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We address the interplay between global and local gauge non-Abelian symmetries in lattice gauge
theories with multicomponent scalar fields. We consider two-dimensional lattice scalar non-Abelian gauge
theories with a local SOðNcÞ (Nc ≥ 3) and a global OðNfÞ invariance, obtained by partially gauging a
maximally OðNfNcÞ-symmetric multicomponent scalar model. Correspondingly, the scalar fields belong

to the coset SNfNc−1=SOðNcÞ, where SN is the N-dimensional sphere. In agreement with the Mermin-
Wagner theorem, these lattice SOðNcÞ gauge models withNf ≥ 3 do not have finite-temperature transitions
related to the breaking of the global non-Abelian OðNfÞ symmetry. However, in the zero-temperature limit
they show a critical behavior characterized by a correlation length that increases exponentially with the
inverse temperature, similarly to nonlinear OðNÞ σ models. Their universal features are investigated by
numerical finite-size scaling methods. The results show that the asymptotic low-temperature behavior
belongs to the universality class of the two-dimensional RPNf−1 model.

DOI: 10.1103/PhysRevD.102.034512

I. INTRODUCTION

Lattice gauge models provide effective theories in
various physical contexts, ranging from fundamental inter-
actions [1,2] to emerging phenomena in condensed matter
physics [3,4]. They provide mechanisms for fundamental
phenomena, such as confinement and the Higgs mecha-
nism, which explain the spectrum of subnuclear systems
interacting via strong and electroweak forces, supercon-
ductivity, etc. The interplay between global and local gauge
symmetries is crucial to determining the main features
of the theory, such as the nature of the spectrum, the
degeneracy of the energy levels, the phase diagram, and the
nature and universality classes of their thermal and quan-
tum transitions.
In the case of two-dimensional (2D) lattice gauge models,

the interplay of non-Abelian global symmetries and local
gauge symmetries determines the large-scale properties of
the system in the zero-temperature limit, and therefore, the
statistical field theory realized in the corresponding con-
tinuum limit [5]. These issues have been addressed in the
multicomponent Abelian-Higgs model [6], characterized by
a global UðNfÞ symmetry (Nf ≥ 2) and a local U(1) gauge

symmetry, and in the multiflavor scalar quantum chromo-
dynamics [7], characterized by a global UðNfÞ symmetry
and a local SUðNcÞ gauge symmetry. The results of
Refs. [6,7] provide numerical evidence that the asymptotic
low-temperature behavior of these 2D lattice gauge models
always belongs to the universality class of the 2D CPNf−1

field theory [5]. Therefore, the universality class of the low-
temperature behavior is only determined by the global
UðNfÞ symmetry of the model. The local gauge symmetry
apparently does not play any role: models with different
gauge symmetry but with the same global invariance have
the same large-scale low-temperature behavior. These results
may be interpreted as numerical evidence of a more general
conjecture [7]: the renormalization-group flow determining
the asymptotic low-temperature behavior is generally con-
trolled by the 2D statistical field theories associated with the
symmetric spaces [5,8] that have the same global symmetry.
This is indeed the case of the Abelian-Higgs model and of
scalar chromodynamics, whose low-temperature behavior is
always controlled by the 2D CPNf−1 field theory.
To gain additional evidence of the above conjecture, we

extend the analysis to other 2D lattice models, character-
ized by different global and local gauge symmetries. For
this purpose, we consider 2D lattice models with real scalar
fields, which are invariant under global and local gauge
transformations that belong to orthogonal groups. In
particular, we consider lattice gauge models that are
invariant under SOðNcÞ local transformations and under
OðNfÞ global transformations (Nc will be referred to as the
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number of colors and Nf as the number of flavors),
focusing on the case Nf ≥ 3, so that the global symmetry
group is non-Abelian. According to the Mermin-Wagner
theorem [9], these lattice gauge models do not present a
finite-temperature transition associated with the breaking of
the global OðNfÞ symmetry. However, they are expected
to develop a critical behavior in the zero-temperature limit
[for Nf ¼ 2, the global symmetry group is the Abelian
group O(2), so that a finite-temperature Berezinskii-
Kosterlitz-Thouless transition is possible]. We study the
universal features of the asymptotic zero-temperature
behavior for Nf ¼ 3, 4 and Nc ¼ 3, 4 by means of
finite-size scaling (FSS) analyses of Monte Carlo (MC)
results. According to the above-mentioned conjecture, the
asymptotic behavior should be that of a statistical theory
defined on a symmetric space with the same global
symmetry. We provide a theoretical argument that shows
that the appropriate model is the 2D RPNf−1 model, in
which the fields effectively belong to the real projective
space in Nf dimension, a symmetric space which is
invariant under global OðNfÞ transformations. Note that
the associated symmetric space with the same global OðNfÞ
symmetry group is not the Nf-dimensional sphere. This is
due to the fact that the low-energy behavior is essentially
characterized by a bilinear operator (a projector) that is
invariant under local Z2 transformations. We anticipate that
the numerical results will confirm the conjecture.
The paper is organized as follows: In Sec. II, we

introduce the lattice non-Abelian gauge models that we
consider. In Sec. III, we discuss the general strategy we use
to investigate the nature of the low-temperature critical
behavior. Then, in Sec. IV, we report the numerical results
for lattice models with Nf ¼ 3, 4 and Nc ¼ 3, 4. Finally, in
Sec. V, we summarize and draw our conclusions. In the
Appendix, we report some results on the minimum-energy
configurations of the models considered.

II. THE MULTIFLAVOR LATTICE SO(Nc)
GAUGE MODEL

We define a 2D lattice scalar gauge theory by partially
gauging a maximally symmetric model of real matrix
variables ϕaf

x , with a ¼ 1;…; Nc and f ¼ 1;…; Nf (we
will refer to these two indices as color and flavor indices,
respectively). We start from the action

Ssym ¼ −t
X
x;μ

Trϕt
xϕxþμ̂; Trϕt

xϕx ¼ 1; ð1Þ

where the sum is over all links of a square lattice and μ̂ ¼
1̂; 2̂ denotes the unit vectors along the lattice directions.1

Without loss of generality, we can set t ¼ 1. The action
Ssym is invariant under global OðMÞ transformations
with M ¼ NfNc. Indeed, it can be written in terms
of M-component unit-length real vectors sx, as Ssym ¼
−
P

x;μ sx · sxþμ̂, which is the standard nearest-neighbor
M-vector lattice model.
We proceed by gauging some of the degrees of freedom

using the Wilson approach [1]. We associate an SOðNcÞ
matrix Vx;μ with each lattice link [ðx; μÞ denotes the link
that starts at site x in the μ̂ direction] and add a Wilson
kinetic term [1] for the gauge fields. We thus obtain the
model with action

Sg ¼ −Nf

X
x;μ

Trϕt
xVx;μϕxþμ̂ −

γ

Nc

X
x

TrΠx; ð2Þ

where Πx is the plaquette operator

Πx ¼ Vx;1Vxþ1̂;2V
t
xþ2̂;1

Vt
x;2: ð3Þ

The plaquette parameter γ plays the role of inverse gauge
coupling. The partition function reads

Z ¼
X
fϕ;Vg

e−βSg ; β≡ 1=T: ð4Þ

One can easily check that the lattice model (2) is invariant
under SOðNcÞ gauge transformations:

ϕx → Wxϕx; Vx;μ → WxVx;μWt
xþμ̂; ð5Þ

with Wx ∈ SOðNcÞ. For γ → ∞, the link variables Vx
become equal to the identity (modulo gauge transforma-
tions); thus, one recovers the ungauged model (1), or
equivalently the nearest-neighbor M-vector model.
For Nc ¼ 2, the global symmetry group of model (2) is

actually larger than OðNfÞ. Indeed, one can show that [10]
the model can be exactly mapped onto the lattice Abelian-
Higgs model

SAH ¼ −Nf

X
x;μ

Re½z̄x · λx;μzxþμ̂�

− γ
X
x;μ>ν

Re½λx;μλxþμ̂;νλ̄xþν̂;μλ̄x;ν�; ð6Þ

where zx is a unit-length Nf-component complex vector,
and λx;ν a U(1) link variable. The Abelian-Higgs model is
invariant under local U(1) and global UðNfÞ transforma-
tions. There is therefore an enlargement of the global
symmetry of the model: the global symmetry group is
UðNfÞ instead of OðNfÞ. The asymptotic zero-temperature
behavior of these models has been studied in Ref. [6].
Therefore, in the following, we focus on the asymptotic
low-temperature behavior for Nc ≥ 3.

1Model (1) with the unit-length constraint for the ϕx variables
is a particular limit of a model with a quartic potentialP

x VðTrϕ†
xϕxÞ of the form VðXÞ ¼ rX þ 1

2
uX2. Formally, it

can be obtained by setting rþ u ¼ 0 and taking the limit u → ∞.
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We mention that the phase diagram and critical behavior
of model (2) in three dimensions was already discussed
in Refs. [10,11], and similar results were presented in
Refs. [12,13] for SUðNcÞ gauge theories. In this work, we
focus on the 2D case. According to the Mermin-Wagner
theorem [9], lattice SOðNcÞ gauge theories are not
expected to show finite-temperature transitions with a
low-temperature phase in which the global OðNfÞ sym-
metry is broken. Therefore, there are only two possibilities:
either the system is always disordered for any β, or a finite-
temperature transition occurs with a low-temperature phase
in which there is no long-range order, but correlations
decay algebraically with the distance. We expect the first
behavior whenever the global symmetry group is non-
Abelian, and the second one whenever the symmetry group
is isomorphic to U(1).
For Nf ≥ 3, the global OðNfÞ symmetry group is

non-Abelian. Therefore, we expect a nontrivial critical
behavior only in the zero-temperature limit, analogous to
that occurring in the nonlinear OðNÞ σ model or in the
CPN−1 model—see, e.g., Ref. [5]. Infinite-volume corre-
lation functions are characterized by a length scale ξ that
diverges as

ξ ∼ βpecβ: ð7Þ

For Nf ¼ 2 and Nc ≥ 3, the model has an Abelian O(2)
global symmetry. It is therefore possible that it undergoes a
finite-temperature Berezinskii-Kosterlitz-Thouless transi-
tion [14–18], with a spin-wave low-temperature phase
characterized by correlation functions decaying algebrai-
cally. For Nf ¼ 2 and Nc ¼ 2, due to the mapping to the
Abelian-Higgs model (6), the global symmetry group, the
U(2) group, is non-Abelian. Therefore, the model is only
critical for β → ∞. The low-temperature behavior belongs
to the universality class of the 2D CP1 model [6], which is
equivalent to that of the nonlinear O(3) σ model.
The global symmetry group of the model is OðNfÞ,

which is not a simple group. Therefore, in principle, one
may have both the breaking of the Z2 subgroup and of the
SOðNfÞ subgroup. However, on the basis of the results for
the same model in three dimensions [10], we do not expect
the Z2 subgroup to play any role (a similar decoupling
occurs in the unitary case [7]). The critical low-temperature
behavior is therefore associated with the order parameter
for the breaking of the SOðNfÞ subgroup, which is the
bilinear operator

Qfg
x ¼

X
a

ϕaf
x ϕag

x −
1

Nf
δfg; ð8Þ

which is a symmetric and traceless Nf × Nf matrix.
In the following sections, we provide numerical

evidence that, for Nc ≥ 3 and Nf ≥ 3, the asymptotic zero-
temperature limit of the SOðNcÞ gauge model (2) is the

same as that of the 2D RPNf−1 models, which are also
invariant under OðNfÞ transformations. The RPN−1 models
can be defined by associating a real N-component unit-
length vector φx with each lattice site and considering
actions that are invariant under global OðNÞ rotations of the
fields and local Z2 transformations φx → sxφx (sx ¼ �1).
The standard nearest-neighbor RPN−1 model is defined by
the lattice action

SRP ¼ −t
X
x;μ

ðφx · φxþμ̂Þ2: ð9Þ

Alternatively, one may introduce an explicit link variable
σx;μ ¼ �1, and consider the lattice action

SRPσ ¼ −t
X
x;μ

φx · σx;μφxþμ̂: ð10Þ

The nature of their low-temperature behavior for N ≥ 3 has
been the object of a long debate—see, e.g., Refs. [19–23].
The main question has been whether the 2D RPN−1 model
belongs to the same universality class as the OðNÞ vector
model. We refer to Ref. [23] for a thorough discussion of
this point. There, we report extensive numerical results that
indicate that the universal low-temperature long-distance
behavior of the 2D RPN−1 models differs from that of the
2D OðNÞ vector models: they appear as distinct universality
classes.
We will show that renormalization-group-invariant quan-

tities defined in terms of Qfg in the non-Abelian gauge
theory have the same universal behavior as the correspond-
ing RPNf−1 quantities defined in terms of the local gauge-
invariant operator

Pfg
x ¼ φf

xφ
g
x −

1

Nf
δfg: ð11Þ

Such correspondence can be established using the same
arguments we used for unitary models in Ref. [7]. As
discussed in the Appendix, for β → ∞ the ϕ configurations
can be parametrized by a single Nf-dimensional unit vector
φf. Modulo gauge transformations, we have

ϕaf ¼ 0; a < Nc;

ϕaf ¼ φf; a ¼ Nc; ð12Þ

which implies that the bilinear Qx becomes equivalent in
this limit to the RPNf−1 operator Px. Since the Z2 global
symmetry does not play any role, in the zero-temperature
limit the gauge model can be described by an effective
theory only in terms of the SOðNfÞ order parameter Px. The
natural candidate for the action is

Heff ¼ −κ
X
x;μ

TrPxPxþμ̂; ð13Þ
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which gives Eq. (9) apart from an irrelevant constant. We
have thus obtained the RPNf−1 model.

III. UNIVERSAL FINITE-SIZE SCALING

We exploit FSS techniques [24–27] to study the nature of
the asymptotic critical behavior of the model for T → 0. For
this purpose we consider models defined on square lattices
of linear size L with periodic boundary conditions. We
focus on the correlations of the gauge-invariant variableQx
defined in Eq. (8). The corresponding two-point correlation
function is defined as

Gðx − yÞ ¼ hTrQxQyi; ð14Þ

where the translation invariance of the system has been
taken into account. We define the susceptibility χ ¼P

x GðxÞ and the correlation length

ξ2 ¼ 1

sin2ðπ=LÞ
G̃ð0Þ − G̃ðpmÞ

G̃ðpmÞ
; ð15Þ

where G̃ðpÞ ¼ P
x e

ip·xGðxÞ is the Fourier transform of
GðxÞ, and pm ¼ ð2π=L; 0Þ. We also consider the quartic
cumulant (Binder) parameter defined as

U ¼ hμ22i
hμ2i2

; μ2 ¼
1

V2

X
x;y

TrQxQy; ð16Þ

where V ¼ L2.
To identify the universality class of the asymptotic zero-

temperature behavior, we consider the Binder parameter U
as a function of the ratio

Rξ ≡ ξ=L: ð17Þ

Indeed, in the FSS limit we have (see, e.g., Ref. [6])

Uðβ; LÞ ≈ FðRξÞ; ð18Þ

where FðxÞ is a universal scaling function that completely
characterizes the universality class of the transition. The
asymptotic values of FðRξÞ for Rξ → 0 and Rξ → ∞
correspond to the values that U takes in the small-β and
large-β limits. For Rξ → 0, we have

lim
Rξ→0

U ¼ 1þ 4

ðNf − 1ÞðNf þ 2Þ ; ð19Þ

independently of the value of Nc. In the large-β limit, we
have U → 1, as discussed in the Appendix.
Equation (18) allows us to check the universality of the

asymptotic zero-temperature behavior without the need of
tuning any parameter. Corrections to Eq. (18) are expected
to decay as a power of L. In the case of asymptotically free
models, such as the 2D CPN−1 and OðNÞ vector models,

corrections decrease as L−2, multiplied by powers of ln L
[28]. However, we note that sometimes, when the available
data are not sufficiently asymptotic, the approach to the
asymptotic behavior may appear slower, and corrections
apparently decay as L−p with p < 2 [29].
Because of the universality of relation (18), we can use

the plots of U versus Rξ to identify the models that belong
to the same universality class. If the data of U for two
different models follow the same curve when plotted
versus Rξ, their critical behavior is described by the same
continuum quantum field theory. This implies that any
other dimensionless RG-invariant quantity has the same
critical behavior in the two models, both in the thermo-
dynamic and in the FSS limit. An analogous strategy for the
study of the asymptotic zero-temperature behavior of 2D
models was employed in Refs. [6,7].

IV. NUMERICAL RESULTS

In this section, we study the large-β critical behavior of
the lattice scalar gauge model (2) for some values ofNf ≥ 3

��� ��� ��� ���
�

���

���

���

��	
R



L=16
L=32
L=64
L=128

Nc=4  Nf=3

��� ��� ���
�

���

���

���

��	

R



L=16
L=32
L=64
L=128
L=256

Nc=3  Nf=3

FIG. 1. Rξ ≡ ξ=L for the three-flavor SO(3) and SO(4) gauge
theories [Eq. (2)] with γ ¼ 0. We show data up to L ¼ 256 for
Nc ¼ 3 (bottom) and up to L ¼ 128 for Nc ¼ 4 (top). Data for
different sizes do not show evidence of crossing points. Statistical
errors are hardly visible on the scale of the figure.
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and Nc ≥ 3. We perform MC simulations, using the same
upgrading algorithm employed in Ref. [10] for three-
dimensional lattice SOðNcÞ gauge models. We show that
the FSS curves (18) of the Binder parameter U versus Rξ

computed in the model (2) agree with those computed in
RPN−1 models (we use the results reported in Ref. [23]).
These results provide numerical evidence that, for Nc ≥ 3,
the critical behavior belongs to the universality class of the
2D RPNf−1 field theory, in agreement with the arguments of
the previous section.
We first mention that the data of Rξ ≡ ξ=L correspond-

ing to different lattice sizes—see Fig. 1—do not intersect,
confirming the absence of a phase transition at finite β, as
expected on the basis of the Mermin-Wagner theorem [9].
In Fig. 2, we show the estimates of the correlation length
for the three-flavor SO(3) and SO(4) gauge theories
[Eq. (2)] with γ ¼ 0, up to lattice sizes L ¼ 256 and

L ¼ 128, respectively. When data for different lattice sizes
match, they can be considered as a good approximation of
the correlation length in the thermodynamic limit at the
given inverse temperature β. The data in this regime are
substantially consistent with an exponential dependence
of ξ on β—see Eq. (7)—as expected for asymptotically free
models.
In Fig. 3, we plot U versus Rξ for the three-flavor SO(3)

and SO(4) gauge theories with γ ¼ 0, up to L ¼ 256 and
L ¼ 128, respectively. We observe that the data of U
appear to approach a FSS curve in the large-L limit, in
agreement with the FSS prediction [Eq. (18)]. In the same
figure, we also report data for the standard RP2 lattice
model with action (9), and for the RP2 gauge model with
action (10) (as shown in Ref. [23], the data for L ¼ 320
provide a good approximation of the asymptotic curve).
The RP2 results are consistent with the asymptotic FSS
curve for the SOðNcÞ gauge model, confirming our claim

���	�����
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L=128

Nc=4  Nf=3
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��




L=32
L=64
L=128
L=256

Nc=3  Nf=3

FIG. 2. The correlation length ξ versus β for Nf ¼ 3, Nc ¼ 3
(bottom) and Nf ¼ 3 Nc ¼ 4 (top). We set γ ¼ 0. When data for
different values of L match, they can be considered as good
approximations of the infinite-volume correlation length, within
their errors. The behavior of the infinite-volume data is consistent
with an exponential dependence on β (we use a logarithmic scale
on the vertical axis).
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FIG. 3. Plot of U versus Rξ for the three-flavor SO(3) (bottom)
and SO(4) (top) gauge theory at γ ¼ 0. The horizontal dashed line
shows the Rξ → 0 limit U ¼ 7=5. The data approach the
asymptotic curve of the 2D RP2 models (9) and (10) (labeled
as standard and gauge, respectively; the corresponding data for
L ¼ 320 are taken from Ref. [23]). Statistical errors are so small
as to be hardly visible.
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that the RP2 model and the SOðNcÞ gauge model with
Nf ¼ 3 and any Nc ≥ 3 have the same large-distance
universal behavior in the critical limit β → ∞.
We have also performed MC simulations for nonvanish-

ing values of γ. Figure 4 reports data for the three-flavor
SO(3) gauge theory [Eq. (2)] with γ ¼ �1, up to L ¼ 128.
They appear to approach the asymptotic FSS curve of the
RP2 universality class, demonstrating that the universal
features of the asymptotic low-temperature behavior are
independent of the inverse gauge coupling γ, at least in a
wide interval around γ ¼ 0. Data up to L ¼ 64 for γ ¼ �2

(not shown) also approach the RP2 curve as L increases. As
discussed in Sec. II, the asymptotic FSS curves must
change if we take the limit γ → ∞ and then the limit
β → ∞, In this case the SO(3) and SO(4) gauge theories
turn into the O(9) and O(12) models, respectively.
These results should be considered as a robust evidence

that the asymptotic low-temperature behavior of the three-
flavor lattice gauge theory with SO(3) and SO(4) gauge

symmetry belongs to the universality class of the 2D RP2

universality class, in a large interval of values of γ
around γ ¼ 0.
As an additional check of the arguments presented in

Sec. II, we have performed simulations of the model (2) for
Nf ¼ 4, Nc ¼ 3 and γ ¼ 0. The results for the Binder
parameter U are plotted versus Rξ in Fig. 5. For compari-
son, we also report results for the RP3 gauge model. The
SO(3) gauge data show a significant size dependence, but
with a clear trend towards the RP3 data. In particular, the
SO(3) gauge data corresponding to L ¼ 128 are essentially
consistent with the RP3 data, confirming again the asymp-
totic equivalence of the universal large-distance behavior of
the SO(3) gauge model and of the RP3 model.

V. CONCLUSIONS

We have studied a class of 2D lattice non-Abelian
SOðNcÞ gauge models with multicomponent scalar fields,
focusing on the role that global and local non-Abelian
gauge symmetries play in determining the universal features
of the asymptotic low-temperature behavior. Such lattice
gauge models are obtained by partially gauging a maximally
OðMÞ-symmetric multicomponent scalar model, M ¼
NfNc, using the Wilson lattice approach. For Nc ≥ 3, the
resulting theory is locally invariant under v gauge trans-
formations and globally invariant under OðNfÞ transforma-
tions. For Nc ¼ 2, these lattice gauge models are instead
equivalent to the 2D Abelian-Higgs model and therefore
have a larger UðNfÞ global invariance group. The fields
belong to the coset SM−1=SOðNcÞ, where M ¼ NfNc and
SM−1 is the (M − 1)-sphere in an M-dimensional space.
Since for Nc ¼ 2 these lattice gauge models are equiv-

alent to the 2D Abelian-Higgs models, already studied in
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FIG. 4. Plot of U versus Rξ for Nf ¼ 3, Nc ¼ 3, γ ¼ −1 (lower
panel) and γ ¼ 1 (upper panel). The horizontal dashed line shows
the Rξ → 0 limitU ¼ 7=5. Data approach the same universal FSS
curve obtained for the γ ¼ 0 SOðNcÞ gauge model and the RP2

models (9) and (10) (see Fig. 3).
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FIG. 5. Plot of U versus Rξ for Nf ¼ 4, Nc ¼ 3, and γ ¼ 0, up
to L ¼ 128. The horizontal dashed line indicates the Rξ → 0 limit
U ¼ 11=9. Data approach the same universal FSS curve obtained
for the RP3 models, for which we show MC data for the model
(10) taken from Ref. [23].
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Ref. [6], we only consider Nc ≥ 3. Moreover, we will only
consider models with Nf ≥ 3. In this case the global
symmetry group is non-Abelian, and thus one expects
the system to develop a critical behavior only in the zero-
temperature limit. For Nf ¼ 2 the behavior is expected to
be different, since the global Abelian O(2) symmetry may
allow finite-temperature Berezinskii-Kosterlitz-Thouless
transitions.
The universal features of the zero-temperature behavior

are determined by means of MC simulations. We consider
the lattice SOðNcÞ gauge models (2) for Nc ¼ 3, 4 and for
Nf ¼ 3, 4. The FSS analyses of the MC results provide
numerical evidence that the asymptotic low-temperature
behavior is the same as that of the 2D RPNf−1 models,
characterized by the same global OðNfÞ symmetry and by a
local Z2 gauge symmetry. The numerical results are sup-
ported by theoretical arguments that show that RPNf−1

models and SOðNcÞ gauge theories with Nf flavors
have the same ground-state (zero-temperature) properties.
Moreover, the gauge degrees of freedom decouple as
β → ∞.
These results provide further support to the conjecture

put forward in Ref. [7], that the renormalization-group flow
determining the asymptotic low-temperature behavior is
generally controlled by the 2D statistical theories associ-
ated with the symmetric spaces that have the same global
symmetry. For models with complex fields and UðNfÞ
global invariance—for instance, the multicomponent lattice
Abelian-Higgs model and the multiflavor lattice scalar
chromodynamics considered in Ref. [7]—the universal
behavior is described by the 2D CPNf−1 field theory. For
the lattice SOðNcÞ gauge models with Nc ≥ 3 and Nf ≥ 3,
instead, the RPNf−1 field theory is the relevant one.
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APPENDIX: MINIMUM-ENERGY
CONFIGURATIONS

In this appendix, we identify the minimum-energy
configurations for the action (2). The analysis is very
similar to that presented for unitary models in Ref. [7]. We
refer the reader to this work for additional details.
We start by considering the simplest case, γ ¼ 0. The

minimum-energy configurations are those that satisfy the
condition

Tr½ϕt
xVx;μϕxþμ̂� ¼ 1 ðA1Þ

for each link. This condition is satisfied if ϕxþμ̂ ¼ Vt
x;μϕx,

and thereforeQx ¼ Qxþμ̂, thus entailing the breaking of the

global symmetry for β → ∞. To understand which type of
configurations dominate the large-β limit, we have again
resorted to numerical simulations for large values of β.
Their β → ∞ extrapolations provide information on the
relevant configurations minimizing the energy. The results
are reported in Table I.
The results for the trace of the square of the operator

Bfg
x ¼

X
a

ϕaf
x ϕag

x ¼ Qfg
x þ 1

Nf
δfg ðA2Þ

[such that TrBx ¼ 1 due to the unit length of the matrix
variables ϕx, cf. Eq. (1)], indicate that

lim
β→∞

hTrB2
xi ¼ 1; ðA3Þ

with great accuracy. This shows that the bilinear operator
Bx effectively behaves as a projector in the large-β limit,
thus implying that the operator Qx defined in Eq. (8)
becomes equivalent to the operator Px defined in the
RPNf−1 theory. This is also supported by the results of
the Binder parameter U. Indeed, for consistency, U should
converge to 1 in the large-β limit, as also shown by the
results reported in Table I.
To deepen our understanding of the above nontrivial

results, we note that the minimum-energy conditions imply
the consistency condition ϕx ¼ Πxϕx, where Πx is the
plaquette operator [Eq. (3)]. For Nc ≥ 3, such a consistency
condition has several classes of different solutions. The
plaquette Πx must satisfy

Πx ¼ A ⊕ 1 ¼
�
A 0

0 1

�
; ðA4Þ

where A is an SO(Nc − 1) matrix, modulo a gauge trans-
formation. The corresponding configurations of the fields
ϕx depend on the structure of the matrix A. If A is a generic
unitary matrix which does not have unit eigenvalues, the
field ϕ is necessarily given by

ϕaf ¼ 0; a < Nc;

ϕaf ¼ vf; a ¼ Nc; ðA5Þ

where vf is a unit Nf-dimensional vector. Different ϕ
configurations are only possible if A has some unit
eigenvalues. For instance, if A ¼ A1 ⊕ 1, with A1 belong-
ing to the SOðNc − 2Þ subgroup, then the ϕ field configu-
rations of the form

ϕaf ¼ 0; a < Nc − 1;

ϕaf ¼ wf; a ¼ Nc − 1;

ϕaf ¼ vf; a ¼ Nc ðA6Þ
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(vf and wf are generic Nf-dimensional vectors) satisfy the
condition ϕx ¼ Πxϕx.
For the plaquette operator Πx, see Eq. (3), the results

reported in Table I show that hTrΠxi ≈ 1. This indicates
that β → ∞ configurations are mostly obtained by

randomly choosing SOðNc − 1Þ matrices A in Eq. (A4).
For instance, if A¼A1⊕1 with a generic A1∈SOðNc−2Þ,
one would instead predict hTrΠxi ¼ 2. The results for the
plaquette are substantially consistent with the form (A5)
for the field ϕx in the large-β limit. If this is the case, the
operator Qx, defined in Eq. (8), takes the form Qfg

x ¼
vfvg − δfg=Nf in the large-β regime. Therefore, Qx

becomes equivalent to the operator Px defined in the
RPNf−1 theory.
When γ ≠ 0, the analysis of the minimum-energy con-

figurations becomes more complicated, as is also the case
for lattice SUðNcÞ gauge theories (see the appendix of
Ref. [7]). We do not repeat here the arguments of Ref. [7].
They apply to SOðNcÞ theories as well, as we have
explicitly verified numerically for γ ¼ −1 and γ ¼ 1. We
only mention that, as in the case of SUðNcÞ gauge theories,
the gauge parameter γ is relevant for gauge properties, but
not for the behavior of the ϕ correlations, which dominate
the large-β limit.
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