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Abstract. Machine Learning (ML) algorithms have become popular in 
many fields, including applications related to turbomachinery and heat 
transfer. The key properties of ML are the capability to partially tackle the 
problem of slowing down of Moore’s law and to dig-out correlations within 
large datasets like those available on turbomachinery. Data come from 
experiments and simulations with different degree of accuracy, according to 
the test-rig or the CFD approach. When dealing with modelling of turbulent 
flows in turbomachinery there is a constant trade-off between accuracy and 
computational costs, but starting from the large amount of data on 
turbomachinery performance, with ML it is possible to train a learner to 
correct and improve CFD. The aim of this work is to investigate an 
innovative data-driven approach that could lead to a significant 
improvement in the analysis of heat transfer in turbulent flows. 
The effects of Reynolds number and wall temperature on heat transfer for a 
double forward-facing step with two squared obstacles were investigated by 
numerical simulations carried out in OpenFOAM. Then a machine-learnt 
model was derived using a regression algorithm. The results of regressor 
showed that a data-driven approach can effectively predict results of the 
RANS model. 

1 Introduction  

Modelling of heat transfer is a key issue in many engineering applications, especially when 
dealing with Computational Fluid Dynamics (CFD) of turbulent flows with heat transfer. 
Among many open issues, most comes from the Boussinesq approximation and in particular 
to the limit of having Reynolds fluxes aligned to Reynolds stresses [1]. This condition is non-
physical, especially in strongly non-isotropic turbulence regions and in particular along solid 
walls. Moreover, these regions are also those which pose the most challenging conditions 
when dealing with grid refinement for CFD due to the resolution needed to integrate Navier-
Stokes to the wall [2], and unfortunately most industrial CFD design and optimization loops 
still rely on the use of wall functions to model the near-wall flow and thermal fields.  
Since wall functions are usually calibrated on simple attached-flows conditions, this 
eventually leads to increase of errors when solving more complex flows with impingement, 
recirculation, reattachment, transition and other phenomena. 
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In the following we discuss the possibility of deriving the distributions of turbulent 
viscosity and diffusivity in a low-Reynolds RANS approach using machine learning, and in 
particular to apply this strategy to a complex flow configuration with multiple flow features, 
such as geometry-induced separation, impingement, reattachment, wakes using data from 
multiple Reynolds numbers. In particular, the case here reproduced is the double forwarding 
facing step with squared obstacles previously investigated in [3]. The case here considered is 
the one with the configuration: L= 1.6m, a=1m, b=0.2m, c=0.4m, H=0.1m, h1=h2=0.02m, 
w=t=0.01m, Figure 1. Combinations of Reynolds number and boundary conditions for 
temperature will be discussed in section 2.2 and is summarized in Table 1. 
 

 
 

Figure 1 – Sketch of the computational domain [3] 
 
This is a preliminary work to understand the feasibility of such approach in a simplified 2D 
geometry with multiple flow regimens at different Reynolds.  

2 Methodology 

2.1 CFD method 

Computations were carried out using the OpenFOAM v1812 [4] using the 
buoyantBoussinesqSimpleFoam solver for incompressible flows with heat transfer. In this 
case heat transfer is calculated assuming temperature to be a transported scalar with Prandtl 
number Pr=0.71 [5] and turbulence closure relied on the Launder-Sharma k- model [6]. The 
linearized system of equations was solved using conjugate gradient solver for all quantities. 
Tolerance was set to 10-5 for pressure and 10-8 for all the other equations. Numerical schemes 
used entailed central differencing for gradients, QUICK for divergence terms and upwind for 
Laplacian terms. Boundary conditions entailed mass flow rate at the inlet with TI=5%, 
/=60, T=293K. On solid surfaces no-slip conditions were used with integration to the wall 
approach and an average value of y+ equal to 0.88 for the highest Reynolds number 
considered (maximum y+ = 1.1 in this case). Fixed temperature was imposed on heated walls 
according to the conditions investigated in Table 1. At the outlet convective conditions were 
imposed. The computational domain is 2D and the final mesh entails 622,400 cells. 
Convergence of grid was investigated using Nusselt number on the heated walls as 
convergence parameters using 300,200, 622,400 and 1,120,000 cells. The difference in 
average Nusselt is below 1% between 622,400 and 1,120,000 cells. Results of the 9 
computations were used as training and testing data for the ML approach. 
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2.2 Dataset 

In the present work, the regression algorithm is designed to implement a data-driven approach 
for heat-transfer in turbulent flows, in particular the final aim is to predict the turbulent 
thermal diffusivity (αt) and turbulent viscosity (νt) fields.  

The overall training dataset of the regression algorithm consists of ∼95M elements and 
is the set of nine different smaller datasets each of ∼10.5M elements covering three different 
Reynolds numbers (Re1=30000, Re2=80000 and Re3=100000) and three different 
temperature values (T1=313K, T2=423K and T3=626K). Table 1 gives a summary of the nine 
different cases. 
 

Table 1 - Training Case Matrix 
 Re1=30000 Re2=80000 Re3=100000 

T1=313K case 1 case 4 case 7 
T2=423K case 2 case 5 case 8 
T3=626K case 3 case 6 case 9 

 
2.3 Feature creation and normalization 
 

Table 2 - Feature Creation & Normalization 
Variable Label Definition N 

Velocity magnitude  mag(U) ||U|| - 
Temperature T T - 

Dissipation rate of k epsilon 𝜀 U3
ref / Lref 

Pressure p p U2
ref 

Turbulent kinetic energy k k U2
ref 

Angle between velocity and 
pressure gradient 

teta θ - 

Angle between velocity and 
temperature gradient 

beta β - 

Angle between pressure and 
temperature gradients 

zeta  ζ - 

Eddy diffusivity alphat αt Uref ∙ L ref 

Eddy viscosity nut νt Uref ∙ L ref 
Magnitude of strain tensor Sii ∑ij(∂Uij/∂xj+∂Uij/∂xi) Uref / Lref 

Magnitude of rotation tensor Wii ∑ij(∂Uij/∂xj-∂Uij/∂xi) Uref / Lref 
Pressure gradient ∇p ∑i(∂p/∂xi) U2

ref / Lref 
Gradient of  ∇𝜀 ∑i(∂𝜀/∂xi) U3

ref / L3
ref 

Eddi viscosity gradient ∇νt ∑i(∂νt/∂xi) Uref 

Gradient of k ∇k ∑i(∂k/∂xi) U2
ref / Lref 

Temperature gradient ∇T ∑i(∂T/∂xi) 1/ Lref 
 

The training datasets initially includes information on seventeen features (Table 2). To 
avoid problems related to the frame of references all the selected features are scalars. In [7], 
Goodfellow et al. stated that ML algorithms are negatively affected by features that exhibit 
large variations in magnitude, in fact the predictor could overestimate the influence of 
features with the smallest values. To avoid this, features were normalized following the 
findings of [8] that pointed out how this method is more suitable than usual normalization 
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techniques used in ML and was positively tested in [9]-[11]. According to [8], most features 
were normalized as: 

𝑓 =
𝑓

|𝑓| + |𝑁|
 

 
where 𝑓’ is the normalized feature, 𝑓 the original feature, and 𝑁 a normalization factor 
summarized in Table 2, where Uref=mag(U) and Lref=4∙mag(U)/Sii are respectively the 
reference velocity and length. This normalization, unlike most ML techniques, is based on 
local flow and thermal field properties. All the features that don’t show a value for N in Table 
2 were normalized with minMax scaler [7] as a local normalization would result in a constant 
value (like for velocity) or would not be suitable (like for angles). 
 
2.4 Feature selection 
 
A valid predictive model must guarantee that there is no obvious predominance between the 
input features and the output. Moreover, ML algorithms do not satisfactory work with data 
that present a strong direct correlation between each other since this would be transferred 
directly to the final model.  

   

 
Figure 2 - Correlation matrix on training data. 

 
In so doing, an Exploratory Data Analysis (EDA) is performed to verify the accuracy 

of the former feature selection and a correlation analysis of the data is reported in Figure 2.  
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From the correlation matrix it is possible to observe that the strain tensor (Sii) and the 
rotation tensor (Wii) are highly correlated and that β, θ and ζ are not correlated to t or αt. 
Thus, we decide to not include Wii, β, θ and ζ in the training data. 

 
2.5 Regression algorithm and training 
 
XGBoost [12] was selected as regression algorithm due to its resilience in working with 
continuous data with a high number of outliers [12]. Objective of the training was set to linear 
regression, with subsampling of columns set to 30%, learning rate to 0.1, maximum depth of 
each tree to 50, number of trees to 200. These hyperparameters were optimized using a 
random search algorithm [13]. 

The general framework is made up of two phases: i) training and test and ii) prediction. 
During training, the individual datasets relating to the nine cases are grouped and crossed 
based on the Reynolds Number of references to build three different training datasets (Table 
3).  
 

Table 3 - Training Datasets 
Training Dataset Reynolds Numbers  

Dataset A 
Re=30000 
Re=80000 

Dataset B 
Re=30000 

Re =100000 

Dataset C 
Re=80000 

Re =100000 
 

   
 Each of these three datasets is used to train a regression model for αt and νt. A 
logarithmic transformation is performed on αt and νt which are strongly inclined variables in 
a more normalized dataset. The use of the logarithm of these two variables improves the fit 
of the regression model by transforming the distribution of the features into a bell curve of a 
more normal shape. Figure 3 shows the values of αt and νt predicted from the models with 
respect to the training data. For each of the six training phases root-mean-square error 
(RMSE) remains below of 1%, this means that the training is successfully achieved and 
verifies the initial assumptions on feature selection and the framework architecture. As an 
example, Figure 4 shows the field of αt relating to case 3, which perfectly reproduces the real 
values.   
 
3 Results  
 
Prediction follows training of the algorithm: to test the generalization of the models the 
regression model is forwarded to the three cases not included in the training datasets. Cross 
validation is required to evaluate the generality of the models out of the training data, the 
target is to find out how the model is performing based on training data.  
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Figure 3 - Values of αt and νt after the training phase: a) αt – Dataset A, b) αt – Dataset B,    
c) αt – Dataset C, d) νt – Dataset A, e) νt – Dataset B, f) νt – Dataset C. 
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By means of an interpolation process from Dataset B it is possible to predict both αt and 
νt fields of the three missing cases (case4-6) corresponding to Re 80000; similarly, with two 
extrapolation processes from Dataset A it is possible to predict both αt and νt fields of the 
three missing cases (case7-9) corresponding to Re 100000 and from Dataset C it is possible 
to predict that fields of the three missing cases (case1-3) corresponding to Re 30000. 

 
Figure 4 - Predicted αt values with respect to training data (case 3). 
 
  
 The results of the interpolation process are highlighted in in Figure 5 and in Figure 6, 
where it is shown the good agreement of the predicted values of αt and νt with their respective 
real values. For what concerns the extrapolation processes Figure  7 shows the prediction of 
νt relating to case 9 with a not perfect match with respect real values, Figure  8 depicts the 
prediction of αt relating to case 3 with a match with respect real values even worse than the 
previous one.  
  

 
Figure 5 – Predicted αt values from interpolation process (case 6). 
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Figure 6 - Predicted νt values from interpolation process (case 6). 
 

 
Figure 7 - Predicted νt values from extrapolation process (case 9). 

 

 
Figure 8 – Predicted αt values from extrapolation process (case 3). 
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Figure 9 - Predicted values of αt and νt: a) predicted αt from Dataset A, b) predicted αt from 
Dataset B, c) predicted αt from Dataset C, d) predicted νt from Dataset A, e) predicted νt from 
Dataset B, f) predicted νt from Dataset C. 
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Figure  9 shows the results of the regression models for both features αt and νt. It is 

possible to state that the models have good agreement with the CFD values in particular for 
the interpolation process, but when dealing with the extrapolation processes the predicted 
values deviate more from the real ones. Table 4 gives a summary of the root-mean-square 
error of predictions.   

 
Table 4 - RMSE in cross-validation 

Training Dataset RMSE - αt RMSE - νt 
Dataset A 0.79 0.79 
Dataset B 0.83 0.84 
Dataset C 1.68 1.69 

 

4 Conclusions 

We investigated the possibility of predicting a more accurate distribution of eddy 
viscosity and eddy diffusivity in a RANS framework to possibly extend the characterization 
of a turbulent and thermal boundary layer to a more accurate wall function. 

A dataset of 9 cases was created using low-Reynolds computations of a complex 2D 
test case characterized by many flow regimens, varying two parameters: Reynolds number 
and wall temperature. 

Then, the complete set of data was characterized using correlation matrix and other 
EDA techniques to select the appropriate features to be used for regression. From a number 
of 17 original features only 13 were used.  

A XGBoost regressor was then trained and tested. In so doing a series of sub-dataset 
were selected aiming at investigating the capability of the model of interpolating and 
extrapolating the correct fields of eddy viscosity and diffusivity. 

Interpolation lead to good results, while extrapolation showed the limits of this 
approach, suggesting that maybe a more complex ML approach should be used.  

From the response of the algorithm we can infer that interpolation could increase its 
accuracy increasing the number of Reynolds numbers used for the training of the algorithm 
as the regressor has a linear trend whilst in the considered range of Reynolds the flow 
characteristics have increasing turbulent behaviour without reaching a stable range of 
operations. 

Nevertheless since this is also a preliminary work to assess the possibility of using low-
Reynolds approach to better tune an high-Reynolds wall function, we can see from Figures 
4-8 that in the boundary layer the regressor has a high accuracy and therefore it is possible to 
use these data to tune a dynamic wall function that takes into account the local properties of 
the flow and thermal fields. 
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