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Abstract. This work is the continuation of our previous paper [6]. There, we
dealt with the reaction-diffusion equation

∂tu = ∆u + f(x − cte, u), t > 0, x ∈ R
N ,

where e ∈ SN−1 and c > 0 are given and f(x, s) satisfies some usual as-
sumptions in population dynamics, together with fs(x, 0) < 0 for |x| large.
The interest for such equation comes from an ecological model introduced in
[1] describing the effects of global warming on biological species. In [6], we

proved that existence and uniqueness of travelling wave solutions of the type
u(x, t) = U(x − cte) and the large time behaviour of solutions with arbitrary
nonnegative bounded initial datum depend on the sign of the generalized prin-
cipal eigenvalue in R

N of an associated linear operator. Here, we establish
analogous results for the Neumann problem in domains which are asymptoti-
cally cylindrical, as well as for the problem in the whole space with f periodic
in some space variables, orthogonal to the direction of the shift e.

The L1 convergence of solution u(t, x) as t → ∞ is established next. In this
paper, we also show that a bifurcation from the zero solution takes place as the
principal eigenvalue crosses 0. We are able to describe the shape of solutions
close to extinction thus answering a question raised by M. Mimura. These two
results are new even in the framework considered in [6].

Another type of problem is obtained by adding to the previous one a term
g(x − c′te, u) periodic in x in the direction e. Such a model arises when con-
sidering environmental change on two different scales. Lastly, we also solve the
case of an equation

∂tu = ∆u + f(t, x − cte, u),

when f(t, x, s) is periodic in t. This for instance represents the seasonal de-
pendence of f . In both cases, we obtain a necessary and sufficient condition
for the existence, uniqueness and stability of pulsating travelling waves, which
are solutions with a profile which is periodic in time.

1. Introduction

In a recent paper [1], a model to study the impact of climate change (global
warming) on the survival and dynamics of species was proposed. This model involves
a reaction-diffusion equation on the real line

∂tu = ∂xxu+ f(x− ct, u), t > 0, x ∈ R.
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In our previous paper [6], we extended the results of [1] to arbitrary dimension N :

(1) ∂tu = ∆u+ f(x− cte, u), t > 0, x ∈ R
N ,

with c > 0 and e ∈ SN−1 given. The function f(x, s) : R
N × R → R considered in

[6] (which is slightly more general than in [1]) satisfies some usual assumptions in
population dynamics, together with

(2) lim sup
|x|→∞

fs(x, 0) < 0.

In the ecological model, this assumption describes the fact that the favourable
habitat is bounded. We proved in [6] that (1) admits a unique travelling wave
solution, that is, a positive bounded solution of the form U(x − cte), if and only
if the generalized principal eigenvalue λ1 of an associated linear elliptic operator
in the whole space is negative. Then, we were able to characterize the large time
behaviour of any solution u of (1) with nonnegative bounded and not identically
equal to zero initial datum. We showed that

(i) if λ1 ≥ 0 then u(t, x) → 0 as t→ ∞, uniformly in x ∈ R
N ;

(ii) if λ1 < 0 then (u(t, x) − U(x− cte)) → 0 as t→ ∞, uniformly in x ∈ R
N .

We further considered the “two-speeds problem”, obtained by adding a term
g(x−c′te, u) to the “pure shift problem” (1), with x 7→ g(x, s) periodic in the direc-
tion e. We derived analogous results to the previous ones, by replacing travelling
waves with pulsating travelling waves.

Here, we deal with the same reaction-diffusion equation as in [6], but in different
geometries.

We first consider the pure shift problem in a straight infinite cylinder

Ω = {(x1, y) ∈ R × R
N−1 : x1 ∈ R, y ∈ ω},

where ω is a bounded smooth domain in R
N−1, with Neumann boundary conditions:

(3)

{
∂tu = ∆u+ f(x1 − ct, y, u), t > 0, x1 ∈ R, y ∈ ω
∂νu(t, x1, y) = 0, t > 0, x1 ∈ R, y ∈ ∂ω,

Henceforth, c is a given positive constant, ν denotes the exterior unit normal vector
field to Ω and ∂ν := ν · ∇. Next, we deal with the same problem in a straight

semi-infinite cylinder

Ω+ = {(x1, y) ∈ R × R
N−1 : x1 > 0, y ∈ ω},

under Dirichlet boundary condition on the “base” {0} × ω:

(4)





∂tu = ∆u+ f(x1 − ct, y, u), t > 0, x1 > 0, y ∈ ω
∂νu(t, x1, y) = 0, t > 0, x1 > 0, y ∈ ∂ω
u(t, 0, y) = σ(t, y) t > 0, y ∈ ω.

More generally, we consider an asymptotically cylindrical domain Ω′ approach-
ing Ω for x1 large (in a sense we will make precise in Section 2.2):

(5)

{
∂tu = ∆u+ f(x1 − ct, y, u), t > 0, (x1, y) ∈ Ω′

∂ν′u(t, x1, y) = 0, t > 0, (x1, y) ∈ ∂Ω′,

where ν′ is the exterior unit normal vector field to Ω′ and ∂ν′ := ν′ · ∇.
We further study problem (1) when f is lateral-periodic, that is, x 7→ f(x, s)

is periodic in some directions, orthogonal to e.
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We also investigate here the behaviour of travelling wave solutions near the crit-
ical threshold. This topic was not discussed in [6]. We prove that, when c crosses
a critical value c0, a bifurcation takes place: stable travelling wave solutions U dis-
appear and the trivial solution u ≡ 0 becomes stable. We characterize the shape
of U near c0. Another type of results we derive here concerns the behaviour of the
solution u(t, x) as t→ ∞ in terms of the L1 norm. This is done for problem (3) in
the straight infinite cylinder as well as for problem (1) in the whole space treated
in [6].

Finally, we consider the following problem:

(6)

{
∂tu = ∆u+ f(t, x1 − ct, y, u), t > 0, x1 ∈ R, y ∈ ω
∂νu(t, x1, y) = 0, t > 0, x1 ∈ R, y ∈ ∂ω,

with f periodic in the first variable t. This equation serves as a model for instance
to describe the situation in which the climate conditions in the “normal regime”
(that is, in the absence of global warming) are affected by seasonal changes. The
methods used to solve (6) also apply to the two-speeds problem

(7)

{
∂tu = ∆u+ f(x1 − ct, y, u) + g(x1 − c′t, y, u), t > 0, x1 ∈ R, y ∈ ω
∂νu(t, x1, y) = 0, t > 0, x1 ∈ R, y ∈ ∂ω,

with c′ 6= c and g periodic in the x1 variable. The term g enables one to describe
situations in which some characteristics of the habitat - such as the availability of
nutrient - are affected by the climate change on a time scale different from that of the
overall change. One may also consider the case in which they are not affected at all:
c′ = 0 (mixed periodic/shift problem). However, the case of two or more cohabiting
species is not treated here. One then has to consider systems of evolution equations
(see e. g. [9], [16] and [11], where segregation phenomena are also described). This
extension is still open.

2. Statement of the main results

2.1. Straight infinite cylinder. Let us list the assumptions on the function f(x, s)
in the case of problem (3). We will sometimes denote the generic point x ∈ Ω by
(x1, y) ∈ R × ω and we set ∂1 := ∂

∂x1
. We will always assume that f(x, s) :

Ω × [0,+∞) → R is a Carathéodory function such that

(8)

{
s 7→ f(x, s) is locally Lipschitz continuous, uniformly for a. e. x ∈ Ω,
∃ δ > 0 such that s 7→ f(x, s) ∈ C1([0, δ]), uniformly for a. e. x ∈ Ω.

Moreover, we will require the following assumptions which are typical in population
dynamics:

(9) f(x, 0) = 0 for a. e. x ∈ Ω,

(10) ∃ S > 0 such that f(x, s) ≤ 0 for s ≥ S and for a. e. x ∈ Ω,

(11)

{
s 7→ f(x, s)

s
is nonincreasing for a. e. x ∈ Ω

and it is strictly decreasing for a. e. x ∈ D ⊂ Ω, with |D| > 0.

The condition asserting that the favourable zone is bounded (as in [1], [6]) is written
in the form

(12) ζ := − lim
r→∞

sup
|x1|>r

y∈ω

fs(x1, y, 0) > 0.
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A travelling wave solution for problem (3) is a positive bounded solution of the
form u(t, x1, y) = U(x1 − ct, y). The problem for U reads

(13)






∆U + c∂1U + f(x, U) = 0 for a. e. x ∈ Ω
∂νU = 0 on ∂Ω
U > 0 in Ω
U is bounded.

In the literature, such kind of solutions are also called pulses. If f satisfies (9), then
the linearized operator about 0 associated with the elliptic equation in (13) is

Lw = ∆w + c∂1w + fs(x, 0)w.

Our main results in the pure shift case depend on the stability of the solution w ≡ 0
for the Neumann problem Lw = 0 in Ω, ∂νw = 0 on ∂Ω, that is, on the sign of the
generalized Neumann principal eigenvalue λ1,N (−L,Ω). For a given operator L in
the form L = ∆ + β(x) · ∇ + γ(x), with β and γ bounded, we define the quantity
λ1,N (−L,Ω) by

λ1,N (−L,Ω) := sup{λ ∈ R : ∃ φ > 0, (L+ λ)φ ≤ 0 a. e. in Ω, ∂νφ ≥ 0 on ∂Ω}.
(14)

This definition of the generalized principal eigenvalue for the Neumann problem is
in the same spirit as the one in [4] for the Dirichlet boundary condition case. In
(14), the function φ is understood to belong to W 2,p((−r, r) × ω) for some p > N
and every r > 0. Thus, ∂νφ has the classical meaning. We will set for brief
λ1,N := λ1,N (−L,Ω).

Theorem 2.1. Assume that (9)-(12) hold. Then, the travelling wave problem (13)
admits a solution if and only if λ1,N < 0. Moreover, when it exists, the solution is
unique and satisfies

lim
|x1|→∞

U(x1, y) = 0,

uniformly with respect to y ∈ ω.

Theorem 2.2. Let u(t, x) be the solution of (3) with an initial condition u(0, x) =
u0(x) ∈ L∞(Ω) which is nonnegative and not identically equal to zero. Under
assumptions (9)-(12) the following properties hold:

(i) if λ1,N ≥ 0 then

lim
t→∞

u(t, x) = 0,

uniformly with respect to x ∈ Ω;
(ii) if λ1,N < 0 then

lim
t→∞

(u(t, x1, y) − U(x1 − ct, y)) = 0,

uniformly with respect to (x1, y) ∈ Ω, where U is the unique solution of
(13).

2.2. General cylindrical-type domains. The large time behaviour of solutions
to the pure shift problem either in the semi-infinite cylinder Ω+, as well as in the
asymptotically cylindrical domain Ω′, is characterized by the sign of the generalized
Neumann principal eigenvalue λ1,N = λ1,N (−L,Ω) in the straight infinite cylinder,
as defined in (14).

In the first case, in order to give sense to problem (4), the function f(·, s) has
to be defined in the whole straight infinite cylinder Ω. We will always require that
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f satisfies (8). In (4), the function σ, which defines the Dirichlet condition at the
“bottom” of the cylinder, is assumed to be of class W 2,∞(R+ × ω) and to satisfy

(15) σ ≥ 0 in R
+ × ω, ∂νσ = 0 on R

+ × ∂ω, ∀ y ∈ ω, lim
t→∞

σ(t, y) = 0.

Here is the result for the half cylinder.

Theorem 2.3. Let u(t, x) be the solution of (4) with an initial condition u(0, x) =
u0(x) ∈ L∞(Ω+) which is nonnegative and not identically equal to zero. Under
assumptions (9)-(12), (15) the following properties hold:

(i) if λ1,N ≥ 0 then

lim
t→∞

u(t, x) = 0,

uniformly with respect to x ∈ Ω+;
(ii) if λ1,N < 0 then

lim
t→∞

(u(t, x1, y) − U(x1 − ct, y)) = 0,

uniformly with respect to (x1, y) ∈ Ω+, where U is the unique solution of
(13).

For the next result, let us now make precise what we mean by Ω′ being an
asymptotically cylindrical domain. We assume that Ω′ is uniformly smooth and
that there exists a C2 diffeomorphism Ψ : R

N → R
N such that

(16)

{
∃ h > 0, Ψ([h,+∞) × ω) = Ω

′ ∩ ([h,+∞) × R
N−1),

lim
x1→+∞

‖Ψ − I‖W 2,∞((x1,+∞)×ω) = 0,

where I denotes the identity map from R
N into itself. We define the family of sets

(ω′(x1))x1∈R in R
N−1 by the equality

⋃

x1∈R

{x1} × ω′(x1) = Ω′.

Note that by (16) the ω′(x1) are (uniformly) smooth, bounded and connected for
x1 large enough. In order to make sense of (5), the function f(·, s) has to be defined
in the set

Ω̃ :=
⋃

x1∈R

(−∞, x1] × ω′(x1).

Clearly, one has that Ω ⊂ Ω̃. Besides the regularity assumptions (8) on f , where Ω

is replaced by Ω̃, we further require that f and fs(x, 0) are Hölder continuous1 in
x:

(17) ∃ α ∈ (0, 1), ∀ s > 0, f(·, s), fs(·, 0) ∈ Cα(Ω̃).

In this setting, hypotheses (9)-(12) are understood to hold with Ω replaced by Ω̃,
except for the condition D ⊂ Ω in (11) which is unchanged.

Theorem 2.4. Let u(t, x) be the solution of (5) with an initial condition u(0, x) =
u0(x) ∈ L∞(Ω′) which is nonnegative and not identically equal to zero. Under
assumptions (9)-(12), (17) the following properties hold:

1 which is also understood to imply that they are bounded. Precisely, for k ∈ N and α ∈ (0, 1),
Ck+α(O) denotes the space of functions φ ∈ Ck(O) whose derivatives up to order k are bounded
and uniformly Hölder continuous with exponent α in O.
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(i) if λ1,N ≥ 0 then
lim

t→∞
u(t, x) = 0,

uniformly with respect to x ∈ Ω′;
(ii) if λ1,N < 0 then

lim
t→∞

(u(t, x1, y) − U(x1 − ct, y)) = 0,

uniformly with respect to (x1, y) ∈ Ω′ ∩ Ω, where U is the unique solution
of (13). In addition,

lim
t→∞

u(t, x1, y) = 0,

uniformly with respect to x1 ≤ γt, y ∈ ω′(x1), for any γ < c.

Remark 1. Since by Theorem 2.1 lim|x1|→∞ U(x1, y) = 0 uniformly in y ∈ ω, the
two limits in the statement (ii) of Theorem 2.4 are not contradictory. More generally,
the second one (limt→∞ u(t, x1, y) = 0) actually holds uniformly with respect to
x1 ≤ γ(t), y ∈ ω′(x1), for any function γ such that limt→∞(γ(t) − ct) = −∞.

Remark 2. Another way to state Theorem 2.4 part (ii) is by extending the unique
solution U of (13) to a function U ∈W 1,∞(RN ) satisfying

∀ x1 ∈ R, ‖U(x1, ·)‖L∞(RN−1) = ‖U(x1, ·)‖L∞(ω).

Then, since lim|x1|→∞ U(x1, y) = 0 uniformly in y ∈ ω and u and U are uniformly
continuous, applying Theorem 2.4 part (ii) with, for instance, γ = c/2 we see that

lim
t→∞

(u(t, x1, y) − U(x1 − ct, y)) = 0,

uniformly with respect to (x1, y) ∈ Ω′.

Actually, the results of Theorem 2.4 hold under more general boundary conditions
than those considered in (5). In fact, it is only needed that they coincide with
Neumann boundary conditions for x1 large (and that they imply the existence of a
unique solution of the evolution problem for any given initial datum, as well as the
validity of the comparison principle). Since Ω+ is a particular case of asymptotically
cylindrical domain (with Ψ ≡ 1 and h = 0), Theorem 2.3 is actually contained in
Theorem 2.4. However, we treat it separately because the proof is much simpler.

2.3. Lateral-periodic conditions. In the last case considered for the pure shift
problem, we deal with problem (1) with c > 0 and e ∈ SN−1 given and with f
periodic in the last P variables, 1 ≤ P ≤ N − 1. That is, there exist P positive
constants l1, · · · , lP such that

(18) ∀ i ∈ {1, · · · , P}, s ∈ R, f(x+ lieN−P+i, s) = f(x, s) for a. e. x ∈ R
N ,

where {e1, · · · , eN} denotes the canonical basis of R
N . We assume that the shift

direction e ∈ SN−1 is orthogonal to the directions in which f is periodic: e · ei = 0
for i = N − P + 1, · · · , N . We set M := N − P and we will sometimes denote the
generic point x ∈ R

N by x = (z, y) ∈ R
M ×R

P , in order to distinguish the periodic
directions y from the others. Henceforth, we say that a function φ : R

N → R is
lateral-periodic (with period (l1, · · · , lP )) if φ(x + lieM+i) = φ(x) for i = 1, · · · , P
and a. e. x ∈ R

N .
Besides the regularity assumptions (8) (with Ω now replaced by R

N ) we require
that f satisfies

(19) f(x, 0) = 0 for a. e. x ∈ R
N ,
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(20) ∃ S > 0 such that f(x, s) ≤ 0 for s ≥ S and for a. e. x ∈ R
N ,

(21)

{
s 7→ f(x, s)

s
is nonincreasing for a. e. x ∈ R

N

and it is strictly decreasing for a. e. x ∈ D ⊂ R
N , with |D| > 0,

(22) ζ := − lim
r→∞

sup
|z|>r

y∈RP

fs(z, y, 0) > 0.

The problem for travelling wave solutions u(t, x) = U(x− cte) reads

(23)





∆U + ce · ∇U + f(x, U) = 0 a. e. in R
N

U > 0 in R
N

U is bounded.

The associated linearized operator L about 0 is the same as before but in R
N . We

consider the generalized principal eigenvalue of a linear elliptic operator −L in a
domain O ⊂ R

N , as defined in [4]:
(24)

λ1(−L,O) := sup{λ ∈ R : ∃ φ ∈ W 2,N
loc (O), φ > 0 and (L+ λ)φ ≤ 0 a. e. in O}.

In the sequel, we will set λ1 := λ1(−L,RN ). We now state our main results for the
lateral periodic (pure shift) problem.

Theorem 2.5. Assume that (18)-(22) hold. Then, problem (23) admits a solution if
and only if λ1 < 0. Moreover, when it exists, the solution is unique, lateral-periodic
and satisfies

lim
|z|→∞

U(z, y) = 0,

uniformly with respect to y ∈ R
P .

Theorem 2.6. Let u(t, x) be the solution of (1) with an initial condition u(0, x) =
u0(x) ∈ L∞(RN ) which is nonnegative and not identically equal to zero. Under
assumptions (18)-(22) the following properties hold:

(i) if λ1 ≥ 0 then

lim
t→∞

u(t, x) = 0,

uniformly with respect to x ∈ R
N ;

(ii) if λ1 < 0 then

lim
t→∞

(u(t, z, y)− U((z, y) − cte)) = 0,

globally uniformly with respect to z ∈ R
M and locally uniformly with respect

to y ∈ R
P , where U is the unique solution of (23). If, in addition, u0 is

either lateral-periodic or satisfies

(25) ∀ r > 0, inf
|z|<r

y∈RP

u0(z, y) > 0,

then the previous limit holds globally uniformly also with respect to y ∈ R
P .

It is easy to see that, in general, the convergence of u(t, z, y) to U((z, y) − cte)
is not uniform globally with respect to y. For instance, if the initial datum u0 has
compact support, then, for all fixed t > 0, u(t, x) → 0 as |x| → ∞.
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2.4. Behaviour near critical value. The next result is to answer a question that
was raised by Professor Mimura to one of the authors regarding the behaviour of the
solutions near the extinction limit. We show here that a simple bifurcation takes
place when the generalized principal eigenvalue becomes nonnegative (or, in other
terms, when the speed c crosses a critical value c0). For simplicity, we only state
the result in the case of pure shift problem (3) in the straight infinite cylinder, but
it also holds in the whole space case (1), either under the hypotheses of the lateral
periodic framework, as well as under condition (2) considered in [6].

We assume that f and Ω in (3) are such that c0 > 0, where c0 is the critical speed
defined in Section 3.2, i. e. that λ1,N < 0 when c = 0. Below, for any 0 < c < c0,
U c denotes the unique (stable) solution of (13) given by Theorem 2.1.

Theorem 2.7. Assume that (9)-(12) hold. Then, the following properties hold:

(i)
lim

c→c−0

U c(x) = 0,

uniformly with respect to x ∈ Ω;
(ii)

lim
c→c−0

U c(x)

‖U c‖L∞(Ω)
= ϕ(x),

uniformly with respect to x ∈ Ω, where ϕ is the unique positive solution of

(26)





∆ϕ+ c0∂1ϕ+ fs(x, 0)ϕ = 0 a. e. in Ω
∂νϕ = 0 on ∂Ω
‖ϕ‖L∞(Ω) = 1.

It should be noted that the uniqueness of the solution to (26) is a remarkable
property which does not hold in general for positive solutions of linear equations in
unbounded domains.

2.5. L1 convergence. We still consider the case of straight infinite cylinder. Start-
ing from the pointwise convergence of the solution u(t, x) of (3) as t → ∞, we are
able to show that the convergence also holds in L1(Ω). This is interesting from the
point of view of biological models, as ‖u(t, ·)‖L1(Ω) represents the total population
at time t.

Theorem 2.8. Consider problem (3) in the straight infinite cylinder Ω. The con-
vergences in Theorem 2.2 also hold in the L1 sense, provided the initial datum u0

belongs to L1(Ω).

An analogous result holds true for the pure shift problem in the whole space
considered in [6] which we now state.

Theorem 2.9. Let u(t, x) be the solution of (1) in all of space with an initial condi-
tion u(0, x) = u0(x) ∈ L∞(RN ) ∩ L1(RN ) which is nonnegative and not identically
equal to zero. Under assumptions (19)-(21) and (2) the following properties hold:

(i) if λ1 ≥ 0 then
lim

t→∞
‖u(t, ·)‖L1(RN ) = 0;

(ii) if λ1 < 0 then

lim
t→∞

‖u(t, ·) − U(· − cte)‖L1(RN ) = 0,

where U is the unique solution of (23).
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2.6. Seasonal dependence. We consider problem (6) with f(t, x, s) : R × Ω ×
[0,+∞) → R periodic in t, with period T > 0:

(27) ∀ t ∈ R, x ∈ Ω, s ≥ 0, f(t+ T, x, s) = f(t, x, s).

As in the case of asymptotically cylindrical domains, besides conditions (8), which
are now required uniformly in t ∈ R, we need some Hölder continuity assumptions
on f for some α ∈ (0, 1):

∀ s > 0, f(·, ·, s), fs(·, ·, 0) ∈ C
α
2 ,α

t,x (R × Ω),

where C
α
2 ,α

t,x (I×O), with I ⊂ R and O ⊂ R
N , denotes the space of functions φ(t, x)

such that φ(·, x) ∈ C
α
2 (I) and φ(t, ·) ∈ Cα(O) uniformly with respect to x ∈ O and

t ∈ I respectively. The other assumptions on f are:

(28) f(t, x, 0) = 0 for t ∈ R, x ∈ Ω,

(29) ∃ S > 0 such that ∀ t ∈ R, x ∈ Ω, s ≥ S, f(t, x, s) ≤ 0,

(30)

{
s 7→ f(t, x, s)

s
is nonincreasing for t ∈ R, x ∈ Ω

and it is strictly decreasing for some t ∈ R, x ∈ Ω.

The analogue of condition (12) is required uniformly in t, that is,

(31) lim
r→∞

sup
t∈R

|x1|>r
y∈ω

fs(t, x1, y, 0) < 0.

The notion of travelling wave is replaced in this framework by that of pulsating
travelling wave, that is, a solution u to (6) such that U(t, x1, y) := u(t, x1 + ct, y) is
periodic in t with period T . Thus, U satisfies

(32)





∂tU = ∆U + c∂1U + f(t, x, U), t ∈ R, x ∈ Ω
∂νU(t, x) = 0, t ∈ R, x ∈ ∂Ω
U > 0 in R × Ω
U is bounded
U is T -periodic in t,

where U is extended by periodicity for t < 0. We denote by P the linearized
operator about the steady state w ≡ 0 associated with the parabolic equation in
(32):

Pw = ∂tw − ∆w − ∂1w − fs(t, x, 0)w.

By analogy to (24), we define the generalized T -periodic Neumann principal eigen-
value of the parabolic operator P in R × Ω in the following way:

µ1,N := sup{µ ∈ R : ∃ φ ∈ C1,2
t,x (R × (−r, r) × ω), ∀ r > 0, φ is T -periodic in t,

φ > 0 and (P − µ)φ ≥ 0 in R × Ω, ∂νφ ≥ 0 on R × ∂Ω}.

(33)

Theorem 2.10. Assume that (27)-(31) hold. Then problem (32) admits a solution
if and only if µ1,N < 0. Moreover, when it exists, the solution is unique and satisfies

lim
|x1|→∞

U(t, x1, y) = 0,

uniformly with respect to t ∈ R and y ∈ ω.



28 HENRI BERESTYCKI AND LUCA ROSSI

Theorem 2.11. Let u(t, x) be the solution of (6) with an initial condition u(0, x) =
u0(x) ∈ L∞(Ω) which is nonnegative and not identically equal to zero. Under
assumptions (28)-(31) the following properties hold:

(i) if µ1,N ≥ 0 then

lim
t→∞

u(t, x) = 0,

uniformly with respect to x ∈ Ω;
(i) if µ1,N < 0 then

lim
t→∞

(u(t, x1, y) − U(t, x1 − ct, y)) = 0,

uniformly with respect to (x1, y) ∈ Ω, where U is the unique solution of
(32).

One is also led to (32) by considering the two speeds problem (7), with c and c′

given, c 6= c′ and g(x1, y, s) periodic in x1, with period l > 0:

∀ (x1, y) ∈ Ω, s ≥ 0, g(x1 + l, y, s) = g(x1, y, s).

Indeed, if u is a solution of (7) then ũ(t, x1, y) := u(t, x1 + ct, y) satisfies

∂tũ = ∆ũ+ c∂1ũ+ h(t, x, ũ), t ∈ R, x ∈ Ω,

where the function

h(t, x1, y, s) := f(x1, y, s) + g(x1 + (c− c′)t, y, s)

is l/(c − c′)-periodic in t. As a consequence, the problem of pulsating travelling
wave solutions u to (7) such that U(t, x1, y) := u(t, x1 + ct, y) is l/(c− c′)-periodic
in t is given by (32) with f replaced by h and T = l/(c− c′). Furthermore, as the
transformation ũ(t, x1, y) := u(t, x1 + ct, y) reduces (6) and (7) to the same kind of
problem, Theorem 2.11 holds with (6) replaced by (7), f by h and T = l/(c− c′).

3. The pure shift problem: Straight infinite cylinder

Let us recall the notation used in this framework:

Ω = R × ω,

Lw = ∆w + c∂1w + fs(x1, y, 0)w,

ζ = − lim
r→∞

sup
|x1|>r

y∈ω

fs(x1, y, 0),

λ1,N = λ1,N (−L,Ω).

We further denote

∀ r > 0, Ωr := (−r, r) × ω.

To prove the existence and uniqueness of travelling wave solutions to (3), Theo-
rem 2.1, we use the same method as in [6]. The only difference is that here we take
into account the Neumann boundary conditions in the definition of the generalized
principal eigenvalue λ1,N . This leads us to consider eigenvalue problems in the fi-
nite cylinders (−r, r)× ω, with mixed Dirichlet-Neumann boundary conditions, for
which we need some regularity results up to the corners {±r} × ∂ω presented in
the appendix. Properties of this eigenvalue are described in Section 3.1. Next, we
reduce the elliptic equation in (13) to an equation with self-adjoint linear term via
a Liouville transformation. This will allow us to define the critical speed c0 as well
as to derive the exponential decay of solutions to (13). Using this result we prove a
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comparison principle for (13) which yields the uniqueness and the necessary condi-
tion for the existence of travelling wave solutions. The sufficient condition will be
seen to follow from the properties of λ1,N and a sub and supersolution argument.
Thanks to Theorem 2.1, we will derive a result about entire solutions to (3) which
is useful in completing the proof of Theorem 2.2.

3.1. Properties of λ1,N . We derive some results concerning the generalized Neu-
mann principal eigenvalue λ1,N (−L,Ω) that will be needed in the sequel. Here, L
is an operator of the type

Lw := ∆w + β(x) · ∇w + γ(x)w,

with β = (β1, · · · , βN) and γ bounded.
We first introduce the principal eigenvalues in the finite cylinders Ωr, with Neu-

mann boundary conditions on the “sides” (−r, r)×∂ω and Dirichlet boundary con-
ditions on the “bases” {±r}×ω. The existence of such eigenvalues follows from the
Krein-Rutman theory, as for the principal eigenvalues in bounded smooth domains
with either Dirichlet or Neumann boundary conditions. Some technical difficulties
arise due to the non-smoothness of Ωr on the “corners” {±r} × ∂ω. This problem
can be handled by extending the solutions outside Ωr by reflection. Since such an
argument is quite classical and technical, we postpone the proof of the next result
to Appendix A.

Theorem 3.1. For any r > 0 there exists a unique real number λ(r) such that the
eigenvalue problem





−Lϕr = λ(r)ϕr a. e. in Ωr

∂νϕr = 0 on (−r, r) × ∂ω
ϕr = 0 on {±r} × ω

admits a positive solution ϕr ∈ W 2,p(Ωr), for any p > 1. Moreover, ϕr is unique
up to a multiplicative constant.

The quantity λ(r) and the function ϕr in the previous theorem are respectively
called principal eigenvalue and eigenfunction of −L in Ωr (with mixed Dirich-
let/Neumann boundary conditions).

Proposition 1. The function λ(r) : R
+ → R of principal eigenvalues of −L in Ωr

is decreasing and satisfies

lim
r→∞

λ(r) = λ1,N (−L,Ω).

Furthermore, there exists a generalized Neumann principal eigenfunction of −L in
Ω, that is, a positive function ϕ ∈ W 2,p(Ωr), for any p > 1 and r > 0, such that

(34)

{
−Lϕ = λ1,N (−L,Ω)ϕ a. e. in Ω
∂νϕ = 0 on ∂Ω.

Proof. Let 0 < r1 < r2 and assume, by way of contradiction, that λ1,N (r1) ≤
λ1,N (r2). Consider the associated principal eigenfunctions ϕr1 and ϕr2 of −L in Ωr1

and Ωr2 respectively. Note that the Hopf lemma yields ϕr2 > 0 on (−r2, r2) × ∂ω.
Set

k := max
Ωr1

ϕr1

ϕr2

.
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Clearly, k > 0 and the function w := kϕr2 − ϕr1 is nonnegative, vanishes at some
point x0 ∈ Ωr1 and satisfies

(L+ λ1,N (r2))w ≤ 0 a. e. in Ωr1 .

Since ϕr1 = 0 on {±r1} × ω, the point x0 must belong to (−r1, r1) × ω. If x0 ∈
Ωr1 then the strong maximum principle yields w ≡ 0, which is impossible. As a
consequence, it is necessarily the case that x0 ∈ (−r1, r1) × ∂ω. But this leads to
another contradiction in view of Hopf’s lemma:

0 > ∂νw(x0) = k∂νϕr2(x0) − ∂νϕr1(x0) = 0.

Hence, the function λ(r) : R
+ → R is decreasing. Let us show that the quantity

λ1,N (−L,Ω) is well defined and satisfies

(35) ∀ r > 0, λ1,N (−L,Ω) ≤ λ(r).

Taking φ ≡ 1 in (14) shows that λ1,N (−L,Ω) ≥ − supΩ γ. If (35) does not hold
then there exists R > 0 such that λ(R) < λ1,N (−L,Ω). By definition (14), we can
find a constant λ > λ(R) and a positive function φ ∈ W 2,N+1(Ωr), for any r > 0,
such that {

(L+ λ)φ ≤ 0 a. e. in Ω
∂νφ ≥ 0 on ∂Ω.

A contradiction follows by arguing as before, with ϕr1 and ϕr2 replaced by ϕR and
φ respectively. Consequently,

λ̃ := lim
r→∞

λ(r) ≥ λ1,N (−L,Ω).

To prove equality, consider the sequence of generalized principal eigenfunctions
(ϕn)n∈N, normalized by ϕn(x0) = 1, where x0 is fixed, say in Ω1. Extending by
reflection the functions ϕn to larger cylinders, as done in Appendix A, and using the
Harnack inequality, we see that, for m ∈ N, the (ϕn)n>m are uniformly bounded in
Ωm. Hence, by standard elliptic estimates and embedding theorems, there exists a
subsequence (ϕnk

)k∈N converging in C1(Ωρ) and weakly in W 2,p(Ωρ), for any ρ > 0
and p > 1, to some nonnegative function ϕ satisfying

{
−Lϕ = λ̃ϕ a. e. in Ω
∂νϕ = 0 on ∂Ω.

Since ϕ(x0) = 1, the strong maximum principle yields ϕ > 0 in Ω. Thus, taking

φ = ϕ in (14) we get λ1,N (−L,Ω) ≥ λ̃, which concludes the proof. �

In what follows, λ(r) and ϕr will always denote respectively the principal eigen-
value and eigenfunction of −L in Ωr. We will further denote by ϕ a generalized
Neumann principal eigenfunction of −L in Ω, given by Proposition 1.

3.2. Definition of the critical speed c0. Through the Liouville transformation
V (x1, y) := U(x1, y)e

c
2 x1 , problem (13) reduces to

(36)





∆V + f(x1, y, V (x1, y)e
− c

2 x1)e
c
2x1 − c2

4
V = 0 for a. e. (x1, y) ∈ Ω

∂νV = 0 on ∂Ω
V > 0 in Ω
V (x1, y)e

− c
2x1 bounded.

The associated linearized operator about V ≡ 0 is

L̃w := ∆w + (fs(x, 0) − c2/4)w.
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Since L̃φ = (L(φe−
c
2x1))e

c
2x1 for any function φ, an immediate consequence of

definition (14) is that λ1,N (−L̃,Ω) = λ1,N .
In order to define the critical speed c0, we introduce the linear operator

L0u := ∆u + fs(x, 0)u

and we set λ0 := λ1,N (−L0,Ω).

Proposition 2. Define the critical speed as

c0 :=

{
2
√
−λ0 if λ0 < 0

0 otherwise.

Then λ1,N < 0 iff 0 < c < c0.

Proof. This simply follows from the fact that

λ1,N = λ1,N (−L̃,Ω) = λ1,N (−L0 + c2/4,Ω) = λ0 + c2/4.

�

3.3. Exponential decay of travelling waves. Owing to the results of Section
3.1, the exponential decay of solutions to (13) follows essentially as in [6]. However,
for the sake of completeness, we include the proofs here.

Lemma 3.2. Let V ∈ W 2,p(Ωr), for some p > N and every r > 0, be a positive
function such that ∂νV ≤ 0 on ∂Ω. Assume that for some γ > 0, V satisfies

sup
(x1,y)∈Ω

V (x1, y)e
−√

γ|x1| <∞, lim inf
|x1|→∞

∆V (x1, y)

V (x1, y)
> γ,

uniformly in y ∈ ω. Then,

lim
|x1|→∞

V (x1, y)e
√

γ|x1| = 0,

uniformly in y ∈ ω.

Proof. By the hypotheses on V , there exist ε,R > 0 such that ∆V ≥ (γ+ε)V a. e. in
Ω\ΩR. Set κ := sup(x1,y)∈Ω V (x1, y)e

−√
γ|x1|. For a > 0 let ϑa : [R,R + a] → R be

the solution to 



ϑ′′ = (γ + ε)ϑ in (R,R+ a)
ϑ(R) = κe

√
γR

ϑ(R+ a) = κe
√

γ(R+a).

Hence, ϑa(ρ) = Aae
−√

γ+ε ρ +Bae
√

γ+ε ρ, with

Aa = κe(
√

γ+
√

γ+ε)R

(
1 − e

√
γa − e−

√
γ+εa

e
√

γ+εa − e−
√

γ+εa

)
,

Ba = κe(
√

γ−√
γ+ε)R e

√
γa − e−

√
γ+εa

e
√

γ+εa − e−
√

γ+εa
.

The function θa(x1, y) := ϑa(|x1|) satisfies
{

∆θa(x1, y) = (γ + ε)θa(x1, y) for R < |x1| < R+ a, y ∈ ω
∂νθa(x1, y) = 0 for R < |x1| < R+ a, y ∈ ∂ω.

Since V is a subsolution of the above problem and V ≤ θa on {±R,±(R+ a)}× ω,
the comparison principle yields V ≤ θa in ΩR+a\ΩR, for any a > 0. Therefore, for
|x1| > R and y ∈ ω we get

V (x1, y) ≤ lim
a→∞

θa(x1, y) = κe(
√

γ+
√

γ+ε)Re−
√

γ+ε |x1|,
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which concludes the proof. �

Proposition 3. Let U be a solution of (13) and assume that (9), (11), (12) hold.
Then, there exist two constants h, β > 0 such that

∀ (x1, y) ∈ Ω, U(x1, y) ≤ he−β|x1|.

Proof. The function V (x1, y) := U(x1, y)e
c
2x1 is a solution of (36). Hence,

∆V (x1, y)

V (x1, y)
= −ξ(x1, y) +

c2

4
for a. e. (x1, y) ∈ Ω,

where

ξ(x1, y) :=
f(x1, y, U(x1, y))

U(x1, y)
,

which belongs to L∞(Ω) because f(x, ·) vanishes at 0 and is locally Lipschitz
continuous. Moreover, ξ(x1, y) ≤ fs(x1, y, 0) due to (11). Consider a constant
γ ∈ (c2/4, ζ + c2/4), where ζ is the positive constant in (12). We see that

lim
r→∞

inf
|x1|>r

y∈ω

∆V (x1, y)

V (x1, y)
≥ − lim

r→∞
sup

|x1|>r

y∈ω

fs(x1, y, 0) +
c2

4
= ζ +

c2

4
> γ.

On the other hand, V (x1, y)e
−√

γ|x1| ≤ V (x1, y)e
− c

2 x1 which is bounded on Ω.
Therefore, by Lemma 3.2 there exists a positive constant C such that

∀ (x1, y) ∈ Ω, U(x1, y) = V (x1, y)e
− c

2x1 ≤ Ce−
√

γ |x1|− c
2x1 ≤ Ce−(

√
γ− c

2 )|x1|.

�

3.4. Comparison principle. The following is a comparison principle which con-
tains, as a particular case, the uniqueness of solutions to (13) vanishing at infinity.

Theorem 3.3. Assume that (9), (11), (12) hold. Let U,U ∈ W 2,p(Ωr), for some
p > N and every r > 0, be two nonnegative functions satisfying

{
−∆U − c∂1U ≤ f(x, U) for a. e. x ∈ Ω
∂νU ≤ 0 on ∂Ω,

{
−∆U − c∂1U ≥ f(x, U) for a. e. x ∈ Ω
∂νU ≥ 0 on ∂Ω,

U > 0 in Ω, lim
|x1|→∞

U(x1, y) = 0 uniformly in y ∈ ω.

Then U ≤ U in Ω.

Proof. For any ε > 0 define the set

Kε := {k > 0 : kU ≥ U − ε in Ω}.
Since by hypothesis there exists R(ε) > 0 such that

(37) ∀ |x1| ≥ R(ε), y ∈ ω, U(x1, y) − ε ≤ 0,

and U > 0 in Ω by Hopf’s lemma, the set Kε is nonempty. For ε > 0 set k(ε) :=
infKε. Clearly, the function k : R

+ → R is nonincreasing. Let us assume, by way
of contradiction, that

k∗ := lim
ε→0+

k(ε) > 1
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(with, possibly, k∗ = ∞). For any 0 < ε < supΩ U we see that k(ε) > 0, k(ε)U −
U + ε ≥ 0 in Ω and there exists a sequence ((xε

1,n, y
ε
n))n∈N in Ω such that

(
k(ε) − 1

n

)
U(xε

1,n, y
ε
n) < U(xε

1,n, y
ε
n) − ε.

From (37) it follows that, for fixed ε > 0, (xε
1,n, y

ε
n) ∈ ΩR(ε) for n large enough and

then, up to subsequences, (xε
1,n, y

ε
n) converges to some (x1(ε), y(ε)) ∈ ΩR(ε) as n

goes to infinity. Hence, k(ε)U(x1(ε), y(ε)) ≤ U(x1(ε), y(ε)) − ε. Consequently, for
any ε > 0 we have the following:

(38) k(ε)U − U + ε ≥ 0 in Ω, (k(ε)U − U + ε)(x1(ε), y(ε)) = 0.

We consider separately two different situations.
Case 1: lim inf

ε→0+
|x1(ε)| <∞.

Then, there exists a sequence (εn)n∈N in R
+ such that

lim
n→∞

εn = 0, ξ := lim
n→∞

x1(εn) ∈ R, η := lim
n→∞

y(εn) ∈ ω.

From (38) it follows that k∗ <∞ and that the functionW := k∗U−U is nonnegative
and vanishes at (ξ, η). Also, since k∗ > 1, condition (11) yields

−∆W − c∂1W ≥ k∗f(x, U) − f(x, U) ≥ f(x, k∗U) − f(x, U) a. e. in Ω,

with strict inequality a. e. in D. Therefore, thanks to the Lipschitz continuity of f
in the second variable, W is a supersolution of a linear elliptic equation in Ω. Since
W is nonnegative in Ω, vanishes at (ξ, η) and ∂νW = 0 on ∂Ω, the strong maximum
principle and the Hopf lemma yield W ≡ 0. This is a contradiction because W is a
strict supersolution in D.

Case 2: lim
ε→0+

|x1(ε)| = ∞.

For ε > 0 set W ε := k(ε)U − U + ε. By (38) we have that W ε ≥ 0 and
W ε(x1(ε), y(ε)) = 0. Furthermore, for ε > 0 small enough k(ε) > 1 and then,
for a. e. x ∈ Ω,

−∆W ε − c∂1W
ε ≥ k(ε)f(x, U) − f(x, U)

≥ f(x, k(ε)U) − f(x, U).
(39)

Since |x1(ε)| → ∞, by (12) we can take ε, δ > 0 small enough in such a way that
fs(x, 0) < 0 for x ∈ O := Bδ∩Ω, where Bδ is the ball of radius δ about (x1(ε), y(ε)).
Moreover, up to chosing a smaller δ if need be, we can assume that U > k(ε)U in
O. Using (9) and (11) we derive, for x ∈ O,

f(x, k(ε)U) − f(x, U) ≥ f(x, k(ε)U) − f(x, k(ε)U)

k(ε)U
U

=
f(x, k(ε)U)

k(ε)U
(k(ε)U − U)

≥ fs(x, 0)(k(ε)U − U)

> 0.

Thus, in view of (39), (x1(ε), y(ε)) cannot be an interior minimum for W ε. Then,
(x1(ε), y(ε)) ∈ ∂Ω and by Hopf’s lemma in O one has ∂νW

ε((x1(ε), y(ε)) < 0, which
contradicts the assumption.
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We have shown that k∗ := limε→0+ k(ε) ≤ 1. Consequently, from (38) we finally
get

U ≤ lim
ε→0+

(k(ε)U + ε) ≤ U in Ω.

�

3.5. Existence and uniqueness of travelling waves.

Proof of Theorem 2.1. Case 1: λ1,N < 0.
We proceed exactly as in [2]. By Proposition 1 there exists R > 0 such that
λ(R) < 0. Define the function

U(x) :=

{
κϕR(x) x ∈ ΩR

0 otherwise,

where κ > 0 will be chosen appropriately small later. We see that ∂νU = 0 on ∂Ω
and that

−∆(κϕR) − c∂1(κϕR) = (fs(x, 0) + λ(R))κϕR a. e. in ΩR.

Hence, since f(x, 0) = 0 by (9) and s 7→ f(x, s) ∈ C1([0, δ]), for κ small enough
U satisfies −∆U − c∂1U ≤ f(x, U) a. e. in ΩR. One can then readily check that
U ∈ W 1,∞(Ω) is a (weak) subsolution of

(40)

{
∆U + c∂1U + f(x, U) = 0 a. e. in Ω
∂νU = 0 on ∂Ω.

On the other hand, the function U(x) ≡ S - where S is the constant in (10) - is a
supersolution to (40). Also, we can chose κ small enough in such a way that U ≤ U .
Consequently, using a classical iterative scheme (see e. g. [3]) we can find a function
U ∈ W 2,p(Ωr), for any p > 1 and r > 0, satisfying (40) and U ≤ U ≤ U in Ω. The
strong maximum principle implies that U is strictly positive and then it solves (13).

Case 2: λ1,N ≥ 0.
Assume by contradiction that (13) admits a solution U . Let ϕ be a generalized
Neumann principal eigenfunction of −L in Ω (cf. Proposition 1), normalized in
such a way that 0 < ϕ(x0) < U(x0), for some x0 ∈ Ω. Then, ϕ satisfies ∂νϕ = 0 on
∂Ω and, by (9), (11),

−∆ϕ− c∂1ϕ = (fs(x1, y, 0) + λ1,N )ϕ ≥ f(x1, y, ϕ) a. e. in Ω.

Therefore, since by Proposition 3 lim|x1|→∞ U(x1, y) = 0 uniformly in y ∈ ω, we can

apply Theorem 3.3 with U = U and U = ϕ and infer that U ≤ ϕ: contradiction.
The uniqueness result immediately follows from Proposition 3 and Theorem 3.3.

�

3.6. Large time behaviour. We will make use of a result concerning entire so-
lutions (that is, solutions for all t ∈ R) of the evolution problem associated with
(13):

(41)

{
∂tu

∗ = ∆u∗ + c∂1u
∗ + f(x, u∗), t ∈ R, x ∈ Ω

∂νu
∗ = 0, t ∈ R, x ∈ ∂Ω.

Lemma 3.4. Let u∗ be a nonnegative bounded solution of (41). Under assumptions
(9)-(12) the following properties hold:

(i) if λ1,N ≥ 0 then u∗ ≡ 0;
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(ii) if λ1,N < 0 and there exist a sequence (tn)n∈N in R and a point x0 ∈ Ω such
that

(42) lim
n→∞

tn = −∞, lim inf
n→∞

u∗(tn, x0) > 0,

then u∗(t, x) ≡ U(x), where U is the unique solution of (13).

Proof. Let S be the positive constant in (10). Set

S∗ := max{S, ‖u∗‖L∞(R×Ω)}
and let w be the solution to (41) for t > 0, with initial condition w(0, x) = S∗.
Since the constant function S∗ is a stationary supersolution to (41), the parabolic
comparison principle implies that w is nonincreasing in t (and it is nonnegative).
Consequently, as t→ +∞, w(t, x) converges pointwise in x ∈ Ω to a function W (x).
Using standard parabolic estimates up to the boundary, together with compact
injection results, one sees that this convergence is actually uniform in Ωρ, for any
ρ > 0, and that W solves (40). For any h ∈ R the function wh(t, x) := w(t + h, x)
is a solution to (41) in (−h,+∞) × Ω satisfying wh(−h, x) = S∗ ≥ u∗(−h, x).
Thus, again the parabolic comparison principle yields wh ≥ u∗ in (−h,+∞) × Ω.
Therefore,

(43) ∀ t ∈ R, x ∈ Ω, u∗(t, x) ≤ lim
h→+∞

wh(t, x) = W (x).

Let us consider separately the two different cases.
(i) λ1,N ≥ 0.

Due to Theorem 2.1, the function W cannot be strictly positive in Ω. Thus, W
vanishes somewhere in Ω and then the elliptic strong maximum principle yields
W ≡ 0. The statement then follows from (43).

(ii) λ1,N < 0 and (42) holds for some (tn)n∈N in R and x0 ∈ Ω.
We claim that condition (42) yields

(44) ∀ r > 0, lim inf
n→∞
x∈Ωr

u∗(tn, x) > 0.

Let us postpone for a moment the proof of (44). By Proposition 1, there exists
R > 0 such that λ(R) < 0. Consider the same function U as in the proof of
Theorem 2.1:

U(x) :=

{
κϕR(x) x ∈ ΩR

0 otherwise,

We know that, for κ small enough, U is a subsolution to (40). Moreover, owing to
(44), κ can be chosen in such a way that U(x) ≤ u∗(tn, x) for n large enough and
x ∈ Ω. Let v be the solution to (41) for t > 0, with initial condition v(0, x) = U(x).
By comparison, we know that the function v is nondecreasing in t and it is bounded
from above by S∗. Then, as t goes to infinity, v(t, x) converges locally uniformly to
the unique solution U to (13) (the strict positivity follows from the elliptic strong
maximum principle). For n large enough the function vn(t, x) := v(t−tn, x) satisfies

∀ x ∈ Ω, vn(tn, x) = U(x) ≤ u∗(tn, x).

Hence, the parabolic comparison principle yields

∀ t ∈ R, x ∈ Ω, u∗(t, x) ≥ lim
n→∞

vn(t, x) = U(x).

Combining the above inequality with (43) we obtain

∀ t ∈ R, x ∈ Ω, U(x) ≤ u∗(t, x) ≤W (x).
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This shows that W is positive and then it is a solution to (13). The uniqueness
result of Theorem 2.1 then yields u∗ ≡ U .

To conclude the proof, it only remains to show (44). Assume by contradiction
that there exists r > 0 such that the inequality does not hold. Then, there exists a
sequence ((xn

1 , y
n))n∈N in Ωr such that (up to subsequences)

lim
n→∞

u∗(tn, x
n
1 , y

n) = 0.

It is not restrictive to assume that (xn
1 , y

n) converges to some (ξ, η) ∈ Ωr as n goes
to infinity. Parabolic estimates and embedding theorems imply that the sequence of
functions u∗n(t, x1, y) := u∗(t+ tn, x1, y) converges (up to subsequences) in (−ρ, ρ)×
Ωρ, for any ρ > 0, to a nonnegative solution u∗∞ of (41) satisfying u∗∞(0, ξ, η) = 0.
If u∗∞ was smooth then the parabolic strong maximum principle and Hopf’s lemma
would imply u∗∞(t, x) = 0, for t ≤ 0 and x ∈ Ω, which is impossible because
u∗∞(0, x0) > 0 by (42). To handle the case where u∗∞ is only a weak solution of (41),
one can extend u∗∞ to a nonnegative solution of a parabolic equation in R×R× ω̃,
with ω ⊂⊂ ω̃, as done in the appendix. Hence, one gets a contradiction by applying
the strong maximum principle. �

Proof of Theorem 2.2. Set S′ := max{S, ‖u0‖L∞(Ω)}, where S is the positive con-
stant in (10). Since the constant functions 0 and S′ are a sub and a supersolution
of (3), with initial datum respectively below and above u0, standard theory of semi-
linear parabolic equations yields the existence of a unique (weak) solution u to (1)
with initial condition u(0, x) = u0(x) (see e. g. [14], [15]). Moreover, u satisfies
0 ≤ u ≤ S′ in R

+ × Ω. By extending u(t, ·) to a larger cylinder (R × ω̃) ⊃⊃ Ω by
reflection (see Appendix A) and applying the parabolic strong maximum principle,
we find that u(t, x) > 0 for t > 0 and x ∈ Ω. Define ũ(t, x1, y) := u(t, x1 + ct, y).
Then, ũ satisfies 0 < ũ ≤ S′ in R

+ × Ω and solves

(45)

{
∂tũ = ∆ũ + c∂1ũ+ f(x, ũ), t > 0, x ∈ Ω
∂ν ũ(t, x) = 0, t > 0, x ∈ ∂Ω,

with initial condition ũ(0, x) = u0(x). The rest of the proof is divided into two
parts.

Step 1: the function ũ satisfies

(46) lim
t→∞

ũ(t, x) = U(x) uniformly in x ∈ Ωr, ∀ r > 0,

where U ≡ 0 if λ1,N ≥ 0, while U is the unique solution to (13) if λ1,N < 0.
Let (tk)k∈N be a sequence in R satisfying limk→∞ tk = +∞. Then, parabolic

estimates and embedding theorems imply that (up to subsequences) the functions
ũ(t + tk, x) converge as k → ∞, uniformly in (−ρ, ρ) × Ωρ, for any ρ > 0, to some
function u∗(t, x) which is a nonnegative bounded solution to (41). If λ1,N ≥ 0 then
u∗ ≡ 0 by Lemma 3.4. Therefore, owing to the arbitrariness of the sequence (tk)k∈N,
(46) holds in this case. Consider now the case λ1,N < 0. Set x0 := (0, y0), where
y0 is an arbitrary point in ω. Let us show that hypothesis (42) in Lemma 3.4 holds
for any sequence (tn)n∈N tending to −∞. By Proposition 1, there exists R > 0
such that λ(R) < 0. Arguing as in the proof of Theorem 2.1, we can choose κ > 0
small enough in such a way that the function U := κϕR satisfies U(x) ≤ ũ(1, x)
and is a subsolution to the elliptic equation of (13) in ΩR. Hence, (t, x) 7→ U(x)
is a subsolution to (45) in R × ΩR and satisfies U(±R, y) = 0 ≤ ũ(t,±R, y) for
t > 0, y ∈ ω. The parabolic comparison principle yields U(x) ≤ ũ(t+1, x) for t > 0
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and x ∈ ΩR. As a consequence,

inf
t∈R

u∗(t, x0) ≥ U(x0) > 0,

We can then apply Lemma 3.4 and derive u∗ ≡ U . Thus, (46) holds.
Step 2: conclusion of the proof.

Assume, by way of contradiction, that limt→∞ ũ(t, x) = U(x) does not hold uni-
formly in x ∈ Ω, either in the case (i) with U ≡ 0, or in the case (ii) with U unique
solution to (13) (given by Theorem 2.1). Hence, there exist ε > 0, (tn)n∈N in R

+

and ((xn
1 , y

n))n∈N in Ω such that

lim
n→∞

tn = ∞, ∀ n ∈ N, |ũ(tn, xn
1 , y

n) − U(xn
1 , y

n)| ≥ ε.

It is not restrictive to assume that yn converges to some η ∈ ω. We know from step
1 that limn→∞ |xn

1 | = ∞. Then, limn→∞ U(xn
1 , y

n) = 0 in both cases (i) and (ii).
We then get

lim inf
n→∞

ũ(tn, xn
1 , y

n) ≥ ε.

Using standard parabolic estimates and compact injection theorems, we find that,
as n goes to infinity and up to subsequences, ũ(t + tn, x1 + xn

1 , y) converges to a
function ũ∞(t, x1, y) uniformly in (−ρ, ρ) × Ωρ, for any ρ > 0. The function ũ∞
satisfies ũ∞(0, 0, η) ≥ ε and, by (9), (11) and (12),

(47)

{
∂tũ∞ ≤ ∆ũ∞ + c∂1ũ∞ − ζũ∞, t ∈ R, x ∈ Ω
∂ν ũ∞ = 0, t ∈ R, x ∈ ∂Ω.

For any h ≥ 0 define the function θh(t, x) := S′e−ζ(t+h). It satisfies ∂tθh = −ζθh

in R × Ω, ∂νθh = 0 on R × ∂Ω and θh(−h, x) = S′ ≥ ũ∞(−h, x). Therefore, for
any h ≥ 0, the parabolic maximum principle yields ũ∞ ≤ θh in (−h,+∞) × Ω.
Consequently,

ũ∞(0, 0, η) ≤ lim
h→+∞

θh(0, 0, η) = 0,

which is a contradiction. Since u(t, x1, y) = ũ(t, x1 − ct, y), the proof is concluded.
�

Remark 3. The results of Theorems 2.1 and 2.2 also hold if one considers Dirich-
let boundary condition u(t, x) = 0 on R

+ × ∂Ω in (3). In this case, the existence,
uniqueness and stability of travelling waves depend on the sign of the generalized
principal eigenvalue λ1(−L,Ω) defined by (24). The proofs are easier than in the
Neumann case considered here. In particular, one can consider an increasing se-
quence of bounded smooth domains converging to Ω instead of the Ωr. This avoids
any difficulty due to the lack of smoothness of the boundary in the definition of the
principal eigenvalues. Robin boundary conditions are also allowed.

4. Large time behaviour in general cylindrical-type domains

In this section, we use the same notation as in Section 3:

Ω = R × ω,

Lw = ∆w + c∂1w + fs(x1, y, 0)w,

ζ = − lim
r→∞

sup
|x1|>r

y∈ω

fs(x1, y, 0),

λ1,N = λ1,N (−L,Ω),

∀ r > 0, Ωr = (−r, r) × ω.
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The basic idea to prove Theorems 2.3 and 2.4 is to show that, as τ → ∞, the
function ũ(t+ τ, x) (where ũ(t, x1, y) := u(t, x1 + ct, y)) converges locally uniformly
(up to subsequences) to an entire solution u∗(t, x) in the straight infinite cylinder Ω.
Thus, owing to Lemma 3.4, the convergence results of statements (i) and (ii) hold
locally uniformly provided u∗ satisfies (42). In the case of semi-infinite cylinder,
condition (42) is derived by comparing ũ with the principal eigenfunction ϕR of −L
in ΩR, as done in the proof of Theorem 2.2. The case of asymptotically cylindrical
domain is actually much more delicate, because ũ and ϕR do not satisfy the same
boundary conditions and therefore cannot be compared. We overcome this difficulty
by replacing ϕR with a suitable “generalized” strict subsolution which is compactly
supported. Then, we can conclude using the fact that, essentially, the problem
satisfied by ũ “approaches” locally uniformly the Neumann problem in the straight
cylinder as t→ ∞.

4.1. Straight semi-infinite cylinder. We start by considering here problem (4)
which is set in a straight semi-infinite cylinder Ω+ = R

+ × ω.

Proof of Theorem 2.3. Set

S′ := max{S, ‖u0‖L∞(Ω+), ‖σ‖L∞(R+×ω)},
where S is the constant in (10). Since 0 and S′ are respectively a sub and a
supersolution of (4), the same arguments as in the proof of Theorem 2.2 show
that the unique solution u to (4) with initial condition u(0, x) = u0(x) satisfies
0 < u ≤ S′ in R

+ × R
+ × ω. The function defined by ũ(t, x1, y) := u(t, x1 + ct, y)

satisfies the following equation and boundary conditions:

(48)





∂tũ = ∆ũ+ c∂1ũ+ f(x1, y, ũ), t > 0, x1 > −ct, y ∈ ω
∂ν ũ(t, x1, y) = 0, t > 0, x1 > −ct, y ∈ ∂ω
ũ(t,−ct, y) = σ(t, y), t > 0, y ∈ ω,

with initial condition ũ(0, x) = u0(x) for x ∈ Ω+. For the rest of the proof, U
denotes the unique solution to (13) if λ1,N < 0, while U ≡ 0 if λ1,N ≥ 0. We first
derive the local convergence of ũ to U .

Step 1: the function ũ satisfies (46).
Let (tk)k∈N be a sequence such that limk→∞ tk = +∞. By standard arguments
we see that, as k → ∞ and up to subsequences, the functions ũ(t+ tk, x) converge
locally uniformly in R × Ω to a solution u∗ of (41). Owing to Lemma 3.4, we only
need to show that if λ1 < 0, then (42) holds. By Proposition 1, there exists R > 0
such that λ(R) < 0. As we have seen in the proof of Theorem 2.1, for κ > 0 small
enough the function

U(x) := κϕR(x)

is a subsolution to (40) in ΩR. Set tR := R/c + 1. The function ũ is well defined
and strictly positive in [tR,+∞) × ΩR. Hence, up to decreasing κ if need be, we
can assume that U(x) ≤ ũ(tR, x) for x ∈ ΩR. Since (t, x) 7→ U(x) is a subsolution
to (48) in R × ΩR and

∀ t > tR, y ∈ ω, U(±R, y) = 0 < ũ(t,±R, y),
the comparison principle yields U(x) ≤ ũ(t, x) for t > tR, x ∈ ΩR. Therefore, for
any x0 ∈ ΩR,

inf
t∈R

u∗(t, x0) ≥ U(x0) > 0,

that is, (42) holds for any sequence (tn)n∈N tending to −∞.
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Step 2: conclusion of the proof.
Argue by contradiction and assume that there exist ε > 0 and some sequences
(tn)n∈N in R

+ and ((xn
1 , y

n))n∈N in Ω+ such that

lim
n→∞

tn = ∞, ∀ n ∈ N, |u(tn, xn
1 , y

n) − U(xn
1 − ctn, yn)| ≥ ε.

We may assume that yn converges to some η ∈ ω. By step 1 we know that the
sequence (xn

1 − ctn)n∈N cannot be bounded. Since U(·, y) vanishes at infinity, we
get in particular that

(49) lim inf
n→∞

u(tn, xn
1 , y

n) ≥ ε,

whatever the sign of λ1,N is. Suppose for a moment that (xn
1 )n∈N is unbounded.

Then, by parabolic estimates and embedding theorems, the functions un(t, x1, y) :=
u(t + tn, x1 + xn

1 , y) converge, as n → ∞ and up to subsequences, uniformly in
(−ρ, ρ) × Ωρ, for any ρ > 0, to a nonnegative function u∞ satisfying

(50)

{
∂tu∞ ≤ ∆u∞ − ζu∞, t ∈ R, x1 ∈ R, y ∈ ω
∂νu∞ = 0, t ∈ R, x1 ∈ R, y ∈ ∂ω,

and, by (49), u∞(0, 0, η) ≥ ε. We then get a contradiction by comparing u∞ with
θh(t, x) := S′e−ζ(t+h) in (−h,+∞) × Ω and letting h go to infinity, as done at the
end of the proof of Theorem 2.2.

It remains to consider the case when (xn
1 )n∈N is bounded. For n ∈ N define

un(t, x1, y) := u(t+tn, x1, y). Using Lp estimates up to the boundary for u, ∂tu, ∆u
(which hold good here owing to the compatibility condition ∂νσ = 0 on R

+ × ∂ω,
see e. g. [14], [15]) we infer that (a subsequence of) (un)n∈N converges uniformly
in (−ρ, ρ) × (0, ρ) × ω, for any ρ > 0, to a function u∞ satisfying (50) for x1 > 0,
together with u∞(t, 0, y) = 0 for t ∈ R, y ∈ ω. Moreover, (49) yields u∞(0, ξ, η) ≥ ε,
where ξ is the limit of a subsequence of (xn

1 )n∈N. A contradiction follows exactly as
before, by comparison with the functions θh(t, x) := S′e−ζ(t+h). �

Remark 4. If σ does not converge to zero as t → ∞ then in Theorem 2.3 the
convergences only hold “far away” from the base {0} × ω, that is, uniformly in
(γ(t),+∞) × ω, for any function γ such that γ → +∞ as t → ∞. Let us also
point out that the results in Theorem 2.3 hold under different boundary conditions
on {0} × ω, such as Neumann condition ∂1u = 0 or Robin condition β0(t, y)u −
β1(t, y)∂1u = 0, with

β0, β1 ≥ 0, β0 + β1 > 0.

4.2. Asymptotically cylindrical domain. As in the case of the straight cylinder
that we considered in the previous section, the large time behaviour of u rests on
proving that ũ(t, x) := u(t, x1 + ct, y) does not converge to 0 as t → ∞ when
λ1,N < 0. With respects to the straight cylinder, the difficulty here is that the
condition λ1,N allows one to construct a compactly supported stationary subsolution
of the Neumann problem in the straight cylinder, but not in the time-dependent
domain where ũ is defined. Thus, the proof becomes technically more involved.
Let us sketch our strategy to prove this result. Through the mapping Ψ we can
transform ũ into a function ṽ solution of an oblique derivative problem with a
modified operator but in the straight cylinder. The transformed problem converges,
in some sense, to the Neumann problem (45) as t→ ∞. Thus, for t large enough, it
is possible to derive a positive lower bound for ṽ by the same comparison argument
as in the previous sections, provided that (45) admits some kind of compactly
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supported stationary strict subsolution. Actually, we construct a generalized strict
subsolution V in the sense of [3]: V is the supremum of two strict subsolutions. The
precise properties of V are stated in the next lemma, which is proved at the end of
the section.

In the sequel, we will make use of the following fact, which is a consequence of
(16):

(51) lim
t→∞

ν′(Ψ(x1 + ct, y)) = ν(x1, y),

locally uniformly with respect to (x1, y) ∈ ∂Ω. Note that the right hand side does
not depend on x1.

Lemma 4.1. If λ1,N < 0, there exist a bounded piecewise smooth domain O ⊂ Ω,
a constant κ > 0, two functions V1, V2 ∈ W 1,∞(O) and two open sets O1,O2 such
that O1 ∪ O2 = O,

∀ x ∈ O, V (x) := max(V1(x), V2(x)) > 0, V = 0 on ∂O ∩ Ω,

and, for σ ∈ {1, 2}, Vσ ∈ C2(Oσ) ∩ C1(Oσ),

x ∈ O, Vσ(x) = V (x) ⇒ x ∈ Oσ,




−LVσ ≤ −κ
( N∑

i,j=1

|∂ijVσ| +
N∑

i=1

|∂iVσ| + Vσ

)
in Oσ

∂νVσ < 0 on ∂Oσ ∩ ∂Ω.

Proof of Theorem 2.4. As usual, the existence of a unique solution to (5) with initial
datum u0 follows from standard parabolic theory. Moreover, 0 < u ≤ S′ in R

+×Ω′,
where S′ := max{S, ‖u0‖L∞(Ω′)}. The function ũ(t, x1, y) := u(t, x1 + ct, y) satisfies

(52)

{
∂tũ = ∆ũ+ c∂1ũ+ f(x1, y, ũ), t > 0, x1 ∈ R, y ∈ ω′(x1 + ct)
∇ũ(t, x1, y) · ν′(x1 + ct, y) = 0, t > 0, x1 ∈ R, y ∈ ∂ω′(x1 + ct),

together with the initial condition ũ(0, x) = u0(x).
Step 1: the function ũ satisfies

(53) lim
t→∞

ũ(t, x) = U(x), locally uniformly in x ∈ Ω,

where U ≡ 0 if λ1,N ≥ 0, while U is the unique solution of (13) if λ1,N < 0.
Let (tk)k∈N be a sequence in R such that limk→∞ tk = +∞. From parabolic

estimates it follows that the functions ũ(t+ tk, x) converge as k → ∞ (up to subse-
quences) locally uniformly in R×Ω to some function u∗(t, x) which is a nonnegative
bounded solution of the parabolic equation in (41). Moreover, using (51) and esti-
mates up to the boundary of Ω′, one can check that u∗ satisfies also the boundary
condition of (41). Hence, if λ1,N ≥ 0, Lemma 3.4 yields u∗ ≡ 0, that is, (53) holds.
In the case λ1,N < 0, we want to show that (42) holds. To do this, we consider the
domains O1, O2, O, the constant κ and the functions V1, V2, V given by Lemma
4.1. We set e1 := (1, 0, · · · , 0) ∈ R

N . By (16) there exists t0 > 0 such that

∀ t ≥ t0, Ψ(O + {cte1}) ⊂ Ω′, Ψ((∂O ∩ ∂Ω) + {cte1}) ⊂ ∂Ω′.

We introduce the function ṽ(t, x) : [t0,+∞) ×O → R defined by

ṽ(t, x) := ũ(t,Ψ(x+ cte1) − cte1).

One can check that ṽ solves a problem of the type
{
∂tṽ = tr(A(t, x)Hṽ) + b(t, x) · ∇ṽ + f(Ψ(x+ cte1) − cte1, ṽ), t > t0, x ∈ O
β(t, x) · ∇ṽ = 0, t > t0, x ∈ ∂O ∩ ∂Ω,
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(Hṽ denoting the Hessian matrix of ṽ in the x variables) where the matrix field A
and the vector fields b, β depend on the Jacobian matrix and the vector Laplacian
of Ψ−1 at the point Ψ(x+ cte1). Moreover, the following limits hold

lim
t→∞

‖A(t, ·) − I‖L∞(O) = 0, lim
t→∞

‖b(t, ·) − ce1‖L∞(O) = 0,

and, thanks to (51),

lim
t→∞

‖β(t, ·) − ν‖L∞(∂O∩∂Ω) = 0.

Take t1 > t0 large enough in such a way that, for σ ∈ {1, 2}, the following inequal-
ities hold in (t1,+∞) ×Oσ:

−tr(AHVσ) − b · ∇Vσ ≤ −LVσ + fs(x, 0)Vσ + κ
( N∑

i,j=1

|∂ijVσ| +
N∑

i=1

|∂iVσ|
)

≤ (fs(x, 0) − κ)Vσ

<
(
fs(Ψ(x+ cte1) − cte1, 0) − κ

2

)
Vσ .

Here, the last inequality is a consequence of (16) and the uniform continuity of
fs(x, 0). Moreover, up to increasing t1, it is seen that

(54) ∀ t > t1, x ∈ ∂Oσ ∩ ∂Ω, β(t, x) · ∇Vσ < 0.

Therefore, as f(x, 0) = 0 and s 7→ fs(x, s) ∈ C1([0, δ]), uniformly in x, there exists
kσ > 0 such that for any k ∈ (0, kσ] the function kVσ is a strict subsolution of the
problem solved by ṽ in (t1,+∞) × Oσ. Let τ > t1 be such that the matrix field
A(t, x) is uniformly elliptic for t > τ and x ∈ O and the vector field β(t, x) points
outside Ω for t > τ and x ∈ ∂O∩∂Ω. Let k < min(k1, k2) be such that the function
U := kV satisfies

∀ x ∈ O, U(x) < ṽ(τ, x).

Assume by contradiction that ṽ(t, x) < U(x) for some t > τ and x ∈ O. Thus,
there exists a first contact point (t, x) ∈ (τ,+∞) ×O between U and ṽ, i. e:

∀ t ∈ [τ, t), x ∈ O, U(x) < ṽ(t, x), U(x) = ṽ(t, x).

Therefore, there exists σ ∈ {1, 2} such that (t, x) is the first contact point between
kVσ and ṽ in (τ,+∞)× (Oσ ∪ (∂Oσ ∩ ∂O)). If x ∈ Oσ then we get a contradiction
by the parabolic strong maximum principle. Hence, since kVσ ≤ U = 0 < ṽ on
∂O ∩ Ω, it follows that x ∈ ∂Oσ ∩ ∂Ω. Moreover, as x /∈ ∂O ∩ Ω, we can find a
neighbourhood of x where O coincides with Ω. In particular, the vector −β(t, x)
points inside O and then −β(t, x)·(∇ṽ(t, x)−k∇Vσ(x)) ≥ 0 because x is a minimum
point of ṽ(t, ·) − kVσ in O. This contradicts (54).

Step 2: for any sequences (tn)n∈N in R
+ and ((xn

1 , y
n))n∈N in Ω ∩ Ω′ we have:

lim
n→∞

tn = lim
n→∞

xn
1 = +∞ ⇒ lim

n→∞
(u(tn, xn

1 , y
n) − U(xn

1 − ctn, yn)) = 0.

Assume by contradiction that the above property does not hold for some (tn)n∈N

and ((xn
1 , y

n))n∈N. Hence, setting ξn := xn
1 − ctn we get

lim sup
n→∞

|ũ(tn, ξn, yn) − U(ξn, yn)| > 0.

Suppose for a moment that (ξn)n∈N is bounded. Then, using the uniform continuity
of ũ and U one can find another sequence (ηn)n∈N in ω such that

((ξn, ηn))n∈N ⊂ K ⊂⊂ Ω, lim sup
n→∞

|ũ(tn, ξn, ηn) − U(ξn, ηn)| > 0.



42 HENRI BERESTYCKI AND LUCA ROSSI

This contradicts (53). The case of (ξn)n∈N unbounded can be handled exactly as
in the second step of the proof of Theorem 2.3.

Step 3: for any ρ > 0 the following property holds:

(55) lim
t→∞

u(t, x1, y) = 0 uniformly in x1 ≤ ρ, y ∈ ω′(x1).

For τ > 0 define

m(τ) := sup
t>τ

y∈ω′( c
2

τ)

u(t,
c

2
τ, y).

The uniform continuity of u and step 2 imply:

lim
τ→+∞

m(τ) = lim
τ→+∞

sup
t>τ

y∈ω′( c
2

τ)∩ω

u(t,
c

2
τ, y) = lim

τ→+∞
sup
t>τ

y∈ω′( c
2

τ)∩ω

U(
c

2
τ − ct, y) = 0,

where the last equality holds true because U(·, y) vanishes at infinity. Consider the
functions

θτ (t, x) := ‖u‖L∞(R+×Ω′)e
ζ
2 (τ−t).

By the hypotheses on f , for τ large enough the θτ are supersolutions of (5) in the
set t > τ, x1 <

c
2τ and y ∈ ω′(x1). Moreover, θτ (τ, x) ≥ u(τ, x) for x ∈ Ω′ and,

setting

ς(τ) :=
2

ζ
ln

‖u‖L∞(R+×Ω′)

m(τ)
,

∀ t ∈ [τ, τ + ς(τ)], y ∈ ω′(
c

2
τ), θτ (t,

c

2
τ, y) ≥ m(τ) ≥ u(t,

c

2
τ, y).

Therefore, the comparison principle yields

∀ t ∈ [τ, τ + ς(τ)], x1 ≤ c

2
τ, y ∈ ω′(x1), u(t, x1, y) ≤ θτ (t, x1, y).

Since ς(τ) goes to +∞ as τ → +∞, for any h ∈ N we can find τh ≥ 2ρ/c such that
ς(τ) > h for τ ≥ τh. Consequently, for t > τh + h, taking τ = t − h we see that
t ∈ [τ, τ + ς(τ)] and ρ ≤ cτ/2, which implies:

∀ x1 ≤ ρ, y ∈ ω′(x1), u(t, x1, y) ≤ θτ (t, x1, y) ≤ ‖u‖L∞(R+×Ω′)e
− ζ

2 h.

Property (55) then follows from the arbitrary charachter of h.
Step 4: conclusion of the proof.

Note that if λ1,N ≥ 0 then condition (16) and the uniform continuity of u imply that
the result of step 2 holds even if we drop the assumption (xn

1 , y
n) ∈ Ω. Therefore,

Theorem 2.4 part (i) follows from steps 2 and 3. Assume by contradiction that
statement (ii) does not hold. Then, there exist ε > 0, (tn)n∈N in R

+, ((xn
1 , y

n))n∈N

in Ω′ such that limn→∞ tn = ∞ and either

∀ n ∈ N, yn ∈ ω, |u(tn, xn
1 , y

n) − U(xn
1 − ctn, yn)| ≥ ε,

or

∃ γ < c, ∀ n ∈ N, xn
1 < γtn, u(tn, xn

1 , y
n) ≥ ε.

The first case is ruled out because the sequence (xn
1 )n∈N is not bounded from above

- by step 3 and the last statement of Theorem 2.1 - nor unbounded from above -
by step 2. In the second case, step 3 implies that xn

1 → +∞ as n → ∞. Hence,
owing to the uniform continuity of u, we can assume without loss of generality that
(xn

1 , y
n) ∈ Ω′ ∩ Ω for n large enough. As a consequence, since xn

1 − ctn → −∞ as
n→ ∞, we derive

lim inf
n→∞

(u(tn, xn
1 , y

n) − U(xn
1 − ctn, yn)) = lim inf

n→∞
u(tn, xn

1 , y
n) ≥ ε,
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which is in contradiction with step 2. �

We now turn to the proof of Lemma 4.1. Let is first describe the ideas before
giving the technical details of the construction. We first define the function V1 as the

principal eigenfunction of −L in some bounded smooth domain Õ under boundary
condition of Robin type. The advantage of taking Robin boundary conditions is that
we obtain a function with negative normal derivative, which is useful for comparison

purposes. Using the fact that λ1,N < 0, we are able to choose Õ and the boundary
condition in such a way that the associated principal eigenvalue λ is strictly negative.
Hence, in the set where V1 is bounded away from zero, we can take κ small enough
such that

−LV1 = λV1 ≤ −κ
( N∑

i,j=1

|∂ijV1| +
N∑

i=1

|∂iV1| + V1

)
.

The above inequality may fail when V1 approaches 0, and this is why we introduce

the function V2. We want V2 to be positive in a bounded domain O ⊃ Õ, to vanish
on ∂O∩Ω and to satisfy the above inequality together with ∂νV2 < 0 at least in the
set where it is small. The differential inequality is obviously fulfilled by taking a
function of exponential type. The boundary condition is less easy to obtain because
it implies that at the “corners ” ∂O ∩ Ω∩∂Ω the vector field −ν has to point inside
O (hence, we cannot take O = Ωr for some r > 0). This is achieved by taking O
to be the straight cylinder truncated by two “caps” - see Figure 1 - obtained as the
graph of a function ξ satisfying ξ = 0 and ∂νω

ξ < 0 on ∂ω (∂νω
denoting the exterior

normal derivative to ω). A simple way to find such a function ξ is by solving the
Dirichlet problem −∆ξ = 1 in ω, ξ = 0 on ∂ω. The functions that will be used to
define V1 and V2 are constructed in Lemma 4.2 and Lemma 4.3 respectively.

R R + γ R + 2γ

x1 = R + 2γ + ξ(y)

ΩeO O

x1

y

Figure 1. construction of O

Lemma 4.2. If λ1,N < 0 then for any γ > 0 there exist two constants R, h > 0, a

smooth domain Õ and a function φ ∈ C2(Õ) such that ΩR ⊂ Õ ⊂ ΩR+γ , φ > 0 in

Õ ∪ ΩR and 



−Lφ = −hφ in Õ
∂νφ < 0 on ∂Õ ∩ ∂Ω

φ = 0 on ∂Õ\∂Ω.
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Proof. Fix γ > 0. By Proposition 1 there exists R > 0 such that λ(R) < 0. Let Õ be

a smooth domain satisfying ΩR+γ/2 ⊂ Õ ⊂ ΩR+γ . Consider a function ϑ ∈ C∞(R)
such that

0 ≤ ϑ ≤ 1 in R, ϑ(x1) = 0 for |x1| ≤ R, ϑ(x1) = 1 for |x1| ≥ R+ γ/2.

For any constant ε ≥ 0 let λε and φε be respectively the principal eigenvalue and

eigenfunction of −L in Õ under the Robin boundary condition (1 − ϑ(x1))∂νφ
ε +

(ϑ(x1) + ε)φε = 0 on ∂Õ and normalized by ‖φε‖L∞( eO) = 1. That is, φε > 0 in Õ
and {

−Lφε = λεφε in Õ
(1 − ϑ(x1))∂νφ

ε + (ϑ(x1) + ε)φε = 0 on ∂Õ.
Note that the above boundary condition is well defined and is of Robin type be-

cause, if ϑ(x1) < 1 for some (x1, y) ∈ ∂Õ, then |x1| < R + γ/2 and consequently

(x1, y) ∈ ∂Ω and ν(x1, y) coincides with the outer normal to Õ. The existence
of such eigenvalues and eigenfunctions follow in a standard way from the Krein-

Rutman theory (because L and Õ are smooth). We claim that λε < 0 for ε small
enough. To prove this, we show that λε → λ0 as ε → 0+ with λ0 < λ(R). Assume
by contradiction that there exists ε ≥ 0 such that λε ≤ λ(R+2γ). By Hopf’s lemma

the eigenfunction ϕR+2γ associated with λ(R+ 2γ) is strictly positive in Õ. Define

k := max
eO

φε

ϕR+2γ
.

The function w := kϕR+2γ − φε vanishes at some point x∗ = (x∗1, y
∗) ∈ Õ and

satisfies w ≥ 0 and (L + λε)w ≤ 0 in Õ. Moreover, for any (x1, y) ∈ ∂Õ such that
ϑ(x1) = 1 we see that

w(x1, y) = kϕR+2γ(x1, y) > 0.

Hence, the strong maximum principle implies that x∗ ∈ ∂Õ and ϑ(x∗1) < 1. As a
consequence,

∂νw(x∗1, y
∗) = −∂νφ

ε(x∗1, y
∗) =

ϑ(x∗1) + ε

1 − ϑ(x∗1)
φε(x∗1, y

∗) ≥ 0,

which is in contradiction with the Hopf lemma. Therefore, the λε are bounded from
below by λ(R + 2γ). A direct application of the strong maximum principle shows
that they are bounded from above by the Dirichlet principal eigenvalue of −L in

any domain A ⊂⊂ Õ. Hence, from any positive sequence (εn)n∈N converging to
0 one can extract a subsequence (εnk

)k∈N such that (λεnk )k∈N converges to some
λ∗ ∈ R. Using Schauder’s estimates up to the boundary and the Arzela Ascoli

theorem we see that (up to subsequences) the φεnk converge as k → ∞ in C2(Õ)
to a non-negative nontrivial solution φ∗ of

{
−Lφ∗ = λ∗φ∗ in Õ
(1 − ϑ(x1))∂νφ

∗ + ϑ(x1)φ
∗ = 0 on ∂Õ.

Thus, φ∗ > 0 in Õ by the strong maximum principle and then the uniqueness of the

principal eigenvalue of −L in Õ under Robin boundary condition yields λ∗ = λ0.
This shows that the λε converge to λ0 as ε → 0+. To check that λ0 < λ(R) one
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uses the same contradictory argument as before: suppose that λ0 ≥ λ(R) and set
w := kφ0 − ϕR, with

k := max
ΩR

ϕR

φ0
.

Note that ∂νφ
0 = 0 on [−R,R]× ∂ω and then φ0 > 0 in ΩR by Hopf’s lemma. The

points where w vanishes do not lie neither on {±R}×ω, because ϕR = 0 there, nor
in ΩR due to the strong maximum principle. Neither do they lie on (−R,R) × ∂ω
due to Hopf’s lemma. This yields a contradiction and the claim is then proved.
Thus, we can chose ε > 0 small enough in such a way that the function φ := φε

satisfies −Lφ = −hφ in Õ, where h := −λε > 0. The Hopf lemma implies that
φ > 0 in ΩR. Hence, it only remains to check that φ satisfies the desired boundary

conditions. The negativity of ∂νφ(x1, y) for (x1, y) ∈ ∂Õ∩∂Ω follows from the Hopf
lemma, if φ(x1, y) = 0, and from equality

(1 − ϑ(x1))∂νφ+ (ϑ(x1) + ε)φ = 0,

if φ(x1, y) > 0. If (x1, y) ∈ ∂Õ\∂Ω then, necessarily, |x1| ≥ R+ γ/2. Consequently,
ϑ(x1) = 1 and then φ(x1, y) = 0. �

Lemma 4.3. There exist two functions ξ ∈ C2(ω), χ ∈ C2(Ω) and a positive
constant ε satisfying

ξ > 0 in ω, ξ = 0 and ∂νω
ξ < 0 on ∂ω,

χ(ξ(y), y) = 0 for y ∈ ω, χ(x1, y) > 0 for x1 < ξ(y), y ∈ ω,




−∆χ+ c|∂1χ| + ‖fs(·, 0)‖L∞(Ω)χ ≤ −ε

( N∑

i,j=1

|∂ijχ| +
N∑

i=1

|∂iχ| + χ
)

in Ω

∂νχ(0, y) < 0 for y ∈ ∂ω.

Proof. Consider the solution ξ ∈ C2(ω) of the Dirichlet problem
{

−∆ξ = 1 in ω
ξ = 0 on ∂ω.

The weak and strong maximum principle imply that ξ > 0 in ω and the Hopf
lemma that ∂νω

ξ < 0 on ∂ω. Consider a constant β ≥ 1 large enough to have
−β2 + β + cβ + ‖fs(·, 0)‖L∞(Ω) < 0. Then, define the function χ : Ω → R by

χ(x1, y) := eβ(ξ(y)−x1) − 1. By computation,

−∆χ+ c|∂1χ| + ‖fs(·, 0)‖L∞(Ω)χ ≤ (−β2 + β + cβ + ‖fs(·, 0)‖L∞(Ω))e
β(ξ(y)−x1)

Since there exists a positive constant C such that

∀ (x1, y) ∈ Ω,
N∑

i,j=1

|∂ijχ| +
N∑

i=1

|∂iχ| + χ ≤ Cβ2eβ(ξ(y)−x1),

we can choose ε > 0 in such a way that

−∆χ+ c|∂1χ| + ‖fs(·, 0)‖L∞(Ω)χ ≤ −ε
( N∑

i,j=1

|∂ijχ| +
N∑

i=1

|∂iχ| + χ
)

in Ω.

Furthermore,

∀ y ∈ ∂ω, ∂νχ(0, y) = β∂νω
ξ(y) < 0.

�



46 HENRI BERESTYCKI AND LUCA ROSSI

Proof of Lemma 4.1. Consider the functions ξ, χ and the constant ε given by

Lemma 4.3. There exists γ > 0 such that ∂νχ < 0 on [−2γ, 0] × ∂ω. Let R, h, Õ
and φ be the constants, the domain and the function given by Lemma 4.2 associated
with γ. We define O in the following way:

O := {(x1, y) ∈ Ω : |x1| < R+ 2γ + ξ(y)}.
Take k > 0 small enough in such a way that

kmax
y∈ω

χ(−2γ, y) < min
ΩR

φ.

Then, we define V1 := φ in Õ, extended by 0 outside Õ,

V2(x1, y) :=

{
kχ(−2γ, y) if (x1, y) ∈ ΩR

kχ(|x1| −R− 2γ, y) if (x1, y) ∈ O\ΩR.

O1 := {x ∈ O : V1(x) >
1

2
V2(x)}, O2 := O\ΩR.

Note that V2 > 0 in O and ∂νV2 < 0 on ∂O2 ∩ ∂Ω. Moreover, since O1 ⊂ Õ and V2

is bounded from below away from zero in Õ ⊂ ΩR+γ , it follows that infO1 V1 > 0.
Thus, it holds true in O1 that

−LV1 ≤ −hV1 ≤ −h inf
O1

V1 < 0.

It is then possible to find a positive constant κ < ε such that

−LV1 ≤ −κ(
N∑

i,j=1

|∂ijV1| +
N∑

i=1

|∂iV1| + V1) in O1.

The proof is thereby complete. �

5. The lateral-periodic case

Henceforth, for every Q ∈ N and r > 0, BQ
r stands for the ball in R

Q centred at
the origin with radius r, and Br := BN

r . Other notations used in this section are:

Lw = ∆w + ce · ∇w + fs(x, 0)w,

λ1 = λ1(−L,RN ),

ζ = − lim
r→∞

sup
|z|>r

y∈RP

fs(z, y, 0),

∀ r > 0, Or := BM
r × R

P .

In Section 5.1, we introduce the lateral-periodic principal eigenvalues λ1,l(r) of
an elliptic operator −L in the domains Or, under Dirichlet boundary condition on
∂Or and periodicity condition in the last P variables. Then, we show that as r → ∞
the λ1,l(r) converge to a quantity that we call λ1,l(−L,RN ).

Let us explain why we need to consider both λ1 and λ1,l := λ1,l(−L,RN ). The
negativity of λ1,l yields the existence of a lateral-periodic subsolution V to (23)
which is as small as we want. This function allows one to prove the existence
of a travelling wave, but not to derive the large time behaviour of solutions u to
(1), because we cannot put V below u(1, x). Instead, the subsolution U one can
construct when λ1 < 0 is compactly supported and then we can put it below u(1, x)
and derive Theorem 2.6 part (ii). For similar reasons, we use λ1 instead of λ1,l to
prove the uniqueness of travelling wave solutions. On the other hand, we make use
of the lateral periodic principal eigenfunction χ associated with λ1,l to derive the
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nonexistence result for travelling waves when λ1,l ≥ 0, because it satisfies the needed
property infOr

χ > 0 for any r > 0, while the principal eigenfunction associated with
λ1 does not. Thus, a crucial point to prove our main results consists in showing
that λ1 and λ1,l have the same sign. Actually, using a general result for self-adjoint
operators quoted from [7], we will show that they coincide.

5.1. The lateral-periodic principal eigenvalue. Here, L denotes an elliptic op-
erator of the form

Lw := ∂i(aij(x)∂iw) + βi(x)∂iw + γ(x)w,

where (aij)ij is an elliptic and symmetric matrix field with Lipschitz continuous
entries and βi, γ are bounded. We further require that aij , βi, γ are lateral-periodic,
that is, they are periodic in the last P variables, with the same period (l1, · · · , lP ).
We remark that, through a regularizing argument, one can prove that the results
of this section hold for more general elliptic operators in non-divergence form.

First of all, we reclaim some properties of λ1. A basic result of [4] is that if
O is bounded and smooth then λ1(−L,O) coincides with the Dirichlet principal
eigenvalue of −L in O, that is, the unique real number λ such that the problem

{
−Lφ = λφ a. e. in O
φ = 0 on ∂O

admits a positive solution φ (called Dirichlet principal eigenfunction, which is unique
up to a multiplicative constant). Another result we will use is

Proposition 4 ([4] and Proposition 4.2 in [2]). Let O be a general domain in R
N

and (On)n∈N be a sequence of domains such that

On ⊂ On+1,
⋃

n∈N

On = O.

Then, λ1(−L,On) ց λ1(−L,O) as n→ ∞.

Next, we consider the eigenvalue problem with mixed Dirichlet/periodic condi-
tions.

Theorem 5.1. For any r > 0 there exists a unique number λ1,l(r) such that the
eigenvalue problem





−Lχr = λ1,l(r)χr a. e. in Or

χr = 0 on ∂Or

χr is lateral-periodic

admits a positive solution. We call λ1,l(r) and χr (which is unique up to a multi-
plicative constant) respectively the lateral-periodic principal eigenvalue and eigen-
function of −L in Or.

Proof. Define the Banach space

Xr = {φ ∈ C1(Or) : φ = 0 on ∂Or, φ is lateral-periodic},
equipped with the W 1,∞(Or) norm. Set M := L−d, with d large enough such that
the associated bilinear form is coercive on the space of lateral-periodic functions φ ∈
H1(BM

r ×(0, l1)×· · ·×(0, lP )) satisfying φ = 0 in H1/2(∂BM
r ×(0, l1)×· · ·×(0, lP )).

Then, the result follows from the Krein-Rutman theorem (as in the proof of Theorem
3.1 in the appendix, but now we do not have the problem of non-smoothness of the
boundary). �
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Proposition 5. The map r 7→ λ1,l(r) is decreasing and, as r goes to infinity, λ1,l(r)
converges to a quantity that we call λ1,l(−L,RN ).

Furthermore, there exists a lateral-periodic principal eigenfunction associated
with λ1,l(−L,RN), that is, a lateral-periodic positive function χ such that

−Lχ = λ1,l(−L,RN)χ a. e. in R
N .

Proof. We follow the same arguments as in the proof of Proposition 5 in [2]. Let
0 < r1 < r2. Owing to the lateral-periodicity of the principal eigenfunctions χr1

and χr2 , there exists k > 0 such that kχr2 touches from above χr1 at some point in
Or1 . If λ1,l(r1) ≤ λ1,l(r2) then the function w := kχr2 − χr1 satisfies

−Lw ≥ λ1,l(r1)w a. e. in Or1 .

Thus, the strong maximum principle yields w ≡ 0, which is impossible. Again by
the strong maximum principle, we immediately see that λ1,l(r) > − supOr

γ, for
any r > 0. Hence, the quantity

λ1,l(−L,RN ) := lim
r→∞

λ1,l(r)

is a well defined real number.
Let us show the existence of a lateral-periodic principal eigenfunction associated

with λ1,l(−L,RN ). By Harnack’s inequality, the family (χr)r>0, normalized by
χr(0) = 1, is uniformly bounded in any compact subset of R

N . Then, interior elliptic
estimates and embedding theorems imply that, up to subsequences, the χr converge
as r → ∞, locally uniformly in R

N , to a function χ satisfying −Lχ = λ1,l(−L,RN)χ
a. e. in R

N . Moreover, χ is lateral-periodic, satisfies χ(0) = 1 and it is strictly
positive by the strong maximum principle. �

As for the Neumann principal eigenfunction in Proposition 1, the function χ is
not unique a priori.

In order to compare λ1 and λ1,l, we consider another notion of generalized prin-
cipal eigenvalue of −L in a domain O:

λ′1(−L,O) := inf{λ : ∃ φ ∈W 2,N
loc (O) ∩ L∞(O), φ > 0 and − (L+ λ)φ ≤ 0 in O,

φ ∈ W 1,∞(O ∩Br), ∀ r > 0, and φ = 0 on ∂O if ∂O 6= ∅}

(56)

We quote from [7] the following result about self-adjoint operators:

Theorem 5.2 ([7]). If O is smooth and L is self-adjoint (i. e. bi ≡ 0) then
λ′1(−L,O) = λ1(−L,O).

Proposition 6. If L is self-adjoint then λ1,l(−L,RN) = λ1(−L,RN).

Proof. Let r > 0. Taking φ = χr in (24) and (56) we see that

λ′1(−L,Or) ≤ λ1,l(r) ≤ λ1(−L,Or).

Hence, Theorem 5.2 yields λ1,l(r) = λ1(−L,Or). The statement then follows from
Propositions 4 and 5. �

Remark 5. If L is not self-adjoint equality need not hold between λ1,l(−L,RN)
and λ1(−L,RN). Indeed, consider the lateral-periodic (with P = 1) operator

Lu(z, y) = ∆u(z, y) + 2∂yu(z, y), (z, y) ∈ R × R.
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For any r > 0, the function χr(z, y) := cos( π
2rz) is the lateral-periodic princi-

pal eigenfunction of both −L and −∆ in Or, with eigenvalue π2

4r2 . Therefore,

λ1,l(−L,R2) = λ1,l(−∆,R2). On the other hand, for any φ ∈ W 2,N
loc (R2), it

holds true that ∆(φey) = (Lφ + φ)ey. Hence, by the definition (24) we see that
λ1(−L,R2) = λ1(−∆,R2) + 1. Proposition 6 then yields

λ1,l(−L,R2) = λ1,l(−∆,R2) = λ1(−∆,R2) = λ1(−L,R2) − 1.

From now on, λ1,l(r) and χr will always denote the lateral-periodic principal
eigenvalue and eigenfunction of −L in Or. We further set λ1,l := λ1,l(−L,RN ) and
we denote by χ an associated lateral-periodic principal eigenfunctions (cf. Proposi-
tion 5). In order to show that λ1,l = λ1, we make the usual Liouville transformation
which reduces (23) to a problem whose linearized operator is self-adjoint. Then, we
apply Proposition 6.

Proposition 7. If f satisfies (18) then λ1,l = λ1.

Proof. For any φ ∈W 2,N
loc (RN ) the following property holds:

(L(φe−
c
2 x·e))e

c
2x·e = L̃φ,

where L̃w := ∆w + (fs(x, 0) − c2/4)w. It follows that the operators L̃ and L have
the same lateral-periodic principal eigenvalues λ1,l(r) in Ωr, for r > 0, and, by

definition (24), that λ1(−L̃,RN) = λ1. Propositions 5 and 6 then yield

λ1 = λ1(−L̃,RN ) = λ1,l(−L̃,RN ) = lim
r→∞

λ1,l(r) = λ1,l.

�

5.2. Travelling wave solutions. Arguing as in Section 3.3, one can show that so-
lutions U(z, y) to (1) decay exponentially in z. Now, the Liouville transformation re-
ducing (61) to a problem with self-adjoint linearized operator is V (x) := U(x)e

c
2 x·e.

We omit the proofs of the next two results because they are essentially the same as
those of Lemma 3.2 and Proposition 3 respectively.

Lemma 5.3. Let V ∈ W 2,N
loc (RN ) be a positive function satisfying, for some γ > 0,

sup
(z,y)∈RN

V (z, y)e−
√

γ|z| <∞, lim inf
|z|→∞

∆V (z, y)

V (z, y)
> γ,

uniformly in y ∈ R
P . Then,

lim
|z|→∞

V (z, y)e
√

γ|z| = 0,

uniformly in y ∈ R
P .

Proposition 8. Let U be a solution of (23) and assume that (18), (19), (21), (22)
hold. Then, there exist two constants h, β > 0 such that

∀ (z, y) ∈ R
N , U(z, y) ≤ he−β|z|.

We can now derive the comparison principle.

Theorem 5.4. Assume that (18), (19), (21), (22) hold. Let U,U ∈ W 2,N
loc (RN ) be

two nonnegative functions satisfying

−∆U − ce · ∇U ≤ f(x, U), −∆U − ce · ∇U ≥ f(x, U), for a. e. x ∈ R
N ,

∀ r > 0, inf
Or

U > 0, lim
|z|→∞

U(z, y) = 0 uniformly in y ∈ R
P
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and for any ρ > 0 there exists Cρ > 0 such that

(57) ∀ y0 ∈ R
P , ‖U‖W 2,N (Bρ(0,y0)) + ‖U‖W 2,N (Bρ(0,y0)) ≤ Cρ,

Then U ≤ U in R
N .

Proof. First note that, by the embedding theorem, condition (57) yields U,U ∈
C0(RN ) ∩ L∞(Or), for any r > 0. For ε > 0 define

k(ε) := inf{k > 0 : kU ≥ U − ε in R
N}

(the above set is nonempty by the hypotheses on U and U). Clearly, ε 7→ k(ε) is
nonincreasing. Furthermore, for ε ∈ (0, supU), the function W ε := k(ε)U − U + ε
is nonnegative and there exist a bounded sequence (zε

n)n∈N in R
M and a sequence

(yε
n)n∈N in R

P such that
lim

n→∞
W ε(zε

n, y
ε
n) = 0.

We use the lateral periodicity of f and condition (57) to reduce to the case where
the minimizing sequence is bounded: let (qε

n)n∈N be the sequence in Zl1 × · · ·×ZlP
such that ηε

n := yε
n−qε

n belongs to [0, l1)×· · ·× [0, lP ). For n ∈ N define Un(z, y) :=
U(z, y + qn) and Un(z, y) := U(z, y + qn). As f is lateral-periodic, these functions
satisfy the same differential inequalities as U and U respectively. By (57), as n→ ∞
and up to subsequences, Un → U∞ and Un → U∞ locally uniformly in R

N , where
U∞ and U∞ satisfy the same hypotheses as U and U respectively. Therefore,
denoting (z(ε), y(ε)) the limit of (a subsequence of) ((zε

n, η
ε
n))n∈N, we find that the

function W ε
∞ := k(ε)U∞−U∞ +ε is nonnegative and vanishes at (z(ε), y(ε)). Note

that y(ε) are bounded with respect to ε. The result then follows exactly as in the
proof of Theorem 3.3. �

Proof of Theorem 2.5.
Step 1: existence.

If λ1 < 0 then by Proposition 4 there exists R > 0 large enough such that
λ1(−L, BR) < 0. We recall that, as BR is bounded and smooth, λ1(−L, BR) coin-
cides with the Dirichlet principal eigenvalue of −L in BR. That is, there exists a
function φR which is positive in BR and satisfies

{
−LφR = λ1(−L, BR)φR a. e. in BR

φR = 0 on ∂BR

For κ ∈ R and for a. e. x ∈ BR we see that

−∆(κφR) − ce · ∇(κφR) − f(x, κφR) = (fs(x, 0) + λ1(−L, BR))κφR − f(x, κφR).

Then, owing to the C1 regularity of f(x, ·), there exists κ0 > 0 such that for any
0 < κ ≤ κ0 the function κφR is a subsolution to

(58) ∆U + ce · ∇U + f(x, U) = 0 a. e. in BR.

Hence, the function U equal to κ0φR in BR and extended by 0 outside BR is a
generalized subsolution of the elliptic equation in (23). Since by (20) the function

U := max{S, κ0‖φR‖L∞(BR)}
is a supersolution of the same equation, a standard iterative method implies the
existence of a solution U ≤ U ≤ U . The function U is strictly positive by the strong
maximum principle and then it solves (23). Assume by contradiction that λ1 ≥ 0
and (23) admits a solution U . Let χ be a lateral-periodic principal eigenfunction
associated with λ1,l (cf. Proposition 5) normalized in such a way that χ(0) < U(0).
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If we show that the hypotheses of Theorem 5.4 are satisfied by U := U and U := χ,
we would get the following contradiction: U ≤ χ. Proposition 8 yields

lim
|z|→∞

U(z, y) = 0 uniformly in y ∈ R
P ,

while λ1,l ≥ 0 and condition (21) imply that χ is a supersolution of (23). The other
hypotheses are immediate to check.

Step 2: uniqueness.
It follows from the comparison principle, Theorem 5.4, provided that we show that
any solution U to (23) satisfies the hypotheses on both U and U there. All conditions
are immediate to check (the decay of U(z, y) with respect to z is given by Proposition
8), except the following one:

(59) ∀ r > 0, inf
Or

U > 0

(note indeed that we do not assume a priory that U is lateral-periodic). The exis-
tence result implies that if (23) admits a solution U then λ1 < 0. In order to prove
that U satisfies (59), fix r > 0 and consider the same constantsR, κ0 and function φR

as in the first step. It is not restrictive to assume that BR ⊃ B
M

r ×[0, l1]×· · ·×[0, lP ].
For any q ∈ Zl1 × · · · × ZlP define

κ(q) := inf
(z,y)∈BR

U(z, y + q)

φR(z, y)
.

Hence, κ(q)φR(z, y) ≤ U(z, y + q) for (z, y) ∈ BR and, as φR = 0 on ∂BR, there
exists (zq, yq) ∈ BR such that κ(q)φR(zq, yq) = U(zq, yq + q). If κ(q) ≤ κ0 for
some q ∈ Zl1 × · · · × ZlP , then U(z, y + q) and κ(q)φR(z, y) would be respectively
a solution and a subsolution of (58) and then they would coincide in BR by the
strong maximum principle. This is impossible because φR = 0 on ∂BR. Therefore,

∀ q ∈ Zl1 × · · · × ZlP , (z, y) ∈ BR, U(z, y + q) ≥ κ(q)φR(z, y) > κ0φR(z, y).

Since φR has a positive minimum on B
M

r × [0, l1]× · · · × [0, lP ] ⊂ BR, (59) follows.
The lateral-periodicity of the solution to (23) follows from the uniqueness result. �

5.3. Large time behaviour. Once we have proved Theorem 2.5, Theorem 2.6
follows essentially from the same ideas as Theorem 2.2. Thus, we will skip some
details.

Proof of Theorem 2.6. The function ũ(t, x) := u(t, x+ cte) satisfies

0 < ũ ≤ S′ := max{S, ‖u0‖L∞(Ω)} in R
+ × R

N ,

where S is the positive constant in (20), and solves

(60) ∂tũ = ∆ũ+ ce · ∇ũ+ f(x, ũ), t > 0, x ∈ R
N ,

with initial condition ũ(0, x) = u0(x). Let w be the solution to (60) with initial
condition w(0, x) = S′. The comparison principle implies that w satisfies ũ ≤ w ≤
S′, is nonincreasing in t and, as t → ∞, converges locally uniformly in R

N to a
nonnegative bounded solution W of

(61) ∆U + ce · ∇U + f(x, U) = 0 a. e. in R
N .

Since w(t, x) is lateral-periodic in x by uniqueness, it follows that W is lateral-
periodic too and that

(62) ∀ r > 0, lim
t→∞

sup
x∈Or

(
ũ(t, x) −W (x)

)
≤ lim

t→∞
sup

x∈Or

(
w(t, x) −W (x)

)
= 0.
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Step 1: the function ũ satisfies

lim
min(t,|z|)→∞

ũ(t, z, y) = 0 uniformly in y ∈ R
P .

As ũ ≤ w, it is sufficient to show that the above property is satisfied by w. The
advantage is that w is lateral-periodic. Suppose that there exist ε > 0, (tn)n∈N in
R

+ and ((zn, yn))n∈N in R
N such that

lim
n→∞

tn = lim
n→∞

|zn| = ∞, ∀ n ∈ N, w(tn, zn, yn) > ε.

It is not restrictive to assume that (yn)n∈N is bounded. Thus, we get a contradiction
by arguing as in the step 2 of the proof of Theorem 2.2.

Step 2: conclusion of the proof.
In the case λ1 ≥ 0, the function W can not be strictly positive by Theorem 2.5.
Hence, the strong maximum principle yields W ≡ 0 and then statement (i) follows
from (62) and step 1. Consider the case λ1 < 0. We know that, for R large enough
and κ small enough, the function κφR is a subsolution to (58) (see the proof of
Theorem 2.5 above). Hence, for κ small the function

U(x) :=

{
κφR(x) x ∈ BR

0 otherwise.

is a subsolution of (61) and satisfies U(x) ≤ ũ(1, x) in R
N . Let v be the solution

to (60) with initial condition v(0, x) = U(x). Then, 0 ≤ v(t, x) ≤ ũ(t + 1, x),
v(t, x) is nondecreasing in t and, as t → ∞, converges locally uniformly in R

N to
a nonnegative bounded solution V of (61) satisfying U ≤ V ≤ W . Therefore, the
strong maximum principle yields 0 < V ≤ W and then both V and W coincide
with the unique solution U to (23). By (62) we then infer that, as t → ∞, ũ(t, x)
converges to U locally uniformly in x ∈ R

N . Assume by contradiction that there
exist ε > 0, (tn)n∈N in R

+ and (zn, yn)n∈N in R
N such that (yn)n∈N is bounded,

lim
n→∞

tn = ∞, ∀ n ∈ N, |ũ(tn, zn, yn) − U(zn, yn)| ≥ ε.

Owing to the local uniform convergence of ũ, we necessarily have that the sequence
(zn)n∈N diverges. Hence, step 1 and Proposition 8 yield a contradiction. It only
remains to show that if u0 is either lateral-periodic or it satisfies (25) then

(63) lim
t→∞

ũ(t, x) = U(x) uniformly in x ∈ R
N .

By Propositions 5 and 7 there exists ρ > 0 such that λ1,l(ρ) < 0 (we recall that
λ1,l(ρ) denotes the lateral-periodic principal eigenvalue of −L in Oρ, and χρ the
associated eigenfunction). With usual arguments, one sees that the function

Ũ(x) :=

{
κχρ(x) x ∈ Oρ

0 otherwise.

is a subsolution to (61) for κ small enough. Moreover, if (25) holds then we can

chose κ in such a way that Ũ ≤ u0. On the other hand, if u0 is lateral-periodic then
ũ(t, x) is lateral-periodic in x and then, as it is positive for t > 0, Ũ(x) ≤ ũ(1, x)
for κ small enough. In the first case we define ṽ as the solution to (60) satisfying

ṽ(0, x) = Ũ(x), while in the second as the solution to (60) for t > 1 satisfying

ṽ(1, x) = Ũ(x). In both cases, the maximum principle implies that ṽ(t, x) ≤ ũ(t, x)
for t ≥ 1, x ∈ R

N and that ṽ is nondecreasing in t and lateral-periodic in x. Then,
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as t → ∞ it converges to the unique solution U ≡ W to (23) uniformly in Or, for
any r > 0. Therefore, (62) yields

U(x) = lim
t→∞

ṽ(t, x) ≤ lim
t→∞

ũ(t, x) ≤ lim
t→∞

w(t, x) = U(x),

uniformly in x ∈ Or, for any r > 0. Step 1 and the decay of U then imply (63). �

6. Behaviour near critical value

Bifurcation results of the type of Theorem 2.7 have been proved by Crandall
and Rabinowitz [8] in very general frameworks. However, we will not make use of
the abstract result of [8], but rather give a direct proof. Indeed, to check that its
hypotheses are satisfied in our case requires essentially the same work as the direct
derivation of Theorem 2.7 which we give here.

In order to prove statement (ii) of Theorem 2.7 we make use of the fact that the
generalized Neumann principal eigenvalue λ1,N is simple when c = c0 (i. e. when
λ1,N = 0). This type of property, which follows directly from the Krein-Rutman
theory in the case of the principal eigenvalue of an operator in a bounded smooth
domain, is not true in general for unbounded domains. Thus, this part is rather
delicate. It holds here because of the additional property that the zero order term of
L is negative at infinity, cf. condition (12). We prove this result in [7] by first showing
that there exists a generalized principal eigenvalue which vanishes at infinity and
then using a comparison result of the same type as Theorem 3.3 here.

Theorem 6.1 ([7]). Let L be the operator defined by Lw = ∆w+β(x)·∇w+γ(x)w,
with β, γ ∈ L∞(Ω). If

λ1,N (−L,Ω) < − lim
r→∞

sup
|x1|>r

y∈ω

γ(x1, y),

then the generalized Neumann principal eigenfunction of −L in Ω (i. e. positive
solution of (34)) is unique up to a positive multiplicative constant.

The reader is referred to [7] for the details of the proof.

Proof of Theorem 2.7. (i) Assume by contradiction that there exist ε > 0 and two
sequences (cn)n∈N in (0, c0) and ((xn

1 , y
n))n∈N in Ω such that

lim
n→∞

cn = c0, U cn(xn
1 , y

n) ≥ ε.

We know that 0 < U cn ≤ S, where the second inequality - with S given by (10)
- follows from Theorem 3.3. By elliptic estimates and embedding theorems (a
subsequence of) the sequence (U cn)n∈N converges uniformly in Ωr, for any r > 0,
to a nonnegative bounded solution U∗ of

{
∆U∗ + c0∂1U

∗ + f(x, U∗) = 0 a. e. in Ω
∂νU

∗ = 0 on ∂Ω

Since U∗ is not strictly positive by Proposition 2 and Theorem 2.1, the strong
maximum principle yields U∗ ≡ 0. Hence, the sequence (xn

1 )n∈N has to be divergent.
It is not restrictive to assume that

∀ n ∈ N, U cn(xn
1 , y

n) ≥ ‖U cn‖L∞(Ω) −
1

n
.
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Define Un(x1, y) := U cn(x1 + xn
1 , y). By (9), (11) and (12), the Un converge (up to

subsequences) uniformly in Ωr, for any r > 0, to a nonnegative bounded function
U∞ satisfying {

∆U∞ + c0∂1U∞ ≥ ζU∞ a. e. in Ω
∂νU∞ = 0 on ∂Ω

Moreover, if η ∈ ω is the limit of (a subsequence of) (yn)n∈N, we see that

U∞(0, η) ≥ ε, U∞(0, η) ≥ lim sup
n→∞

‖Un‖L∞(Ω) ≥ ‖U∞‖L∞(Ω),

that is, U∞ has a positive maximum at (0, η). This is impossible due to the strong
maximum principle and the Hopf lemma.

(ii)
The proof is divided into three sub-statements. Let 0 < c < c0 be such that
c2 ≥ c20 − ζ. For c ∈ (c, c0) set W c := U c/‖U c‖L∞(Ω).

Step 1:

lim
|x1|→∞

W c(x1, y) = 0 uniformly with respect to y ∈ ω and c ∈ (c, c0).

The function V c(x1, y) := W c(x1, y)e
c
2x1 satisfies






∆V c +
f(x1, y, U

c(x1, y))e
c
2x1

‖U c‖L∞(Ω)
− c2

4
V c = 0 for a. e. (x1, y) ∈ Ω

∂νV = 0 on ∂Ω
0 < V (x1, y) ≤ e

c
2 x1 in Ω.

We want to apply Lemma 3.2 showing that the V c decay exponentially uniformly

with respect to c ∈ (c, c0). Set γ :=
ζ+c2

0

4 and ε := ζ
4 and let R > 0 be such that

fs(x, 0) < − 3
4ζ for a. e. x ∈ Ω\ΩR. By (9) and (11) we get

for a. e. x ∈ Ω\ΩR,
∆V c(x)

V c(x)
≥ −fs(x, 0) +

c2

4
>

3

4
ζ +

c20 − ζ

4
= γ + ε.

Moreover, V c(x1, y)e
−√

γ|x1| ≤ 1 in Ω. Hence, as we have seen in the proof of

Lemma 3.2, it follows that V c(x1, y) ≤ e(
√

γ+
√

γ+ε)Re−
√

γ+ε|x1| for |x1| > R. As a
consequence,

∀ c ∈ (c, c0), (x1, y) ∈ Ω, W c(x1, y) ≤ Ce(
c
2−

√
γ)|x1| ≤ Ce(

c0
2 −√

γ)|x1|.

Step 2: For any sequence (cn)n∈N in (0, c0) converging to c0 there exists a subse-
quence (cnk

)k∈N such that (W cnk )k∈N converges uniformly in Ω to a positive solution
of (26).
Let (cn)n∈N be a sequence in (0, c0) converging to c0. Owing to step 1, there exists
a bounded sequence (xn)n∈N in Ω such that W cn(xn) = 1. Let (xnk

)k∈N be a sub-
sequence converging to some ξ ∈ Ω. We set for brief Wk := W cnk . By (i), we see
that

lim
k→∞

∆Wk + cnk
∂1Wk

Wk
= lim

k→∞

f(x, U cnk )

U cnk

= fs(x, 0),

uniformly in x ∈ Ω. Thus, usual arguments imply that as k → ∞ the Wk converge
(up to subsequences) uniformly in Ωr, for any r > 0, to a positive solution ϕ of
(26). Again by step 1, ϕ(x1, y) converges to 0 as |x1| → ∞ uniformly in y ∈ ω and
then the Wk converge to ϕ uniformly in Ω.

Step 3: The eigenvalue problem (26) admits a unique positive solution.
In the previous step, we have explicitly exhibited the existence of a positive solution
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to (26). Let L = ∆ + c0∂1 + fs(x, 0). By the definition of c0 (see Section 3.2) we
know that λ1,N (−L,Ω) = 0. Thus,

0 = λ1,N (−L,Ω) < − lim
r→∞

sup
|x1|>r

y∈ω

fs(x1, y, 0),

and then Theorem 6.1 implies the uniqueness of the positive solution of (26). �

7. L1 convergence

We first derive the following result for linear parabolic problems.

Lemma 7.1. Let ξ ∈ L∞(R+ × Ω) satisfy

lim
r→∞

sup
t>0

|x1|>r
y∈ω

ξ(t, x1, y) < 0.

Let w(t, x) be a nonnegative bounded solution of

(64)

{
∂tw = ∆w + c∂1w + ξ(t, x)w, t > 0, x ∈ Ω
∂νw(t, x) = 0, t > 0, x ∈ ∂Ω,

such that w(0, ·) = w0 ∈ L1(Ω) and

∀ x ∈ Ω, lim
t→∞

w(t, x) = 0.

Then,
lim

t→∞
‖w(t, ·)‖L1(Ω) = 0.

Proof of Lemma 7.1. By hypothesis, there exist R, β > 0 such that

∀ t > 0, x ∈ Ω\ΩR, ξ(t, x) ≤ −β.
We set

P := ∂t − ∆ − c∂1 + β, g(t, x) := (ξ(t, x) + β)w(t, x).

From the superposition principle it follows that w = w1 +w2, where w1, w2 satisfy
{
Pw1 = 0, t > 0, x ∈ Ω
∂νw1 = 0, t > 0, x ∈ ∂Ω,

{
Pw2 = g(t, x), t > 0, x ∈ Ω
∂νw2 = 0, t > 0, x ∈ ∂Ω,

and w1(0, x) = w0(x), w2(0, x) = 0. The function v1(t, x) := w1(t, x)e
βt satisfies

∂tv1 = ∆v1 + c∂1v1 in R
+ × Ω. Hence, it is easily seen that

∀ t > 0, ‖v1(t, ·)‖L∞(Ω) ≤ ‖w0‖L∞(Ω), ‖v1(t, ·)‖L1(Ω) ≤ ‖w0‖L1(Ω)

(a way to prove the second inequality is by applying the maximum principle to the
functions vr

1(t, ρ) :=
∫ r

−r

∫
ω v1(t, x1 +ρ, y) dy dx1, which satisfy ∂tv

r
1 = ∂ρρv

r
1 +c∂ρv

r
1

for t ∈ R
+, ρ ∈ R and which are less than ‖w0‖L1(Ω) at time t = 0). As a

consequence,

lim
t→∞

‖w1(t, ·)‖L∞(Ω) = lim
t→∞

‖w1(t, ·)‖L1(Ω) = 0.

Define the function

v(x1) :=






‖g‖L∞(R+×Ω)

β e
−c+

√
c2+4β

2 (x1+R) if x1 < −R
‖g‖

L∞(R+×Ω)

β if −R ≤ x1 ≤ R
‖g‖

L∞(R+×Ω)

β e
−c−

√
c2+4β

2 (x1−R) if x1 > R.

By computation, one sees that the constant function ‖g‖L∞(R+×Ω)/β is a supersolu-
tion of the problem satisfied by w2 and that (t, x1, y) 7→ v(x1) satisfies Pv = 0 ≥ g
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in R
+ × (Ω\ΩR). Thus, the comparison principle implies that w2 ≤ v in R

+ × Ω.
Since (x1, y) 7→ v(x1) ∈ L1(Ω) and

∀ x ∈ Ω, lim
t→∞

w+
2 (t, x) = lim

t→∞
(w − w1)

+(t, x) = 0,

the Lebesgue theorem implies that w+
2 (t, ·) converges to 0 in L1(Ω) as t→ ∞. The

proof is thereby complete, because 0 ≤ w = w1 + w2 ≤ w1 + w+
2 . �

The L1 convergence of u to 0 as t → ∞ when λ1,N ≥ 0 immediately follows by
applying Lemma 7.1 to the function ũ(t, x1, y) := u(t, x1 + ct, y). When λ1,N < 0,
it would be natural to apply the same argument to the function ũ − U . This is
not possible because ũ − U is not nonnegative in general. For this reason, we
will introduce two functions u, u converging to U as t → ∞ and satisfying u ≤
min(ũ, U), u ≥ max(ũ, U) and then we will apply Lemma 7.1 to U − u and u− U .

Proof of Theorem 2.8. Let u be the solution of (3) with u(0, x) = u0(x). The
function ũ(t, x1, y) := u(t, x1 + ct, y) solves (45), with initial datum u0. If λ1,N ≥ 0
then, owing to Theorem 2.2 part (i), we can apply Lemma 7.1 with w = ũ and
ξ = f(x, ũ)/ũ (≤ fs(x, 0) by (9) and (11)) and infer that ũ(t, ·) → 0 in L1(Ω) as
t → ∞. Assume that λ1,N < 0. Let u be the solution of (45) with initial datum
u(0, x) = max(u0(x), U(x)). Applying Theorem 2.2 to the function u(t, x1 − ct, y)
we find that u(t, x) → U(x) as t→ ∞, uniformly with respect to x ∈ Ω. Moreover,
the parabolic maximum principle yields

∀ t > 0, x ∈ Ω, u(t, x) ≥ max(ũ(t, x), U(x)).

Hence, the function w(t, x) := u(t, x) − U(x) is a nonnegative bounded solution to
(64), with

ξ(t, x) =
f(x, u) − f(x, U)

u− U
,

and w(0, x) ≤ u0(x) ∈ L1(Ω). By (9) and (11) we infer that

∀ t > 0, x ∈ Ω, ξ(t, x) ≤ f(x, U)u/U − f(x, U)

u− U
=
f(x, U)

U
≤ fs(x, 0).

Therefore, Lemma 7.1 implies

lim
t→∞

‖u(t, ·) − U‖L1(Ω) = 0.

Let u be the solution of (45) satisfying u(0, x) = min(u0(x), U(x)). Then,

∀ t > 0, x ∈ Ω, u(t, x) ≤ min(ũ(t, x), U(x)).

Applying Lemma 7.1 with w = U − u and ξ = (f(x, U) − f(x, u))/(U − u) we get

lim
t→∞

‖U − u(t, ·)‖L1(Ω) = 0

(note that w(0, x) ≤ U(x), which belongs to L1(Ω) by Proposition 3). This con-
cludes the proof, because u ≤ ũ ≤ u. �

Remark 6. If the initial datum u0 does not belong to L1(Ω) then the convergences
in Theorem 2.2 do not hold in general in the L1 sense. As an example, the function

u(t, x) :=
1

2et − 1
,

is a solution of (3) with f(x, s) = −s − s2 and initial datum u0 ≡ 1. As t → ∞,
u(t, ·) converges to 0 in L∞(Ω) but not in L1(Ω).
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Proof of Theorem 2.9. The result follows from the same ideas as before, with some
minor changes that we briefly outline here. Indeed, owing to the uniform conver-
gence of u(t, x) to 0 as t→ ∞ given by Theorem 1.3 in [6], one can prove Theorem
2.9 by establishing an analogous result to Lemma 7.1.

In the whole space, the analogue of Lemma 7.1 is obtained by replacing Ω by R
N

and assuming that ξ satisfies

lim
r→∞

sup
t>0

|x|>r

ξ(t, x) < 0.

To prove it, one uses again the superposition principle, writing w = w1 + w2, but
then considers a different function v than that one introduced in the proof of Lemma
7.1:

v(x) :=






‖g‖
L∞(R+×RN )

β if x ∈ BR
‖g‖

L∞(R+×RN )

β eε(R−|x|) if x ∈ R
N\BR,

where ε is chosen in such a way that Pv ≥ g in R
N\BR (recall that g(t, x) ≤ 0

for |x| ≥ R). Hence, by comparison, w2 ≤ v and then the Lebesgue theorem yields
limt→∞w+

2 (t, ·) = 0 in L1(RN ). �

Let us mention that the arguments in the proofs of Theorems 2.8 and 2.9 allow
one to prove that, in the lateral periodic case, the convergences of u given by
Theorem 2.6 also hold in L1(RM ×K), for any K ⊂⊂ R

P .

8. Seasonal dependence

We only outline the proofs of Theorems 2.10 and 2.11. Essentially, these results
are obtained by using the same ideas as in Section 3 and Appendix A and following
the strategy of [6] Section 3, where the two-speeds problem in the whole space is
treated.

First, one shows the existence of the time periodic principal eigenvalue of P in
the finite cylinders Ωr, with mixed Dirichlet/Neumann boundary conditions, that
is, the unique real number µ(r) such that the eigenvalue problem






Pψ = µ(r)ψ in R × Ωr

∂νψ(t, x) = 0 on R × (−r, r) × ∂ω
ψ = 0 on R × {±r} × ω
ψ is T -periodic in t

admits a positive solution ψ. The arguments of Appendix A, which enable one
to apply the Krein-Rutman theory and find the µ(r), also work in this framework
thanks to the Hölder continuity of fs(t, x, 0). Then, proceeding as in the proof of
Proposition 4, one shows that limr→∞ µ(r) = µ1,N .

Next, one considers problem (6) in the coordinate system which follows the shift:

(65)

{
∂tũ = ∆ũ+ c∂1ũ+ f(t, x, ũ), t > 0, x ∈ Ω
∂ν ũ(t, x) = 0, t > 0, x ∈ ∂Ω.

The following result is proved in [6] in the case Ω = R
N , but it also holds for general

domains.

Theorem 8.1. Assume that f satisfies (27)-(29). Let v ∈ L∞(R×Ω) be a nonneg-
ative T -periodic in t generalized subsolution (resp. supersolution) of (65) and let ũ
be the solution of (65) with initial datum ũ(0, x) = v(0, x). Then,

∀ t ≥ 0, x ∈ Ω, ũ(t+ T, x) − ũ(t, x) ≥ 0 (resp. ≤ 0).
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Moreover,
∀ r > 0, lim

t→∞
‖ũ(t, ·) − U(t, ·)‖L∞(Ωr) = 0,

where U is a bounded T -periodic in t solution of (65) satisfying U ≥ v (resp. U ≤ v)
in R × Ω.

If µ1,N < 0 then one can find R > 0 large enough such that µ(R) < 0. Hence, the
principal eigenfunction ψ associated with µ(R) - suitably normalized and extended
by 0 in Ω\ΩR - is a T -periodic in t subsolution to (65). Applying Theorem 8.1 with
v = ψ we then find a T -periodic in t solution U ≥ ψ to (65). Consequently, as
U > 0 by the strong maximum principle, the sufficient condition of Theorem 2.10
for the existence of pulsating travelling waves is proved. To derive the necessary
condition and the uniqueness result one proceeds as in Section 3, by establishing the
exponential decay of solutions and a comparison principle analogous to Theorem
3.3 (see Proposition 9 and Theorem 3.3 in [6]).

Theorem 8.1 also allows one to prove that the convergences in Theorem 2.11
hold locally uniformly in Ω. We recall that to prove Theorem 2.2 we used the
property that any solution of (45) coinciding with a subsolution or a supersolution
of the stationary problem at the initial time is monotone in t. This is no longer
true for (65) because the terms in the equation depend on time. However, owing to
Theorem 8.1, one can derive the locally uniform convergence as in the case of (45)
by considering solutions of (65) coinciding with a subsolution and a supersolution
which is T -periodic in t. The uniform convergence then follows by arguing exactly
as in the step 2 of the proof of Theorem 2.2.

Appendix A. Principal eigenvalue with mixed boundary conditions

Proof of Theorem 3.1. We introduce the Banach space

Xr = {φ ∈ C1(Ωr) : φ = 0 on {±r} × ω, ∂νφ = 0 on (−r, r) × ∂ω},
equipped with the W 1,∞(Ωr) norm. Define the operator

Mu := Lu− du,

with d > ‖γ‖L∞(Ωr) constant such that the bilinear form B : H1(Ωr)×H1(Ωr) → R

defined by

B(u, v) :=

∫

Ωr

∇u · ∇v − (β(x) · ∇u)v − (γ(x) − d)uv

is coercive. From the elliptic theory of generalized solutions and the embedding
theorems, it follows that for every φ ∈ Xr the problem

(66)






−Mu = φ a. e. in Ωr

u = 0 on {±r} × ω
∂νu = 0 on (−r, r) × ∂ω

admits a unique solution u ∈ H1(Ωr)∩C1(Ωr\{±r}× ∂ω). We claim that u ∈ Xr.
In order to prove this, we only need to control the behaviour of u near the corners
{±r} × ∂ω. We first show that u ∈ C0(Ωr). Then, we extend u by reflection to a
larger cylinder and we apply elliptic estimates up to the (smooth) boundary.

Step 1: u ∈ C0(Ωr).
Define the function v(x1, y) := r2n − x2n

1 , where n ∈ N will be chosen later. The
function v satisfies:

v ≥ 0 in Ωr, v = 0 on {±r} × ω, ∂νv = 0 on (−r, r) × ∂ω
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and, for a. e. (x1, y) ∈ Ωr,

Mv(x1, y) = x2n−2
1 (−2n(2n− 1) − 2nβ1(x1, y)x1) + (γ(x1, y) − d)v

≤ 2nx2n−2
1 (−2n+ 1 + ‖β1‖∞r).

Therefore, it is possible to chose n large enough in order to have −Mv ≥ ‖φ‖L∞(Ωr)

in Ωr and then the maximum principle yields −v ≤ u ≤ v. This means in particular
that u can be extended by continuity to zero on {±r} × ∂ω.

Step 2: u ∈ C1(Ωr).
Thanks to the (uniform) regularity of ω, there exists ε > 0 such that the domain

ω̃ := {y ∈ R
N−1 : dist(y, ω) < ε}

is smooth and every y ∈ ω̃\ω has a unique projection on ω, denoted by π(y). We

set Ω̃r := (−r, r) × ω̃ and call R : Ω̃r\Ωr → Ωr the reflection with respect to
[−r, r] × ∂ω, that is,

R(x1, y) := (x1, 2π(y) − y).

Define the function ũ : [−r, r] × ω̃ → R by

ũ(x) :=

{
u(x) if x ∈ Ωr

u(R(x)) if x ∈ Ω̃r\Ωr

and the matrix field Ã : (−r, r) × ω̃ → SN by

Ã(x) :=

{
I if x ∈ Ωr

(J(x)J(x)t)−1 if x ∈ Ω̃r\Ωr,

where J(x) denotes the Jacobian matrix of R at x. By approximating the boundary

of Ω with its tangent hyperplanes, one can check that

∀ x ∈ (−r, r) × ∂ω, J(x)J t(x) = I.

Hence, up to considering a smaller ω̃ (i. e. decrease ε), we can assume that Ã

is uniformly Lipschitz continuous and elliptic in Ω̃r. The function ũ belongs to

H1(Ω̃r) ∩ C0(Ω̃r) and vanishes on {±r} × ω̃. Using the equation for u, one can
check that ũ is a weak solution to

−div(Ã(x)∇ũ) − β̃(x) · ∇ũ − (γ̃(x) − d)ũ = φ̃ in Ω̃r,

with

β̃ :=

{
β in Ωr

(J−1)t[β ◦ R− div((J−1)t)] in Ω̃r\Ωr,

γ̃ :=

{
γ in Ωr

γ ◦ R in Ω̃r\Ωr,
φ̃ :=

{
φ in Ωr

φ ◦ R in Ω̃r\Ωr.

Therefore, elliptic estimates up to the boundary and coercivity yield

(67) ∀ p > 1, ‖ũ‖W 2,p(Ω) ≤ C‖φ‖L∞(Ω),

for some positive constant C independent of φ. Thus, u ∈ C1(Ωr) by compact
injection theorem.

We have shown that u ∈ Xr. The map T : Xr → Xr associating to φ the unique
solution u of (66) is compact by (67). Using the strong maximum principle and the
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Hopf lemma, one can check that it is also strictly positive, that is, T (C\{0}) is con-
tained in the interior of C, where C denotes the closed positive cone of nonnegative
functions of Xr. It is at this stage that the W 1,∞ norm is required for the space Xr.
Then, from the Krein-Rutman theory (see [13] and [12]) it follows that T admits a
unique eigenvalue λ (> 0) with associated positive eigenfunction ϕr ∈ Xr (unique
up to a multiplicative constant). Therefore, the constant

λ(r) :=
1

λ
− d

satisfies the desired property. �
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“Biodiversité”. The second author benefited from a post-doctoral fellowship of this
program.

References

[1] H. Berestycki, O. Diekmann, C. J. Nagelkerke and P. A. Zegeleing, Can a species keep pace

with a shifting climate? Bull. Math. Biol., 71 (2009), 399–429.

[2] H. Berestycki, F. Hamel and L. Rossi, Liouville-type results for semilinear elliptic equations

in unbounded domains, Ann. Mat. Pura Appl. (4), 186 (2007), 469–507.

[3] H. Berestycki and P.-L. Lions, Some applications of the method of super and subsolutions,
Bifurcation and nonlinear eigenvalue problems (Proc., Session, Univ. Paris XIII, Villetaneuse,
1978), Lecture Notes in Math., vol. 782, Springer, Berlin, 1980, 16–41.

[4] H. Berestycki, L. Nirenberg and S. R. S. Varadhan, The principal eigenvalue and maximum

principle for second-order elliptic operators in general domains, Comm. Pure Appl. Math.,
47 (1994), 47–92.

[5] H. Berestycki and L. Rossi, On the principal eigenvalue of elliptic operators in RN and

applications, J. Eur. Math. Soc. (JEMS), 8 (2006), 195–215.

[6] H. Berestycki and L. Rossi. Reaction-diffusion equations for population dynamics with forced

speed I - The case of the whole space, Disc. Cont. Dyn. Syst., 21 (2008), 41–67.

[7] H. Berestycki and L. Rossi, Generalizations and properties of the principal eigenvalue of

elliptic operators in unbounded domains, In preparation.

[8] M. G. Crandall and P. H. Rabinowitz, Bifurcation from simple eigenvalues, J. Funct. Anal.,
8 (1971), 321–340.

[9] E. N. Dancer, On the existence and uniqueness of positive solutions for competing species

models with diffusion, Trans. Amer. Math. Soc., 326 (1991), 829–859.

[10] D. Gilbarg and N. S. Trudinger, “Elliptic Partial Differential Equations of Second Order,”

2nd edition, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of
Mathematical Sciences], vol. 224, Springer-Verlag, Berlin, 1983.

[11] Y. Kan-on and M. Mimura, Singular perturbation approach to a 3-component reaction-

diffusion system arising in population dynamics, SIAM J. Math. Anal., 29 (1998), 1519–1536
(electronic).

[12] M. A. Krasnosel′skij, E. A. Lifshits and A. V. Sobolev, “Positive Linear Systems,” Sigma
Series in Applied Mathematics, vol. 5, Heldermann Verlag, Berlin, 1989, The method of
positive operators, Translated from the Russian by J. Appell.
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