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Abstract  
Simply supported steel beams with rectangular hollow section (RHS) are investigated, taking into 
account large twist and cross-sections distortions. A closed-form expression for the critical value of 
the external couple inducing lateral torsional buckling is found; homotopy perturbation method (HPM) 
is used to investigate the post-buckling non-linear path. The linear and non-linear paths given by HPM 
are compared to those of: i) a Newton–Raphson algorithm with arc length; and ii) the commercial 
FEM code Abaqus. Some numerical examples are presented. 
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1. Introduction 
Thin-walled beams with RHS have high strength- and stiffness-to-weight ratios, thus they are largely 
used. Thin-walled beams (TWB) were comprehensively modelled first by Vlasov [1], while Benscoter 
[2] investigated TWB with closed cross-sections.  

Box beams with rigid cross-sections in a linear setting were considered, among others, by Smith and 
Chopra [3], Shakourzadeh et al. [4], Kim and White [5], Loughlan and Ata [6], Pluzsik and Kollar [7], 
Ziane et al. [8]. Later on, the cross-section was no more supposed to be rigid: Mentrasti [9] studied 
RHS undergoing shear in their walls due to torsion and distortion. Suetake and Hirashima [10] used 
extended trigonometric series and an analytical method for box beams with middle diaphragms under 
various end constraints and loads. Kim and Kim [11] proposed a method to find warping and 
distortion in TWB with square cross-sections for investigating their statics and free vibration; this 
theory was extended to multi-cell TWB in [12]. Jang et al. [13] used five field variables (cross-section 
distortion and warping included) to describe the strain in straight beams and angled joints.  

Parallel studies on TWB with RHS were performed by finite element formulations, and the results 
were compared with those of commercial codes. Carrera et al. [14,15] used the so-called Carrera 
Unified Formulation (CUF) for statics and dynamics of deformable box TWB. Ren et al. [16,17] 
investigated the distortion caused by localised eccentric loads on simply supported and cantilever box 
girders with inner diaphragms, accounting for their in-plane shearing.  

In the majority of the papers on lateral-torsional buckling (LTB) of TWB with RHS, the cross-
sections are considered rigid in their own plane (e.g., Vo and Lee [18-20], N.-I. Kim et al. [21], Piovan 
and Machado [22], Lanc et al. [23]). Camotim et al. [24-30] relaxed such assumption, assessing local 
and global buckling of prismatic TWB by the generalised beam theory (GBT). To the same aim, Kim 
et al. [31] effectively adopted the higher-order beam theory (HoBT).  

Shen et al. [32-35] investigated mixed buckling of RHS beams analytically, while Yang et al. [36,37] 
did it experimentally. Saoula et al. [38] applied Ritz and Galerkin's techniques to the coupled 
differential equations describing how distortion affects the lateral buckling of box TWB under 
combined bending and compression. Szymczak and Kujawa [39,40] obtained closed-form analytical 
solutions for the critical stresses of TWB with both isotropic and composite square hollow section 
(SHS), with and without internal walls. 
The present investigation extends and completes a previous work of ours [41], where we approach the 
simplest pattern scheme of TWB with RHS, that is, a simply supported element under uniform 
transverse load. Indeed, in [41] we introduce the model and a resolution technique based on the so-
called homotopy perturbation method (HPM). The advantages of HPM over the iterative Newton–
Raphson method with arc length, widely used in FEM commercial codes, is related to its effectiveness 
to get a rapid and correct non-linear solution, regardless of the degree of non-linearity of the 



considered problem; more details about the HPM will be presented later in section 2.1.2. Then, we test 
the validity of these theoretical and numerical approaches in the above quoted basic structural 
problem, accompanied by some comparisons with results of the literature. On the other hand, in this 
paper we first wish to enlarge the class of investigated problems, in that we consider the same 
structural element under different loads, among which possibly eccentric concentrated forces and 
couples at the beam ends, in addition to possibly eccentric distributed loads (in both cases, eccentricity 
is with respect to the centroid-shear centre): this conforms to a larger set of structural problems of 
interest in design and applications. Consequently, the aim of this paper is twofold: on the one hand, we 
get closed-form expressions for the transverse mixed buckling (i.e., LTB) of steel TWB with RHS 
exhibiting distortion. On the other hand, a different and more computationally efficient technique is 
adopted here, always based on the HPM, which is able to both predict the critical point and describe 
the post-buckling non-linear path of the considered element, taking into account the cross-section 
deformation. Eventually, the accuracy of this method and the effect of distortion on the critical value 
of the applied end moment is discussed and commented, especially with reference to the already 
existing norms on steel constructions, with an aim towards technical design and applications. 

 
2. A simply supported TWB with deformable RHS 
A straight steel TWB with length L and RHS of width b, height h and uniform wall thickness t, Fig. 
1(A), is simply supported. The beam is perfect from both material and geometrical viewpoints, and is 
referred to two orthogonal coordinate frames: (x,y,z)-global, (x,s,n)-local. The position rn of a point M 
of the midline of the RHS is at an angle b with the z-axis, Fig. 1 (B). The abscissa s runs anti-
clockwise along the midline; n is orthogonal to s. The global coordinate system originates at the 
centroid of one of the beam ends; since the RHS is twice symmetric, this point coincides with the 
shear centre.  
 
 
                                                                                                   
  
      
 

 
 
 
 
 
 
 
 

                                            (A)                                                                                           (B) 
 

Fig. 1: Geometry of a TWB with RHS and relevant coordinate frames. 
 

Basing on recent literature on refined models for TWB, e.g., Rui et al. [24], Saoula et al. [38] and 
Librescu and Song [42], we assume that: a) cross-sections may deform; b) shearing in flexure is 
negligible; c) the angle of twist is finite, while the displacement in distortion are small; d) twist and 
distortion are coupled. Then, by the assumptions a) and b) the displacement components ux, us, un of 
any point M along x, s, n, respectively, are given by    
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where u, v, w are the displacement components of the centroid along x, y, z, respectively; q, c are the 
angles of torsion and distortion respectively, Fig. 2; and primes stand for x-derivatives. The warping 
function yw in Eq. (1) follows Sokolnikoff [43] and gave accurate results for box beams in [5] 
 

                  (2a) 

 

Moreover, the cross-section distortion is the sum of tangential and normal displacement components 
of the walls, given byysd,ynd respectively as in [12,13] 
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and, to end with, the position vector rn is  
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                                                G)                                                               H)   

Fig. 2. Cross-section shapes after: A) axial stretch; B) out-of-plane warping; C) bending rotation about z; D) y-
deflection; E) z-deflection; F) bending rotation about y; G) torsion rotation; H) in-plane distortion

 

2

3
30

(2 1) (2 1) (2 1)sin( )sinh( )sin( )8 2
(2 1)(2 1) cosh( )
2

w
j

j z j y j
h h hyz j bj

h

p p p

y
pp

¥

=

+ + +

= - +
+

+
å

3

3

)    

 

4 (

 

2

 

( )
4 (2 )

( )

nd

s b h s for the flanges
b h b b h

s h b s for the webs
b h h b h

y

ì +
-ï + +ï= í

+ï- +ï + +î
sin( 1)sd

bh
b h

by = -
+

sin cosnr z yb b= +

z 

y q 

z 

y x 

v 

z 

y x 
u 

z 

y x 

ywq ' 

z 

y x 

v' 

z 

y x 
w' 

z 

y x 

w 

z 

y 

c 



Eq. (1) extends the kinematics of Saoula et al. [38] since it considers the finite contributions cos(q), 
sin(q) instead of their linear counterparts 1, q, and the relevant non-linear terms. Note that this 
kinematics has already shown its accuracy in our previous work [41] devoted to the instability of RHS 
beam under uniform transverse load. Then, a suitable deformation measure is the finite, non-
infinitesimal, Green’s strain tensor  
 

                                                                                                          (3) 

 

Inserting Eq. (1) into Eq. (3), the assumptions c), d) above yield the only non-zero strain 
components  
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If the material constituting the beam is homogeneous, isotropic, linearly elastic, Hooke’s law 
provides the normal and tangential stress components σxx, τxs in the local coordinates (x,s,n)  

 

,                                                                                                              (5) 
 

where E, G are Young’s and shear moduli, respectively. 
 
2.1. Expended work and balance equations 
With the aim of providing a very general investigation on the matter, we consider a wide range of 
conservative loads on the beam, see Fig. 3: uniformly distributed (UDL); concentrated force (CL) and 
bending couples My(A), My(B) (CM). The variation of the external work is thus 
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where ez is the eccentricity of P and qz with respect to the shear centre and Mx is a distributed torsion 
couple that represents an initial imperfection that will be useful for the post-buckling analysis. If A 
denotes the cross-section area, the variation of the strain energy is 
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Fig. 3: TWB with RHS under: A) uniform load qz; B) concentrated load P with eccentricity ez; C) end bending couples. 
                                                                      

Balance is obtained by imposing the stationarity of the total potential energy δ(U-W) = 0 and using 
the series expansion of cosq»1-q 2/2, sinq»q. Usual procedures lead to  
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The tracers (aUDL, aCL, aCM) take the values (1,0,0), (0,1,0), (0,0,1) according to the loading case UDL, 
CL, CM, respectively. The quantities Iy, Iz, Iw, J, It, Jd, Jtd are the moments of inertia with respect to the 
y and z axes, the warping constant, the Saint-Venant torsion constant, the higher order torsion 
constant, the distortion and the coupled torsion-distortion constants, given by 
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                                                                                                           (9e) 
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Consequently, the equilibrium equations are easily derived: 
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  (10b) 
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Moreover, the following sets of boundary conditions are obtained:  
 
At x=0 
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At x=L/2 
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2.1.1. Mixed (lateral-torsional) buckling 
The non-linear problem in Eq. (10) is tackled by Galerkin’s method; the comparison functions for 
simply supported beams are known to be, once v0, w0, θ0 are unknown amplitudes, 
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Inserting Eq. (12) into Eq. (10) and performing the integration provides the tangent stiffness matrix 
(also called the Jacobian matrix) [K(M0,ez)] at the fundamental state {v0, w0, θ0} = {0, w0, 0} 
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with the positions   

,  ,                         (14) 

where M0 is the maximum bending moment of the beam. We remark that, since the tangent stiffness is 
not diagonal, the possible buckling modes are coupled: in general, it is not possible to attain transverse 
buckling only in bending but in mixed bending and torsion. Moreover, the assumption c) above 
assures that the only attainable buckling is of global nature. 

It is known that the singularity condition for the tangent stiffness, i.e., det([K(M0,ez)]) = 0, provides 
the critical values of the applied load inducing buckling. Imposing such condition and performing 
some simplifications, we obtain the buckling load in terms of the maximum bending moment 
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If the cross-section has major inertia about y, which is the case considered here, that goes in favour 
of lateral buckling, and c1 and c2 in Eq. (15) reduce to the values provided by Eurocode 3 [44]. 
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Remark that the analogous expressions for the critical value of the maximum bending moment that 
we find in the literature on the stability of metallic TWB (Eurocode 3 [44], Mohri et al. [45], plus 
others) can be obtained from the closed-form Eq. (15) by neglecting the distortion ratio Jtd2/Jd. It is 
then very important to remark that: i) the expression in Eq. (15) is original; and ii) its accounting for 
the distortion ratio with an intrinsic “minus” sign reveals that the distortion has a softening effect on 
the considered structure, since it lowers the critical value of M0: this has a mechanical interpretation 
and a physical justification, since additional possible deformations imply a softer structural element.     
 
2.1.2. Homotopic investigation of equilibrium paths 
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A thorough investigation of elastic static instability should include post-critical equilibrium paths, 
which are often neglected since the governing equations for the post-critical region are non-linear and 
coupled, thus posing analytical difficulties. One means of providing approximate and hierarchic 
solutions to such non-linear problems is the so-called homotopic perturbation method (HPM), see, 
e.g., He [46]. This method is based on a series expansion of the (generally finite, non-linear) 
governing equations of the considered mechanical problem in terms of a (generally) non-physical 
scalar parameter p. In this way, one obtains a hierarchy of linear equations at different p-orders, to be 
solved in succession with much easier calculations with respect to the starting set. The HPM differs 
from other perturbation techniques (for instance, those used in [47] for investigating buckling and 
post-buckling of elastic beams and frames) in that: a) there is no need for the parameter p to be an 
actual (small) physical parameter (a strain measure, for instance); b) there is an actual possibility to 
check the convergence of the series expansion; c) it holds for both weak and strong non-linear 
problems; d) it has been recently introduced in computer algebra systems for its effectiveness; for 
details, one may refer to [48,49]. In our case, once posed 𝑝 ∈ {0,1} the homotopic parameter, the non-
linear problem in Eq. (10) is expressed as 
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The linear path corresponds to p=0, the fully non-linear (within the limits of the assumptions 
introduced) path corresponds to p=1; as p ranges from 0 to 1, the whole solution is swept. This 
technique was already used for other non-linear problems [49-51]. The solutions of Eq. (17) are 
written as a power series in p 
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and replaced into Eq. (17). Then, collecting the terms of equal powers pi leads, similarly to what is 
done in other perturbation methods, to a hierarchy of equations, the first set of which is related to p0  
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the second set is related to p1 
 

        (19d) 
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Eqs. (19) suffice to find the buckling loads of interest in the considered problem and to provide an 
insight on the post-buckling path, since they describe the fundamental path and its critical points, as 
well as the first branch of the bifurcated path. Then, the sets related to pi, i ³ 2, are not reported here.  

The boundary conditions for simply supported beams are  
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For solving the hierarchy in Eqs. (19), the linear solutions v0, w0, q0 are easily obtained by inserting 
the relevant boundary conditions in Eq. (20) into the homogeneous solutions of Eqs. (19a-c). Once v0, 
w0, q0 are replaced into Eqs. (19d-f) we obtain v1, w1, q1, and so on. To validate the accuracy of the 
HPM, the non-linear Eqs. (10) are solved by the well-known iterative Newton–Raphson method with 
arc length. The expressions of the coefficients Kij of the tangent stiffness symmetric matrix are 
reported in the Appendix. 
 
3. Results and discussion 
3.1. LTB moment with distortion 

For a validation of the closed-form expression in Eq. (15), we compare the values it provides with 
those obtained by both GBT and Eurocode 3 [44]. For this comparison we take a beam with E=210 
GPa, G=80.77 GPa, h=0.5 m, b=0.15 m, while L and t vary as in Tables 1-7. The GBT results are 
provided by the GBTUL 2.0 code [52]; the beam is discretized longitudinally into 10 elements and 
transversally into 4 natural nodes, 3 intermediate nodes for each flange and 5 intermediate nodes for 
each web. Since short beams undergo local buckling, by assumption c) we do not account for beams 
with length L< 8 m. In Tables 1-7 the comparison is quantitatively measured by the relative errors  
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                                                                                              (21b) 

 

The comparison manifestly shows that the differences between the present results and those of GBT 
are quite acceptable, in that the relative error D1 varies from 1% to 9%. However, it is rather 
remarkable that, since Eurocode 3 neglects the effect of the cross-section distortion, its results grossly 
overestimate the critical moment inducing LTB, since the relative error D2 can reach 20%. It is 
apparent that the cross-section distortion affects the structural stability of TWB with RHS in a 
significant manner: thus, neglecting this effect can be crucial for design purposes of beams with 
deformable cross-sections.  
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This result is not surprising, however, and fully reflects the physical phenomenon: indeed, admitting 
that the structural element undergoes several ways of deformation means that it is somehow ‘softer’ 
with respect to the same structural element subjected to inner constraints such as that of rigid cross-
sections. Then, its elastic stiffnesses are inevitably lower than that of the beam not affected by cross-
section distortion, and this affects both the tangent stiffness and the buckling load in the sense that the 
latter will inevitably be lower – i.e., the onset of instability can be reached much before than expected, 
which is obviously undesirable from a technical viewpoint. 

 
 

Table 1: Buckling moments (kNm) for UDL, load applied on top flange, ez = 0.25 m 
L 
 (m) 

t 
 (cm) 

Present  
Eq. (15) 

GBT Eurocode 3 D1 D2 

8.00 1.50 7264.34 6990.41 8680.87 4% 20% 
 2.00 9688.89 10156.12 11574.49 5% 19% 
10.00 1.50 5866.16 6028.42 7000.69 3% 19% 
 2.00 7824.03 8548.01 9334.25 9% 19% 
 
 
Table 2: Buckling moments (kNm) for UDL, load applied at the centroid,  ez = 0.0 m  
L 
 (m) 

t 
 (cm) 

Present  
Eq. (15) 

GBT Eurocode 3 D1 D2 

8.00 1.50 7648.25 7330.54 9066.36 4% 19% 
 2.00 10200.76 10623.55 12088.48 4% 18% 
10.00 1.50 6113.15 6251.64 7248.49 2% 18% 
 2.00 8153.35 8854.48 9664.66 8% 18% 
 
 
Table 3 : Buckling moments (kNm) for UDL, load applied on bottom flange, ez = -0.25 m  
L 
 (m) 

t 
 (cm) 

Present  
Eq. (15) 

GBT Eurocode 3 D1 D2 

8.00 1.50 8052.44 7683.51 9468.96 5% 18% 
 2.00 10739.68 11105.45 12625.29 3% 17% 
10.00 1.50 6370.54 6479.68 7505.06 2% 18% 
 2.00 8496.54 9167.44 10006.76 7% 18% 
 
 
Table 4: Buckling moments (kNm) for CL, load applied on top flange, ez = 0.25 m 
L 
 (m) 

t 
 (cm) 

Present  
Eq. (15) 

GBT Eurocode 3 D1 D2 

8.00 1.50 8613.61 7884.66 10314.80 9% 20% 
 2.00 11488.52 11650.52 13753.06 1% 19% 
10.00 1.50 6974.30 6915.82 8337.15 1% 19% 
 2.00 9302.05 9926.68 11116.20 6% 19% 
 
 
 
 
 
 
 



Table 5: Buckling moments (kNm) for CL, load applied at the centroid, ez = 0.0 m  
L 
 (m) 

T 
 (cm) 

Present  
Eq. (15) 

GBT Eurocode 3 D1 D2 

8.00 1.50 9191.32 8411.75 10895.53 9% 19% 
 2.00 12258.81 12405.53 14527.38 1% 18% 
10.00 1.50 7346.51 7292.40 8710.90 1% 18% 
 2.00 9798.32 10438.79 11614.54 6% 18% 
 
 
Table 6 : Buckling moments (kNm) for CL, load applied on bottom flange, ez = -0.25 m  
L 
 (m) 

T 
 (cm) 

Present  
Eq. (15) 

GBT Eurocode 3 D1 D2 

8.00 1.50 9807.77 9261.85 11508.96 5% 17% 
 2.00 13080.74 13401.02 15345.28 2% 17% 
10.00 1.50 7738.57 7779.49 9101.41 1% 18% 
 2.00 10321.07 11031.36 12135.22 7% 17% 

 
 
Table 7: Buckling moments (kNm) for CM  
L 
 (m) 

T 
 (cm) 

Present  
Eq. (15) 

GBT Eurocode 3 D1 D2 

8.00 1.50 6373.54 5842.97 7555.29 9% 19% 
 2.00 8500.63 9303.75 10073.73 9% 19% 
10.00 1.50 5094.29 5453.04 6040.41 7% 19% 
 2.00 6794.46 7398.68 8053.88 9% 19% 
 
3.2. Pre- and post-buckling analysis and comparison 
We now compare the equilibrium paths provided by the HPM, Newton-Raphson and FEM for a beam 
with L=10 m, b=0.15 m, h=0.5 m, t=0.015 m, commenting also the effect of distortion on non-linear 
equilibria. In all computations, the value of Mx, representing the initial imperfection, is assumed to be 
10-3 kNm. As above, we consider the three loading cases UDL, CL (where the load can be applied to 
the top flange, bottom flange or at the shear centre), CM.  
The non-linear Eqs. (10) is solved by the HPM first, accounting for 80 terms in the power series 
expansion (i=80). Then, Newton-Raphson method with arc-length which can be uniform and unitary, 
or reduced if convergence fails, is adopted; the maximum tolerance is 10-6. The FEM simulation is 
carried out by the commercial code Abaqus [53] with two elements: the first (shell, S8R) is for beams 
affected by cross-section distortion, while the second (beam, B32H) meshes beams with rigid cross-
sections.  
Figs. 4–18 show that in TWB with RHS affected by distortion the HPM provides linear non-trivial 
fundamental paths and bifurcation points that are quite close to those obtained by Newton-Raphson 
method and FEM (shell element S8R); the maximum relative error is 3%. This error remains 
acceptable for all non-linear paths (qz, w(L/2)), (qz, v(L/2)), (qz, q(L/2)), (P, w(L/2)), (P, v(L/2)), (P, 
q(L/2)) when the load is applied on the top flange. We also remark only small discrepancies among the 
results of the three techniques of solving the problem for the post-buckling equilibrium paths (qz, v0), 
(qz, q(L/2)), (P, v(L/2)) and (P, q(L/2)), (qz, v(L/2)), (qz, q(L/2)) of the beams loaded at the bottom 
flange and at the centroid-shear centre; the same happens for the equilibria (My(A), v(L/2)), (My(A), 
q(L/2)). In the non-linear equilibria (qz, w(L/2)), (P, w(L/2)), (My(A), w(L/2)) the difference between 
the results given by the three methods of solution always increases away from the critical point. It is 
also worth remarking that the FEM analysis adopting a mesh of shell elements provides only short 



post-buckling paths, due to the fact that local buckling occurs near the global bifurcation point; a 
similar behaviour with analogous comments is in [54] for TWB with open cross-sections.  
Figs. 13–18 show that for concentrated loads and end moments the bifurcation points provided by 
FEM analysis adopting a mesh of beam element are slightly lower than those given by HPM and 
Newton-Raphson integration, the maximum relative error being about 6%. Once again, we see that 
neglecting cross-sections distortion overestimates the buckling load with respect to beam kinematics 
accounting for cross-sections deformation, even adopting the same resolution technique: indeed, the 
difference between the predictions of HPM with and without distortion for the CL case can reach 26%. 
 
4.  Final remarks  
To highlight the influence of distortion on the lateral-torsional buckling and post-buckling behaviour 
of simply supported steel TWB with RHS under several load conditions, we introduced beam 
kinematics considering non-infinitesimal displacements, finite twist angles and small distortion angles. 
The non-linear field equations have been obtained by stationarity conditions on a total potential energy 
function accounting for linear elastic homogeneous and isotropic behaviour. We have found a new 
closed-form expression for the critical values of a characteristic moment, extending previous ones 
from both theoretical and technical literature, including Eurocode 3. In addition, we have compared 
three methods (HPM, Newton Raphson and FEM) to solve the non-linear field equations and obtain 
pre- and post-buckling equilibrium paths. The main results are: 

1) The differences between the buckling loads obtained by our Eq. (15) and those obtained by the 
GBT are quite acceptable.  

2) The fundamental (linear) paths and the bifurcation points computed by HPM coincide exactly with 
those provided by Newton-Raphson integration and FEM. 

3) Apart from just three post-buckling paths (denoted (qz, w(L/2)), (P, w(L/2)) and (M0, w(L/2)) here), 
which exhibit remarkable differences when evaluated by the three above quoted resolution 
techniques, the other post-buckling equilibria are quite similar. 

4) The present kinematics, accounting for cross-sections distortion, underestimates the buckling load 
with respect to that of the beam models with rigid cross-sections: thus, our model is conservative. 

 
Fig. 4: Pre- and post-buckling equilibrium paths (qz, w(L/2)) with distortion: UDL on top flange (top-right 

curve), UDL on bottom flange (bottom-left curve). 
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Fig. 5: Pre- and post-buckling equilibrium paths (qz, v(L/2)) with distortion: UDL on top flange (top-right 

curve), UDL on bottom flange (bottom-left curve). 
 

 
Fig. 6: Pre- and post-buckling equilibrium paths (qz, q(L/2)) with distortion: UDL on top flange (top-right 

curve), UDL on bottom flange (bottom-left curve). 
 

-1.0 -0.5 0.5 1.0

-600

-400

-200

0

200

400

600

0.0 0.4 0.8
400

440

480

520

-0.8 -0.4 0.0
-630

-560

-490

-420

v(L/2) (m)

 qz 

 

qz 

q z (k
N

/m
l)

 FEM
 Homotopy
 Newton Raphson

-0.6 -0.4 -0.2 0.2 0.4

-600

-400

-200

0

200

400

600

0.0 0.2
400

450

500

-0.30 -0.15
-600

-450

q(L/2) (Rad)

q z (k
N

/m
l)

 Homotopy
 FEM
 Newton Raphson

 

qz 

 qz 

 



 
Fig. 7: Pre- and post-buckling equilibrium paths (P, w(L/2)) with distortion: CL on top flange (top-right curve), 

CL on bottom flange (bottom-left curv 
 
 

 
Fig. 8: Pre- and post-buckling equilibrium paths (P, v(L/2)) with distortion: CL on top flange (top-right curve), 

CL on bottom flange (bottom-left curve). 
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Fig. 9: Pre- and post-buckling equilibrium paths (P, q(L/2)) with distortion: CL on top flange (top-right curve), 

CL on bottom flange (bottom-left curve). 
 

 
Fig. 10: Pre- and post-buckling equilibrium paths (qz,w(L/2)) with and without distortion   

for UDL at the shear centre. 
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Fig. 11: Pre- and post-buckling equilibrium paths (qz,v(L/2)) with and without distortion   

for UDL at the shear centre 
 

 

 
Fig. 12: Pre- and post-buckling equilibrium paths (qz,q (L/2)) with and without distortion   

for UDL at the shear centre. 
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Fig. 13: Pre- and post-buckling equilibrium paths (P,w(L/2)) with and without distortion   

for CL at the shear centre. 
 

 
Fig. 14: Pre- and post-buckling equilibrium paths (P,v(L/2)) with and without distortion   

for CL at the shear centre 
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Fig. 15: Pre- and post-buckling equilibrium paths (P,q (L/2)) with and without distortion  

for CL at the shear centre. 
 

 
Fig. 16: Pre and post-buckling equilibrium paths (My(A), w(L/2)) with and without distortion for CM. 
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Fig. 17: Pre- and post-buckling equilibrium paths (My(A), v(L/2)) with and without distortion for CM.  

 
 

 
 

Fig. 18: Pre- and post-buckling equilibrium paths (My(A), q(L/2)) with and without distortion for CM.  
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