 4μ−

2
,
√
μ+

)
≤ κ(3.21)

= min

⎛⎝c− −
√
c2− − 4μ−

2
,
√
μ+

⎞⎠ ≤ √
μ+.
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Proof of Lemma 3.8. The strategy consists in establishing lower and upper bounds
of X(t)/t as t → +∞ by comparing u at large time with some solutions of reaction-
diffusion equations with nonlinearities of the type (1 ± ε)f+. In the proof of the
lemma, 0 < ε < 1 is arbitrary. From (1.3), there is Tε ∈ R such that

(1− ε) f+(s) ≤ f(t, s) ≤ (1 + ε) f+(s) ∀t ≥ Tε and s ∈ [0, 1].

Let us first prove the upper bound for lim supt→+∞ X(t)/t. Lemma 3.3 implies

that u(Tε, x) ≤ v(Tε, x) e
μ−Θ(Tε) for all x ∈ R. On the other hand, since v is a

solution of (3.9) of the type v = uμ and since the support of μ is included in [c−, c̃+] ⊂
[2
√
μ−,+∞), it follows from Proposition 3.2 that

v(Tε, x) = uμ(Tε, x) ≤ ϕ−
c̃+

(
(ϕ−

c̃+
)−1(v(Tε, 0)) + x

) ∀x ≥ 0.

Remember also that, since c̃+ ≥ c− > 2
√
μ−, one has ϕ−

c̃+
(ξ) ≤ e

−λ−
c̃+

ξ
for all ξ ∈ R,

where

(3.22) λ−
c̃+

=
c̃+ −

√
c̃2+ − 4μ−

2
.

Therefore, there is a real number γε > 0 such that u(Tε, x) ≤ min
(
γε e

−λ−
c̃+

x
, 1
)
for

all x ∈ R. Let uε be the solution of the Cauchy problem{
uε
t = uε

xx + (1 + ε) f+(u
ε), t > 0, x ∈ R,

uε(0, x) = min
(
γε e

−λ−
c̃+

x
, 1
)
, x ∈ R.

The maximum principle implies that 0 < u(t, x) ≤ uε(t − Tε, x) for all (t, x) ∈
[Tε,+∞)×R. But, by [42], the function uε spreads to the right with the speed κε+(1+
ε)μ+/κε, where κε = min

(
λ−
c̃+
,
√
(1 + ε)μ+

)
. In particular, sup[(κε+(1+ε)μ+/κε+η) t,+∞)

uε(t, ·) → 0 as t → +∞ for every η > 0, hence

sup[
(κε+(1+ε)μ+/κε+η) (t−Tε),+∞

)u(t, ·) → 0 as t → +∞.

It follows then from (1.7) that X(t) − (κε + (1 + ε)μ+/κε + η
)
(t − Tε) → −∞ as

t → +∞, hence lim supt→+∞ X(t)/t ≤ κε + (1 + ε)μ+/κε + η. Since η > 0 and ε > 0
can be arbitrarily small, one gets that

(3.23) lim sup
t→+∞

X(t)

t
≤ κ̃+

μ+

κ̃
,

where κ̃ = min
(
λ−
c̃+
,
√
μ+

)
> 0 is as in (3.21).

Let us now prove the lower bound of lim inft→+∞ X(t)/t. For every δ > 0,
set cδ = max(c−, c̃+ − δ) (≥ c−). Since c− and c̃+ are the leftmost and rightmost
points of the support of μ, one has μ

(
[cδ,+∞)

)
> 0 for every δ > 0 and Lemma 3.6

yields lim infx→+∞ eλ
−
cδ

xu(Tε, x) > 0. Since u(Tε,−∞) = 1 and u(Tε, ·) is positive
and continuous in R, it follows that there is a positive real number ρε such that

u(Tε, x) ≥ min
(
ρε, ρε e

−λ−
cδ

x) for all x ∈ R. Let uε be the solution of the Cauchy
problem {

uε
t = uε

xx + (1 − ε) f+(u
ε), t > 0, x ∈ R,

uε(0, x) = min
(
ρε, ρε e

−λ−
cδ

x), x ∈ R.



ADMISSIBLE SPEEDS OF TRANSITION FRONTS 3381

The maximum principle implies that 1 > u(t, x) ≥ uε(t − Tε, x) for all (t, x) ∈
[Tε,+∞) × R. But, by [42], the function uε spreads to the right with the speed
κε,δ + (1 − ε)μ+/κε,δ, where κε,δ = min

(
λ−
cδ
,
√
(1 − ε)μ+

)
. In particular,

inf(−∞,(κε,δ+(1−ε)μ+/κε,δ−η) t] u
ε(t, ·) → 1 as t → +∞ for every η > 0, hence

inf(
−∞,(κε,δ+(1−ε)μ+/κε,δ−η) (t−Tε)

]u(t, ·) → 1 as t → +∞.

It follows then from (1.7) that X(t)− (κε,δ + (1 − ε)μ+/κε,δ − η
)
(t − Tε) → +∞ as

t → +∞, hence lim inft→+∞ X(t)/t ≥ κε,δ + (1 − ε)μ+/κε,δ − η. Since η > 0, δ > 0
and ε > 0 can be arbitrarily small and since λ−

cδ → λ−
c̃+

as δ → 0, one gets that

lim inft→+∞ X(t)/t ≥ κ̃ + μ+/κ̃ with κ̃ > 0 as in (3.21). Together with (3.23), one
concludes that

X(t)

t
→ κ̃+

μ+

κ̃
as t → +∞.

Since c+ was defined as the liminf of X(t)/t as t → +∞, this means that c+ = κ̃ +
μ+/κ̃. Furthermore, the inequalities 2

√
μ− < c− ≤ c̃+ yield 0 < λ−

c̃+
≤ λ−

c− = (c− −√
c2− − 4μ−)/2 and 0 < κ̃ = min(λ−

c̃+
,
√
μ+) ≤ min(λ−

c− ,
√
μ+) = κ ≤ √

μ+, where κ

is as in (3.21). Finally, (3.20) holds and the proof of Lemma 3.10 is complete.
Substep 5.4. u converges to a well identified profile ϕ+

c+ along its level sets as
t → +∞.
The proof is based on some comparisons between u and some solutions of the ho-
mogeneous equation (3.24) below with the reaction term exactly equal to f+. A
Liouville-type result about the classification of solutions of homogeneous equations
which are asymptotically trapped between two shifts of a standard traveling front will
also be used, as in Step 3 of the proof of Proposition 2.3.

First, let 0 < ϕ+
c+(x − c+t) < 1 be a standard traveling front connecting 0 and 1

for the homogeneous equation

(3.24) wt = wxx + f+(w)

with the speed c+ = κ̃ + μ+/κ̃ ≥ 2
√
μ+ = 2

√
f ′
+(0) as in (3.20)-(3.21). Up to

normalization, one can assume that, as ξ → +∞, ϕ+
c+(ξ) ∼ e−κ̃ξ if c+ > 2

√
μ+, while

ϕ+
c+(ξ) ∼ ξ e−κ̃ξ = ξ e−

√
μ+ξ if c+ = 2

√
μ+. For every t ∈ R, since u(t, ·) is continuous

and converges to 0 and 1 at ±∞, the real number

X+(t) = max
{
x ∈ R; u(t, x) = ϕ+

c+(0)
}

is well defined, and u(t,X+(t)) = ϕ+
c+(0). Denote

(3.25) ξ(t) = X+(t)−X(t) for t > 0.

The function ξ is bounded in (0,+∞), by (1.6). It will be the one used in the desired
conclusion (1.14) for t > 0, together with (3.18) and (3.19) for t ≤ 0.

Let us now introduce some auxiliary functions u+ and v+. From assumption (1.20),
there holds

(1− ζ̃(t)) f+(s) ≤ f(t, s) ≤ (1 + ζ̃(t)) f+(s) ∀t > 0 and s ∈ [0, 1].
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Set Θ̃(t) =
∫ t
0
ζ̃(τ) dτ for t ≥ 0 and notice that

(3.26) 0 ≤ Θ̃(t) ≤ Θ̃∞ :=

∫ +∞

0

ζ̃(τ) dτ < +∞ ∀t ≥ 0.

First, let u+ be the solution of the Cauchy problem

(3.27)

{
u+
t = u+

xx + f+(u
+), t > 0, x ∈ R,

u+(0, x) = u(0, x), x ∈ R.

As in the proof of Lemma 3.3, since s �→ f+(s)/s is nonincreasing on (0, 1] and f ′
+(0) =

μ+ > 0, one can prove that

(3.28) 0 < u+(t, x) e−μ+
˜Θ(t) ≤ u(t, x) ≤ u+(t, x) eμ+

˜Θ(t) ∀(t, x) ∈ [0,+∞)× R.

Second, let v+ be the solution of the Cauchy problem

(3.29)

{
v+t = v+xx + f+(v

+), t > 0, x ∈ R,

v+(0, x) = v(0, x), x ∈ R,

where we recall that 0 < v < 1 solves (3.9). Setting α = e−μ−Θ(0) ∈ (0, 1], Lemma 3.3
yields

0 < αv(0, x) ≤ u(0, x) ≤ min
(
α−1v(0, x), 1

) ∀x ∈ R,

that is, 0 < α v+(0, ·) ≤ u+(0, ·) ≤ min
(
α−1v+(0, ·), 1) in R. Since s �→ f+(s)/s is

nonincreasing on (0, 1], it follows that αv+ is a subsolution and min
(
α−1v+, 1

)
is a

supersolution of (3.27) satisfied by u+. Therefore, the maximum principle yields

(3.30) 0 < αv+(t, x) ≤ u+(t, x) ≤ min
(
α−1v+(t, x), 1

) ∀(t, x) ∈ [0,+∞)× R.

Gathering (3.26), (3.28), and (3.30) together with the fact that u ranges in (0, 1), one
infers that

(3.31) 0 < β v+(t, x) ≤ u(t, x) ≤ min
(
β−1v+(t, x), 1

) ∀(t, x) ∈ [0,+∞)× R,

where β = α e−μ+
˜Θ∞ = e−μ−Θ(0)−μ+

˜Θ∞ ∈ (0, 1].
The following lemma establishes the exact decay rate of v(0, x) as x → +∞. (We

point out that the same lemma would actually hold at any fixed time t ∈ R.) We recall
that the solution 0 < v < 1 of (3.9) is of the type v = uμ and that c̃+ ∈ [c−,+∞)
denotes the rightmost point of the measure μ.

Lemma 3.11. For every x0 ∈ R, there holds

(3.32)
v(0, x+ x0)

v(0, x)
→ e

−λ−
c̃+

x0
as x → +∞,

where λ−
c̃+

is given in (3.22).
We point out that Proposition 3.2 and Lemma 3.6 immediately imply that v

cannot have exponential decay rate respectively smaller and larger than λ−
c̃+

as x →
+∞, but this is not enough for applying the results of Uchiyama [42] to v+. The proof
of Lemma 3.11 uses the inequalities (3.4) applied to v = uμ. Since it is a bit technical,
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we postpone it in the next subsection. We first complete the proof of Theorem 1.4,
that is, the proof of (1.14) as t → +∞.

As already mentioned in the proof of Theorem 3.1, the function v = uμ is contin-
uously decreasing with respect to x. In particular, v+(0, ·) = v(0, ·) is continuously
decreasing in R with v+(0,−∞) = 1 and v+(0,+∞) = 0. From the maximum prin-
ciple, for every t ≥ 0, the function v+(t, ·) is continuous and decreasing in R and
converges to 0 and 1 at ±∞. Therefore, for every t ≥ 0, there is a unique real number
Y +(t) such that

(3.33) v+
(
t, Y +(t)

)
=

1

2
.

Owing to the definition of v+ in (3.29), it follows then from Lemma 3.11 above and
Theorems 8.1, 8.2, and 8.5 of [42] that

(3.34) sup
x∈[−Y +(t),+∞)

∣∣v+(t, Y +(t) + x
)− ϕ+

c+(x0 + x)
∣∣→ 0 as t → +∞,

where x0 = (ϕ+
c+)

−1(1/2) and c+ = κ̃+ μ+/κ̃ with 0 < κ̃ = min
(
λ−
c̃+
,
√
μ+

) ≤ √
μ+.

Furthermore, Y +(t)/t → c+ as t → +∞. Thus, since 0 < v+ < 1 is decreasing with
respect to x and ϕ+

c+(−∞) = 1, the convergence (3.34) holds uniformly in x ∈ R,
that is,

(3.35) sup
x∈R

∣∣v+(t, Y +(t) + x
)− ϕ+

c+(x0 + x)
∣∣→ 0 as t → +∞.

Let (tp)p∈N be any sequence of real numbers in [0,+∞) such that tp → +∞ as p →
+∞. For every p ∈ N and (t, x) ∈ [tp,+∞)×R, set v+p (t, x) = v+

(
tp + t, Y +(tp)+x

)
.

Up to extraction of a subsequence, the functions v+p converge in C1,2
loc (R

2) as p → +∞
to a solution 0 ≤ v+∞ ≤ 1 of (3.24) in R

2.
Lemma 3.12. One has

(3.36) v+∞(t, x) = ϕ+
c+(x− c+t+ x0) for all (t, x) ∈ R

2.

Proof. Since v+p (0, 0) = v+
(
tp, Y

+(tp)
)
= 1/2 for all p ∈ N, there holds v+∞(0, 0) =

1/2 and 0 < v+∞ < 1 in R
2 from the strong maximum principle. For every t ∈ R and

p large enough so that tp + t ≥ 0, one has

v+
(
tp+t, Y

+(tp+t)+Y
+(tp)−Y +(tp+t)

)
=v+(tp+t, Y

+(tp)
)
=v+p (t, 0) → v+∞(t, 0) ∈ (0, 1)

as p → +∞, while v+
(
tp + t, Y +(tp + t) + Y +(tp)− Y +(tp + t)

)−ϕ+
c+

(
x0 + Y +(tp)−

Y +(tp + t)
)→ 0 as p → +∞, from (3.35). Therefore,

(3.37) x0 + Y +(tp)− Y +(tp + t) → (ϕ+
c+)

−1(v+∞(t, 0)) as p → +∞.

Using again (3.35), with (3.37), one infers that, for every (t, x) ∈ R
2 (and tp + t ≥ 0)

v+p (t, x)=v+
(
tp+t, Y +(tp+t)+Y +(tp)−Y +(tp+t)+x

)→ ϕ+
c+

(
(ϕ+

c+)
−1(v+∞(t, 0))+x

)
as p → +∞, hence

(3.38) v+∞(t, x) = ϕ+
c+

(
(ϕ+

c+)
−1(v+∞(t, 0)) + x

)
.
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As a consequence, for every s < t ∈ R and x ∈ R, it follows from the uniqueness of
the bounded solutions of the Cauchy problem associated to (3.24) that

v+∞(t, x) = ϕ+
c+

(
(ϕ+

c+)
−1(v+∞(s, 0)) + x− c+(t− s)

)
,

hence (ϕ+
c+)

−1(v+∞(t, 0)) = (ϕ+
c+)

−1(v+∞(s, 0))− c+(t− s). Finally,

(ϕ+
c+)

−1(v+∞(t, 0)) = (ϕ+
c+)

−1(v+∞(0, 0))− c+t = (ϕ+
c+)

−1
(1
2

)
− c+t = x0 − c+t

∀t ∈ R,

and the desired conclusion (3.36) follows from (3.38).
Now call, for p ∈ N and (t, x) ∈ [−tp,+∞)× R,

up(t, x) = u
(
tp + t, Y +(tp) + x

)
.

Each function up satisfies (up)t = (up)xx+f(tp+t, up) in [−tp,+∞)×R. It follows then
from standard parabolic estimates and (1.3) that, up to extraction of a subsequence,
the functions up converge in C1,2

loc (R
2) to a classical solution 0 ≤ u∞ ≤ 1 of (3.24)

in R
2.
Lemma 3.13. There is a real number x∞ such that

(3.39) u∞(t, x) = ϕ+
c+(x− c+t+ x∞) ∀(t, x) ∈ R

2.

Proof. It follows from (3.31) that 0 < β v+p (t, x) ≤ up(t, x) ≤ min
(
β−1v+p (t, x), 1

)
for all p ∈ N and (t, x) ∈ [−tp,+∞)× R. Therefore,

(3.40) 0 < β v+∞(t, x) ≤ u∞(t, x) ≤ min
(
β−1v+∞(t, x), 1

) ∀(t, x) ∈ R
2,

by passing to the limit as p → +∞. Since infR2 v+∞ = 0 by (3.36), the function u∞
cannot be identically equal to 1. Finally, 0 < u∞ < 1 in R

2 from the strong maximum
principle. Furthermore, (3.36) and (3.40) imply that infx−c+t≤0 u∞(t, x) > 0 and, as
in the proof of Lemma 3.5, one can then show that u∞(t, x) → 1 as x − c+t → −∞.
On the other hand, it also follows from (3.36) and (3.40) together with ϕ+

c+(ξ) ∼ e−κ̃ξ

if c+ > 2
√
μ+ (resp., ϕ+

c+(ξ) ∼ ξ e−κ̃ξ if c+ = 2
√
μ+) as ξ → +∞, that there is A ≥ 0

such that

ϕ+
c+(x− c+t+A) ≤ u∞(t, x) ≤ ϕ+

c+(x− c+t−A) ∀(t, x) ∈ R
2 with x− c+t ≥ 0.

As a consequence, as in Step 3 of the proof of Proposition 2.3, by combining Propo-
sition 4.3 in [28] and Theorem 3.5 of [4] (see also Lemma 8.2 of [14], adapted here to
the homogeneous case), the conclusion (3.39) follows for some real number
ξ∞ ∈ [−A,A].

We are finally able to complete the proof of the limit (1.14) as t → +∞, that
is, the convergence of u to ϕ+

c+ along its level sets as t → +∞. Remember that

the function ξ was defined by (3.25) for t > 0. In particular, u
(
tp, X(tp) + ξ(tp)

)
=

u
(
tp, X

+(tp)
)
= ϕ+

c+(0) for every p ∈ N, while u
(
tp, Y

+(tp)
)
= up(0, 0) → u∞(0, 0) =

ϕ+
c+(x∞) ∈ (0, 1) as p → +∞, from (3.39). Therefore, (1.6) implies that the sequence

(X(tp) + ξ(tp)− Y +(tp))p∈N is bounded, hence

up

(
0, X(tp) + ξ(tp)− Y +(tp)

)− u∞
(
0, X(tp) + ξ(tp)− Y +(tp)

)→ 0 as p → +∞.



ADMISSIBLE SPEEDS OF TRANSITION FRONTS 3385

But, for all p ∈ N,{
up

(
0, X(tp) + ξ(tp)− Y +(tp)

)
= u
(
tp, X(tp) + ξ(tp)

)
= ϕ+

c+(0),

u∞
(
0, X(tp) + ξ(tp)− Y +(tp)

)
= ϕ+

c+

(
X(tp) + ξ(tp)− Y +(tp) + x∞

)
.

One infers that X(tp) + ξ(tp)− Y +(tp) + x∞ → 0 as p → +∞. As a consequence,

u
(
tp, X(tp)+ξ(tp)+x)= up

(
0, X(tp)+ξ(tp)−Y +(tp)+x

) −→
p→+∞u∞(0, x−x∞) = ϕ+

c+(x)

from (3.39), and the convergence holds locally uniformly with respect to x. Further-
more, since u

(
tp, X(tp) + x

) → 1 (resp., 0) as x → −∞ (resp., x → +∞) uniformly
in p ∈ N by (1.6), since ξ : (0,+∞) → R is bounded, and since ϕ+

c+(−∞) = 1 and

ϕ+
c+(+∞) = 0, one gets that

u
(
tp, X(tp) + ξ(tp) + x

)→ ϕ+
c+(x) as p → +∞ uniformly in x ∈ R.

But the limit does not depend on the sequence (tp)p∈N converging to +∞. From the
compactness arguments used in the above proof, one concludes that u

(
t,X(t)+ ξ(t)+

x
) → ϕ+

c+(x) as t → +∞ uniformly in x ∈ R, and standard parabolic estimates also

imply that the convergence holds in C2(R).
Finally, by defining ξ : R → R by (3.18) in (−∞, 0] and by (3.25) in (0,+∞), the

function ξ is bounded and the conclusion (1.14) holds with φc±(x) = ϕ±
c±(x). The

proof of Theorem 1.4 is thereby complete. �
3.2.6. Proof of Lemma 3.11. We recall from Substeps 5.1 and 5.2 above that

0 < v = uμ < 1 obeys (3.9), where the measure μ ∈ M is supported in [c−, c̃+] ⊂
(2
√
μ−,+∞), and c− and c̃+ are the leftmost and rightmost points of the support of

μ. Here, M = μ
(
[c−, c̃+]

)
> 0 and the inequalities (3.4) amount to

(3.41) M−1

∫
[c−,c̃+]

ϕ−
c

(
x−c lnM

)
dμ(c) ≤ v(0, x) ≤ M−1

∫
[c−,c̃+]

e−λ−
c (x−c lnM) dμ(c)

for all x ∈ R. If c− = c̃+, then μ = M δc− and v(0, x) = ϕ−
c−

(
x−c− lnM

)
for all x ∈ R,

hence the desired conclusion (3.32) is immediate since ϕ−
c−(ξ) ∼ e

−λ−
c−ξ

= e
−λ−

c̃+
ξ

as ξ → +∞.
Let us now consider in the sequel the case c− < c̃+. We first show that, for every

c′ ∈ (c−, c̃+),

(3.42) v(0, x) ∼ M−1

∫
[c′,c̃+]

e−λ−
c (x−c lnM) dμ(c) as x → +∞.

To do so, let c′ be arbitrary in the open interval (c−, c̃+) and let c′′ be such that
c− < c′ < c′′ < c̃+. It follows from (3.41) that

(3.43)

M−1

∫
[c′,c̃+]

ϕ−
c

(
x−c lnM

)
dμ(c)︸ ︷︷ ︸

=:I1(x)

≤ v(0, x) ≤ M−1

∫
[c−,c′)

e−λ−
c (x−c lnM)dμ(c)︸ ︷︷ ︸

=:I2(x)

+M−1

∫
[c′,c̃+]

e−λ−
c (x−c lnM)dμ(c)︸ ︷︷ ︸

=:I3(x)
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for all x ∈ R. We shall show that v(0, x) ∼ I3(x) as x → +∞. Since λ−
c ≥ λ−

c′ > λ−
c′′ >

0 for all c ∈ [c−, c′), one gets from one hand that I2(x) = O(e−λ−
c′x) = o(e−λ−

c′′x) as
x → +∞, while, from the other, that

lim inf
x→+∞

(
eλ

−
c′′xI3(x)

) ≥ lim inf
x→+∞

(
eλ

−
c′′xM−1

∫
[c′′,c̃+]

e−λ−
c (x−c lnM)dμ(c)

)
,

≥ M−1

∫
[c′′,c̃+]

eλ
−
c c lnMdμ(c),

which is positive because μ
(
[c′′, c̃+]

)
> 0 by definition of c̃+. As a consequence, I2(x) =

o(I3(x)) as x → +∞ and

(3.44) I2(x) + I3(x) ∼ I3(x) as x → +∞.

As far as the left-hand side of (3.43) is concerned, we claim that

(3.45) ∀ η > 0, ∃Aη ∈ R, ∀x ≥ Aη, ∀ c ∈ [c′, c̃+], ϕ−
c (x) ≥ (1 − η) e−λ−

c x.

Let us assume temporarily this claim and finish the proof of Lemma 3.11. It follows
from (3.45) that, for every η > 0, there holds I1(x) ≥ (1− η) I3(x) for x large enough.
Together with (3.43) and (3.44), one infers that v(0, x) ∼ I3(x) as x → +∞, that
is, (3.42).

In the final step, let x0 ∈ R be fixed. We want to show that v(0, x+x0)/v(0, x) →
e
−λ−

c̃+
x0

as x → +∞. Let ε ∈ (0, 1) be arbitrary. Since the map c �→ λ−
c is continuous

on [2
√
μ−,+∞), it follows that there is c′ ∈ (c−, c̃+) such that

(1− ε) e
−λ−

c̃+
x0 ≤ e−λ−

c x0 ≤ (1 + ε) e
−λ−

c̃+
x0 ∀c ∈ [c′, c̃+].

From (3.42), there is A ∈ R such that, for all x ≥ A,

(1−ε)M−1

∫
[c′,c̃+]

e−λ−
c (x−c lnM)dμ(c) ≤ v(0, x) ≤ (1+ε)M−1

∫
[c′,c̃+]

e−λ−
c (x−c lnM)dμ(c)

and

(1− ε)M−1

∫
[c′,c̃+]

e−λ−
c (x+x0−c lnM)dμ(c) ≤ v(0, x+ x0)

≤ (1 + ε)M−1

∫
[c′,c̃+]

e−λ−
c (x+x0−c lnM)dμ(c).

Putting together the previous three displayed formulas leads to

(1 − ε)2

1 + ε
e
−λ−

c̃+
x0

v(0, x) ≤ v(0, x+ x0) ≤ (1 + ε)2

1− ε
e
−λ−

c̃+
x0

v(0, x) ∀x ≥ A.

Since ε ∈ (0, 1) was arbitrary, the desired conclusion (3.32) follows, and the proof of
Lemma 3.11 is complete. �

Proof of (3.45). More generally, we fix any two real numbers a and b such that

2
√
μ− < a ≤ b. We recall that, for every c ∈ (2

√
μ−,+∞), ϕ−

c (x) ∼ e−λ−
c x as
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x → +∞, where λ−
c = (c−√c2 − 4μ−)/2 solves (λ−

c )
2 − cλ−

c + μ− = 0, and we want
to show that, for every η > 0, there exists a real number Aη such that

(3.46) ϕ−
c (x) ≥ (1− η) e−λ−

c x ∀c ∈ [a, b] and x ≥ Aη.

In other words, we want to show that the asymptotic exponential decay of ϕ−
c at +∞

is uniform with respect to c ∈ [a, b].
To do so, notice first that, for every c ∈ [a, b],

0 < λ−
b ≤ λ−

c ≤ λ−
a <

√
μ− < λ̃c :=

c+
√
c2 − 4μ−
2

.

Since, for every c ∈ [a, b], λ−
c < λ̃c are the two roots of the equation X2−cX+μ− = 0,

there are α ∈ (0, 1) and β > 0 such that λ−
c < (1 + α)λ−

c < λ̃c for all c ∈ [a, b] and

(3.47) (1 + α)2 (λ−
c )

2 − c (1 + α)λ−
c + μ− ≤ −β ∀c ∈ [a, b].

Now, since f− is of class C2([0, 1]) with f−(0) = 0 and f ′−(0) = μ−, there is s0 ∈ (0, 1)
such that f−(s) ≥ μ−s− s1+α for all s ∈ [0, s0]. Next, it is straightforward to check
that there is a positive real number B such that

(3.48)

β B ≥ 1 and uc(x) := max
(
e−λ−

c x −B e−(1+α)λ−
c x, 0
) ≤ s0 ∀c ∈ [a, b] and x ∈ R.

For every c ∈ [a, b] and x ∈ R such that uc(x) > 0, there holds

0 < uc(x) = e−λ−
c x −B e−(1+α)λ−

c x ≤ min
(
s0, e

−λ−
c x
)
,

hence

u′′
c (x) + c u′

c(x) + f−(uc(x)) = −μ−e−λ−
c x −B

(
(1 + α)2(λ−

c )
2

− c(1 + α)λ−
c

)
e−(1+α)λ−

c x + f−(uc(x))

≥ −μ−e−λ−
c x +B

(
μ− + β

)
e−(1+α)λ−

c x + f−(uc(x))
≥ −μ−uc(x) + u1+α

c (x) + f−(uc(x))

≥ 0

from (3.47) and (3.48). In other words, since f−(0) = 0, the functions uc are sub-
solutions of the equations (ϕ−

c )
′′ + c(ϕ−

c )
′ + f−(ϕc) = 0 satisfied by the functions

ϕ−
c .

In this paragraph, c is a fixed real number in [a, b]. We want to show that
uc(x) ≤ ϕ−

c (x) for all x ∈ R. Notice that both functions uc and ϕ−
c have the same

exponential decay, namely, e−λ−
c x, as x → +∞, but one cannot directly apply the

maximum principle as x → +∞ since f ′
−(0) = μ− > 0. However, we are going to

use a sliding method. Remember that uc(x) ≤ min
(
e−λ−

c x, s0
)
for all x ∈ R, that

ϕ−
c (x) ∼ e−λ−

c x as x → +∞, and that the positive continuous function ϕ−
c converges

to 1 (> s0) at −∞. Therefore, there is x0 > 0 such that uc(x) ≤ ϕ−
c (x − x0) for all

x ∈ R. Define

x∗ = min
{
x′ ≥ 0, uc(x) ≤ ϕ−

c (x− x′)∀x ∈ R
}
.

The real number x∗ is well defined, with 0 ≤ x∗ ≤ x0, and uc(x) ≤ ϕ−
c (x − x∗) for

all x ∈ R. Assume, by contradiction, that x∗ > 0. Then there are some sequences
(xp)p∈N in (0, x∗) and (yp)p∈N in R such that

xp → x∗ as p → +∞ and uc(yp) > ϕ−
c (yp − xp) ∀p ∈ N.
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Since x∗ > 0 and uc(x) ≤ e−λ−
c x ∼ ϕ−

c (x) as x → +∞, one infers that
lim supp→+∞ yp < +∞. Furthermore, lim infp→+∞ yp > −∞ since uc(−∞) = 0 <
1 = ϕ−

c (−∞). Therefore, the sequence (yp)p∈N is bounded and converges, up to ex-
traction of a subsequence, to a real number y∞. It follows that uc(y∞) ≥ ϕ−

c (y∞−x∗),
while uc(x) ≤ ϕ−

c (x− x∗) for all x ∈ R (hence, uc(y∞) = ϕ−
c (y∞ − x∗) > 0). But uc

is a subsolution of the equation satisfied by ϕ−
c . It follows from the strong maximum

principle that uc(x) = ϕ−
c (x−x∗) for all x belonging to any interval (z1, z2) containing

y∞ and where uc is positive. By definition of uc, there is x− ∈ (−∞, y∞) such that
uc(x) > 0 on (x−, y∞] with uc(x−) = 0. It follows by continuity that ϕ−

c (x− − x∗) =
uc(x−) = 0, which is a contradiction since ϕ−

c is positive in R. Consequently, x∗ = 0
and uc(x) ≤ ϕ−

c (x) for all x ∈ R.

Finally, for all c ∈ [a, b] and x ∈ R, there holds ϕ−
c (x) ≥ e−λ−

c x(1 − B e−αλ−
c x),

where α > 0 and B defined in (3.47) and (3.48) are independent of c ∈ [a, b].
Since λ−

c ≥ λ−
b > 0 for all c ∈ [a, b], the conclusion (3.46) follows immediately.

The proof of the claim (3.45) is thereby complete. �
3.3. Proof of Theorem 1.7. Let f and u be as in Theorem 1.7. In order to

show that u(t, x) has a exponential decay rate as x → +∞, the method is, as in the
proof of Theorem 1.4, to compare u with a solution v of (3.9). By using (1.21), it will
follow that v is of the type v = uμ for some measure μ ∈ M. Since such solutions
uμ turn out to have an exponential decay rate λ ≥ 0 as x → +∞, so does u. Last,
we distinguish the two cases λ > 0 and λ = 0, and we show in the former that u is
then a transition front connecting 0 and 1 and identify its asymptotic past and future
speeds by comparison arguments.

First, observe that Steps 1 and 2 of the proof of Theorem 1.4 can be reproduced
word by word, since they did not use the fact that u was a transition front connecting
0 and 1. Therefore, by defining the sequence (vn)n∈N and the function v as there,
there is then a solution 0 < v ≤ 1 of (3.9) such that (3.12) holds, that is,

(3.49) u(t, x) e−μ−Θ(t) ≤ v(t, x) ≤ u(t, x) eμ−Θ(t) ∀(t, x) ∈ R
2,

where Θ (and ζ) are as in (3.11) (and (3.10)). Since Θ is bounded in, say, (−∞, 0],
it follows then from the assumption (1.21) that max[−c|t|,c|t|] v(t, ·) → 0 as t → −∞
with c > 2

√
μ− = 2

√
f ′−(0) (hence, in particular, v(t, x) < 1 for all (t, x) ∈ R × R,

from the strong maximum principle). Furthermore, Theorem 1.4 of [12] implies that
the solution v of (3.9) is then of the type v = uμ for some measure μ ∈ M (associated
with the function f−) whose support satisfies

(3.50) supp(μ) ⊂ (−∞,−c] ∪ [c,+∞) ∪ {∞}.
As a consequence, one infers from Theorem 1.9 of [16] applied to the function vτ

defined in R × R by vτ (t, x) := v(t + τ, x) for an arbitrary τ ∈ R that λτ :=
− limx→+∞(ln v(τ, x))/x exists in [0,

√
μ−). Furthermore, as explained after the state-

ment of Theorem 1.9 in [16], the real numbers λτ do not depend on τ ∈ R. Finally,
by using (3.49), there is λ ∈ [0,

√
μ−) such that −(lnu(t, x))/x → λ as x → +∞ for

all t ∈ R. We will then consider separately the cases λ > 0 and λ = 0.
Case 1. λ > 0. In this case, Theorem 1.9 of [16] implies that v = uμ is a transition

front connecting 0 and 1 for (3.9), with a function Xv : R → R satisfying (1.6). We get
then from part (i) of Theorem 3.1 and from (3.50) that the support of μ is a compact
subset of [c,+∞) (⊂ (2

√
μ−,+∞)). Furthermore, by part (ii) of Theorem 3.1, the

transition front v then has an asymptotic past speed c− ∈ [c,+∞) ⊂ (2
√
μ−,+∞)
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and an asymptotic future speed c̃+ ∈ [c−,+∞). On the other hand, by (1.6) and (1.7)
applied with Xv and v, the past speed c− satisfies

(3.51) c− = sup
{
γ ≥ 0, lim

t→−∞ max
[−γ|t|,γ|t|]

v(t, ·) = 0
}
,

while Lemma 3.11 implies that limx→+∞ v(0, x+x0)/v(0, x) = e
−λ−

c̃+
x0

for all x0 ∈ R

with λ−
c̃+

= (c̃+ −
√
c̃2+ − 4μ−)/2. Since one already knows that ln v(0, x) ∼ −λx

as x → +∞, one gets λ = λ−
c̃+
, hence limx→+∞ v(0, x + x0)/v(0, x) = e−λx0 for all

x0 ∈ R.
Define now X(t) = Xv(t) for all t ≤ 0. One has limt→−∞ X(t)/t = c− ≥ c >

2
√
μ− and, by (3.49) and (3.51), there holds

c− = sup
{
γ ≥ 0, lim

t→−∞ max
[−γ|t|,γ|t|]

u(t, ·) = 0
}
.

By using again (3.49) and by interchanging the roles of u and v in the proof of
Lemma 3.5, it also follows that

(3.52)

{
u(t,X(t) + x) → 1 as x → −∞,

u(t,X(t) + x) → 0 as x → +∞,
uniformly in t ∈ (−∞, 0].

As in Substep 5.4 of the proof of Theorem 1.4, one can then define u+(t, x) and
v+(t, x) for (t, x) ∈ [0,+∞)× R as in (3.27) and (3.29) and notice that, as in (3.31),
there is β ∈ (0, 1] such that

(3.53) 0 < β v+(t, x) ≤ u(t, x) ≤ min
(
β−1v+(t, x), 1

)
for all (t, x) ∈ [0,+∞)× R.

The function v+(0, ·) = v(0, ·) = uμ(0, ·) is continuously decreasing in R

with v+(0,−∞) = 1, v+(0,+∞) = 0, and we know that limx→+∞ v+(0, x + x0)/
v+(0, x) = e−λx0 for all x0 ∈ R. Therefore, by defining Y +(t) for t ≥ 0 as in (3.33),
we get from [42] as in Substep 5.4 of the proof of Theorem 1.4 that Y +(t)/t → c+ as
t → +∞ and that (3.35) holds, that is,

(3.54) sup
x∈R

∣∣v+(t, Y +(t) + x
)− ϕ+

c+(ξ0 + x)
∣∣→ 0 as t → +∞,

where ξ0 = (ϕ+
c+)

−1(1/2) and ϕ+
c+(x− c+t) is a standard traveling front connecting 0

and 1 for (3.24), with speed

c+ = min(λ,
√
μ+) +

μ+

min(λ,
√
μ+)

.

Set X(t) = Y +(t) for t > 0. Let us finally prove that u is a transition front
connecting 0 and 1 for (1.1) with the function X : R → R. (Remember that we
already know that (3.52) holds.) Let ε > 0 be arbitrary. By (3.53) and (3.54), there
are Tε > 0 and Mε > 0 such that

(3.55) 0 < u(t,X(t) + x) ≤ ε ∀t ≥ Tε and x ≥ Mε.

Using again (3.53) and (3.54) and arguing as in the proof of Lemma 3.5, one gets the
existence of T ′

ε > 0 and M ′
ε > 0 such that

(3.56) 1− ε ≤ u(t,X(t) + x) < 1 ∀t ≥ T ′
ε and x ≤ −M ′

ε.
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Since u(0,−∞) = 1 and u(0,+∞) = 1 as a particular consequence of (3.52), standard
parabolic estimates imply that u(t,−∞) = 1 and u(t,+∞) = 0 locally uniformly in
t ∈ R. On the other hand, Y +(t) (= X(t) for t > 0) is locally bounded in [0,+∞)
since v+(t,−∞) = 1 and v+(t,+∞) = 0 locally uniformly in t ≥ 0. These proper-
ties together with (3.55) and (3.56) imply that u(t,X(t) + x) → 1 as x → −∞ and
u(t,X(t)+x) → 0 as x → +∞, uniformly in t ≥ 0. Thanks to (3.52), one infers that u
is a transition front connecting 0 and 1 for (1.1), with the function X : R → R satisfy-
ing (1.6). It also follows from the previous properties of Xv and Y + that X(t)/t → c±
as t → ±∞, where c± are given as in (1.22). Finally, by Theorem 1.4, (1.14) holds with
φc± = ϕ±

c± for some bounded function ξ : R → R. The proof is therefore complete in
the case λ > 0.

Case 2. λ = 0. We know in this case that (ln u(τ, x))/x → 0 as x → +∞ for
every τ ∈ R. Suppose by contradiction that u is a transition front connecting 0 and 1
for (1.1). Take τ large enough so that f(t, s) ≥ f+(s)/2 for all (t, s) ∈ [τ,+∞)× [0, 1].
For any γ >

√
2μ+ =

√
2f ′

+(0), consider the standard traveling front ϕ̃γ(x − γt)
connecting 0 and 1 for (3.1) with g = f+/2. Since ϕ̃γ decays exponentially at +∞,
therefore faster than u(τ, ·), and u(τ, ·) is positive, continuous, and tends to 1 at −∞,
we can find β ∈ (0, 1) such that βϕ̃γ(x − γτ) ≤ u(τ, x) for all x ∈ R. Furthermore,
βϕ̃γ(x − γt) is a subsolution to (1.1) for t > τ . It then follows from the maximum
principle that u(t, γt) ≥ βϕ̃(0) > 0 for all t > τ , from which, owing to (1.6) or (1.7),
we derive lim inft→+∞ X(t)/t ≥ γ. Since this is true for all γ >

√
2μ+, we obtain a

contradiction with (3.7). Therefore, u is not a transition front connecting 0 and 1,
and the proof of Theorem 1.7 is thereby complete. �
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[44] A. Zlatoš, Transition fronts in inhomogeneous Fisher–KPP reaction-diffusion equations,
J. Math. Pures Appl., 98 (2012), pp. 89–102.
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