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Abstract

We study the long-time behavior of a 2×2 continuous dynamical system with a time-periodic
source term which is either of cooperative-type or activator-inhibitor type. This system was
recently introduced in the literature [2] to model the dynamics of social outbursts and consists
of an explicit field measuring the level of activity and an implicit field measuring the effective
tension. The system can be used to represent a general type of phenomena in which one variable
exhibits self-excitement once the other variable has reached a critical value. The time-periodic
source term allows one to analyze the effect that periodic external shocks to the system play
in the dynamics of the outburst of activity. For cooperative systems we prove that for small
shocks the level of activity dies down whereas, as the intensity of the shocks increases, the level
of activity converges to a positive periodic solution (excited cycle). We further show that in
some cases there is multiplicity of excited cycles. We derive a subset of these results for the
activator-inhibitor system.

1 Introduction

We study the convergence of trajectories of a 2 × 2 continuous dynamical system with a time-
periodic source to limit cycles when the system is either cooperative or of activator-inhibitor type.
The particular system we consider here is:

ut(t) = r(v(t))G(u(t))− ωu(t), (1a)

vt(t) = −h(u(t))v(t) + S(t), (1b)

satisfied for t > 0 and with non-negative initial data. This system has been introduced in [2] as
a model for the dynamics of social outbursts. We provide a motivation to study this system in
Section 1.1 by discussing a few examples of social phenomena that could be modeled by (1). The
unknown u can represent, for example, the level of rioting activity and v measures the effective
social tension in a system. The function G is of KPP-type ([10]) and models self-excitement in the
system. Specifically, we assume that G is of class C3 and satisfies

G′′ < 0, G(0) = 0, G(z) < 0 for z large enough, r(0)G′(0) < ω < G′(0).
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However, we consider systems where the self-excitement in the system is negligible until the tension
v reaches a sufficiently large value; this switch mechanism is described by the function r which is a
sigmoid function:

r(z) =
1

1 + e−β(z−a)
. (2)

The parameter β > 0 provides a measure of the transition slope between the relaxed state (non-
excited) and the excited state. In other words, it provides a measure of how fast the transition is
between a system that does not include the self-excitement and a system with the full-force of these
factors. The critical tension, here denoted by a ≥ 0, provides a measure of how large the tension
needs to be before the switch (from relaxed to excited) is made. Note that in the limit β → ∞,
r approaches the step function 1[a,∞), in which case the self-excitement factors are in full-force as
soon as the tension is above the critical threshold a. We further assume that external events, which
increase the tension v, occur with period T > 0 and intensity A > 0, leading to the source term

S(t) = A

∞∑
j=1

δ(t− Tj), (3)

where δ is the Dirac mass at 0. Finally, the effect that the level of activity u has on the tension v
is modeled by the term h(u), where

h : [0,∞)→ (0,∞) is of class C1,

and it is either monotone increasing or decreasing 1. Note that the monotonicity of h determines
whether (1) is of cooperative or activator-inhibitor type. For reason which will become apparent
below we refer to (1) in the case when h is decreasing as a tension-enhancing system and in the
case when h is increasing as a tension-inhibitive system. The case when h is constant decouples the
system. Considering the two cases allows us to differentiate between two different types of outbursts
of activity from the modeling perspective. A typical example to have in mind is

h(u) =
θ

(1 + u)p
, θ > 0, (4)

which is tension enhancing if p > 0 and tension inhibiting if p < 0.
We treat the tension enhancing and the tension inhibitive systems separately as they lend them-

selves to different analysis. In fact, in the former case we use heavily the fact that the system is
monotone and thus a comparison principle is available. This property has been widely investigated
in the literature and a complete theory of monotone systems is available. We recall some of its basic
results in Section 1.2. However, exploiting the particular structure of the system, we will derive
results which go beyond the ones provided by the general theory. The tension inhibitive case is no
longer monotone, leading to some mathematical difficulties. To our knowledge, very few general
results are known in such case.

Outline: We begin with a motivation from the application perspective, followed by a quick liter-
ature overview on monotone systems and the statement of the main results of the paper. Section 2
is devoted to the existence and stability of the u ≡ 0 solution for both the tension enhancing and
inhibitive systems. In Section 3 we focus on the tension enhancing case, where we are able to

1 Throughout the paper, the attributes increasing/decreasing are understood in the weak sense, i.e., nondecreasing/
nonincreasing.
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characterize the existence and the bifurcation of excited cycles, as well as the long-time behavior of
arbitrary solutions. We conclude the section with the simple case where h is constant. In Section 4
we show the existence of excited cycles for the tension inhibitive system; we further derive some
convergence results to excited cycles when r is a step function and illustrate this numerically.

1.1 Motivation

System (1) models phenomena where there is an underlying potential field which accumulates energy
and once this energy reaches a critical level then action is realized. This action in turn influences
the field. This scenario occurs in multiple social phenomena where external factors lead to an
increase in the potential field (we refer to it as the tension value) eventually leading to action.
Then, internal factors maintain and increase the level of action for some period of time. We discuss
briefly a number of applications which we have in mind.

System (1) was derived in [2] in the context of rioting activity. Riots and protests are complex
social events that have been pervasive throughout history and which have been the subject of an
intensive research activity– see for example [14, 11, 29, 1, 7, 22]. Much of this research has led
to the belief that certain external events are responsible for initiating a period of rioting activity
[17], these events are the so called triggering events. Of course, the issue is much more complex
and, in addition to the triggering events, one must take into account long-established frustrations
as they play a significant role in the intensity and duration of these social outbursts of activity [14].
This leads to an underlying dynamic tension field. Once the tension level reaches a critical value
some researchers argue that there is contagion in the process of rioting activity thus leading to an
escalation. There are many reason for this to be the case, for example the anonymity of a group
may empower some people into action – see for example chapter 10 in [20].

The hypothesis of escalation has also been applied in the context of aggression, at the level of
both dyads and groups. Indeed, some researchers have argued that hostile action from one party
can be the impetus for even more hostile counteraction. This conjecture has been employed in the
context of violent men [28], aggressive children [21], and violence in incarcerated young offenders
[18]. System (1) is better suited in the context of wars between nations or groups of allied nations.
Nation-states naturally fend for their interests and in many cases these nations have competing
interests. This, as history has taught us, can easily lead to a crisis through a sequence of hostile
events. If a certain threshold in the tension level between nation-states is surpassed the crisis can lead
to military force. Once military force is initiated then self-reinforcement or escalation mechanism
begins, where action begets more action. We refer to chapter 11 in [20] for an illustration of the
escalation process during the First Kashmir crisis in 1947. See also [9] for a related model which
includes the concept of reinforcement in conflicts.

Another motivation for this type of systems is the adoption of fads which we discuss as an
example in vague terms. In this framework, the potential field represents a measure of the willingness
to adopt a particular fad or to follow a specific trend. An initial shock in this case can be caused
by some opinion leaders (e.g. celebrities) adopting it. Then the popularity of the fad will increase
through imitation (or contagion). Eventually, such a fad will grow out of fashion and will disappear.
One can consider that there are two types of fads. In the first type, which we might call imitation
prone, the willingness to follow it initially increases with the number of people who have adopted it.
In the second type, which we can see as the search of an elitist distinction, when it has sufficiently
spread, then it looses its appeal. In this direction a more refined analysis would consider the
adoption of taste within a given social class. In particular, the process just described could apply to
tastes among the high cultural capital classes as described by P. Bourdieu in La distinction [5, 6].
Thus, in this framework too, we can think of two types of models corresponding to our tension
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inhibiting and tension enhancing cases.
In general terms, u(t) measures the level of activity and v(t) the effective tension in the sys-

tem. For example, if the number of events follows a Poisson distribution, then u(t) represents the
conditional intensity, which is evolving in time. The function G models the endogenous factors, de-
scribing the self-reinforcement mechanism. The function r is a monotone increasing function with
values in (0, 1) which can be thought of as a switch mechanism between a relaxed state (when the
endogenous factors are not in effect) and an excited state (when the endogenous factors are in effect),
depending on the level of social tension. If there is no activity then there is a natural decay that
is measured by the parameter ω > 0. The triggering events are modeled as point-source terms and
are included in S. Finally, the function h models the influence that the level of activity has on the
decay of the tension: we consider both cases h decreasing and h increasing. This allows us to take
into account two different modeling perspectives. The decreasing case leads to a tension enhancing
(cooperative system) where the level of activity relaxes the decay of the tension. This was the case
explored in [2] and [3]. On the other hand, the case h increasing leads to an activator-inhibitor type
systems where the tension facilitates an increased level of activity, but this increased activity then
leads to a certain level of fatigue. Thus, high levels of activity lead to a faster decay of the tension.
We refer to this as the tension inhibitive case. This is an important and interesting regime as it has
been observed in data from the 2005 French riots that the case p negative is a better suited model
for the dynamics of those particular riots – refer to the paper in preparation [4]. This has also been
observed in the London riots of 2011 [27].

An important aspect that remains to be studied for this system is the question of how various
continuous external events, which we refer to as “shocks”, influence the qualitative behavior of
activity. Clearly, there are many issues such as political decisions, the state of the economy, global
issues, to name a few examples, are continuously affecting the tension in the system. These effects
are random and extremely difficult to quantify exactly. Nevertheless, understanding the role that
these types of events, which are occurring on a regular basis, play in the spatio-temporal dynamics
of the level of activity is important.

A natural first step is to understand the effect of external events that occur on a periodic basis
on a single site. Motivated by this consideration we analyze the case of periodic repeated shocks.
Specifically, we study what happens when external events occur with a period T and intensity A.
Numerical simulations performed in [2] illustrate the existence of periodic cycles for fixed intensity A
and sufficiently high frequency in the case when h is decreasing. More precisely, for a fixed intensity,
it was observed that if the period is above a threshold then the level of activity is “over-damped” -
in the sense that the the solutions exhibit oscillations which quickly decay with time. On the other
hand, for a sufficiently small period the solutions converge to a periodic cycle. The objective of
the present paper is to prove this analytically as well as further understand these numerical finding
for both the tension enhancing and tension inhibitive cases. From the mathematical point of view,
the system behaves monotonically with respect to the intensity A, whereas in general there is no
monotonicity in T . For this reason, in the present paper we mainly investigate how the dynamics
changes when A varies, and eventually apply the obtained results to describe its dependence on the
length of the period T (c.f. Proposition 3.9 below), recovering the numerical observations of [2].

1.2 A quick review on monotone systems

System (1) is a continuous dynamical system with a periodic source term S(t). There is a vast
literature on periodic dynamical systems. The theory is much more complex and rich than that of
autonomous systems (i.e., with time-independent terms). The first questions that naturally arise are:

1. Are there periodic solutions with the same period as the coefficients?
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2. What is the long-time behavior of solutions to the Cauchy problem?

These two questions are clearly interconnected. Periodic solutions (cycles) are the natural extensions
of fixed points for autonomous systems. Indeed, they are fixed points for the Poincaré evolution
operator of one period and one can hope that they attract all trajectories of the system. Unfor-
tunately, it is well known since [23] that this property is not true for some autonomous systems.
In fact, there are autonomous systems which exhibit a “chaotic behavior” or convergence to some
“strange attractors”. For this reason a huge effort has been devoted to seeking suitable structural
conditions which guarantee simple dynamical properties of the system, at least in low dimension.
A different point of view consists in showing that complex trajectories, though possible, are not
“generic”.

A structural condition which has been widely exploited is the monotonicity. This property
is fulfilled by systems which are either cooperative or competitive. The work of Kamke [13] laid
the foundation of the theory of monotone autonomous dynamical systems, which has been then
systematically developed in the series of papers of Hirsch starting from [12]. We also refer to [25]
for an extensive account of the theory. Theorem 2.3 in [12] states that solutions to 2×2 autonomous
systems either diverge or converge to a fixed point. Massera partially extended this result to time-
periodic monotone systems by considering the time-discrete dynamical system provided by the
Poincaré operator. The following two results are proved in [15]: for a single equation, any bounded
solution converges to a cycle; for a 2×2 system, if all solutions exist for all times and there exists at
least one bounded solution then there exists a cycle. However, in the latter case, no convergence of
arbitrary solutions to the cycle is guaranteed. The lack of a convergence result shows a discrepancy
between continuous and discrete dynamical systems, which has been further enlightened by Dancer
and Hess in [8], who exhibited a 2 × 2 discrete system with non-constant solutions with period 2
(see also [26] for a system generated by a Poincaré map). Because of this result, periodic solutions
with a period which is a multiple of that of the system became the candidates as attractors of the
system. It is shown in [19] that this is the case (for strictly monotone systems) at least generically.

1.3 Statement of the main results

The following notion is the central object of study of the paper.

Definition 1.1. We call a cycle a solution (u, v) to (1) which is periodic with period T . We say
that the cycle is quiet if u ≡ 0, otherwise it is excited.

Of course, an excited cycle satisfies u(t) > 0 for all t ≥ 0. We will see in the next section that
the quiet cycle always exists and that it is stable if and only if the amplitude A of the source term
S is small enough. Actually, the overall dynamics of the system drastically depends on the value of A.

Our results in the tension enhancing case, i.e. when h is decreasing, are summarized in the
following.

Theorem 1.2 (the tension enhancing case). Suppose that h is decreasing (in the weak sense). There
exist then some thresholds 0 < A∗ ≤ A0 such that

• if A < A∗ then all solutions converge to the quiet cycle (as t→∞);

• if A∗ < A < A0 then, for any U > 0, there exists V ≥ 0 such that solutions with u(0) = U
converge to the quiet cycle if v(0) < V and to an excited cycle if v(0) ≥ V ;

• if A > A0 then any solution with u(0) > 0 converges to an excited cycle.

5



If the intensity A is below the threshold A∗ or above the threshold A0 then all nontrivial solutions
share the same type of limiting behavior. Depending on the parameters, and in particular on the
amplitude of h′, the two thresholds may or may not coincide, as shown in Theorem 3.6 below. If
they do then the second case of Theorem 1.2 is ruled out: the system is always monostable and a
standard bifurcation takes place at A = A∗ = A0. On the other hand, if A∗ < A0 then the system
is at least bistable in the regime A∗ < A < A0, where at least two excited cycles coexist as a result
of a turning point in the bifurcation diagram. The question of the exact number of excited cycles
is left open.

It is worth noting that none of the properties stated in Theorem 1.2 follows from the general
theory of monotone systems recalled in the previous section. In particular, the cycle provided by
Massera [15] could be the quiet one (which always exists), leaving completely open the existence
of excited cycles. On the other hand, [15] does not provide any information about the long-time
behavior of solutions to the Cauchy problem. One could just infer from [19] that they “generically”
converge to periodic solutions (not necessarily cycles) if h is strictly decreasing, which is weaker
than the result of Theorem 1.2.

The tension inhibitive case is more complex to deal with due to the lack of monotonicity and,
as a consequence, the results we obtain are less complete.

Theorem 1.3 (the tension inhibitive case). Suppose that h is increasing. There exists then a
threshold A0 > 0 such that

• if A < A0 then all solutions converge to the quiet cycle;

• if A > A0 then any solution with u(0) > 0 satisfies inft≥0 u(t) > 0, and moreover the system
admits an excited cycle.

When A > A0 we are not able to prove that any trajectory approaches an excited cycle, as
in the tension enhancing case, but only that they are bounded away from u ≡ 0. However, based
on some numerical simulations, we conjecture that the convergence to excited cycles should hold.
Surprisingly enough, the bifurcation scenario is simpler than in the previous case: as soon as the
excited cycle appears (at A = A0) the quiet cycle becomes unstable.

With regards to the long-time behavior of solutions when A > A0, we are only able to obtain
partial results in the limiting case that r is the step function, which represents a discontinuous switch
between the relaxed and the excited states. Namely, we find a threshold value Ā characterizing the
convergence to the cycle with u component identically equal to the maximal value Z ′, which is the
unique positive zero of z 7→ G(z)− ωz.

Theorem 1.4 (discontinuous switch). Suppose that h is increasing and that r = 1[a,∞). Then,

calling Ā := a(eh(Z
′)T − 1), the following hold:

• if A < Ā then all solutions satisfy lim supt→∞ u(t) < Z ′;

• if A > Ā then any solution with u(0) > 0 converges to the excited cycle with constant first
component Z ′.

Gathering together Theorems 1.3 and 1.4 we infer that all solutions converge to cycles when
either A < A0 (quiet cycle) or A > Ā (excited cycle). In the intermediate case A0 < A < Ā we
only know that solutions stay bounded away from 0 and Z ′, but we are not able to prove that they
necessarily converge to a cycle.
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2 The quiet cycle

In this section we study solutions with the u component identically equal to 0, as well as the stability
of the quiet cycle. The results are obtained regardless of the monotonicity of h and thus they hold
for both the tension enhancing and inhibiting cases. We begin with some preliminary properties.

The hypothesis on the self-excitement term G imply the existence of two constants 0 < Z ′ < Z
such that

Z is the unique positive zero of z 7→ G(z),

Z ′ is the unique positive zero of z 7→ G(z)− ωz.

Then, since r < 1, any solution to (1a) satisfies

∀t > 0, u(t) < max{u(0), Z ′}. (5)

Moreover, if u(0) 6= 0 then ut/u = G(u)/u − ω, whence, integrating and using the fact that by
concavity G(z)/z ≤ G′(0) for z > 0, we get the following Grönwall’s inequalities:

u(t) ≤ u(0)e(G
′(0)−ω)t, u(0) ≤ Z =⇒ u(t) ≥ u(0)e−ωt. (6)

Let (u, v) be a solution to (1). Since

∀t ∈ (0, T ), v(t) = v(0)e−
´ t
0 h(u(s))ds,

the following implications hold:

v(T ) < v(0) (resp. >) ⇐⇒ v(0) >
A

1− e−
´ T
0 h(u(s))ds

(resp. <). (7)

Therefore (0, v) is a (quiet) cycle if and only if v(0) = V , where

V :=
A

1− e−h(0)T
. (8)

The quiet cycle always exists and it is a global attractor in the class of solutions satisfying u(0) = 0.
Indeed, the solution of equation (1b) is explicitly given by the formula

∀t ∈ [(n− 1)T, nT ), n ∈ N, v(t) = v(0)e−
´ t
0 h(u(s)) ds +A

n−1∑
j=1

e−
´ t
jT h(u(s)) ds, (9)

which, owing to (5), shows that v is bounded and, roughly speaking, it forgets the initial condition
at exponential rate in time. If u(0) = 0 then u ≡ 0 for all times and we find that

lim
n→∞

v(nT ) = A lim
n→∞

n∑
j=1

e−(n−j)h(0)T = A
∞∑
k=0

e−kh(0)T = V ,

from which the convergence to the quiet cycle immediately follows by the continuous dependence
of solutions with respect to initial data.

If one considers perturbations of the u component as well, it turns out that the quiet cycle is
stable only for A below a certain threshold. This is stated rigorously in Proposition 2.2 below,
whose proof relies on the following lemma.
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Lemma 2.1. There exists A0 > 0 such that

if A < A0 then ∃ε, ε′ > 0, σ ∈ (0, 1),

{
u(0) ≤ ε
|v(0)− V | ≤ ε′

=⇒

{
u(T ) ≤ (1− σ)u(0)

|v(T )− V | < ε′
,

if A > A0 then ∃ε, ε′ > 0, σ ∈ (0, 1),

{
0 < u(0) ≤ ε
|v(0)− V | ≤ ε′

=⇒

{
u(T ) ≥ (1 + σ)u(0)

|v(T )− V | < ε′
,

for any solution (u, v) to (1).

Proof. Fix ε, ε′ > 0 and let (u, v) be a solution to (1) with initial datum in [0, ε]× [V − ε′, V + ε′].
If u(0) = 0 then u ≡ 0 and the result immediately follows from equation (1b). Consider the case
u(0) 6= 0. By (6) we have that u = O(ε) in [0, T ], where, here and in the rest of the proof, the term
O(·) refers to the limit as ε→ 0 or ε′ → 0 independently of u(0) and v(0). We deduce that

∀t ∈ [0, T ), v(t) = V e−
´ t
0 h(u(s))ds = V e−

´ t
0 h(u(s))ds +O(ε′) = V e−h(0)t +O(ε) +O(ε′).

Hence, for t ∈ [0, T ], plugging G(u) = u(G′(0) +O(ε)) in (1a) yields

ut/u = r(v)G′(0)− ω +O(ε) = r(V e−h(0)t)G′(0)− ω +O(ε) +O(ε′).

Integrating, we get

log
u(T )

u
(0) = G′(0)

ˆ T

0
r(V e−h(0)t)dt− ωT +O(ε) +O(ε′)

= G′(0)

ˆ T

0
r

(
Ae−h(0)t

1− e−h(0)T

)
dt− ωT +O(ε) +O(ε′).

The strict monotonicity of r and the assumption

r(0)G′(0) < ω < G′(0) = G′(0)r(∞),

allow us to define A0 as the unique positive value for which

 T

0
r

(
A0 e

−h(0)t

1− e−h(0)T

)
dt =

ω

G′(0)
, (10)

where
ffl

stands for the average integral, and to derive the following implications:

A < A0 (resp. > A0) =⇒ ∃σ ∈ (0, 1),
u(T )

u(0)
≤ 1− σ (resp. ≥ 1 + σ) for ε, ε′ small enough.

Concerning the second component, we have that

|v(T )−V | = |v(0)(e−h(0)T+O(ε))+A−V | = |(v(0)−V )e−h(0)T+v(0)O(ε)| ≤ ε′e−h(0)T+(V +ε′)O(ε).

Hence, for fixed ε′, we have that |v(T ) − V | < ε′ provided ε is small enough. This concludes the
proof of the lemma.

Remark 1. In the limit case r = 1[a,∞), direct computation shows that (10) reduces to

A0 = e
ωh(0)T

G′(0) a
(

1− e−h(0)T
)
.

8



Proposition 2.2. The quiet cycle is stable if A < A0 and unstable if A > A0, with A0 given
by (10), in the following sense:

(i) if A < A0 then, for any V ≥ 0, there exists U > 0 such that solutions with initial datum in
[0, U ]× [0, V ] converge to the quiet cycle as t→∞;

(ii) if A > A0 then any solution (u, v) with u(0) > 0 satisfies inft≥0 u(t) > 0.

Proof. Note that any solution (u, v) to (1) is bounded due to (5) and (9). Using (9) and recalling
the definition (8) of V we get

|v(nT )− V | =

∣∣∣∣∣∣v(0)e−
´ nT
0 h(u(s)) ds +A

n∑
j=1

e−
´ nT
jT h(u(s)) ds −A

∞∑
k=0

e−kTh(0)

∣∣∣∣∣∣
≤ (sup v)e−γnT +A

n−1∑
k=0

∣∣∣∣e− ´ nT
(n−k)T h(u(s)) ds − e−kTh(0)

∣∣∣∣+A
∞∑
k=n

e−kTh(0),

where γ is the minimum of h on [0, supu]. Then, for any ε′ > 0, there exists n′ ∈ N, depending on
ε′, sup v, supu, h, T and A, such that

∣∣v(n′T )− V
∣∣ < A

n′−1∑
k=0

∣∣∣∣e− ´ n′T
(n′−k)T h(u(s)) ds − e−kTh(0)

∣∣∣∣+
ε′

2
.

Since the first term of the right-hand side vanishes if u ≡ 0 on [0, n′T ], using the first property
in (6) we can find η > 0, depending on the same terms as n′, for which there holds

u(0) ≤ η =⇒ |v(n′T )− V | < ε′. (11)

Case (i) A < A0.
Let ε, ε′, σ be given by the first case of Lemma 2.1. Take V ≥ 0. It follows from (5) and (9) that
the family of solutions emerging from initial data in [0, 1]× [0, V ] is uniformly bounded in L∞(R+).
There exist then n′ ∈ N and η > 0 such that any (u, v) in this family satisfies (11). Hence, solutions
emerging from [0, U ] × [0, V ], with U = min{η, 1}, satisfy |v(n′T ) − V | < ε′. Moreover, up to
reducing U , u(n′T ) < ε and therefore they fulfill the hypotheses of Lemma 2.1 at time n′T instead
of time 0. Applying recursively Lemma 2.1 yields

∀n ∈ N, u((n′ + n)T ) ≤ (1− σ)nu(n′T ), |v((n′ + n)T )− V | < ε′.

As a consequence, u(nT ) → 0 as n → ∞, hence u(t) → 0 as t → ∞, and then (9) readily implies
that (u, v) converges to the quiet cycle.

Case (ii) A > A0.
Let ε, ε′ be from the second case of Lemma 2.1. Consider a solution (u, v) with u(0) > 0. Let n′ ∈ N
and η > 0 be such that the implication (11) holds. We claim that

∀n ∈ N, u(nT ) ≥ µ e−ω(n′+1)T , with µ := min{u(0), Z, η, ε}, (12)

which would conclude the proof of the theorem. Suppose that (12) fails for some n = m + 1 ∈ N.
Then, if there exists τ < (m+ 1)T such that u(τ) = µ, the second property in (6) yields

µ = u(τ) ≤ u((m+ 1)T )eω[(m+1)T−τ ] < µeω[(m−n
′)T−τ ],
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whence τ < (m − n′)T . This shows that u((m − n′)T ) < µ (and also that m > n′) and thus
the function u(· + (m − n′)T ) satisfies the hypothesis in (11), from which, recalling that n′, η
depend on the solution only through supu, sup v, we deduce that |v(mT )−V | < ε′. Since u(mT ) ≤
u((m+1)T )eωT < µ ≤ ε always by (6), we can apply Lemma 2.1 and infer that u((m+1)T ) > u(mT ),
that is, (12) fails for n = m too. In other words, if (12) holds for some n ∈ N then it holds true for
n+ 1. We deduce that it holds for all n ∈ N.

3 The tension enhancing system

This section is devoted to the study of the tension enhancing case, that is, h is assumed to be
decreasing (in the weak sense). The key property of the tension enhancing system is that it is
monotone - or cooperative, with the terminology of [12]. This is expressed by the following variant
of the classical comparison principle of Kamke [13].

Proposition 3.1 (Monotonicity). Let (u1, v1) and (u2, v2) be two solutions such that u1(0) ≤
u2(0) ≤ Z and v1(0) ≤ v2(0). Then u1 ≤ u2 and v1 ≤ v2 for all positive times, with strict
inequalities if v1(0) < v2(0).

Proof. Note first that equation (1a), together with G(Z) = 0, yield u1, u2 ≤ Z for all times. Assume
by contradiction that u1 > u2 or v1 > v2 at some moment. Define

τ := inf{t > 0 : u1(t) > u2(t) or v1(t) > v2(t)}.

In particular, u1 ≤ u2 and v1 ≤ v2 in [0, τ ], and equality holds at t = τ in at least one case. Actually,
it holds in exactly one case because otherwise (u1, v1) ≡ (u2, v2) for all times by uniqueness of the
Cauchy problem. We just treat the case u1(τ) = u2(τ), the other one being similar. In such case
v1 < v2 in [τ, τ + k) for k small enough. By the monotonicity of r (or of −h in the other case), the
function u := u2 − u1 satisfies

∀t ∈ [τ, τ + k], ut ≥
(
r(v1)

G(u2)−G(u1)

u2 − u1
− ω

)
u.

Therefore, Grönwall’s inequality yields u ≥ 0 in [τ, τ + k], which entails a contradiction with the
definition of τ . This shows that u1 ≤ u2 and v1 ≤ v2 for all times.

Suppose now that v1(0) < v2(0). Then, by (1) and the strict monotonicity of r, there exists
k > 0 such that both u1 < u2 and v1 < v2 in (0, k). Applying Grönwall’s inequality to u2 − u1 and
v2 − v1 in intervals of the type [0, τ ] one readily obtains u1 < u2 and v1 < v2 for all t > 0.

In view of the above comparison principle, solutions are increasing with respect to the parameter
A for all t > 0. This is the reason why we use A as the varying parameter in the bifurcation analysis
of the system.

3.1 Existence and non-existence of excited cycles

We investigate the global stability of the quiet cycle as well as the existence of excited cycles, in
the sense of Definition 1.1. We use a discrete-time dynamical system approach, introducing the
Poincaré T -step evolution operator

E : (U, V ) 7→ (u(T ), v(T )),
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where (u, v) is the solution to (1) emerging from (U, V ). Excited cycles emerge from positive fixed
points for E . Our main result states the existence of a critical threshold A∗ separating the existence
and non-existence of excited states; in addition, for A < A∗, the quiet cycle is a global attractor for
the system. The proof relies on the following key auxiliary result.

Proposition 3.2. Let (u, v) be a solution to (1). Then, there exists a cycle emerging from some
(U, V ) satisfying

U ≥ lim sup
n→∞

u(nT ), V ≥ lim sup
n→∞

v(nT ).

Proof. Consider a solution (u, v) to (1) Recall that (u, v) is bounded owing to (5) and (9). Call

Û := lim sup
n→∞

u(nT ), V̂ := lim sup
n→∞

v(nT ).

For ε > 0, let n ∈ N be such that

u(nT ) ≥ Û − ε, u((n− 1)T ) ≤ Û + ε, v((n− 1)T ) ≤ V̂ + ε.

Since
E
(
u((n− 1)T ), v((n− 1)T )

)
=
(
u(nT ), v(nT )

)
∈ [Û − ε,∞)× R+,

we deduce from the comparison principle, Proposition 3.1, that

E(Û + ε, V̂ + ε) ∈ [Û − ε,∞)× R+.

As a consequence, by the arbitrariness of ε and the continuity of E , we get

E(Û , V̂ ) ∈ [Û ,∞)× R+.

With analogous arguments one derives the inclusion for the second component, whence E(Û , V̂ ) ∈
[Û ,∞)× [V̂ ,∞).

With this property in hand, the existence of the desired cycle is a consequence of the following
general fact:

E(U, V ) ∈ [U,∞)× [V,∞) =⇒ {En(U, V )} is componentwise increasing, (13)

which is readily obtained by induction on n, using the comparison principle. It follows that the
sequence {En(Û , V̂ )} is componentwise increasing (and bounded) and therefore it converges to some
pair (U, V ) ∈ [Û ,∞) × [V̂ ,∞). By the continuity of the solutions with respect to initial data, we
eventually infer that (U, V ) is the initial datum of a cycle.

Let us mention an alternative way to conclude the proof of Proposition 3.2: once one knows
that [Û ,∞)× [V̂ ,∞) is invariant under the mapping E , it is easy to find Ũ , Ṽ such that the same
is true for [Û , Ũ ]× [V̂ , Ṽ ]; then one applies Brouwer’s fixed point theorem. A more involved version
of this argument will be used to derive the existence of excited cycles in the tension inhibitive case,
where the comparison principle is not available. Property (13), together with the specular one:

E(U, V ) ∈ [0, U ]× [0, V ] =⇒ {En(U, V )} is componentwise decreasing, (14)

is a peculiar feature of monotone systems. These properties will be used in Section 3.3 to obtain a
detailed description of any trajectory.
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Proposition 3.3. There exists a threshold

A∗ ∈
[(

1− e−h(Z′)T
)
r−1(ω/G′(0)) , A0

]
(15)

such that

(i) if A < A∗ then all solutions converge to the quiet cycle as t→∞;

(ii) if A > A∗ then the system admits at least one excited cycle.

Proof. Let us call
A := {A : the system admits an excited cycle}.

Step 1. A∗ := inf A satisfies (15).
Let A > A0. Consider a solution (u, v) to (1) with u(0) > 0. By Proposition 2.2 part (ii), inf u > 0
and therefore the cycle provided by Proposition 3.2 is excited. This shows A∗ ≤ A0. Conversely,
consider an arbitrary A ∈ A and let (u, v) be an associated excited cycle. Since u(T ) = u(0), (5)
yields u(0) < Z ′ and then u < Z ′ for all times. Combining this with (7) and the fact that h is
decreasing, we deduce

u(0) < Z ′, v(0) ≤ A

1− e−h(Z′)T
. (16)

Moreover, since u cannot be strictly monotone in [0, T ], there exists t ∈ [0, T ] such that

ωu(t) = r(v(t))G(u(t)) ≤ r(v(0))G′(0)u(t),

which, together with the second inequality in (16), provides the lower bound for A in (15).

Step 2. A is a half-line.
Let (u, v) be an excited cycle associated with a given A ∈ A, with initial datum (U, V ). Take Ã > A
and let (ũ, ṽ) be the solution to (1) with A replaced by Ã, also emerging from (U, V ). Clearly,

ũ(T ) = u(T ) = U, ṽ(T ) = v(T ) + Ã−A > V.

Namely, calling E the T -step Poincaré operator associated with Ã, there holds E(U, V ) ⊂ [U,∞)×
(V,∞), and therefore, by (13), the sequence {En(U, V )}, which is bounded due to Proposition 3.2,
is componentwise increasing. Its limit (Û , V̂ ) ∈ [U,∞) × (V,∞) is thus the initial datum of an
excited cycle, i.e., Ã ∈ A.

Step 3. Statement (i).
Let A be such that there exists a solution (u, v) satisfying

lim sup
n→∞

u(nT ) > 0.

Then, Proposition 3.2 implies the existence of an excited cycle, i.e., A ≥ A∗. It follows that, if
A < A∗, any solution (u, v) satisfies u(nT ) → 0 as n → ∞, which readily implies that (u, v)
converges to the quiet cycle as t→∞.

Proposition 3.4. There exists a cycle (u, v) such that any solution (u, v) to (1) satisfies

lim sup
t→∞

(u(t)− u(t)) ≤ 0, lim sup
t→∞

(v(t)− v(t)) ≤ 0.

Moreover, in their dependence on A, u and v are upper semi-continuous and increasing.
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Proof. Let (ũ, ṽ) be the solution to (1) with initial datum (Ũ , Ṽ ) given by

Ũ := sup{u(0) : (u, v) is a cycle}, Ṽ := sup{v(0) : (u, v) is a cycle}.

We have seen that any cycle satisfies (16) and thus the above quantities are finite. By comparison,
for any cycle (u, v), there holds

∀n ∈ N, ũ(nT ) ≥ u(nT ) = u(0), ṽ(nT ) ≥ v(nT ) = v(0),

whence, taking the sup among all cycles,

∀n ∈ N, ũ(nT ) ≥ Ũ , ṽ(nT ) ≥ Ṽ . (17)

Next, by Proposition 3.2, there exists a cycle (u, v) satisfying

u(0) ≥ lim sup
n→∞

ũ(nT ), v(0) ≥ lim sup
n→∞

ṽ(nT ).

On one hand, u(0) ≥ Ũ , v(0) ≥ Ṽ by (17), on the other, the definition of Ũ and Ṽ yields Ũ ≥ u(0),
Ṽ ≥ v(0). This means that the cycle (u, v) emerges from (Ũ , Ṽ ).

Consider now an arbitrary solution (u, v) to (1). Applying again Proposition 3.2 we find a cycle
emerging from an initial datum (U, V ) satisfying

U ≥ lim sup
n→∞

u(nT ), V ≥ lim sup
n→∞

v(nT ).

Hence, U ≤ Ũ , V ≤ Ṽ , which entails

lim sup
n→∞

(
u(nT )− u(nT )

)
= lim sup

n→∞
u(nT )− Ũ ≤ U − Ũ ≤ 0,

lim sup
n→∞

(
v(nT )− v(nT )

)
= lim sup

n→∞
v(nT )− Ṽ ≤ V − Ṽ ≤ 0.

The first statement of the proposition follows from these inequalities by using the continuous de-
pendence with respect to initial data and the comparison principle.

Let us prove the second statement of the proposition. Consider the above cycle (u, v) associated
with a given A > 0. Take Ã > A. We have seen in the Step 2 of the proof of Proposition 3.3 that
there is a cycle (û, v̂) for (1) with A replaced by Ã, satisfying û(0) ≥ u(0), v̂(0) > v(0). Hence, by
Proposition 3.1,

∀t ∈ [0, T ), û(t) ≥ u(t), v̂(t) > v(t),

that gives the desired monotonicity property. Finally, let {(un, vn)} be the cycles constructed above
for a sequence {An} of values of A converging to some A > 0. By the monotonicity property derived
before, {un} and {vn} have the same monotonicity behavior as {An} and then to prove the result
we can restrict to the case where An ↘ A. We have that {(un, vn)} converges pointwise to some
function (u, v). By continuity with respect to initial data, (u, v) is a solution (cycle) to (1) with
the value A and the convergence holds uniformly for t ≥ 0. Thus, the cycle (u, v) associated with
A satisfies u ≥ u, v ≥ v. The proof of the proposition is thereby complete.

It follows in particular that (u, v) from Proposition 3.4 is the maximal cycle, in the sense that
any cycle (u, v) satisfies u ≤ u, v ≤ v.
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3.2 The branch of excited cycles

We now investigate the properties of the branch of excited cycles as a function of A and of the first
component of the initial datum of the cycle. We will show its bifurcation from the quiet cycle, with
the possibility of a turning point and the coexistence of multiple excited cycles. The latter occurs
when −h′(0) is sufficiently large (how large is made concrete in Theorem 3.6).

We know from (5) that any cycle satisfies u(0) < Z ′. Take U ∈ (0, Z ′). We claim that there
exists a unique V > 0 such that the solution (u, v) emerging from (U, V ) satisfies u(T ) = U . First,
by Proposition 3.1, u(T ) is a strictly increasing and continuous function of V ≥ 0. Next, on the
one hand, if V = 0 then

∀t ∈ (0, T ), ut = r(0)G(u)− ωu ≤ (r(0)G′(0)− ω)u < 0

by hypothesis, whence u(T ) < u(0). On the other hand, if V is large enough then the same is true
for v in [0, T ], from which we deduce

∀ε > 0, ∃V > 0, ∀t ∈ [0, T ], ut = r(v)G(u)− ωu ≥ (1− ε)G(u)− ωu. (18)

Since G(U) − ωU > 0 because U < Z ′, we can choose ε small enough in such a way that (1 −
ε)G(U) − ωU > 0, which implies that u(t) > U for t ∈ (0, T ]. We let VU denote this unique value
for which the solution (u, v) emerging from (U, VU ) satisfies u(T ) = U . By (7), such solution is a
cycle if and only if A = C(U), where

C(U) := VU

(
1− e−

´ T
0 h(u(s))ds

)
.

This shows that the branch of excited cycles can be parametrized by U . This is stated rigorously
in the next result, together with the fact that the branch bifurcates from the quiet cycles U = 0 at
A = A0.

Proposition 3.5. System (1) admits an excited cycle with initial datum (U, V ) if and only if
U ∈ (0, Z ′) and V = VU , A = C(U) (uniquely determined by U).

Moreover, the function C is continuous and satisfies

lim
U→0
C(U) = A0, lim

U→Z′
C(U) =∞.

Proof. It only remains to prove the second part of the proposition. For given U ∈ (0, Z ′), let (u, v)
be the solution emerging from (U, V ). The continuity of C follows from its definition, owing to the
continuity of VU and u with respect to U .

For the limit as U → Z ′, we first remark that the definition of Z ′ and the fact that r < 1 imply
that VU →∞ as U ↗ Z ′. It then follows that C(U)→∞ as U → Z ′.

Let us derive the limit as U → 0. As U → 0, the VU stay bounded, because otherwise (18)
and G′(0) > ω would readily imply ut > 0 in [0, T ], which contradicts the definition of VU . Hence,
the same holds true for C(U) by definition. Assume by contradiction that (up to subsequences)
C(U)→ A 6= A0 as U → 0. We compute

lim
U→0

VU = lim
U→0

C(U)

1− e−
´ T
0 h(u(s))ds

=
A

1− e−h(0)T
.

We can therefore apply Lemma 2.1 and infer that, for U small enough, u(T )−U has the same strict
sign as A−A0, thus (u, v) cannot be a cycle. This concludes the proof of the proposition.
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The infimum of C is the quantity A∗ in Proposition 3.3. If A∗ < A0 then it is a minimum,
and thus for A ∈ (A∗, A0) the system admits at least two excited cycles. We show below that this
situation can actually occur, through the analysis of the second order expansion of the system. The
two different cases are illustrated in Figures 1a, 1b. The black curve is the graph of U 7→ C(U).

(a) monostable

(b) bistable

Figure 1: the curve A = C(U); (a) monostable regime when |h′| � 1, (b) bistable regime for
A ∈ (A∗, A0) when |h′| � 1.

Theorem 3.6. The following different scenarios occur when, respectively, sup |h′| is small or |h′(0)|
is large (depending on the other terms of the system):

(a) A∗ = A0 and, as A↘ A0, the maximal cycle associated with A converges to the quiet cycle;

(b) A∗ < A0 and the system admits an excited cycle for A = A∗ and at least two excited cycles for
A ∈ (A∗, A0).

Proof.
(a) Take A ∈ (A0, A0 + 1) and let (u, v) be an excited cycle with an initial datum (U, V ), which

exists by Proposition 3.3. Recall that u < Z ′ < Z for all times. We deduce from (6) that

∀t ∈ [0, T ], κU ≤ u(t) ≤ κU,
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where κ, κ depend on T , G′(0), ω. Then, from v(T ) = V , we obtain

V =
A

1− e−
´ T
0 h(u)

≤ A

1− e−(h(0)−sup |h′|κU)T
.

If sup |h′| is small enough, depending on T , G′(0), ω, Z ′ and h(0), there holds that sup |h′|κU ≤
h(0)/2 and therefore V ≤ V + sup |h′|O(U), where V is given by (8) and O depends on T , G′(0),
ω, h(0), A. Hence,

∀t ∈ [0, T ), v(t) ≤ (V + sup |h′|O(U))e−h(0)t+sup |h′|κU ≤ V e−h(0)t + sup |h′|O(U),

where O depends on the same terms as before. Then from (1a), using the above inequality together
with G(u)/u ≤ G′(0)−Γu ≤ G′(0)−ΓκU , where Γ := −max[0,Z′]G

′′/2 > 0, we derive for t ∈ (0, T ),

ut/u ≤ r
(
V e−h(0)t + sup |h′|O(U)

)
G(u)/u− ω

≤ r
(
V e−h(0)t

)
(G′(0)− ΓκU)− ω + sup |h′|O(U),

with O also depending on r. Integrating we get

0 = log
u(T )

u(0)
≤ G′(0)

ˆ T

0
r
(
V e−h(0)t

)
dt− r

(
V e−h(0)T

)
ΓκTU − ωT + sup |h′|O(U).

Thus, [
r
(
V e−h(0)T

)
ΓκT − sup |h′|O(1)

]
U ≤ G′(0)

ˆ T

0
r
(
V e−h(0)t

)
dt− ωT,

which tends to 0 as A→ A0 by the definition (10) of A0. Since r(V e−h(0)T )→ r(A0/(e
h(0)T−1)) > 0

as A → A0, if sup |h′| is small enough, we necessarily have that U → 0. This applies in particular
to the maximal cycle (u, v), showing that, as A ↘ A0, it converges to the quiet cycle, that is,
u→ 0. Therefore, by the monotonicity provided by Proposition 3.4, the maximal cycle is quiet for
all A ≤ A0, whence A∗ = A0.

(b) Let (u, v) be an excited cycle for system (1) with an initial datum (U, V ). We know from
Proposition 3.5 that U ∈ (0, Z ′), V = VU and A = C(U). Suppose that

C(U) ≥ A0.

It follows from (1a) that κU < u < κU in [0, T ], where, here and in the sequel, κ, κ will denote
some generic positive constants independent of U , h′(0) and G′′(0), whose value will change during
the proof. Then, by (7) and the fact that h is decreasing,

VU =
C(U)

1− e−
´ T
0 h(u(s))ds

≥ A0

1− e−h(κU)T
,

whence, noticing that z 7→ A0/(1− e−z) is decreasing,

VU ≥
A0

1− e−h(0)T
− κh′(0)U − κU2.

We infer that

∀t ∈ [0, T ), v(t) = VUe
−
´ t
0 h(u) ≥

(
A0

1− e−h(0)T
− κh′(0)U − κU2

)
e−h(0)t.
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Let us further suppose that
U ≤ |h′(0)|−1. (19)

Plugging the inequality for v into (1a) and using G(u)/u ≥ G′(0)−G′′(0)u− κu2 yields

ut/u = r(v)G(u)/u− ω

≥ G′(0)r

(
A0e

−h(0)t

1− e−h(0)T

)
−G′(0)κh′(0)Ue−h(0)T − κU2 + κG′′(0)U − ω

= G′(0)r

(
A0e

−h(0)t

1− e−h(0)T

)
− ω +

(
− κh′(0) + κG′′(0)− κU

)
U.

As a consequence, by the definition (10) of A0,

0 = log
u(T )

u(0)
=

ˆ T

0
ut/u ≥

(
− κh′(0) + κG′′(0)− κU

)
U.

This shows that, if κh′(0) < κG′′(0), then U cannot be arbitrarily small. In other words, in such
case, C(U) < A0 for U small enough, whence Proposition 3.5 implies A∗ = min C < A0 and the
multiplicity of excited cycles for A ∈ (A∗, A0).

We remark that the existence of at least three cycles (one quiet and two excited) stated in
Theorem 3.6 (b) is in accordance with the order interval trichotomy (for strictly monotone systems)
from [16, 8].

3.3 Asymptotic convergence to cycles

In this subsection we prove that all trajectories eventually converge to a cycle. This is a strong
and quite unexpected property. We indeed know from the literature that much more complicated
trajectories cannot be excluded in principle. The general theory only tells us that for “most of the
initial data” the solution converges to a periodic solution with period equal to some multiple of T
(thus not necessarily a cycle). Here we derive a much stronger result. The proof is based on an
accurate analysis of the admissible dynamics for (1) which, unlike the previous arguments, exploits
the peculiar structure of the system beyond the simple monotonicity. For this reason, we decide to
state it after having proved independently the other results, that we expect to hold true in more
general situations where the comparison principle holds.

We start with a preliminary observation.

Lemma 3.7. Let (u, v) be a solution to (1). Then, u is either constant or strictly monotone in
[0, T ], or there exists t such that u is strictly increasing in [0, t) and strictly decreasing in (t, T ].

Proof. If v(0) = 0 then v ≡ 0 and therefore u is either constantly equal to 0 or to the zero of
r(0)G(z) − ωz, or it is strictly monotone. Suppose that v(0) > 0, whence v is strictly decreasing
in [0, T ). Assume that u(0) 6= 0 (whence u 6= 0 for all times) and that there exists t ∈ (0, T ) such
that ut(t) = 0. It follows that r(v(t))G(u(t))− ωu(t) = 0 with G(u(t)) > 0. Calling M := u(t), we
derive

∀t ∈ (t, T ), (u−M)t = r(v)G(u)− ωu = r(v)G(u)− r(v(t))G(M)− ω(u−M)

< r(v)[G(u)−G(M)]− ω(u−M)

=

(
r(v)

G(u)−G(M)

u−M
− ω

)
(u−M),
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which is a linear differential inequality for u−M with a continuous coefficient (G is C1). Grönwall’s
inequality eventually implies that u < M in (t, T ). Analogously, one sees that u < M in (0, t)
too. We have proved that any stationary point in (0, T ) is of local strict maximum, and thus the
statement of the lemma.

Theorem 3.8. Any solution to (1) approaches a cycle (quiet or excited) as t→∞.

Proof. We prove the statement showing that for any solution (u, v) the sequence {(u(nT ), v(nT ))}
is definitely componentwise monotone. Then, being bounded thanks to (5) and (9), it converges to
some pair, which is the initial datum of a cycle. The conclusion of the theorem eventually follows
from the continuity with respect to initial data.

As usual, we let E denote the T -step Poincaré operator. We say that a point (U, V ) ∈ [0,∞)2

satisfies

NE if E(U, V ) ∈ [U,∞)× [V,∞), SW if E(U, V ) ∈ [0, U ]× [0, V ],

NW if E(U, V ) ∈ [0, U)× (V,∞), SE if E(U, V ) ∈ (U,∞)× [0, V ).

Note that any point in [0,∞)2 satisfies just one of the above four properties, excepted for the fixed
points for E which fulfill simultaneously NE and SW. It follows from (13) and (14) that if (U, V )
satisfies NE or SW respectively, then so does the whole sequence {En(U, V )}.

The key of the proof is to show that if (U, V ) satisfies NW then E(U, V ) does not satisfy SE.
Suppose by contradiction that the solution (u, v) emerging from some (U, V ) satisfies{

u(T ) < U

v(T ) > V
,

{
u(2T ) > u(T )

v(2T ) < v(T )
.

Throughout the proof, v(nT−), n ∈ N, stands for the limit of v(t) as t → nT− (recall that v is
discontinuous on TN). Since

v(2T−) = v(2T )−A < v(T )−A = v(T−) < V < v(T ),

there exists τ ∈ (T, 2T ) such that v(τ) = V . We distinguish two possible situations.

Case u(τ) < U .
From the fact that v(τ) = V > v(T−) > v(2T−), we deduce the existence of another time τ ′ ∈
(τ, 2T ) such that v(τ ′) = v(T−). Because the trajectories

{(u(t), v(t)) : t ∈ [τ, 2T )}, {(u(t), v(t)) : t ∈ [0, T )}

cannot intersect by uniqueness of the Cauchy problem, we necessarily have that u(τ ′) < u(T ).
Hence, by Lemma 3.7, u < u(T ) in (τ ′, 2T ], in contradiction with u(2T ) > u(T ). This case is
therefore ruled out.

Case u(τ) ≥ U .
Proposition 3.1, applied with (u1, v1) = (u, v) and (u2, v2)(t) = (u, v)(t + τ) for t ∈ (0, 2T − τ) (in
which v1, v2 do not jump), implies that

v(2T−) ≥ v(2T − τ).

Thus, since v(2T − τ) > v(T−) because 2T − τ < T , we infer that v(2T−) > v(T−), that is,
v(2T ) > v(T ), which is a contradiction.

We have proved the claim that E does not map points satisfying NW into points satisfying SE.
The picture is given by the following diagram, where the arrows represent the possible mappings
of E .
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NW

SW SE

NE

We eventually infer that, for any solution (u, v) to (1), the sequence {(u(nT ), v(nT ))} either
fulfills definitely one of the properties NE, SW, NW, or it always satisfies SE. Thus, in any case, it
is definitely componentwise monotone. This concludes the proof of the theorem.

3.4 Basins of attraction

Gathering together all previous results we can conclude the analysis in the tension enhancing case.

Proof of Theorem 1.2. We know from Theorem 3.8 that any solution converges to a limit cycle,
which can be quiet or excited. The statement of the theorem in the case A < A∗ is Proposition 3.3
part (i). If A > A0 then the limit cycle is necessarily excited due to Proposition 2.2 part (ii).

It remains the case A∗ < A < A0. Fix U > 0 and define

V U := inf{V ≥ 0 : the solution emerging from (U, V ) converges to the excited cycle}.

Let (u, v) be the solution emerging from (U, V ), with V to be chosen, and let (Ũ , Ṽ ) be the initial
datum of the excited cycle provided by Proposition 3.3 part (ii). We know from (5) that Ũ < Z ′.
Note that the solution of ut = G(u)− ωu with initial datum U converges to Z ′ as t→∞ and thus
it is larger than Ũ at t = nT for n large enough. Therefore, since

∀t ∈ [0, nT ], v(t) ≥ V e−h(0)nT ,

for large V we have that r(v) ∼ 1 in [0, nT ], whence u(nT ) > Ũ . Moreover, up to increasing V if
need be, v(nT ) > Ṽ . It follows by comparison that (u, v) is componentwise greater than the excited
cycle for t ≥ nT , and thus its limit cycle is excited. This shows that the set in the definition of
V U is nonempty. The comparison principle also implies that it is a right half-line. Assume now by
way of contradiction that the limit cycle of the solution (u, v) emerging from (U, V U ) is quiet. Let
Û > 0 be the quantity U given by Proposition 2.2 part (i) associated with V = V + 1, where, we
recall, (0, V ) is the initial datum of the quiet cycle. There exists n ∈ N such that u(nT ) < Û and
v(nT ) < V + 1. By continuity with respect to initial data, the same property holds true for the
solution emerging from (U, V U + ε) for ε > 0 small enough. Then Proposition 2.2 part (i) ensures
that such solution converges to the quiet cycle, contradicting the definition of V U . This concludes
the proof of the theorem.

Remark 2. We know from Theorem 1.2 that if A > A0 then any solution (u, v) with u(0) > 0
approaches some excited cycle (ũ, ṽ) as t→∞. Moreover, by Proposition 3.5, ũ(0) ∼ Z ′ if A� 1,
and thus ũ ∼ Z ′ for all times due to Lemma 3.7. This implies in particular that u(∞) ∼ Z ′ if
A� 1, which is Proposition 3 of [2].

Up to now we have used A as a parameter to measure the strength of exogenous factors. Of
course one could use the period T instead.
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Proposition 3.9. There exists T ∗ > 0 such that (1) admits an excited cycle if T < T ∗ and does
not admit any excited cycle if T > T ∗ (and thus solutions approach the quiet cycle).

Moreover, if T is small enough, any solution with u(0) > 0 approaches an excited cycle.

Proof. Consider the threshold A0 from Proposition 2.2 as a function of T . It follows from (10) that
A0 → 0 as T → 0, because otherwise we would get the contradiction 1 = r(∞) = ω/G′(0). Hence,
for fixed A > 0, we have that A > A0 provided T is small enough. Proposition 2.2 and Theorem
3.8 eventually entail that, in such case, any solution with u(0) > 0 approaches an excited cycle.

Let now T be a period for which (1) admits an excited cycle emerging from some (U, V ). Thus,
with the notation of the proof of Theorem 3.8, (U, V ) satisfies NE with respect to the T -step
Poincaré operator E . It immediately follows from Lemma 3.7 that (U, V ) satisfies NE with respect
to T ′-step Poincaré operator too, for any T ′ < T . Owing to (13), this implies that the set of periods
for which excited cycles do exist is an interval with infimum 0.

It remains to show that excited cycles do not exist for T � 1. Let (u, v) be an excited cycle.
We know from (5) that u < Z ′ and therefore, if T ≥ 1,

∀t ∈ [0, T ), v(t) =
A

1− e−
´ T
0 h(u(s))ds

e−
´ t
0 h(u(s))ds ≤ A

1− e−h(Z′)
e−h(Z

′)t.

Hence, since r(0)G′(0) < ω by hypothesis, there exists τ > 0 such that if τ < t < T then
r(v(t))G′(0) < ω and thus

ut/u = r(v)G(u)/u− ω ≤ r(v)G′(0)− ω < −k,

for some k > 0 independent of t, T . On the other hand ut/u ≤ G′(0). We eventually infer that T
cannot be too large, because otherwise u(T ) < u(0), which is impossible.

We conclude the analysis of the tension enhancing case by describing the results of two numerical
simulations depicted by Figure 1. There, we consider solutions emerging from initial data of the
type (U, VU ), where VU is given by Proposition 3.5, letting U vary on the y-axis and A on the x-axis.
The black branch is that of maximal cycles, and the point (A,U) is{

light grey if (u, v) converges to the quiet cycle

dark grey if (u, v) converges to an excited cycle
as t→∞.

In Figure 1a | suph′| is small compared with the other terms of the system. In accordance with
Theorem 3.6 (a), there holds that the threshold A0 for the stability of the quiet cycle coincides
with the threshold A∗ characterizing the existence of excited cycles. Namely, the system is always
monostable and, corresponding to this threshold value for A, the branch of excited cycles appears
bifurcating from the quiet cycle.

Instead, in Figure 1b, −h′(0) is large enough to fall into the case (b) of Theorem 3.6. There
exists in such case a regime where the system is bistable. Namely, for A ∈ (A∗, A0) the quiet cycle
is just a local attractor and there are two excited cycles: the stable maximal cycle and an unstable
cycle (non-vertical boundary between the light and the dark zones).

As stated in Proposition 3.5, in both cases of Figure 1 the branch of excited cycles is given by a
continuous curve U 7→ C(U) converging to A0 as U → 0. The difference is that in the case (a) the
branch is increasing and thus composed only by globally attractive cycles, whereas in the second
case it is not monotone and contains unstable cycles for U small.

20



3.5 The h constant case

As noted in the introduction, when h is constant the system decouples and we can solve for v(t)
explicitly. Moreover, we are always in the case (a) of Theorem 3.6 because h′ ≡ 0.

Specifically, for n ∈ N and τ ∈ [0, T ), (9) implies

v((n− 1)T + τ) = v(0)e−h((n−1)T+τ) +A
n−1∑
j=1

e−h(t−jT ) = v(0)e−h((n−1)T+τ) +Ae−hτ
n−2∑
k=0

e−hkT

= v(0)e−h((n−1)T+τ) +

(
1− e−h(n−1)T

1− e−hT

)
Ae−hτ .

Therefore, as n→∞,
v(nT + τ)→ V e−hτ , for τ ∈ [0, T ).

Namely, the v component always converges to that of the quiet cycle. This allows us to improve
the results of the general tension enhancing case in the following way.

Proposition 3.10. Suppose that h is constant.

(i) if A ≤ A0 then all solutions converge to the quiet cycle;

(ii) if A > A0 then any solution with u(0) > 0 converges to the unique excited cycle.

Proof. The case (a) of Theorem 3.6 applies. Namely, A∗ = A0 and, because of Proposition 3.4,
there is no excited cycle when A = A∗ = A0, so that any solution approaches the quiet cycle in
such case, by Theorem 3.8. Thus, owing to Theorem 3.6, we only need to show the uniqueness of
the excited cycle for A > A∗ = A0. Let (u1, v1), (u2, v2) be two excited cycles. We have seen before
that v1(t) = v2(t) = V e−ht for t ∈ [0, T ). Define

k := max
t∈[0,T ]

u1(t)

u2(t)
,

and let τ ∈ [0, T ] be such that ku2(τ) = u1(τ). By periodicity we can take τ ∈ (0, T ]. There holds

(ku2 − u1)t(τ) = r(V e−hτ )[kG(u2(τ))−G(u1(τ))] = r(V e−hτ )[kG(u2(τ))−G(ku2(τ))].

The strict concavity of G, together with G(0) = 0, implies that G(z)/z is strictly decreasing
for z > 0. Suppose by contradiction that k > 1. Thus G(ku2(τ)) < kG(u2(τ)) and therefore
(ku2 − u1)t(τ) > 0. This implies that ku2 < u1 in a left neighborhood of τ , which contradicts the
definition of k. We conclude that k ≤ 1, i.e., u2 ≥ u1. Switching the roles of u1 and u2 we get the
reverse inequality.

4 The tension inhibitive system

In this section we explore the tension inhibitive case. Namely, throughout this section we assume
that h is increasing. From the application point of view, this can describe the fact that high levels
of activity require a vast amount of energy and/or lead to a high level of police involvement which
consequently entails a rapid decrease of the effective social tension. With respect to the tension
enhancing case, the main difficulty from the analysis perspective is that the system is no longer
monotone. Indeed, even though v continues to cooperate with u, now u inhibits v.
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4.1 The case of a single shock

We start with considering the case when there is only one external event at time t = 0 with
intensity A. Figure 2 illustrates the phase-plane for various intensities in this case. A difference
with the dynamics caused by a single shock in the case when h is decreasing (c.f. Remark 2 and the
numerical simulations of [2, Figure 3]) is that here, for large values of A, the level of activity does
not remain close to the maximum level Z ′ which, we recall, is the zero of z 7→ G(z)− ωz.

Figure 2: The (v, u) phase-plane obtained by running simulations of system (1) with h(u) satisfy-
ing (4) and parameters θ = 0.7, Z ′ = 4.4, p = −0.7 with various levels of intensity A.

We are able to reproduce similar results to those obtained for the single-site model when h(u)
is decreasing in [2]. First, we provide conditions that guarantee the eventual self-relaxation of the
outburst of activity.

Proposition 4.1. If (u, v) is a solution to (1) with source term

S(t) = Aδ(t), A > 0,

and r(0)G′(0) < ω, then u(t)→ 0 and v(t)→ 0 as t→∞.

The proof follows that of Proposition 1 in [2], however we include it here in order to point out
the difference in the decay rate.

Proof. We can solve for the social tension explicitly:

v(t) = Ae−
´ t
0 h(u(s)) ds,

which we then substitute into the equation (1a) to obtain:

ut(t) = −ωu(t) + r
(
Ae−

´ t
0 h(u(s)) ds)

)
G(u(t)).

Since h is monotone increasing we have the following lower bound:

ˆ t

0
h(u(s)) ds ≥ h(0)t, (20)

which allows us to conclude because r(0)G(u) ≤ r(0)G′(0)u ≤ ωu.
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Recall that in [2] the authors studied the specific form of h(u) given by (4) with p > 0. Partic-
ularly, the proof of Proposition 1 from [2] gives the lower bound:

h(u) ≥ θ

(1 + Z ′)p
.

From the above proof we see that

v(t) ≤

{
Ae−θt for p < 0,

Ae
− θ

(1+Z′)p t p > 0.

So that both u(t) and v(t) are thus expected to decay faster in the case p < 0. Furthermore, as
in the case when p > 0 we have prolonged periods of activity with strong enough intensity of the
external event. This is stated in the following proposition.

Proposition 4.2. Given arbitrary L > 0 and δ̃ > 0, there exists AL,δ̃ = AL,δ̃(L, δ̃) and t0 > 0 such
that if A ≥ AL,δ̃ then

u(t) > Z ′ − δ̃ ∀ t ∈ [t0, t0 + L].

The proof of Proposition 4.2 follows that of Proposition 2 in [2] with only minor modification;
therefore, we omit it. However, we note that these changes enable us to see that for a given L and
δ > 0 a larger value of A is required for the case when h(u) is increasing than for the case when
h(u) is decreasing.

4.2 Satbility of the quiet cycle and existence of excited cycles

Let us come back to the case of a periodic source term S satisfying (3). We prove here Theorem 1.3.
On one hand we show that the tension inhibitive assumption allows one to improve the result of
Proposition 2.2 in the case A < A0, namely the quiet cycle is a global attractor. On the other hand
we use a variant of Brouwer’s fixed point theorem in order to prove the existence of an excited cycle
when A > A0.

Proof of Theorem 1.3. Case A < A0.
It follows from (9) and the monotonicity of h that

lim sup
n→∞

v(nT ) ≤ lim sup
n→∞

A

n∑
j=1

e−
´ nT
jT h(u(s)) ds ≤ A

∞∑
k=0

e−kTh(0) = V .

Thus, by (1), as n→∞ we have that

∀t ∈ [0, T ), v(nT + t) ≤ V e−h(0)t + o(1),

and then that
∀t ∈ [0, T ), (ut/u)(nT + t) ≤ r(V e−h(0)t)G′(0)− ω + o(1),

which entails

log(u((n+ 1)T ))− log(u(nT )) ≤ G′(0)

ˆ T

0
r(V e−h(0)t)dt− ωT + o(1).

Recalling the definition (10) of A0 we see that A < A0 implies that the right-hand side is less than
a negative constant for n large enough, which means that u(nT ) → 0 as n → ∞. Proposition 2.2
part (i) eventually implies that (u, v) converges to the quiet cycle.
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Case A > A0.
Owing to Proposition 2.2 part (ii), we only need to show that the system admits an excited cycle.
This will be achieved by constructing a set Q which does not contain (0, V ), is invariant under the
mapping E (i.e. E(Q) ⊂ Q) and is homomorphic to a convex, compact set. It will then follows
immediately from Brouwer’s theorem that E admits a fixed point in Q (see, e.g., [24]). The fixed
point is the initial datum of a cycle which is excited because (0, V ) /∈ Q. The difficulty to obtain an
invariant set which does not contain the point (0, V ) is that the latter is unstable just with respect
to perturbation in the U component, but it is stable in the V component. This is why we need to
construct a set which does not intersect the {U = 0} axis.

Note preliminarily that any solution (u, v) with u(0) ≤ Z ′ and v(0) ≤ V satisfies u ≤ Z ′ for all
times due to (5), and by the monotonicity of h

v(T ) = v(0)e−
´ T
0 h(u(s))ds +A ≤ V e−h(0)T +A = V .

Namely,
E([0, Z ′]× [0, V ]) ⊂ [0, Z ′]× [0, V ]. (21)

We define a family of polygons {Pn} by setting P0 := [ρ, Z ′]× [0, V ], with ρ to be chosen, and then,
by iteration,

Pn+1 := Pn ∪ [Un, Z
′]× [Vn, V ],

where

Un := min{U : (U, V ) ∈ E(Pn) \ Pn}, Vn := min{V : (U, V ) ∈ E(Pn) \ Pn}.

Clearly E(Pn) ⊂ Pn+1 for all n ∈ N. Two situation can occur: either E(Pñ) ⊂ Pñ for some ñ, or
E(Pn) \ Pn 6= ∅ for all n and thus the above procedure provides us with an infinite sequence {Pn}.
In the first case Q := Pñ will be our invariant set. Consider the second case. We claim that, for ρ
suitably small, there exists ñ such that

V1 < · · · < Vñ, Vñ ≥ V − ε′, (22)

where, throughout the proof, ε, ε′ are given by Lemma 2.1.
Let (u, v) be a solution to (1). We compute

V − v(T ) = V − v(0)e−
´ T
0 h(u(s))ds −A =

(
V − v(0)

)
e−h(0)T + v(0)

(
e−h(0)T − e−

´ T
0 h(u(s))ds

)
.

Note that the last term is close to 0 if u(0) ∼ 0. Hence, taking ρ small enough, we find a constant
k ∈ (e−h(0)T , 1) such that the following implication holds:{

u(0) < ρ

v(0) < V − ε′
=⇒ V − v(T ) ≤ k(V − v(0)). (23)

Consider n ≥ 1 and (U, V ) ∈ E(Pn) \ Pn, that is, (U, V ) = E(Ũ , Ṽ ) with (Ũ , Ṽ ) ∈ Pn such that
E(Ũ , Ṽ ) /∈ Pn. Since by definition

Pn ⊃ Pn−1 ∪ (E(Pn−1) \ Pn−1) ⊃ E(Pn−1),

we have that (Ũ , Ṽ ) /∈ Pn−1 ⊃ P0, then in particular, Ũ < ρ and Ṽ ≥ Vn−1. If Ṽ ≥ V − ε′ then,
choosing ρ < ε we deduce from Lemma 2.1 that V > V − ε′. Otherwise, if Ṽ < V − ε′ then, by
(23), V − V ≤ k(V − Ṽ ) ≤ k(V − Vn−1). Thus, in any case, V − V ≤ max{ε′, k(V − Vn−1)} and
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therefore, taking the minimum over E(Pn) \ Pn, this inequality holds true with V replaced by Vn.
This entails that {Vn} is increasing as long as it is smaller than V − ε′, and that Vn ≥ V − ε′ for n
larger than or equal to some ñ. Namely, (22) holds.

Finally, the set
Q := Pñ ∪ [Uñ, Z

′]× [V − ε′, V ]

is invariant under E . Indeed, from one hand (22) entails

E(Pñ) ⊂ Pñ+1 = Pñ ∪ [Uñ, Z
′]× [Vñ, V ] ⊂ Q,

and from the other if (U, V ) ∈ [Uñ, Z
′] × [V − ε′, V ] then either U ≥ ρ, in which case E(U, V ) ∈

P1 ⊂ Q, or U < ρ and thus Lemma 2.1 yields E(U, V ) ∈ [Uñ, Z
′]× [V − ε′, V ].

Figure 3: The invariant set for E .

We have therefore constructed an invariant set Q of the following type

Q =
ñ⋃
n=0

[Un, Z
′]× [Vn, V ],

with min0≤n≤ñ Un > 0 and min0≤n≤ñ Vn = 0 (see Figure 3). It is clear that a set of this this type
is homomorphic to the rectangle [0, Z ′]× [0, V ] (for instance through the function Ψ which, for any
(U, V ) in the closure of (∂Q) ∩ (0, Z ′) × (0, V ), “stretches” the segment from (Z ′, V ) to (U, V ) up
to reaching one of the coordinate axis, in an affine way). Alternatively one can easily construct a
retraction of [0, Z ′] × [0, V ] into Q (that is, a continuous function coinciding with the identity on
Q) and then apply [24, Theorem 2.1.5] to obtain a fixed point. This concludes the proof.

Remark 3. An easier argument allows one to prove a weaker form of Theorem 1.3. Namely, that
when A > A0 the system admits an excited n-cycle (i.e. a solution with period nT ) for n large
enough. The argument reduces to finding a closed rectangle which does not intersect the {u = 0}
axis and is invariant under some power of E . This is achieved exploiting property (11). Recall that
the quantity n′, η appearing there depend on the solution (u, v) only through an upper bound of u
and v. Hence, because of (21), property (11) holds with the same n′, η for all solutions with initial
datum in [0, Z]×[0, V ]. Thus, any solution (u, v) with initial datum in [0,min{η, Z}]×[0, V ] satisfies
|v(n′T )− V | < ε′. Then, applying recursively Lemma 2.1 we derive the following implication:

u((n′ +m)T ) ≤ ε for m = 0, . . . , n− 1 =⇒ u((n′ + n)T ) ≥ (1 + σ)nu(n′T ), (24)
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and the latter inequality implies, by (6), u((n′ + n)T ) ≥ (1 + σ)ne−ωn
′Tu(0). Therefore, taking

n′′ ∈ N such that (1+σ)n
′′
e−ωn

′T ≥ 1, we deduce that u((n′+n′′)T ) ≥ u(0) provided the hypothesis
in (24) holds for n = n′′. Instead, if it does not, there exists m ∈ {0, . . . , n′′ − 1} for which
u((n′ +m)T ) > ε, whence

u((n′ + n′′)T ) ≥ e−ω(n′′−m)Tu((n′ +m)T ) > εe−ωn
′′T .

This shows that, in any case, if u(0) ∈ [ρ, η] with ρ ≤ εe−ωn
′′T , then u((n′ + n′′)T ) ≥ ρ. Let

us consider the case (u(0), v(0)) ∈ (η, Z] × [0, V ]. Always by Grönwall’s inequality, there holds
u((n′+n′′)T ) > ηe−ω(n

′+n′′)T . Combining this estimate with the previous one we eventually deduce
that the rectangle

[ρ, Z]× [0, V ] with ρ = min{εe−ωn′′T , ηe−ω(n′+n′′)T }

is invariant under the operator En′+n′′ . The fixed point provided by Brouwer’s theorem is the initial
datum of an excited (n′ + n′′)-cycle.

Note that if there were not a cycle then the above property would provide infinite many n-cycles:
the ones with n prime larger than n′ + n′′. This would have been hard to believe.

4.3 Asymptotic convergence to cycles when r is the step function

This section is dedicated to the proof of Theorem 1.4. Namely, we consider here the case where r
is the step function 1[a,∞), leading to a dichotomy in the system: if v(t) < a then u(t) is decreasing
exponentially to zero and if v(t) > a then u(t) is increasing to Z ′. In the former case we say that
the system is in the relaxed state and in the latter we say that the system is in the excited state. If
it definitely remains in one of such states, the system is basically decoupled. This allows us to prove
the convergence to the excited cycle with maximal u component when A is above a threshold Ā.
Conversely, we show that this convergence does not occur below such threshold.

Proof of Theorem 1.4. Consider the solution (u, v) with initial datum (U, V ) ∈ R2
+. There holds

lim sup
t→∞

u(t) ≤ Z ′. (25)

This property follows immediately from the fact that suput < 0 in the regions where inf u > Z ′,
regardless of whether the system is in the relaxed state v < a or in the excited state v ≥ a.

Let us start with proving the second statement of the theorem. Suppose firstly that U ∈ (0, Z ′],
which implies that u ∈ (0, Z ′] for all times. Now, given that h(u) is increasing we obtain from the
explicit expression of v (9) that

∀t ∈ [(n− 1)T, nT ), n ∈ N, v(t) ≥ V e−h(Z′)t +A
n−1∑
j=1

e−(t−jT )h(Z
′).

Let us consider what happens to the sequence {v(nT−)} as n→∞, where v(nT−) = limt→nT− v(t).
We have the following lower bound:

v(nT−) ≥ V e−h(Z′)nT +A

n−1∑
j=1

e(n−j)h(Z
′)T = V e−h(Z

′)nT +A

n−1∑
k=1

e−kh(Z
′)T .

and therefore

lim inf
n→∞

v(nT−) ≥ A
∞∑
k=1

e−kh(Z
′)T =

A

eh(Z′)T − 1
.
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The hypothesis A > Ā of the theorem is precisely what ensures the latter term to be larger than a,
whence v(nT−) > a for n large enough. Finally, since v(t) > v(nT−) for t ∈ [(n − 1)T, nT ),
we eventually deduce that v(t) > a for sufficiently large t in the case A > Ā. Thus, if A > Ā,
ut(t) = G(u(t)) for large t, which readily implies that u(t) → Z ′ as t → ∞. Notice that the same
holds true if U > Z ′. Indeed, in such case, either u(t∗) = Z ′ at some time t∗ and then u(t) ≤ Z ′ for
all t ≥ t∗ and we end up with the previous case, or u > Z ′ for all times and the conclusion follows
from (25). It remains to show that v is asymptotically periodic. Again by (9) we compute

lim
n→∞

v(nT ) = A lim
n→∞

n∑
j=1

e−(n−j)T
ffl nT
jT h(u(s))ds = A lim

n→∞

n−1∑
k=0

e
−kT

ffl nT
(n−k)T h(u(s))ds.

Using the fact that u(∞) = Z ′ it is straightforward to check that
ffl nT
(n−k)T h(u(s))ds → h(Z ′)ds as

n → ∞, uniformly with respect to k ∈ {0, . . . , n − 1}. Thus, limn→∞ v(nT ) is controlled by the
geometric series A

∑∞
k=0 e

−k(h(Z′)±ε)T for arbitrary ε > 0, whence

lim
n→∞

v(nT ) = A
∞∑
k=0

e−kh(Z
′)T =

A

1− e−h(Z′)T
=: V .

This shows that, for t ∈ [0, T ), v(nT + t)→ V e−h(Z
′)t as n→∞, concluding the proof of the second

statement of the theorem.
Next, we prove the first statement. The idea is that if u → Z ′ along some sequence, then it is

close to Z ′ in arbitrarily large intervals and thus v is necessarily larger than a in such intervals. This
is impossible if A < Ā. So, assume by contradiction that the inequality in (25) is not strict. Let
us suppose for the moment that U ≤ Z ′. Consider a diverging sequence {tn} such that u(tn)→ Z ′

as n → ∞. By the Arzelà–Ascoli theorem, the sequence of functions u(· + tn) converges (up to
subsequences) locally uniformly in R to a function ũ satisfying ũ ≤ Z ′ in R and ũ(0) = Z ′, together
with the integral inequality

∀t < 0, Z ′ − ũ(t) ≤
ˆ 0

t

(
G(ũ(s))− ωũ(s)

)
ds.

The function w defined by w(t) := Z ′ − ũ(−t) satisfies w(0) = 0 and

∀t > 0, w(t) ≤
ˆ 0

−t

(
G(ũ(s))− ωũ(s)

)
ds =

ˆ t

0

(
G(ũ(−s))− ωũ(−s)

)
ds =

ˆ t

0
β(−s)w(s)ds,

where β is defined by

β(t) :=

−
G(ũ(t))− ωũ(t)

ũ(t)− Z ′
if ũ(t) 6= Z ′

−G′(Z ′) + ω if ũ(t) = Z ′.

Notice that β is positive and continuous because z 7→ G(z)− ωz is positive in (0, Z ′) and vanishes
at Z ′. It follows from the integral Grönwall inequality that w(t) ≤ 0 for t ≥ 0, that is, ũ(t) = Z ′

for t ≤ 0. This means that u(·+ tn)→ Z ′ as n→∞ locally uniformly on (−∞, 0]. If we now drop
the assumption U ≤ Z ′ we have that either u becomes eventually smaller than Z ′ – and then the
previous case applies – or u > Z ′ for all times and then u(∞) = Z ′. Therefore, the convergence
to Z ′ on the left of a sequence {tn} holds in any case. We now use this information to derive the
asymptotic behavior of v. Specifically, consider a sequence {kn} in N such that tn ∈ [knT, (kn+1)T ).
Then, for any m ∈ {1, . . . , kn}, applying (9) to v(·+ (kn −m)T ) we deduce

v(knT
−) = v((kn −m)T )e−

´mT
0 h(u(s+(kn−m)T ))ds +A

m−1∑
j=1

e−
´mT
jT h(u(s+(kn−m)T ))ds,
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whence, letting n→∞,

lim
n→∞

(
v(knT

−)− v((kn −m)T )e−
´mT
0 h(Z′)ds

)
= A

m−1∑
k=1

e−kh(Z
′)T .

This equality holds for any m ∈ N and therefore, letting m→∞, we infer that

lim
n→∞

v(knT
−) =

A

eh(Z′)T − 1
.

The latter term is smaller than a under the hypothesis A < Ā. Hence, by the uniform continuity
of v outside TZ, there exist δ > 0 small enough such that v < a in (knT −δ, knT ) for n large enough.
We eventually deduce from (1a) that, for such values of n, u(knT ) = u(knT − δ)e−ωδ. This is a
contradiction because u(knT ), u(knT − δ)→ Z ′ as n→∞.

The statements of Theorems 1.3, 1.4 are summarized by the following numerical experiments:

(a) Low intensity A = 1.3 (b) Medium intensity A = 5 (c) High intensity A = 53

Figure 4: The graph of u with the step function r, a = 1.5, ω = 0.4, Z ′ = 2.6, p = −0.7, T = 2,
initial condition (u(0), v(0)) = (0.1, 0.1) and varying values of A: (a) exhibits convergence to the
quiet cycle when A < A0; (b) convergence to an excited cycle with u < Z ′ when A ∈ (A0, Ā);
(c) convergence to the cycle with u ≡ Z ′ when A > Ā.

Figure 4 illustrates the trichotomy of Theorems 1.3, 1.4: the system in Figure 4a is underdamped,
as the amplitude A of the shocks is below the threshold A0; as the amplitude increases we observe
the convergence to an excited cycle in Figures 4b and 4c. Unfortunately, the numerical observation
of 4 is not completely justified by Theorems 1.3, 1.4, which only assert that u is bounded from
below away from 0 and from above away from Z ′ when A ∈ (A0, Ā).

Remark 4. The fact that the largest cycle for u(t) is Z ′ is an artifact of the assumption that r was
the step function. Indeed, for r with β <∞ all cycles are non-constant in the variable u.
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[2] H. Berestycki, J-P. Nadal, and N. Rodŕıguez. A model of riot dynamics: shocks, diffusion, and
thresholds. Networks and Heterogeneous Media, 10(3):1–34, 2015.
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