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Abstract

Simply supported steel beams with rectangular hollow section (RHS) are investigated, taking into
account large twist and cross-sections distortions. A closed-form expression for the critical value of
the external couple inducing lateral torsional buckling is found; homotopy perturbation method (HPM)
is used to investigate the post-buckling non-linear path. The linear and non-linear paths given by HPM
are compared to those of: i) a Newton—Raphson algorithm with arc length; and ii) the commercial
FEM code Abaqus. Some numerical examples are presented.
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1. Introduction

Thin-walled beams with RHS have high strength- and stiffness-to-weight ratios, thus they are largely
used. Thin-walled beams (TWB) were comprehensively modelled first by Vlasov [1], while Benscoter
[2] investigated TWB with closed cross-sections.

Box beams with rigid cross-sections in a linear setting were considered, among others, by Smith and
Chopra [3], Shakourzadeh et al. [4], Kim and White [5], Loughlan and Ata [6], Pluzsik and Kollar [7],
Ziane et al. [8]. Later on, the cross-section was no more supposed to be rigid: Mentrasti [9] studied
RHS undergoing shear in their walls due to torsion and distortion. Suetake and Hirashima [10] used
extended trigonometric series and an analytical method for box beams with middle diaphragms under
various end constraints and loads. Kim and Kim [11] proposed a method to find warping and
distortion in TWB with square cross-sections for investigating their statics and free vibration; this
theory was extended to multi-cell TWB in [12]. Jang et al. [13] used five field variables (cross-section
distortion and warping included) to describe the strain in straight beams and angled joints.

Parallel studies on TWB with RHS were performed by finite element formulations, and the results
were compared with those of commercial codes. Carrera et al. [14,15] used the so-called Carrera
Unified Formulation (CUF) for statics and dynamics of deformable box TWB. Ren et al. [16,17]
investigated the distortion caused by localised eccentric loads on simply supported and cantilever box
girders with inner diaphragms, accounting for their in-plane shearing.

In the majority of the papers on lateral-torsional buckling (LTB) of TWB with RHS, the cross-
sections are considered rigid in their own plane (e.g., Vo and Lee [18-20], N.-I. Kim et al. [21], Piovan
and Machado [22], Lanc et al. [23]). Camotim et al. [24-30] relaxed such assumption, assessing local
and global buckling of prismatic TWB by the generalised beam theory (GBT). To the same aim, Kim
et al. [31] effectively adopted the higher-order beam theory (HoBT).

Shen et al. [32-35] investigated mixed buckling of RHS beams analytically, while Yang et al. [36,37]
did it experimentally. Saoula et al. [38] applied Ritz and Galerkin's techniques to the coupled
differential equations describing how distortion affects the lateral buckling of box TWB under
combined bending and compression. Szymczak and Kujawa [39,40] obtained closed-form analytical
solutions for the critical stresses of TWB with both isotropic and composite square hollow section
(SHS), with and without internal walls.

The present investigation extends and completes a previous work of ours [41], where we approach the

simplest pattern scheme of TWB with RHS, that is, a simply supported element under uniform
transverse load. Indeed, in [41] we introduce the model and a resolution technique based on the so-
called homotopy perturbation method (HPM). The advantages of HPM over the iterative Newton—
Raphson method with arc length, widely used in FEM commercial codes, is related to its effectiveness
to get a rapid and correct non-linear solution, regardless of the degree of non-linearity of the



considered problem; more details about the HPM will be presented later in section 2.1.2. Then, we test
the validity of these theoretical and numerical approaches in the above quoted basic structural
problem, accompanied by some comparisons with results of the literature. On the other hand, in this
paper we first wish to enlarge the class of investigated problems, in that we consider the same
structural element under different loads, among which possibly eccentric concentrated forces and
couples at the beam ends, in addition to possibly eccentric distributed loads (in both cases, eccentricity
is with respect to the centroid-shear centre): this conforms to a larger set of structural problems of
interest in design and applications. Consequently, the aim of this paper is twofold: on the one hand, we
get closed-form expressions for the transverse mixed buckling (i.e., LTB) of steel TWB with RHS
exhibiting distortion. On the other hand, a different and more computationally efficient technique is
adopted here, always based on the HPM, which is able to both predict the critical point and describe
the post-buckling non-linear path of the considered element, taking into account the cross-section
deformation. Eventually, the accuracy of this method and the effect of distortion on the critical value
of the applied end moment is discussed and commented, especially with reference to the already
existing norms on steel constructions, with an aim towards technical design and applications.

2. A simply supported TWB with deformable RHS

A straight steel TWB with length L and RHS of width b, height # and uniform wall thickness ¢, Fig.
1(A), is simply supported. The beam is perfect from both material and geometrical viewpoints, and is
referred to two orthogonal coordinate frames: (x,y,z)-global, (x,s,n)-local. The position 7, of a point M
of the midline of the RHS is at an angle £ with the z-axis, Fig. 1 (B). The abscissa s runs anti-
clockwise along the midline; »n is orthogonal to s. The global coordinate system originates at the
centroid of one of the beam ends; since the RHS is twice symmetric, this point coincides with the
shear centre. z
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Fig. 1: Geometry of a TWB with RHS and relevant coordinate frames.

Basing on recent literature on refined models for TWB, e.g., Rui et al. [24], Saoula et al. [38] and
Librescu and Song [42], we assume that: a) cross-sections may deform; b) shearing in flexure is
negligible; c) the angle of twist is finite, while the displacement in distortion are small; d) twist and
distortion are coupled. Then, by the assumptions a) and b) the displacement components u, us, u, of
any point M along x, s, n, respectively, are given by

u, =u—y(v'cosd+w'sind)+z(v'sin@—w'cos ) -y, 0" (la)
u, =—vsin f+wcos f+r,sind —s(1-cosd) + (v, —ndlg—”d);( (1b)
s

u, =vcos f+wsin f—ssinf—r,(1-cos@)+y,, x (le)



where u, v, w are the displacement components of the centroid along x, y, z, respectively; 6, y are the
angles of torsion and distortion respectively, Fig. 2; and primes stand for x-derivatives. The warping
function ¥, in Eq. (1) follows Sokolnikoff [43] and gave accurate results for box beams in [5]
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Moreover, the cross-section distortion is the sum of tangential and normal displacement components
of the walls, given by 4, wra respectively as in [12,13]
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and, to end with, the position vector 7, is
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Fig. 2. Cross-section shapes after: A) axial stretch; B) out-of-plane warping; C) bending rotation about z; D) y-
deflection; E) z-deflection; F) bending rotation about y; G) torsion rotation; H) in-plane distortion.



Eq. (1) extends the kinematics of Saoula et al. [38] since it considers the finite contributions cos(6),
sin(#) instead of their linear counterparts 1, €, and the relevant non-linear terms. Note that this
kinematics has already shown its accuracy in our previous work [41] devoted to the instability of RHS
beam under uniform transverse load. Then, a suitable deformation measure is the finite, non-
infinitesimal, Green’s strain tensor
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Inserting Eq. (1) into Eq. (3), the assumptions c¢), d) above yield the only non-zero strain
components

g, =u'—y("cos@+w"sind)—z(w"cosd —v"sin0) -y, 0"+ %(V'Z +w (s> +17)07%) (4a)

d d
7o =0+ 0% (g —n L) (4b)
ds ds

If the material constituting the beam is homogeneous, isotropic, linearly elastic, Hooke’s law
provides the normal and tangential stress components oy, 7 in the local coordinates (x,s,7)

o,=FE¢ 7. =Gy, 6))
where E, G are Young’s and shear moduli, respectively.
2.1 Expended work and balance equations
With the aim of providing a very general investigation on the matter, we consider a wide range of

conservative loads on the beam, see Fig. 3: uniformly distributed (UDL); concentrated force (CL) and
bending couples M,(A), M,(B) (CM). The variation of the external work is thus

W =2\ q.6w—q.e.050 + M 50dx + M ,(A)Sw'(0) + gé‘w(%) - geﬁ(g)&%%) (6)
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where e is the eccentricity of P and ¢. with respect to the shear centre and M, is a distributed torsion
couple that represents an initial imperfection that will be useful for the post-buckling analysis. If 4
denotes the cross-section area, the variation of the strain energy is

L
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Fig. 3: TWB with RHS under: A) uniform load ¢; B) concentrated load P with eccentricity e:; C) end bending couples.

Balance is obtained by imposing the stationarity of the total potential energy 6(U-W) = 0 and using
the series expansion of cos@21-07/2, sin@~6. Usual procedures lead to

L
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The tracers (o, 0L, aem) take the values (1,0,0), (0,1,0), (0,0,1) according to the loading case UDL,
CL, CM, respectively. The quantities 1, L., 1., J, I, Ju, Jus are the moments of inertia with respect to the
y and z axes, the warping constant, the Saint-Venant torsion constant, the higher order torsion
constant, the distortion and the coupled torsion-distortion constants, given by

1,=[[ a4 (9a)
A

1, =[[yaa (9b)
A

1, =[[w2da (%)

A
_ dy,,
J= jAj (r, ?)Zd/l (9d)



2
(Iy+lz)
A

1,=[[(s*+n)yda- (%)

A
d
Jo={[w.- n%)2 dA o
A

Ay . dy
J = —nWndy Wy iy g
p jAj(wsd LI, =)
Consequently, the equilibrium equations are easily derived:
EIv™+(El, —EI )(w"0—v™ 0% + 2w"— 4" 0)0'+ (W"-2v"0)0"-2v"0"?) =0 (10a)
El w"™+(EL, — EI )(v" O+ w" 0% + (2v"+ 4w 0)0'+ (v"+ 2w" )6 "+ 2w" ") — % q. =0 (10b)
J2 3EI,

EIL0™-G(J - J—)H"— 79'2 0"+ (EL. — EI)(W"v"+(w" =v"*)0) + ayp, q.€.0 - M, =0 (10c)
d

Moreover, the following sets of boundary conditions are obtained:

At x=0

ov=0 or v"=0

ov'=0 or v'=0

ow=0 or w"=0

ow'=0 or EIl w'+aq,M, (4)=0 (11a)
2

560=0 or G(J - il)e'— EL0"=0

d

80'=0 or 6"=0
At x=L/2

ov=0 or v"=0
ov'=0 or v"=0

ow=0 or EI w"+ aCLﬁzO
2 (11b)
ow'=0 or w"=0
2
00=0 or G(J—J—’d)ﬁ'—EIWH’"+£e20=0
J, 2
00'=0 or 0"=0

2.1.1. Mixed (lateral-torsional) buckling

The non-linear problem in Eq. (10) is tackled by Galerkin’s method; the comparison functions for
simply supported beams are known to be, once vy, wy, 9y are unknown amplitudes,

(v, w,0} = {vo sin(%), W, sin(%), 6, sin(%)} (12)

Inserting Eq. (12) into Eq. (10) and performing the integration provides the tangent stiffness matrix
(also called the Jacobian matrix) [K(My,e:)] at the fundamental state {vg, wg, 0o} = {0, wo, 0}
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where M, is the maximum bending moment of the beam. We remark that, since the tangent stiffness is

not diagonal, the possible buckling modes are coupled: in general, it is not possible to attain transverse
buckling only in bending but in mixed bending and torsion. Moreover, the assumption ¢) above
assures that the only attainable buckling is of global nature.

It is known that the singularity condition for the tangent stiffness, i.e., det([K(Moy,e:)]) = 0, provides
the critical values of the applied load inducing buckling. Imposing such condition and performing
some simplifications, we obtain the buckling load in terms of the maximum bending moment

&M e,
F=(ayp, +%L)7[—g+acw Wo ’ (14)

Jz
- LIG(J - de )
[ev/4
M, == = 21 ce. +4[(ce.)’ +1_W+ 4

. (15)
n°El

z z

If the cross-section has major inertia about y, which is the case considered here, that goes in favour
of lateral buckling, and ¢; and ¢ in Eq. (15) reduce to the values provided by Eurocode 3 [44].
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Remark that the analogous expressions for the critical value of the maximum bending moment that
we find in the literature on the stability of metallic TWB (Eurocode 3 [44], Mohri et al. [45], plus
others) can be obtained from the closed-form Eq. (15) by neglecting the distortion ratio J,/*/Ju. It is
then very important to remark that: i) the expression in Eq. (15) is original; and ii) its accounting for
the distortion ratio with an intrinsic “minus” sign reveals that the distortion has a softening effect on
the considered structure, since it lowers the critical value of Mo: this has a mechanical interpretation
and a physical justification, since additional possible deformations imply a softer structural element.

2.1.2. Homotopic investigation of equilibrium paths



A thorough investigation of elastic static instability should include post-critical equilibrium paths,
which are often neglected since the governing equations for the post-critical region are non-linear and
coupled, thus posing analytical difficulties. One means of providing approximate and hierarchic
solutions to such non-linear problems is the so-called homotopic perturbation method (HPM), see,
e.g., He [46]. This method is based on a series expansion of the (generally finite, non-linear)
governing equations of the considered mechanical problem in terms of a (generally) non-physical
scalar parameter p. In this way, one obtains a hierarchy of linear equations at different p-orders, to be
solved in succession with much easier calculations with respect to the starting set. The HPM differs
from other perturbation techniques (for instance, those used in [47] for investigating buckling and
post-buckling of elastic beams and frames) in that: a) there is no need for the parameter p to be an
actual (small) physical parameter (a strain measure, for instance); b) there is an actual possibility to
check the convergence of the series expansion; ¢) it holds for both weak and strong non-linear
problems; d) it has been recently introduced in computer algebra systems for its effectiveness; for
details, one may refer to [48,49]. In our case, once posed p € {0,1} the homotopic parameter, the non-
linear problem in Eq. (10) is expressed as

(A= p)ELY™) + pl(EI, - E]y w™g — »™mg2

(17a)
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The linear path corresponds to p=0, the fully non-linear (within the limits of the assumptions
introduced) path corresponds to p=1; as p ranges from O to 1, the whole solution is swept. This
technique was already used for other non-linear problems [49-51]. The solutions of Eq. (17) are
written as a power series in p

V:ipivi' W:ipiwi' inpiei (18)
i=0 i=0 i=0

and replaced into Eq. (17). Then, collecting the terms of equal powers p’ leads, similarly to what is
done in other perturbation methods, to a hierarchy of equations, the first set of which is related to p°

Elv, =0 (19a)

EIwy —ypq. =0 (19b)
m 2 "

ELO"~G(J - %)90 M. =0 (19¢)

d
the second set is related to p’

ELv, +(EI, —EI)(w, 0y — vy 03 + 2wy —4vy6,)6, +(wy —2,6,)6)) = 2v,60,2) =0 (19d)

ELw, +(EIL —EI)(vy Oy +wy 03 +(2vy +4w, 0,)6, + (vy +2wy0)6) ) + 2w, 0,2) = 0 (19)
m Jé " 3E1t on non " "

ELO, = G(J =)0 = =070y + (EL = EL )%y + (%" = ")) + yp, 4.6 =0 (199)

d

Egs. (19) suffice to find the buckling loads of interest in the considered problem and to provide an

insight on the post-buckling path, since they describe the fundamental path and its critical points, as

well as the first branch of the bifurcated path. Then, the sets related to p', i > 2, are not reported here.
The boundary conditions for simply supported beams are
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For solving the hierarchy in Egs. (19), the linear solutions vy, wy, 6 are easily obtained by inserting
the relevant boundary conditions in Eq. (20) into the homogeneous solutions of Egs. (19a-c). Once vy,
wy, Oy are replaced into Egs. (19d-f) we obtain vi, wi, i, and so on. To validate the accuracy of the
HPM, the non-linear Egs. (10) are solved by the well-known iterative Newton—Raphson method with

arc length. The expressions of the coefficients K; of the tangent stiffness symmetric matrix are
reported in the Appendix.

3. Results and discussion
3.1. LTB moment with distortion

For a validation of the closed-form expression in Eq. (15), we compare the values it provides with
those obtained by both GBT and Eurocode 3 [44]. For this comparison we take a beam with £=210
GPa, G=80.77 GPa, #=0.5 m, »#=0.15 m, while L and ¢ vary as in Tables 1-7. The GBT results are
provided by the GBTUL 2.0 code [52]; the beam is discretized longitudinally into 10 elements and
transversally into 4 natural nodes, 3 intermediate nodes for each flange and 5 intermediate nodes for
each web. Since short beams undergo local buckling, by assumption ¢) we do not account for beams
with length L< 8 m. In Tables 1-7 the comparison is quantitatively measured by the relative errors

B |(present M, )- GBT)|

Al (21a)
Min(present M ., GBT)
resent M ..) — (Eurocode3
PO o) —( )| (21b)
Min(present M, , Eurocode3)

The comparison manifestly shows that the differences between the present results and those of GBT
are quite acceptable, in that the relative error Al varies from 1% to 9%. However, it is rather
remarkable that, since Eurocode 3 neglects the effect of the cross-section distortion, its results grossly
overestimate the critical moment inducing LTB, since the relative error A2 can reach 20%. It is
apparent that the cross-section distortion affects the structural stability of TWB with RHS in a
significant manner: thus, neglecting this effect can be crucial for design purposes of beams with
deformable cross-sections.



This result is not surprising, however, and fully reflects the physical phenomenon: indeed, admitting
that the structural element undergoes several ways of deformation means that it is somehow ‘softer’
with respect to the same structural element subjected to inner constraints such as that of rigid cross-
sections. Then, its elastic stiffnesses are inevitably lower than that of the beam not affected by cross-
section distortion, and this affects both the tangent stiffness and the buckling load in the sense that the
latter will inevitably be lower — i.e., the onset of instability can be reached much before than expected,
which is obviously undesirable from a technical viewpoint.

Table 1: Buckling moments (kNm) for UDL, load applied on top flange, e: = 0.25 m
L t Present GBT Eurocode3 Al A2
(m)  (cm) Eq.(15)
8.00 1.50 7264.34 6990.41 8680.87 4% 20%
2.00 9688.89 10156.12 11574.49 5% 19%
10.00 1.50 5866.16 6028.42 7000.69 3% 19%
2.00 7824.03 8548.01 9334.25 9% 19%

Table 2: Buckling moments (kNm) for UDL, load applied at the centroid, e:=0.0 m
L t Present GBT Eurocode 3 A1 A2
(m) (cm) Eq. (15)
8.00 1.50 764825 7330.54  9066.36 4% 19%
2.00 10200.76  10623.55 12088.48 49, 18%
10.00 1.50 6113.15 6251.64  7248.49 2% 18%
2.00 8153.35 8854.48  9664.66 8% 18%

Table 3 : Buckling moments (kNm) for UDL, load applied on bottom flange, e: = -0.25 m
L t Present GBT Eurocode 3 Al A2
(m) (cm) Eq. (15)
8.00 1.50 805244  7683.51  9468.96 5% 18%
2.00 10739.68 11105.45 1262529 39, 17%
10.00 1.50 6370.54 6479.68  7505.06 2% 18%
2.00 8496.54 9167.44  10006.76 79, 18%

Table 4: Buckling moments (kNm) for CL, load applied on top flange, e- = 0.25 m
L t Present GBT Eurocode3 Al A2
(m) (cm) Eq. (15)
8.00 1.50 8613.61 7884.66 10314.80 9% 20%
2.00 11488.52 11650.52  13753.06 1% 19%
10.00 1.50 6974.30 6915.82 8337.15 1% 19%
2.00  9302.05 9926.68 11116.20 6% 19%




Table 5: Buckling moments (kNm) for CL, load applied at the centroid, e: = 0.0 m

L T Present GBT Eurocode 3 Al A2

(m) (cm) Eq. (15)

8.00 1.50 9191.32 8411.75 10895.53 9% 19%
2.00 12258.81 12405.53  14527.38 1% 18%

10.00 1.50 7346.51 7292.40  8710.90 1% 18%
2.00 9798.32 10438.79 11614.54 6% 18%

Table 6 : Buckling moments (kNm) for CL, load applied on bottom flange, e: =-0.25 m

L T Present GBT Eurocode 3 Al A2
(m) (cm) Eq. (15)
8.00 1.50 9807.77 9261.85 11508.96 5% 17%
2.00 13080.74 13401.02 15345.28 2% 17%
10.00 1.50 7738.57 7779.49 9101.41 1% 18%
2.00 10321.07 11031.36 12135.22 7% 17%
Table 7: Buckling moments (kNm) for CM
L T Present GBT Eurocode 3 Al A2
(m)  (cm) Eq.(15)
8.00 1.50 6373.54 5842.97 7555.29 9% 19%
2.00 8500.63 9303.75 10073.73 9% 19%
10.00 1.50 5094.29 5453.04 6040.41 7% 19%
2.00 679446 7398.68 8053.88 9% 19%

3.2. Pre- and post-buckling analysis and comparison

We now compare the equilibrium paths provided by the HPM, Newton-Raphson and FEM for a beam
with L=10 m, 6=0.15 m, #=0.5 m, =0.015 m, commenting also the effect of distortion on non-linear
equilibria. In all computations, the value of M,, representing the initial imperfection, is assumed to be
10 kKNm. As above, we consider the three loading cases UDL, CL (where the load can be applied to
the top flange, bottom flange or at the shear centre), CM.

The non-linear Eqgs. (10) is solved by the HPM first, accounting for 80 terms in the power series
expansion (i=80). Then, Newton-Raphson method with arc-length which can be uniform and unitary,
or reduced if convergence fails, is adopted; the maximum tolerance is 10°. The FEM simulation is
carried out by the commercial code Abaqus [53] with two elements: the first (shell, S§R) is for beams
affected by cross-section distortion, while the second (beam, B32H) meshes beams with rigid cross-
sections.

Figs. 4-18 show that in TWB with RHS affected by distortion the HPM provides linear non-trivial
fundamental paths and bifurcation points that are quite close to those obtained by Newton-Raphson
method and FEM (shell element S8R); the maximum relative error is 3%. This error remains
acceptable for all non-linear paths (g, w(L/2)), (g-, W(L/2)), (g-, &L/2)), (P, w(L/2)), (P, W(L/2)), (P,
A(L/2)) when the load is applied on the top flange. We also remark only small discrepancies among the
results of the three techniques of solving the problem for the post-buckling equilibrium paths (g¢:, vo),
(g-, AL/2)), (P, v(L/2)) and (P, &L/2)), (g-, W(L/2)), (¢, AL/2)) of the beams loaded at the bottom
flange and at the centroid-shear centre; the same happens for the equilibria (M,(A), V(L/2)), (My(A),
AL/2)). In the non-linear equilibria (¢., w(L/2)), (P, w(L/2)), (My(A), w(L/2)) the difference between
the results given by the three methods of solution always increases away from the critical point. It is
also worth remarking that the FEM analysis adopting a mesh of shell elements provides only short



post-buckling paths, due to the fact that local buckling occurs near the global bifurcation point; a
similar behaviour with analogous comments is in [54] for TWB with open cross-sections.

Figs. 13—18 show that for concentrated loads and end moments the bifurcation points provided by
FEM analysis adopting a mesh of beam element are slightly lower than those given by HPM and
Newton-Raphson integration, the maximum relative error being about 6%. Once again, we see that
neglecting cross-sections distortion overestimates the buckling load with respect to beam kinematics
accounting for cross-sections deformation, even adopting the same resolution technique: indeed, the
difference between the predictions of HPM with and without distortion for the CL case can reach 26%.

4. Final remarks

To highlight the influence of distortion on the lateral-torsional buckling and post-buckling behaviour
of simply supported steel TWB with RHS under several load conditions, we introduced beam
kinematics considering non-infinitesimal displacements, finite twist angles and small distortion angles.
The non-linear field equations have been obtained by stationarity conditions on a total potential energy
function accounting for linear elastic homogeneous and isotropic behaviour. We have found a new
closed-form expression for the critical values of a characteristic moment, extending previous ones
from both theoretical and technical literature, including Eurocode 3. In addition, we have compared
three methods (HPM, Newton Raphson and FEM) to solve the non-linear field equations and obtain
pre- and post-buckling equilibrium paths. The main results are:
1)The differences between the buckling loads obtained by our Eq. (15) and those obtained by the
GBT are quite acceptable.
2)The fundamental (linear) paths and the bifurcation points computed by HPM coincide exactly with
those provided by Newton-Raphson integration and FEM.
3)Apart from just three post-buckling paths (denoted (¢, w(L/2)), (P, w(L/2)) and (My, w(L/2)) here),
which exhibit remarkable differences when evaluated by the three above quoted resolution
techniques, the other post-buckling equilibria are quite similar.
4)The present kinematics, accounting for cross-sections distortion, underestimates the buckling load
with respect to that of the beam models with rigid cross-sections: thus, our model is conservative.
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