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Abstract

The final purpose of this paper is to show that, by inserting a convexity constraint on the cables
of a suspension bridge, the torsional instability of the deck appears at lower energy thresholds. Since
this constraint is suggested by the behavior of real cables, this model appears more reliable than the
classical ones. Moreover, it has the advantage to reduce to two the number of degrees of freedom
(DOF), avoiding to introduce the slackening mechanism of the hangers. The drawback is that
the resulting energy functional is extremely complicated, involving the convexification of unknown
functions. This paper is divided in two main parts. The first part is devoted to the study of these
functionals, through classical methods of calculus of variations. The second part applies this study
to the suspension bridge model with convexified cables.

Keywords: suspension bridges, instability, convexification.
AMS Subject Classification (MSC2010): 35C31, 74B20.

1 Introduction

A suspension bridge is composed by four towers, a rectangular deck, two sustaining cables and a large
number of hangers, see Figure 1 for a sketch of the side view. In the reference system (O, x, y) the
vertical displacement w is positive downwards while x is oriented horizontally along the deck. We view

Figure 1: Sketch of the side view of a suspension bridge.

the part of the deck between the towers as a degenerate plate occupying at rest the planar position
(0, L) × (−`, `), and composed by a central beam of length L and by cross sections of length 2` � L
whose midpoints lie on the beam. Each cross section is free to rotate around the beam and to leave the
horizontal position. The hangers link the endpoints of the cross sections (the long edges of the plate)
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to the cables. This model is called fish-bone in [7] and a linear version of it was suggested in [40, p.458,
Chapter VI].

While the mathematical community [8, 19, 20, 28, 29, 30, 32, 33] is prone to take into account
the hangers slackening, the elastic deformation of the hangers is usually neglected in the engineering
literature, this simplification being only partially justified by precise studies on linearized models.
The hangers are considered as rigid bars so that the deck and the cables undergo the same movement.
Nevertheless, this assumption is unreasonable since the hangers resist to traction but not to compression.
Slackening of the hangers was observed by Farquharson [2, V-12] during the Tacoma Narrows Bridge
(TNB) collapse. In the model with rigid hangers considered in [23], the cables displayed shapes similar

Figure 2: In case of rigid hangers, cable shape with the deck oscillating on the
9th longitudinal mode of initial amplitude 3.87m, see [23].

to those depicted in Figure 2, that reproduce the shape every 10s on [0, L] (with L = 853.44m as for
the TNB). The nonconvex shape becomes more evident as the energy in the system (the amplitude of
oscillation) increases. For the plots in Figure 2, the oscillating mode of the deck is the 9th and the
initial amplitude is 3.87m, which lies in a physical range. Whence, the assumption of rigid hangers
leads to unrealistic pictures never seen in real bridges. The cables are always convex due to their mass
and to the hangers slackening. A nonconvex configuration would also increase the tension of the cable,
against the principle of minimal energy. For these reasons, as in [27], we will assume that the actual
shape of the cables coincides with its convexified form, namely the shape minimizing the length under
the same load conditions. Acting only on this geometric feature, we propose a two DOF model in which
the slackening of the hangers is considered indirectly. The great advantage is that we do not need an
explicit nonlinearity describing the slackening mechanisms.

The drawback is that the convexity constraint leads to some technical mathematical difficulties,
see [11, 12, 14] and also [1, 16] for different but related equations. This is why Section 2 is devoted
to general results related to the convexification of one dimensional functions. In Theorem 2.5 we
compute the variation of functionals containing a convexification. This characterization is new and, in
our opinion, of independent interest with possible applications to more general variational problems.
The convexification makes the energy function non-differentiable: its variation yields a weak form of
a system of partial differential inclusions (see (4.2) in Section 4.2) for which the uniqueness of the
solution is not expected. However, by exploiting the peculiarity of the model, we are able to show that
Galerkin approximation of the problem admits a unique classical solution, because the obstruction to
the differentiability of the energy is ruled out in a finite dimensional phase space. This suggests to
introduce the class of approximable solutions of the problem, namely solutions that are the limit of
the Galerkin subsequences, see Definition 4.3 in Section 4.2. This class of solutions will be physically
justified and it will be shown that they are representative of the full problem; moreover, within this
class we are able to obtain existence results, see Theorem 4.4. This requires some particular attention
due to the convexification and to the unusual behavior of test functions.

The torsional oscillations of the deck were the main cause for the TNB collapse [2] and of several other
collapses, see e.g. [26]. A new mathematical explanation for the origin of torsional oscillations was given
in [3] through the introduction of suitable Poincaré maps: these oscillations appear whenever there is a
large amount of energy within the bridge and this happens due to the nonlinear behavior of structures.
The model in [3] was fairly simplified, but the very same conclusion was subsequently reached in more
sophisticated models [4, 5, 7, 13, 22, 23]. A further purpose of the paper is to study the torsional
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instability of the deck through the model with convexified cables. To this end, we proceed numerically
by introducing a new algorithm dealing with the convexification at the beginning of each temporal
iteration. We then numerically show that the slackening mechanism hidden in the convexification of
the cables yields energy thresholds of instability for high modes significantly smaller than in models
where slackening is neglected. This means that the slackening of the hangers must be taken into account
because it gives lower thresholds of torsional instability.

This paper is organized as follows. In Section 2 we recall some features of the convexification of
a function: we merely focus on the situation that applies to cables since the general setting is fairly
complicated. In Section 3 we complete the analysis of the model through a careful energy balance. This
enables us to derive the differential inclusions and the differential equations related to approximable
solutions in Section 4. In Section 5 we quote our numerical experiments and results. Sections 6 and 7
are devoted to the proofs of our results. Finally, in Section 8 we outline the conclusions. Throughout
this paper we denote the derivatives of a function f = f(t) (depending only on t), of a function g = g(x)
(depending only on x) and the partial derivatives of a function w = w(x, t), respectively by

ḟ =
df

dt
, g′ =

dg

dx
, wx =

∂w

∂x
, wt =

∂w

∂t
,

and similarly for higher order derivatives.

2 The one-dimensional variational problem

Let I = (a, b) ⊂ R be an open bounded interval. Since we are interested in the specific application of a
real physical cable, whose shape is described by a function in H2(I) ⊂ C1(I), in all the paper we shall
consider only profiles f of class C1(I), avoiding more general assumptions on f .

We shall denote by f∗∗ the convex envelope (or convexification) of f , i.e. the largest convex function
satisfying f∗∗ ≤ f in I. Since f is of class C1, then also f∗∗ belongs to C1(I).

In the sequel a major role will be played by the maximal intervals where f∗∗ is affine. We denote by
Ki = [ci, di], i ∈ JC , the (possibly countable) family of all these intervals. Let Kf ⊂ I be the contact
set of f , i.e.

Kf := {x ∈ I : f(x) = f∗∗(x)}

and note that ci, di ∈ Kf ∪ {a, b}. The set N := I \ Kf is the union of an at most countable family
Ii := (ai, bi), i ∈ J of open intervals.

We also use the notation
K̃f := Kf \

⋃
i∈JC

Ki.

Around points x ∈ K̃f the function f is strictly convex, meaning that

f∗∗(x) > f(x0) + f ′(x0) (x− x0), ∀x ∈ [a, b], x 6= x0.

More precisely, the set {(x, f∗∗(x)) : x ∈ K̃f ∪ {a, b}} coincides with the set of exposed points of the
epigraph of f∗∗, see Section 6 for the precise definitions.

2.1 The variation of functionals of convexified functions

In order to study the behavior of the cables, we need to compute the variation of energies depending on
the convexification of a function. We deal with functionals such as u 7→

∫
I
[Λ(u)]∗∗dx with Λ ∈ C1(R)

and we need to compute the Gateaux derivative of such functionals. As we shall see, in general these
functionals are not Gateaux differentiable at every point. To illustrate this phenomenon, let us consider
first the particular case Λ(u) = u.
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Proposition 2.1. Let f ∈ C1(I) and let f∗∗, Ki = [ci, di] (i ∈ JC) and K̃f be as above. Let ϕ ∈ C∞c (I),
and, for i ∈ JC , consider the extended real-valued functions

ϕ±i : Ki → R, ϕ±i (x) :=

{
ϕ(x) x ∈ Ki ∩ (Kf ∪ {a, b}),
±∞ x ∈ Ki \ (Kf ∪ {a, b}).

Then we have

lim
s→0±

∫
I

(f + sϕ)∗∗ − f∗∗

s
dx =

∫
I

J
ϕ
± dx, (2.1)

where

J
ϕ
±(x) :=

{
±(±ϕ±i )∗∗(x) x ∈ Ki, i ∈ JC ,
ϕ(x) x ∈ K̃f .

(2.2)

Proposition 2.1, whose proof is given in Section 6, has an important consequence.

Corollary 2.2. Under the same assumptions of Proposition 2.1, the functional f 7→
∫
I
f∗∗ is Gateaux–

differentiable at f if and only if

Kf = K̃f , i.e., f > f∗∗ on any open interval where f∗∗ is affine. (2.3)

In this case, for every ϕ ∈ C∞c (I) it holds that J
ϕ
+ = J

ϕ
− =: Jϕ, with

Jϕ(x) :=

ϕ(ai) +
ϕ(bi)− ϕ(ai)

bi − ai
(x− ai) x ∈ Ii, i ∈ J,

ϕ(x) x ∈ Kf .
(2.4)

Remark 2.3. When condition (2.3) is satisfied, the intervals Ii coincide with the interior of the intervals
Ki, i.e. one has that ai = ci and bi = di for every i ∈ J . Also note that if f ∈ C1(I) and ϕ ∈ C∞c (I),
then J

ϕ
±, J

ϕ ∈W 1,1(0, L).

If f is convex the shape of ϕ is maintained and we have the classical Gateaux derivative. Proposition
2.1 states that the shape of the test function ϕ may change if the variation involves a convexification,
see Figure 3b). This possible change of ϕ makes the problem very challenging and is the price for
having a physically reliable modeling of the cables. The next example explains why assumption (2.3)
is necessary in order to have the Gateaux–differentiability.

Example 2.4. For some µ, υ ∈ R, take f(x) = µx+ υ on I = (−2, 2) and let

ϕ(x) = e
1

x2−1 if x ∈ (−1, 1), ϕ(x) = 0 if x ∈ I \ (−1, 1),
(
ϕ ∈ C∞c (I)

)
.

The limits (2.1) depend on the sign of s. Indeed,

lim
s→0±

∫
I

(sϕ)∗∗

s
dx =

∫
I

±(±ϕ)∗∗dx (2.5)

and if s > 0 we have (sϕ)∗∗ ≡ 0 so that (2.5) vanishes, while if s < 0 we have that (sϕ)∗∗ = s[−(−ϕ)∗∗]
and we obtain the point ζ ≈ 0.25, such that

−(−ϕ)∗∗(x) = ϕ(x) if|x| ∈ [0, ζ], −(−ϕ)∗∗(x) =
e

1
ζ2−1

ζ − 2
(|x| − 2) if |x| ∈ (ζ, 2),

see Figure 4. It is readily seen that the right and left limits of (2.5) are different, implying the non-
existence of the Gateaux derivative. �
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Figure 3: a) Convexification of a function f . b) The corresponding J
ϕ
±(x),

Jϕ(x) as in (2.2), (2.4).

Figure 4: Plot of (sϕ)∗∗ and sϕ (dashed), for some values of the parameter s.

The main result of this section is the following generalization of Proposition 2.1:

Theorem 2.5. Consider u ∈ C1(I,R), Λ ∈ C1(R) and let Λ′ be its derivative. Let f := Λ ◦ u : I→ R
and let f∗∗, Ii (i ∈ J), Ki (i ∈ JC) and K̃f be as above. Furthermore, assume that f satisfies (2.3).
Then, for all ϕ ∈ C∞c (I), we have

lim
s→0

∫
I

[Λ(u+ sϕ)]∗∗ − [Λ(u)]∗∗

s
dx =

∫
I

Gu,ϕ dx,

where

Gu,ϕ(x) :=

ϕ(ai)Λ′
(
u(ai)

)
+
ϕ(bi)Λ′

(
u(bi)

)
− ϕ(ai)Λ′

(
u(ai)

)
bi − ai

(x− ai) x ∈ Ii,

ϕ(x)Λ′
(
u(x)

)
x ∈ I \

⋃
i∈J

Ii.

Theorem 2.5, whose proof is given in Section 6, has an instructive application.

Example 2.6. If θ ∈ C1(I), Λ(θ) = sin θ, ψ ∈ C∞c (I), Theorem 2.5 yields

lim
s→0

∫
I

[sin(θ + sψ)]∗∗ − [sin θ]∗∗

s
dx =

∫
I

Gθ,ψ dx,

with

Gθ,ψ(x) :=

ψ(ai) cos
(
θ(ai)

)
+
ψ(bi) cos

(
θ(bi)

)
− ψ(ai) cos

(
θ(ai)

)
bi − ai

(x− ai) x ∈ Ii,

ψ(x) cos
(
θ(x)

)
x ∈ I \

⋃
i∈J

Ii.
(2.6)
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2.2 Properties of the projection on the cone of convex functions

In this section we give some properties of convexified functions that we will use in the sequel to obtain
a priori estimates. In the sequel we denote by ‖ · ‖p the norm related to the Lebesgue space Lp(a, b)
with 1 ≤ p ≤ ∞. All the proofs are given in Section 6.

Proposition 2.7. Let T : C0([a, b])→ C0([a, b]) be the operator defined by

Tf := (F ∗∗)′, where F (x) :=

∫ x

a
f(y) dy, y ∈ [a, b]. (2.7)

Then ∫ b

a
|Tf − Tg| ≤

∫ b

a
|f − g| ∀f, g ∈ C0([a, b]), (2.8)

‖Tf − Tg‖1 ≤ ‖f − g‖1 ∀f, g ∈ L1(a, b). (2.9)

Proposition 2.7 shows that the map T is Lipschitzian from L1 to L1 and it enables us to prove that
the convexification is Lipschitzian from W 1,1

0 to W 1,1
0 .

Corollary 2.8. The operator P : W 1,1
0 (a, b)→W 1,1

0 (a, b), defined by P [F ] := F ∗∗, is Lipschitz contin-
uous. More precisely,

‖F ∗∗ −G∗∗‖W 1,1 ≤
(
b− a

2
+ 1

)
‖F ′ −G′‖1 ∀F,G ∈W 1,1

0 (a, b).

In the sequel we denote by J
ϕ
F , GF,ψ and J

ϕ
G, GG,ψ the corresponding functions associated respectively

to F and G as in (2.4) and (2.6). About the regularity of J
ϕ
F and J

ϕ
G we refer to Remark 2.3 and

similarly for GF,ψ and GG,ψ. The next statement is crucial for the existence and uniqueness result in
Section 4.2.

Proposition 2.9. Let T : L1(a, b)→ L1(a, b) be as in (2.7). Then∣∣∣∣ ∫ b

a

[Tf (JϕF )′ − Tg (JϕG)′]dx

∣∣∣∣ ≤ ‖ϕ′‖∞‖f − g‖1 ∀f, g ∈ L1(a, b), ∀ϕ ∈ C∞c (I).

Similarly, it is possible to state the following more general result.

Proposition 2.10. Let Λ and Gθ,ψ be as in Example 2.6, H ∈ Lip(R) with Lipschitz constant L > 0.
Then:

i)

∣∣∣∣ ∫ ba [H(Tf) (JϕF )′ −H(Tg) (JϕG)′]dx

∣∣∣∣ ≤ L‖ϕ′‖∞‖f − g‖1 ∀f, g ∈ L1(a, b), ∀ϕ ∈ C∞c (I);

ii) ∃C > 0,

∣∣∣∣ ∫ ba [H(Tf) (GF,ψ)′ −H(Tg) (GG,ψ)′]dx

∣∣∣∣ ≤ C‖F −G‖W1,1 ∀f, g ∈ L1, ∀ψ ∈ C∞c (I).

We conclude this section with the continuous dependence of (Jϕ)′ on f .

Proposition 2.11. Let f, fn ∈ C1(I), n ∈ N, satisfy assumption (2.3), assume that the sequence {fn}
converges uniformly to f , and let ϕ ∈ C∞c (I). Denote by Jϕ the function related to f defined in (2.4)
and by J

ϕ
n the corresponding function related to fn. Then ‖Jϕn − Jϕ‖1 → 0 and ‖(Jϕn)′ − (Jϕ)′‖1 → 0.
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3 Energy balance in a suspension bridge

3.1 The energy of the deck

In this section we define all the energetic contributions involved in the cable-hangers-beam system
aiming to derive the variational form of the problem. In Figure 5 is sketched a cross section of the
bridge, in which the degrees of freedom w(x, t) and θ(x, t) correspond respectively to the downward
displacement and the torsional angle around the barycentric line of the deck. We do not consider the

Figure 5: Mutual positions of the cross section of the bridge and of the cables.

masses of the hangers and of the cables, since they are negligible with respect to the mass of the deck.
The deformations of the deck deriving from bending and torsion are modeled, as for a beam, according
to the de Saint Venant and Vlasov theory: the deck is characterized by the flexural rigidity EI, the
torsional rigidity GK (by de Saint Venant) and the torsional warping EJ (by Vlasov [37]). The energy
of the deck is given by the kinetic, the gravitational and the deformation contributions, for details see
[24],

Ed =
M

2

∫ L

0
w2
t dx+

M`2

6

∫ L

0
θ2t dx−Mg

∫ L

0
w dx

+
EI

2

∫ L

0
w2
xx dx+

GK

2

∫ L

0
θ2x dx+

EJ

2

∫ L

0
θ2xx dx,

where M is the mass linear density of the deck, ` its semi width, g the gravitational acceleration, E the
Young modulus, G the shear modulus, I the moment of inertia, K the torsional constant and J is the
warping constant of the cross section. The last term was added by Vlasov [37] to the de Saint Venant’s
deformation terms.

3.2 The deformation energy of the cables

We assume that the cables have the same mechanical properties and, at rest, they take a parabolic
shape given by

y(x) = −4f

L2
x2 +

4f

L
x− y0 ∀x ∈ [0, L], (3.1)

where y0 is the height of the towers and f is the cable sag as in Figure 1; for details on the derivation
of (3.1) we refer to [31, 23]. The local length of the cables is given for all x ∈ [0, L] by the bounded
function

ξ(x) :=
√

1 + y′(x)2, 1 ≤ ξ(x) ≤ ξM :=

√
1 +

(
4f

L

)2

.
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From [35, p.68] we know that in bridge design the sag-span ratio f/L varies between 1/12 and 1/8,
implying a little variation of ξ(x) on [0, L]; indeed, its maximum value, assumed for x ∈ {0, L}, is

ξ(0) = ξ(L) = ξM ∈
[√

10
3 ,

√
5
2

]
= [1.05, 1.11]. In engineering literature ξ(x) is often approximated with

1, see [31]. But ξ(x) remains closer to its mean value ξ over the interval [0, L]; for these reasons we
shall use the approximation

ξ(x) ≈ ξ :=

∫ L
0 ξ(x)dx

L
. (3.2)

We recall that for the TNB, by assuming (3.2), the maximum error is less than 2.86%.
To obtain the energy of the cables we need to find their convexified shapes. Figure 5a) shows the

situation with tensioned hangers, in which the edges of the deck have moved downwards of w± ` sin θ.
In this case, the cables have a convex shape and the hangers behave like inextensible elements so that
the cables have the same displacement of the deck and their positions are (w ± ` sin θ + y). In Figure
5b) we represent the innovative part of our model. If the endpoints of the cross section of the deck
move upwards, above the position (w ± ` sin θ + y) = 0, then the slackening of the hangers may occur,
producing a vertical displacement in the cables equal to (w ± ` sin θ + y)∗∗. The shape of the cables is
then given by the convexification of the function (w ± ` sin θ + y), that depends on both x and t. To
determine the deformation energy of a cable we need to compute its variation of length with respect to
its initial length Lc :=

∫ L
0

√
1 + (y′)2

)
dx. Then, we introduce the functional

Γ : C1[0, L]→ R , Γ(u) :=

∫ L

0

(√
1 + {[(u+ y)∗∗]x}2

)
dx− Lc, (3.3)

which is well-defined, since the convexification preserves the C1-regularity of u. The deformation energy
EC of the cables is composed by two contributions. The first is related to the tension at rest and the
second to the additional tension due to the increment of the length Γ(w± ` sin θ) of each cable. Hence
if ξ is as in (3.2), we have

EC =Hξ

[ ∫ L

0

(√
1 + {[(w + ` sin θ + y)∗∗]x}2 +

√
1 + {[(w − ` sin θ + y)∗∗]x}2

)
dx− 2Lc

]
+
AEc
2Lc

(
[Γ(w + ` sin θ)]2 + [Γ(w − ` sin θ)]2

)
,

(3.4)

with H = horizontal tension, A = sectional area, Ec = Young modulus of the cable.

3.3 Functional spaces and total energy of the system

We consider the Hilbert spaces L2(0, L), H1
0 (0, L) and H2 ∩ H1

0 (0, L), endowed respectively with the
scalar products

(u, v)2 =

∫ L

0
uv, (u, v)H1 =

∫ L

0
u′v′, (u, v)H2 =

∫ L

0
u′′v′′.

We denote by H∗(0, L) the dual space of H2 ∩ H1
0 (0, L) with the corresponding duality 〈·, ·〉∗. The

solutions of the equations are required to satisfy (w, θ) ∈ X2
T , where

XT := C0
(
[0, T ];H2 ∩H1

0 (0, L)
)
∩ C1

(
[0, T ];L2(0, L)

)
∩ C2

(
[0, T ];H∗(0, L)

)
. (3.5)

Then, by adding all the energetic contributions of the system, for every (w, θ) ∈ X2
T we find the

functional

E(w, θ) :=

∫ L

0

(
M

2
w2
t +

M`2

6
θ2
t

)
dx+

∫ L

0

(
EI

2
w2
xx +

EJ

2
θ2
xx +

GK

2
θ2
x

)
dx

+Hξ

{∫ L

0

(√
1 + {[(w + ` sin θ + y)∗∗]x}2 +

√
1 + {[(w − ` sin θ + y)∗∗]x}2

)
dx

}
− 2HξLc +

AEc
2Lc

(
[Γ(w + ` sin θ)]2 + [Γ(w − ` sin θ)]2

)
−Mg

∫ L

0

w dx,

(3.6)
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that is well-defined and represents the energy of the system.

Proposition 3.1. The functional E : X2
T → R is locally Lipschitz continuous.

Proof. The statemant holds if, for every bounded subset X ⊂ X2
T there exists L > 0 such that, given

(w1, θ1) and (w2, θ2) ∈ X we have

|E(w1, θ1)− E(w2, θ2)| ≤ L
(
||(w1 − w2)t||1 + ||(θ1 − θ2)t||1 + ||w1 − w2||W 2,1 + ||θ1 − θ2||W 2,1

)
. (3.7)

By (3.6) we observe that the most tricky terms are those including Γ(·) and ξ, while for the others (3.7)
is easily proved. Let us recall the inequality

|
√

1 + (u1 + v)2 −
√

1 + (u2 + v)2| ≤ |(u1 + v)− (u2 + v)| = |u1 − u2| ∀u1, u2, v ∈ R,

that gives ∣∣√1 + {[(w1 ± ` sin θ1 + y)∗∗]x}2 −
√

1 + {[(w2 ± ` sin θ2 + y)∗∗]x}2
∣∣

≤
∣∣[(w1 ± ` sin θ1 + y)∗∗ − (w2 ± ` sin θ2 + y)∗∗]x

∣∣.
Hence, it is possible to use (2.9) so that there exists L1 > 0 such that

Hξ

∫ L

0

∣∣√1 + {[(w1 ± ` sin θ1 + y)∗∗]x}2 −
√

1 + {[(w2 ± ` sin θ2 + y)∗∗]x}2
∣∣dx

≤ Hξ
(
||(w1 − w2)x||1 + `||(sin θ1 − sin θ2)x||1

)
≤ L1

(
||(w1 − w2)x||1 + ||θ1 − θ2||W 1,1

)
.

The same argument can be applied to the terms [Γ(w ± ` sin θ)]2, see (3.3).

This result enables us to use the notion of Clarke subdifferential [15] and to compute the variation
of (3.6) in the general framework of the differential inclusions. We also point out that some problems
in elasticity may be tackled with a slightly different notion of nonsmooth critical points, see [18].

4 Suspension bridges with convexified cables

4.1 The variation of the deformation energy of the cables

The presence of the convexified functions within the functional E(w, θ) in (3.6) introduces some diffi-
culties in computing its variation; from Proposition 2.1 the unilateral Gateaux derivative exists and is
always bounded, while the Gateaux derivative may not exist in some cases. Let us focus on one cable,
the other being similar. We introduce

D− :=
[
Hξ +

AEc
Lc

Γ(w + ` sin θ)
] ∫ L

0

[(w + ` sin θ + y)∗∗]x(Jϕ−)′√
1 + {[(w + ` sin θ + y)∗∗]x}2

dx

D+ :=
[
Hξ +

AEc
Lc

Γ(w + ` sin θ)
] ∫ L

0

[(w + ` sin θ + y)∗∗]x(Jϕ+)′√
1 + {[(w + ` sin θ + y)∗∗]x}2

dx,

where J
ϕ
±(x) are defined in (2.2) with f = (w + ` sin θ + y). By applying Proposition 2.1, we find the

following inclusion related to the variation of the energy (3.4) with respect to w

〈dEC(w, θ), ϕ〉 ∈
[

min{D−, D+},max{D−, D+}
]
.

To avoid this heavy notation, in the sequel we always write

〈dEC(w, θ), ϕ〉 ∈
[
Hξ +

AEc
Lc

Γ(w + ` sin θ)
] ∫ L

0

[(w + ` sin θ + y)∗∗]x(Jϕ±)′√
1 + {[(w + ` sin θ + y)∗∗]x}2

dx ∀ϕ ∈ C∞c (I).
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By applying Theorem 2.5 with Λ(θ) = sin θ we obtain the inclusion related to the variation of the
energy (3.4) with respect to θ

〈dEC(w, θ), ψ〉 ∈
[
Hξ +

AEc
Lc

Γ(w + ` sin θ)
]
`

∫ L

0

[(w + ` sin θ + y)∗∗]x(Gθ,ψ± )x√
1 + {[(w + ` sin θ + y)∗∗]x}2

dx ∀ψ ∈ C∞c (I),

where G
θ,ψ
± (x) is defined for every t ≥ 0 as follows: given g±i : Ki → R, with i ∈ JC

g±i (x) :=

{
ψ(x) cos

(
θ(x)

)
x ∈ Ki ∩ (Kf ∪ {a, b}),

±∞ x ∈ Ki \ (Kf ∪ {a, b}).
G
θ,ψ
± (x) :=

{
±(±g±i )∗∗(x) x ∈ Ki,

ψ(x) cos
(
θ(x)

)
x ∈ K̃f .

(4.1)

Note that the functions J
ϕ
± and G

θ,ψ
± are spatially continuous with a finite number of angular points,

so that (Jϕ±)′ and (Gθ,ψ± )x are bounded on the interval [0, L] and continuous almost everywhere in [0, L],
see Remark 2.3.

In the simple cases in which the cable is strictly convex (or concave!) we gain the differentiability

of (3.6) and the inclusions become equalities. In the first case, because K̃f = I so that J
ϕ
± and G

θ,ψ
±

coincide respectively with ϕ and ψ cos θ. In the second case, K1 = I
1

= I so that Jϕ = Gθ,ψ = 0 and
(w + ` sin θ + y)∗∗ = −y0 for all x ∈ [0, L]; this situation corresponds to a zero variation in the cable
energy since the slackening of all the hangers occurs, implying the total disconnection between the cable
and the deck. We point out that in the case where the cable is perfectly horizontal we obtain the same
physical result, due to (w+ ` sin θ+ y)x = [(w+ ` sin θ+ y)∗∗]x = 0 for all x ∈ [0, L], while I

ϕ
± and G

θ,ψ
±

maintain their oscillatory nature.

4.2 The system of partial differential inclusions

We set here the problem in the general framework of partial differential inclusions, resulting from the
variation of (3.6). The subscripts α and β denote the terms corresponding respectively to the cable

with shape (w+` sin θ+y)∗∗ and (w−` sin θ+y)∗∗. Hence, we have J
ϕ
α±(x), Gθ,ψα±(x) and J

ϕ
β±(x), Gθ,ψβ±(x)

that correspond to J
ϕ
±(x), Gθ,ψ± (x) related respectively to fα = (w+` sin θ+y) and fβ = (w−` sin θ+y),

as defined in (2.2) and (4.1). Moreover, we include all the nonlinearities into the functionals

hα(Z,Θ) := −
(
Hξ +

AEc
Lc

Γ(Z + ` sin Θ)

)
[(Z + ` sin Θ + y)∗∗]x√

1 + {[(Z + ` sin Θ + y)∗∗]x}2

hβ(Z,Θ) := −
(
Hξ +

AEc
Lc

Γ(Z − ` sin Θ)

)
[(Z − ` sin Θ + y)∗∗]x√

1 + {[(Z − ` sin Θ + y)∗∗]x}2
.

As for the action, one has to take the difference between kinetic energy and potential energy and
integrate over an interval of time [0, T ]:

A(w, θ) :=

∫ T

0

[ ∫ L

0

(
M

2
w2
t +

M`2

6
θ2
t

)
dx−

∫ L

0

(
EI

2
w2
xx +

EJ

2
θ2
xx +

GK

2
θ2
x

)
dx

−Hξ
{∫ L

0

(√
1 + {[(w + ` sin θ + y)∗∗]x}2 +

√
1 + {[(w − ` sin θ + y)∗∗]x}2

)
dx− 2Lc

}
− AEc

2Lc

(
[Γ(w + ` sin θ)]2 + [Γ(w − ` sin θ)]2

)
+Mg

∫ L

0

w dx

]
dt.

The differential inclusion describing the motion of the bridge is obtained by considering the critical
points of the functional A, which leads to the following

Definition 4.1. We say that (w, θ) ∈ X2
T , see (3.5), is a weak solution of the differential inclusion,

resulting from critical points of the action A, if (w, θ) satisfies
M〈wtt, ϕ〉∗ + EI(w,ϕ)H2 −

(
Mg,ϕ

)
2
∈
(
hα(w, θ), (Jϕα±)′

)
2

+

(
hβ(w, θ), (Jϕβ±)′

)
2

,

M`

3
〈θtt, ψ〉∗ +

EJ

`
(θ, ψ)H2 +

GK

`
(θ, ψ)H1 ∈

(
hα(w, θ), (Gθ,ψα±)x

)
2

−
(
hβ(w, θ), (Gθ,ψβ± )x

)
2

,
(4.2)

10



for all ϕ,ψ ∈ H2 ∩H1
0 (0, L) and t > 0.

The system (4.2) is complemented with the initial conditions:

w(x, 0) = w0(x), θ(x, 0) = θ0(x) for x ∈ (0, L)

wt(x, 0) = w1(x), θt(x, 0) = θ1(x) for x ∈ (0, L),
(4.3)

having the following regularity

w0, θ0 ∈ H2 ∩H1
0 (0, L), w1, θ1 ∈ L2(0, L). (4.4)

From [6, 14, 15] we learn that existence results for a differential inclusion can be a difficult task,
requiring some regularity of the right hand side terms, e.g. the continuity. For our purposes, to approach
problem (4.2)-(4.3) in fully generality is not necessary: since we deal with a civil structure, we perform
some simplifications. We follow a suggestion from [9, p.23] which says that “. . . out of the infinite
number of possible modes of motion in which a suspension bridge might vibrate, we are interested only
in a few, to wit: the ones having the smaller numbers of loops or half waves”. Indeed, civil structures
typically oscillate on low modes since higher modes do not appear in real situations due to large bending
energy, see [9]. This suggestion mathematically corresponds to project an infinite dimensional space
on a finite dimensional subspace, using the Galerkin approximation. Whence, we take {ek}∞k=1 as an
orthogonal basis of L2(0, L), H1

0 (0, L), H2 ∩H1
0 (0, L), where

ek(x) =

√
2

L
sin

(
kπx

L

)
, ||ek||2 = 1, ||ek||H1 =

kπ

L
, ||ek||H2 =

k2π2

L2
,

and, for any n ≥ 1, we introduce the space En := span{e1, . . . , en}. For any n ≥ 1 we seek a couple
(wn, θn) ∈ X2

T such that

wn(x, t) =
n∑
k=1

wkn(t) ek(x), θn(x, t) =
n∑
k=1

θkn(t) ek(x),

and satisfying (4.2) only for the test functions ϕ,ψ ∈ En, thereby obtaining a finite system of ordinary
differential inclusions. In fact, in this finite dimensional setting, the inclusions become equalities,
since for every fixed n ∈ N, all the intervals of affinity (if any) of (wn ± ` sin θn + y)∗∗ are such that
(wn± ` sin θn+y) > (wn± ` sin θn+y)∗∗. Then Corollary 2.2 applies and the Gateaux derivative exists,
leading to a finite system of ordinary differential equations (r = 1, . . . , n) with initial conditions

M
(
(wn)tt, er

)
2

+ EI
(
wn, er

)
H2 − (Mg, er)2 =(

hα(wn, θn), [Jerα ]′
)

2

+

(
hβ(wn, θn), [Jerβ ]′

)
2

M`

3

(
(θn)tt, er

)
2

+
EJ

`

(
θn, er

)
H2 +

GK

`

(
θn, er

)
H1 =(

hα(wn, θn), [Gθn,erα ]x

)
2

−
(
hβ(wn, θn), [Gθn,erβ ]x

)
2

,

wkn(0) = (w0, ek)2, θkn(0) = (θ0, ek)2 ẇkn(0) = (w1, ek)2, θ̇kn(0) = (θ1, ek)2.

(4.5)

In Section 7 we prove

Theorem 4.2. Let n ≥ 1 an integer and T > 0 (possibly T =∞), then for all w0, θ0, w1, θ1 satisfying
(4.4) there exists a unique solution (wn, θn) ∈ X2

T of (4.5).

This justifies the following

Definition 4.3. For all n ∈ N, we say that the solution (wn, θn) of (4.5) is an approximate solution
of (4.2)-(4.3). We say that (w, θ) ∈ X2

T is an approximable solution of (4.2)-(4.3) if there exists a
sequence of approximate solutions of (4.2)-(4.3), converging to it as n→∞, up to a subsequence.
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We now state the main result of this section, whose proof is given in Section 7.

Theorem 4.4. Let T > 0 (possibly T = ∞), then for all w0, θ0, w1, θ1 satisfying (4.4) there exists an
approximable solution of (4.2) which satisfies (4.3) on [0, T ].

Remark 4.5. We refer to [24] for some consequences in existence and uniqueness results when we consider
the same problem with variable ξ(x), i.e. not assuming (3.2). The results obtained on (wn, θn) can be
achieved in the same way considering a different number of modes for w and θ, i.e. taking (wn, θν) with
n 6= ν.

5 Numerical results

In this section we present some numerical experiments on the system (4.5). The results are obtained
with the software Matlab R©, adopting the mechanical constants of the TNB in Table 1.

E: 200 000MPa Young modulus of the deck (steel)

Ec: 185 000MPa Young modulus of the cables (steel)

G: 81 000MPa Shear modulus of the deck (steel)

L: 853.44m Length of the main span

` : 6m Half width of the deck

f : 70.71m Sag of the cable

I: 0.154m4 Moment of inertia of the deck cross section

K: 6.07·10−6m4 Torsional constant of the deck

J : 5.44m6 Warping constant of the deck

A: 0.1228m2 Area of the cables section

M : 7198kg/m Mass linear density of the deck

H: 45 413kN Initial tension in the cables

Lc: 868.815m Initial length of the cables, see (3.3)

Table 1: TNB mechanical constants.

When we speak about a mode like sin
(
kπ
L x
)
, we refer to a motion with k − 1 nodes, in which the

latter are the zeros of the sine function in (0, L). Let us recall some meaningful witnesses that led
our modeling choices. From [2, p.28] we know that for the TNB “seven different motions have been
definitely identified on the main span of the bridge”. The morning of the failure Farquharson, a witness
of the collapse described a torsional motion like sin

(
2π
L x
)
, writing [2, V-2] “a violent change in the

motion was noted. [. . . ] the motions, which a moment before had involved a number of waves (nine
or ten) had shifted almost instantly to two [. . . ] the node was at the center of the main span and the
structure was subjected to a violent torsional action about this point”.

By Theorem 4.4 we may consider an approximable solution of (4.2) and decide how many modes to
include in the finite dimensional approximation. From [2] we learn that, at the TNB, oscillations with
more than 10 nodes on the main span were never seen. Hence, we consider the first 10 longitudinal
modes and the first 4 torsional modes; this is a good compromise between limiting computational
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burden and focusing on the instability phenomena visible at TNB. Further experiments with a larger
number of modes did not highlight significant changes in the instability thresholds. Given the boundary
conditions, we seek solutions of (4.5) in the form

w(x, t) =
10∑
k=1

wk(t) ek, θ(x, t) =
4∑

k=1

θk(t) ek (5.1)

where ek(x) =

√
2

L
sin

(
kπx

L

)
and

√
2

L
is a pure number with no unit of measure; we call wk(t) :=√

2
Lwk(t) the k-th longitudinal mode and θk(t) :=

√
2
Lθk(t) the k-th torsional mode. We obtain

a system of 14 ODEs as (7.2) with initial conditions

wk(0) = w0
k = (w0, ek)2, ẇk(0) = w1

k = (w1, ek)2, ∀k = 1, . . . , 10

θk(0) = θ0k = (θ0, ek)2, θ̇k(0) = θ1k = (θ1, ek)2 ∀k = 1, . . . , 4.

We put w0
k :=

√
2
Lw

0
k, w

1
k :=

√
2
Lw

1
k and similarly for the θ initial conditions. Since we study an

isolated system we assume that on the bridge there is a balance between damping and wind on an
interval [0, T ] for sufficiently small T > 0. We consider a time lapse of [0, 120s], which is a small time
interval compared to 70 minutes of violent oscillations recorded prior to the TNB collapse [2], enough
to see the possible sudden transfer of energy between modes. We study the system during its steady
motion, in which the oscillation of a j-th longitudinal mode prevails, and we perturb all the other modes
with an initial condition 10−3 smaller, i.e. in dimensionless form

w0
k = 10−3 · w0

j ∀k 6= j, θ
0
k = w1

k = θ
1
k = 10−3 · w0

j ∀k.

Following this approach we say that the initial energy of our system corresponds to that of the longi-
tudinal mode excited and represents, indirectly, the wind energy introduced on the bridge through the
so-called vortex shedding (see e.g. [38, 39, 41] and the monograph [34]), although in the present paper
the energy will be inserted through the initial conditions in a conservative system.

According to the Report [2, p.20], in the months prior to the collapse, “one principal mode of os-
cillation prevailed and the modes of oscillation frequently changed”. Therefore, we follow [25] and we
consider that the approximate solution (5.1) has an initially prevailing longitudinal mode, that is, there
exists j = 1, ..., 10 such that wj(0) is much larger than all the other initial data (both longitudinal
and torsional). Then the j-th longitudinal mode is torsionally stable if all the torsional components
θk(t) remain small for all t. In our analysis we aim to be more precise and we give a quantitative
characterization of “smallness”. We consider thresholds of instability following [25] and we say that
the j-th longitudinal mode is torsionally unstable if at least one torsional mode grows about 1 order
in amplitude in the time lapse [0, 120s]. From a numerical point of view we define the threshold of
instability of the j-th longitudinal mode excited as

W 0
j :=

{
inf w0

j : max
k

{
max
t∈[0,T ]

|θk(t)|
}
≥ 10−2 · w0

j

}
; (5.2)

this condition allows us to obtain thresholds W 0
j accurate enough for our purposes.

As explained in Section 3.2, through the convexification procedure, we are able to simulate the
slackening of the hangers. To measure the slackening quantity occurring in our numerical experiments,
we identify the two cables by the subscripts α and β as in Section 4.2, and we recall that, in the
numerical discretization, [0, T ] is equally divided in m time steps; for each time step we compute ∆th
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(h = 1, . . . ,m), a measure of the percentage of slacken hangers, i.e. the ratio between the measure of
the union of the intervals of linearity for each cable and the length of the deck L:

Mα
h :=

1

L

∣∣∣∣∣ ⋃
i∈Jα

Iiα

∣∣∣∣∣ M
β
h :=

1

L

∣∣∣∣∣∣
⋃
j∈Jβ

Ijβ

∣∣∣∣∣∣ ∀h = 1, . . . ,m.

Since the angle of rotation is small, the two cables behave quite similarly and, therefore, we define a
mean value of the measure of slackening as

M =
1

2m

[ m∑
h=1

Mα
h +

m∑
h=1

M
β
h

]
. (5.3)

Our purpose is to compare the instability thresholds of the model with convexification to those
of the same model without convexification, see [23], i.e. we study how the slackening of the hangers
affects the system. In Table 2 we have this comparison in terms of initial energy and amplitude
threshold of instability of the j-th longitudinal mode excited, computed following (5.2). For each
numerical experiment we verified the energy conservation, ascertaining a relative error, |(maxE(t) −
minE(t))/E(0)|, on the integration time [0, 120s], less than 4 · 10−3.

Convexification No convexification

(Slackening) (Rigid hangers)

Mode W 0
j [m] E(0)[J] M[%] W 0

j [m] E(0)[J]

1 4.09 7.96·107 1.92 4.09 7.96·107

2 8.37 8.74·107 2.94 8.22 8.37·107

3 4.89 8.58·107 2.40 4.82 8.23·107

4 5.35 1.63·108 41.79 4.92 1.35·108

5 4.25 1.77·108 39.40 3.93 1.52·108

6 3.64 1.64·108 43.46 2.64 8.72·107

7 3.65 2.38·108 51.72 5.25 8.29·108

8 3.28 2.27·108 50.05 5.15 1.12·109

9 2.31 1.54·108 42.55 3.87 7.40·108

10 2.65 2.34·108 52.73 3.41 6.97·108

Table 2: Thresholds of instability as in (5.2), corresponding energy and
measure of slackening as in (5.3), varying the longitudinal mode excited on
[0, 120s].

From the data in Table 2 we notice different tendencies depending on the mode excited. The first 3
longitudinal modes give substantially the same thresholds of instability in the case with convexification
and without, due to the very low percentage of slackening, see M. This fact is not surprising, since a
longitudinal motion of the deck like a sin( πLx) modifies the convexity of the cable only for very large
displacements, requiring a so large amount of energy that the threshold of instability is achieved before
the appearance of slackening.
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Figure 6: Plots of wk(t) (k = 1, . . . , 10) in meters and θk(t) (k = 1, . . . , 4) in
radians on [0, 120s] with w0

10=0.75m.

Quite different is the behavior of the modes from the 4th onward, since in these cases we appreciate
differences between two models. We distinguish two tendencies respectively for the intermediate modes
(4th, 5th and 6th) and the higher modes. The thresholds of the intermediate modes reveal that the
instability arises earlier for the model with inextensible hangers, so that the latter can be adopted in
favor of safety. We point out that the 4th, 5th and 6th modes were not seen the day of the collapse of
the TNB; the witnesses recorded that, before the rise of the torsional instability, the bridge manifested
longitudinal oscillations with 9 or 10 waves, involving the motion of higher longitudinal modes. For these
modes the presence of the slackening puts down the thresholds of instability so that the assumption of
rigid hangers is not in favor of safety. We underline that in these cases we see more instability despite
the injection of energy is smaller; this behavior is peculiar of the hangers slackening that favors a greater
transfer of energy between modes with respect to the case with inextensible hangers, see also [22]. The
results in Table 2 highlight furthermore that the 9th and 10th longitudinal modes present the lowest
torsional instability threshold in the case with slackening, confirming the real observations at the TNB
collapse.

In Figure 6 we exhibit an example of stability obtained on the system with convexification, imposing
w0

10 =0.75m; we notice a very little exchange of energy between modes and, in general, the torsional
modes oscillate around their initial amplitude, revealing a stable behavior. In this case some slack is
present (M = 13.50%), while reducing further the initial amplitude, e.g. w0

9 ≤0.60m or w0
10 ≤0.55m,

would produce the total absence of slackening and a clear stable situation, see [23].
For brevity in Figure 7 we present only the torsional modes related to the instability thresholds of

the 9th and 10th longitudinal modes, obtained respectively applying w0
9 =2.31m and w0

10 =2.65m. In
general, when (5.2) is verified all the torsional modes begin to grow, but Figure 7 confirms that the 9th

and 10th longitudinal modes are more prone to develop instability on the 2nd torsional mode, since it
attains the largest growth on [0, 120s].

Our numerical results show that structures displaying only low modes of vibration may be treated
assuming inextensible hangers; this simplification reduces the computational costs and gives safe insta-
bility thresholds. On the other hand, if the structure vibrates on higher modes, this assumption could
give overestimated thresholds to the detriment of safety; in this case the slackening of the hangers plays

15



Figure 7: θk(t) (k = 1, . . . , 4) in rad. on [0, 120s] with w0
9=2.31m (above) and

w0
10=2.65m (below).

an important role. This fact should be a warning for the designers of bridges that are able to exhibit,
in realistic situations, large vibration frequencies.

6 Proofs of the results on the convexification

The proofs of the results of Section 2 require some basic tools of convex analysis (see e.g. [21, 36]).
Given a closed convex set E ⊂ Rn, a point p ∈ ∂E is an extreme point of E if it is not contained in
any open segment ]r, q[ with r, q ∈ ∂E, whereas it is an exposed point of E if there exists a support
hyperplane H to E with H ∩ E = {p}. We denote by extrE and expoE, respectively, the sets of
extremal and exposed points of E, see Figure 8.

Figure 8: An example of f∗∗(x) in which extrE and expoE are in evidence.

Let us prove the following preliminary

Lemma 6.1. Let f ∈ C1(I), and let (fn) ⊂ C1(I) be a sequence converging uniformly to f . Then it
holds:

(a) If x0 ∈ K̃f and, for every n ∈ N, [an, bn] ⊂ I, λn ∈ [0, 1] satisfy

x0 = (1− λn)an + λnbn, f∗∗n (x0) = (1− λn)fn(an) + λnfn(bn),

then an, bn → x0.

(b) If, in addition, f satisfies (2.3), i.e. Kf = K̃f , and (a0, b0) is one of the maximal intervals Ii

where f∗∗ is affine, then for every n ∈ N there exists a maximal interval (an, bn) where f∗∗n is
affine such that an → a0, bn → b0.
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Proof. (a) Since x0 is an exposed point of the epigraph of f∗∗, it holds

f(x) ≥ f∗∗(x) > f(x0) + f ′(x0)(x− x0) ∀x 6= x0.

Assume by contradiction that at least one of the sequences (an), (bn) does not converge to x0. Then
there exists a subsequence (nj) such that anj → a, bnj → b, with a ≤ x0 ≤ b and a < b. Moreover, we

clearly have λnj → λ := (x0 − a)/(b− a). Hence,

f∗∗(x0) = lim
j
f∗∗nj

(x0) = lim
j

(1− λnj
)fnj

(anj
) + λnj

fnj
(bnj

) = (1− λ)f(a) + λf(b) > f∗∗(x0),

a contradiction.
(b) In view of (a), it is enough to prove that, if x0 ∈ (a0, b0), then x0 6∈ Kfn for n large enough.

Assume by contradiction that there exists a subsequence (nj) such that x0 ∈ Kfnj
for every j, i.e.,

fnj (x0) = f∗∗nj (x0) for every j. Since, by assumption, f > f∗∗ on (a0, b0), one has

f(x0) > f∗∗(x0) = lim
j
f∗∗nj (x0) = lim

j
fnj (x0) = f(x0),

a contradiction.

Proof of Proposition 2.1. Let M > max[a,b] f , so that E := epi f∗∗ ∩ {y ≤ M} is a compact convex
subset of R2. Moreover, we have that

{(x, f(x)) : x ∈ K̃f ∪ {a, b}} = expoE ∩ {y < M},

i.e., the set at left-hand side coincides with the set of exposed points of epi f∗∗. Let

fs := f + sϕ, f∗∗s := (fs)
∗∗, s ∈ R.

By the Dominated Convergence Theorem, Proposition 2.1 will be a consequence of the following point-
wise convergences:

lim
s→0

f∗∗s (x0)− f∗∗(x0)
s

= ϕ(x0) if x0 ∈ K̃f , (6.1)

lim
s→0±

f∗∗s (x0)− f∗∗(x0)
s

= ±(ϕ±i )∗∗(x0) if x0 ∈ Ki, i ∈ JC . (6.2)

Proof of (6.1). We have already observed that, if x0 ∈ K̃f , then f∗∗(x0) = f(x0) and (x0, f(x0)) ∈
expoE. Since f ∈ C1, by definition of exposed point we have that

f(x) ≥ f∗∗(x) > f(x0) + f ′(x0) (x− x0) =: h(x), ∀x ∈ [a, b], x 6= x0.

For every s ∈ R let as ∈ [a, x0], bs ∈ [x0, b], and λs ∈ [0, 1] be such that

x0 = (1− λs)as + λs bs, f∗∗s (x0) = (1− λs)fs(as) + λs fs(bs) . (6.3)

Let us first prove that

lim
s→0+

f∗∗s (x0)− f∗∗(x0)
s

= ϕ(x0) . (6.4)

Since
f∗∗s (x0)− f∗∗(x0)

s
≤ fs(x0)− f(x0)

s
= ϕ(x0), ∀s > 0,

it follows that

lim sup
s→0+

f∗∗s (x0)− f∗∗(x0)
s

≤ ϕ(x0),
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hence it remains to prove that

l := lim inf
s→0+

f∗∗s (x0)− f∗∗(x0)
s

≥ ϕ(x0).

Let sn ↘ 0 be a sequence such that l = lim
n→+∞

f∗∗sn (x0)−f∗∗(x0)

sn
. Using (6.3) it holds

f∗∗sn (x0)− f∗∗(x0)
sn

=
(1− λsn)fsn(asn) + λsn fsn(bsn)− f(x0)

sn

=
(1− λsn)f(asn) + λsn f(bsn)− f(x0)

sn
+ (1− λsn)ϕ(asn) + λsn ϕ(bsn) .

(6.5)

Since the sequence {fsn} converges uniformly to f , by Lemma 6.1(i) it follows that asn , bsn → x0, hence
the right-hand side of (6.5) converges to a quantity greater than or equal to ϕ(x0), so that l ≥ ϕ(x0)
and (6.4) follows. The computation of the limit (6.4) for s→ 0− can be done similarly, observing that
the same inequalities as above hold with reversed signs. Hence, we conclude that (6.1) holds.

Proof of (6.2). We shall prove (6.2) only for s → 0+, being the proof for s → 0− entirely similar.
Let i ∈ JC and let us denote

B := Ki ∩ (Kf ∪ {a, b}), A := Ki \B.

Clearly, the set B is closed and contains both the endpoints of the interval Ki.
It is not restrictive to assume that f∗∗(x) = 0 for every x ∈ Ki, so that

f(x) = 0 ∀x ∈ B, f(x) > 0 ∀x ∈ A. (6.6)

Let us extend the function ϕ+
i to +∞ outside Ki. Since ϕ ≤ ϕ+

i and (f + sϕ+
i )(x) = sϕ+

i (x) for every
x ∈ Ki, we have that

f∗∗s (x) = (f + sϕ)∗∗(x) ≤ (f + sϕ+
i )∗∗(x) = s (ϕ+

i )∗∗(x), ∀x ∈ Ki,

hence

lim sup
s→0+

f∗∗s (x0)− f∗∗(x0)
s

≤ (ϕ+
i )∗∗(x0), ∀x0 ∈ Ki.

Let sn ↘ 0 be a sequence such that

l := lim inf
s→0+

f∗∗s (x0)− f∗∗(x0)
s

= lim
n→+∞

f∗∗sn (x0)− f∗∗(x0)
sn

,

and let En := epi f∗∗sn ∩ {y ≤ M}, n ∈ N. By (6.6), for every ε > 0, there exists Nε ∈ N such that, for
n ≥ Nε, the extreme points of En belong to B +Bε, so that

Kfsn ∩K
i ⊂ B +Bε ∀n ≥ Nε. (6.7)

Let

ϕε(x) :=

{
ϕ(x) x ∈ B +Bε,

+∞ otherwise,

so that ϕε(x) = ϕ+
i (x) for all x ∈ B and ϕε → ϕ+

i pointwise in Ki. From (6.7) we know that
f∗∗sn (x) = (f + sn ϕε)

∗∗(x) for all x ∈ Ki and all n ≥ Nε so that

l = lim
n→+∞

f∗∗sn (x0)− f∗∗(x0)
sn

≥ lim inf
n→+∞

(f + sn ϕε)
∗∗(x0)− f∗∗(x0)
sn

≥ ϕ∗∗ε (x0).

Finally, letting ε→ 0, we conclude that l ≥ (ϕ+
i )∗∗(x0), concluding the proof.
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Proof of Theorem 2.5. Since f satisfies assumption (2.3), we can use the same arguments of Step 1 in
Proposition 2.1. We omit the details.

Proof of Proposition 2.7. If f ∈ C0([a, b]), then Tf ∈ C0([a, b]), F ∈ C1([a, b]), F ∗∗ ∈ C1([a, b]), and
F (a) = F ∗∗(a) = 0, F (b) = F ∗∗(b). Hence,∫ b

a
Tf(y) dy =

∫ b

a
f(y) dy ∀f ∈ C0([a, b]). (6.8)

In the following, we shall denote by KF the contact set of F , defined by KF := {x ∈ (a, b) : F (x) =
F ∗∗(x)}. We remark that f = Tf on KF . Moreover, we have the following characterization of KF :

KF =
{
x ∈ (a, b) : F (y)− F (x)− (y − x)F ′(x) ≥ 0, ∀y ∈ [a, b]

}
=

{
x ∈ (a, b) :

∫ y

x
[f(s)− f(x)] ds ≥ 0, ∀y ∈ [a, b]

}
.

(6.9)

Let f, g ∈ C0([a, b]) and let F (x) :=
∫ x
a f(y) dy, G(x) :=

∫ x
a g(y) dy, x ∈ [a, b]. We claim that

f, g ∈ C0([a, b]), f ≤ g =⇒ Tf ≤ Tg. (6.10)

Before proving (6.10), we observe that, from (6.8), (6.10) and [17, Proposition 1], we can conclude
that (2.8) holds. So, it remains to prove (6.10). It will be convenient to perform a couple of reductions.

Reduction 1: it is not restrictive to prove (6.10) under the additional assumption

f(a) = Tf(a), f(b) = Tf(b), g(a) = Tg(a), g(b) = Tg(b). (6.11)

Specifically, since

Tf(a) = inf
x∈(a,b]

F (x)− F (a)

x− a
= inf

x∈(a,b]

1

x− a

∫ x

a
f(s) ds,

it is clear that Tf(a) ≤ f(a). If Tf(a) < f(a), then there exists β ∈ (a, b] such that (a, β) is a connected
component of (a, b) \KF . Given ε > 0, let cε := (1 + 1/

√
2)ε, and define the function

ϕε(t) :=


−1 + t/ε if t ∈ [0, cε],

−1 + (2cε − t)/ε if t ∈ [cε, 2cε − ε],
0 otherwise,

so that ϕε(0) = −1 and
∫ 2cε−ε
0 ϕε = 0. It is not difficult to show that, for ε > 0 small enough, the

function fε(x) := f(x) + [f(a)−Tf(a)]ϕε(x− a) satisfies Tfε = Tf and Tfε(a) = fε(a). Moreover, we
have ‖fε − f‖1 → 0 as ε→ 0; similarly, we can modify f near b and the same for g.

Reduction 2: it is not restrictive to prove (6.10) under the additional assumption

f < g in [a, b]. (6.12)

Specifically, it is enough to check that T (g + ε) = Tg + ε.
We are thus reduced to prove (6.10) when f, g ∈ C([a, b]) satisfy also (6.11) and (6.12). Let

x0 := max{x ∈ [a, b] : Tf(y) ≤ Tg(y) ∀y ∈ [a, x]}.

Since F ≤ G, we have that F ∗∗ ≤ G∗∗ and hence Tf(a) ≤ Tg(a). Moreover, by (6.11) and (6.12), we
clearly have x0 > a.

Assume by contradiction that x0 < b, so that Tf(x0) = Tg(x0), and let us consider the following
cases.
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Case 1: x0 ∈ KF ∩KG. Hence,

Tf(x0) = f(x0) < g(x0) = Tg(x0),

in contradiction with Tf(x0) = Tg(x0).
Case 2: x0 ∈ KF , x0 6∈ KG. Let (α, β) be the maximal connected component of (a, b)\KG containing

x0, so that Tg is constant on [α, β] and g(α) = Tg(α), g(β) = Tg(β). Here it is worth to remark that
these equalities hold also in the case α = a or β = b thanks to (6.11). By the characterization (6.9) we
have that:

x0 ∈ KF =⇒
∫ β

x0

[f(s)− f(x0)] ds ≥ 0, β ∈ KG or β = b =⇒
∫ β

x0

[g(β)− g(s)] ds ≥ 0,

so that ∫ β

x0

[g(β)− g(s) + f(s)− f(x0)] ds ≥ 0. (6.13)

On the other hand g(β) = Tg(β) = Tg(x0) and f(x0) = Tf(x0). Since Tf(x0) = Tg(x0), we conclude
that g(β) = f(x0), hence from (6.13) it holds∫ β

x0

[f(s)− g(s)] ds ≥ 0,

contradicting the assumption f < g.
Case 3: x0 6∈ KF , x0 ∈ KG. We can reason as in the previous case, considering the connected

component (α, β) of (a, b) \Kf containing x0, and obtaining the inequality∫ x0

α
[g(x0)− g(s) + f(s)− f(α)] ds ≥ 0.

Since, here, g(x0) = f(α), we get again a contradiction with the assumption f < g.
Case 4: x0 6∈ KF , x0 6∈ KG. In this case Tf and Tg are locally constant in a neighborhood of x0,

again contradicting the definition of x0. This proves (2.8).
We divide the proof of (2.9) into two steps.

STEP 1. If f ∈ L1(a, b) and the sequence {fn} ⊂ C0([a, b]) converges to f in L1, then

Tfn → Tf a.e., and ‖Tfn − Tf‖1 → 0.

Let F (x) :=
∫ x
a f , Fn(x) :=

∫ x
a fn. We have that Fn → F uniformly in [a, b], hence also F ∗∗n → F ∗∗

uniformly in [a, b]. (Proof: use the characterization F ∗∗(x) = min{(1 − λ)F (x0) + λF (x1) : λ ∈
[0, 1], (1− λ)x0 + λx1 = x}.) By Theorem 24.5 in [36] we deduce that (F ∗∗n )′ → (F ∗∗)′ at every point
of differentiability of F ∗∗, i.e. almost everywhere in [a, b]. By definition of T , it follows that Tfn → Tf
a.e. in [a, b].

The L1 convergence of {Tfn} to Tf follows from (2.8). Namely, from (2.8) we have that ‖Tfn −
Tfm‖1 ≤ ‖fn − fm‖1, hence {Tfn} is a Cauchy sequence in L1 (and so it converges to its pointwise
limit), thereby proving the claim of Step 1.
STEP 2. Given f, g ∈ L1(a, b), let {fn}, {gn} ⊂ C0([a, b]) sequences converging in L1 respectively to f
and g. By (2.8), we have that ‖Tfn − Tgn‖1 ≤ ‖fn − gn‖1 for every n. Hence, by Step 1, passing to
the limit as n→ +∞ we obtain (2.9).

Proof of Proposition 2.9. By (2.4) we have that

Tf =


F (bi)− F (ai)

bi − ai x ∈ Ii, i ∈ J,

F ′(x) x ∈ KF .
(JϕF )′ =


ϕ(bi)− ϕ(ai)

bi − ai =

∫ bi
ai
ϕ′dx

bi − ai x ∈ Ii, i ∈ J,

ϕ′(x) x ∈ KF ,
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and similarly for Tg and (JϕG)′. Then we have the fundamental integral equivalence∫ b

a
[Tf (JϕF )′ − Tg (JϕG)′]dx =

∫ b

a
[Tf − Tg] ϕ′dx, ∀ϕ ∈ C∞c (I)

so that the thesis is achieved by applying the Hölder inequality and (2.9).

Proof of Proposition 2.10. i) Let us observe that∫ b

a

[H(Tf) (JϕF )′ −H(Tg) (JϕG)′]dx =

∫ b

a

[H(Tf)−H(Tg)] ϕ′dx, ∀ϕ ∈ C∞c (I)

then we proceed as in Proposition 2.9, considering the Lipschitz property of H.
ii) We consider the equivalence

∫ b

a

[H(Tf) (GF,ψ)′ −H(Tg) (GG,ψ)′]dx =

∫ b

a

[H(Tf)(ψ cosF )′ −H(Tg)(ψ cosG)′]dx

=

∫ b

a

[H(Tf)−H(Tg)](ψ cosF )′dx+

∫ b

a

H(Tg) (ψ cosF − ψ cosG)′dx ∀ψ ∈ C∞c (I).

(6.14)

Since (ψ cosF −ψ cosG)′ = ψ′(cosF − cosG)−ψ[(f − g) sinF + g(sinF − sinG)], the thesis follows by
the Lipschitzianity of sin, cos and by arguing as in the above proofs.

Proof of Proposition 2.11. The functions J
ϕ
n are Lipschitz continuous, with

‖Jϕn‖∞ ≤ ‖ϕ‖∞, ‖(Jϕn)′‖∞ ≤ ‖ϕ′‖∞.

Hence, by the Dominated Convergence Theorem, it is enough to show that J
ϕ
n → Jϕ and (Jϕn)′ → (Jϕ)′

a.e. in I. The pointwise convergence of {Jϕn} to Jϕ is a direct consequence of Lemma 6.1. To prove the
a.e. convergence of {(Jϕn)′} to (Jϕ)′, it will be convenient to distinguish between the two cases (a) and
(b) in Lemma 6.1.

Let x0 be as in case (a), and assume that all the function J
ϕ
n are differentiable at x0 (this condition

is satisfied at almost every point). For every n, if x0 ∈ Kfn (i.e. an = bn) then (Jϕn)′(x0) = ϕ′(x0),
otherwise there exists xn ∈ (an, bn) such that

(Jϕn)′(x0) =
ϕ(bn)− ϕ(an)

bn − an
= ϕ′(xn).

Since an, bn → x0, we finally get (Jϕn)′(x0)→ ϕ′(x0) = (Jϕ)′(x0).
Let x0 be as in case (b). Then, for n large enough,

(Jϕn)′(x0) =
ϕ(bn)− ϕ(an)

bn − an
→ ϕ(b0)− ϕ(a0)

b0 − a0
= (Jϕ)′(x0),

and the proof is complete.

7 Proofs of existence and uniqueness results

To simplify the notations we define the functionals

χ(u) :=
u′√

1 + (u′)2
, γ(u) :=

√
1 + (u′)2 (7.1)

and we state a preliminary
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Lemma 7.1. χ, γ : C1[0, L]→ C0[0, L] are locally Lipschitz continuous.

Proof. Given v, w ∈ C1[0, L], we apply the Lagrange Theorem, so that there exists % := %(x) ∈
(
v′, w′

)
such that

∣∣χ(v)− χ(w)
)∣∣ =

∣∣v′ − w′∣∣√
(1 + %2)3

≤
∣∣v′ − w′∣∣, ∣∣γ(v)− γ(w)

)∣∣ =
|%|
∣∣v′ − w′∣∣√
1 + %2

≤
∣∣v′ − w′∣∣.

Proof of Theorem 4.2. Let n ≥ 1 an integer. Testing n times equations (4.5) for r = 1, . . . , n and t ≥ 0
we obtain a system of ODE’s for k = 1, . . . , n

Mẅkn(t) + EI
k4π4

L4
wkn(t) +Mg

√
2L((−1)k − 1)

kπ
=(

hα(wn, θn), [J
ek
α ]′
)

2
+
(
hβ(wn, θn), [J

ek
β ]′
)

2

M`

3
θ̈kn(t) +

(
EJ

k4π4

L4`
+GK

k2π2

L2`

)
θkn(t) =(

hα(wn, θn), [G
θn,ek
α ]x

)
2
−
(
hβ(wn, θn), [G

θn,ek
β ]x

)
2

(7.2)

with the initial conditions as in (4.5). The local existence of a solution (wkn, θ
k
n) for all k = 1, . . . , n

and t ≥ 0 depends on the regularity of the right hand side terms of (7.2). We introduce the vectors
W = [w1

n, . . . , w
n
n], Θ = [θ1n, . . . , θ

n
n] and e(x) = [e1(x), . . . , en(x)] in Rn; we study the nonlinearities

related to one cable.
If the functions

Fk(W,Θ) :=
[
Hξ +

AEc
Lc

Γ
(
W · e+ ` sin(Θ · e)

] ∫ L

0

χ

(
[W · e+ ` sin(Θ · e) + y]∗∗

)
(Jekα )′dx,

Gk(W,Θ) :=
[
Hξ +

AEc
Lc

Γ
(
W · e+ ` sin(Θ · e)

] ∫ L

0

χ

(
[W · e+ ` sin(Θ · e) + y]∗∗

)
(GΘ·e,ek
α )′dx,

are locally Lipschitz continuous with respect to W , Θ for all k = 1, . . . , n, we have the existence and
uniqueness of a solution of (7.2) on some interval [0, tn) with tn ∈ (0, T ].

Thanks to Lemma 7.1, Proposition 2.10-i) and (3.3), for every compact subset X ⊂ Rn there exists
C0 > 0 such that, for every W1,W2,Θ1,Θ2 ∈ X we have

∣∣Fk(W1,Θ1)− Fk(W2,Θ2)
∣∣ =

∣∣∣∣[Hξ +
AEc
Lc

Γ
(
W1 · e+ ` sin(Θ1 · e)

)]
·

·
∫ L

0

[
χ

(
[W1 · e+ ` sin(Θ1 · e) + y]∗∗

)
[(Jekα )1]′ − χ

(
[W2 · e+ ` sin(Θ2 · e) + y]∗∗

)
[(Jekα )2]′

]
dx

+
AEc
Lc

{∫ L

0

[
γ

(
[W1 · e+ ` sin(Θ1 · e) + y]∗∗

)
− γ
(

[W2 · e+ ` sin(Θ2 · e) + y]∗∗
)]
dx

}
·{∫ L

0

χ

(
[W2 · e+ ` sin(Θ2 · e) + y]∗∗

)
[(Jekα )2]′dx

}∣∣∣∣ ≤ C0‖e′k‖∞
(
|W1 −W2|+ |Θ1 −Θ2|

)
‖e‖W1,1 ,

so that Fk(W,Θ) is locally Lipschitz continuous for all k = 1, . . . , n. With some additional computations
due to the presence of the trigonometric functions, see Proposition 2.10-ii), the same arguments can be
applied to obtain the locally Lipschitz continuity of Gk(W,Θ).

We now seek a uniform bound for the sequence (wn, θn). We omit for the moment the spatial
dependence of the approximated solutions. We test the first equation in (4.5) by ẇn, the second by θ̇n
and we sum the two equations. Hence, we obtain

d

dt

[
M

2
‖ẇn‖22 +

EI

2
‖wn‖2H2 +

M`2

6
‖θ̇n‖22 +

EJ

2
‖θn‖2H2 +

GK

2
‖θn‖2H1 −Mg

∫ L

0

wndx

]
=∫ L

0

hα(wn, θn)[Jẇn
α + `Gθn,θ̇nα ]xdx+

∫ L

0

hβ(wn, θn)[Jẇn
β − `Gθn,θ̇nβ ]xdx.

(7.3)
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Let us define the energy of the system for the approximate solution (wn, θn) as

En(t) :=
M

2
‖ẇn‖22 +

EI

2
‖wn‖2H2 +

M`2

6
‖θ̇n‖22 +

EJ

2
‖θn‖2H2 +

GK

2
‖θn‖2H1 −Mg

∫ L

0

wndx

+Hξ

∫ L

0

(
√

1 + {[(wn + ` sin θn + y)∗∗]x}2 +
√

1 + {[(wn − ` sin θn + y)∗∗]x}2)dx

+
AEc
2Lc

(
[Γ(wn + ` sin θn)]2 + [Γ(wn − ` sin θn)]2

)
.

Since we are in the finite dimensional setting it holds the assumption (2.3), so that we apply Corollary
2.2 and Theorem 2.5, finding the energy conservation. This is the point where we take advantage of
the final dimensional nature of the problem. Hence from (7.3) we have Ėn(t) = 0, that is

En(t) = En(0) =
M

2
‖w1

n‖22 +
EI

2
‖w0

n‖2H2 +
M`2

6
‖θ1
n‖22 +

EJ

2
‖θ0
n‖2H2 +

GK

2
‖θ0
n‖2H1

+Hξ

∫ L

0

(
√

1 + {[(w0
n + ` sin θ0

n + y)∗∗]′}2 +
√

1 + {[(w0
n − ` sin θ0

n + y)∗∗]′}2)dx

+
AEc
2Lc

(∫ L

0

[
√

1 + {[(w0
n + ` sin θ0

n + y)∗∗]′}2]dx− Lc
)2

+
AEc
2Lc

(∫ L

0

[
√

1 + {[(w0
n − ` sin θ0

n + y)∗∗]′}2]dx− Lc
)2

−Mg

∫ L

0

w0
ndx.

(7.4)

We recall the Poincaré inequality ‖w‖2 ≤ Λ‖w‖H2 for every w ∈ H2 ∩H1
0 (Λ > 0) and we observe that

in En(t) only the gravitational term has undefined sign. In order to estimate this term we notice that
for all ε ∈ (0, 14 ] we have

−
∫ L

0

wndx ≥ −
∫ L

0

(1 + εw2
n)dx = −(L+ ε‖wn‖22) ≥ −(L+ εΛ2‖wn‖2H2).

Choosing a sufficiently small ε ∈ (0, 14 ], we find η > 0 such that

En(t) ≥ M

2
‖ẇn‖22 +

(
EI

2
−MgΛε

)
‖wn‖2H2 +

M`2

6
‖θ̇n‖22 +

EJ

2
‖θn‖2H2 +

GK

2
‖θn‖2H1

+Hξ

∫ L

0

(
√

1 + {[(wn + ` sin θn + y)∗∗]x}2 +
√

1 + {[(wn − ` sin θn + y)∗∗]x}2)dx

+
AE

2Lc

(
[Γ(wn + ` sin θn)]2 + [Γ(wn − ` sin θn)]2

)
−MgL

≥ η(‖ẇn‖22 + ‖wn‖2H2 + ‖θ̇n‖22 + ‖θn‖2H2 + ‖θn‖2H1)−MgL.

Then from (7.4) we infer for all t ∈ [0, tn) and n ≥ 1

η(‖ẇn‖22 + ‖wn‖2H2 + ‖θ̇n‖22 + ‖θn‖2H2 + ‖θn‖2H1) ≤ En(0) +MgL. (7.5)

Thanks to (7.5) we obtain tn = T , ensuring the global existence and uniqueness of the solution (wn, θn)
on [0, T ]. Moreover, since the total energy of (4.5) is conserved in time, the solution cannot blow up in
finite time and the global existence is obtained for an arbitrary T > 0, including T =∞.

Proof of Theorem 4.4. To simplify the notation we denote by Lp(V ) the space Lp((0, T );V (0, L)) for
1 ≤ p ≤ ∞, by Q = (0, T ) × (0, L) and by C > 0 all the positive constants. We observe that
supn |En(0)| + MgL < ∞ is independent of n and t, since w0

n and θ0n belong to C1[0, L]. Then from
(7.5) we infer the boundedness of {wn}, {θn} in L∞(H2) and of {ẇn}, {θ̇n} in L∞(L2), implying, up to a
subsequence, the weak* convergence respectively to w, θ and to ẇ, θ̇ in the previous spaces. In particular
from the boundedness of {wn}, {θn} and {ẇn}, {θ̇n} we also have weak convergence respectively in
L2(H2) and L2(Q); then, due to the compact embedding H1(Q) ⊂ L2(Q), we obtain the strong
convergence wn → w, θn → θ in L2(Q), from which sin θn → sin θ in L2(Q), since ‖ sin θn−sin θ‖L2(Q) ≤
‖θn − θ‖L2(Q) → 0 as n→∞ (similarly cos θn → cos θ).
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About Γ in (3.3), thanks to Lemma 7.1, (2.9), Hölder and Poincaré inequalities, there exists C > 0
such that

|Γ(wn ± ` sin θn)− Γ(w ± ` sin θ)| ≤ (‖(wn − w)x‖1 + ‖θn − θ‖W 1,1)

≤ C(‖wn − w‖L∞(H2) + ‖θn − θ‖L∞(H2))→ 0,

up to a subsequence, implying Γ(wn ± ` sin θn)→ Γ(w ± ` sin θ).
We consider the functional χ defined in (7.1), and we note that |χ(u)| < 1 for all u ∈ H2(0, L) ⊂

C1[0, L]. Then, we have χ2
(
[wn ± ` sin θn + y]∗∗

)
< 1 and

‖χ
(
[wn ± ` sin θn + y]∗∗

)
‖2L2(Q) =

∫ T

0

∫ L

0

{[(wn ± ` sin θn + y)∗∗]x}2

1 + {[(wn ± ` sin θn + y)∗∗]x}2
dxdt < LT.

Hence χ
(
[wn± ` sin θn + y]∗∗

)
converges weakly, up to a subsequence, to χ

(
[w± ` sin θ+ y]∗∗

)
in L2(Q).

Therefore we pass to the limit the first equation in (4.5), since ‖(Jekα )′‖∞ ≤ ‖e′k‖∞. To do the same for
the second equation in (4.5) we use (6.14) and the bounds

‖χ
(
[wn ± ` sin θn + y]∗∗

)
cos θn‖2L2(Q) < LT,

‖χ
(
[wn ± ` sin θn + y]∗∗

)
θnx sin θn‖2L2(Q) ≤ T‖θn‖

2
L∞(H1),

which imply the weak convergence of these terms in L2(Q), up to a subsequence.
Next, for any n ≥ 1 we put

w0
n :=

n∑
k=1

(w0, ek)2 ek =
L4

π4

n∑
k=1

(w0, ek)H2

k4
ek,

θ0n :=

n∑
k=1

(θ0, ek)2 ek =

n∑
k=1

(
EJ

k4π4

L4
+GK

k2π2

L2

)−1
[EJ(θ0, ek)H2 +GK(θ0, ek)H1 ] ek,

w1
n :=

n∑
k=1

(w1, ek)2 ek, θ1n :=

n∑
k=1

(θ1, ek)2 ek,

so that w0
n → w0, θ0n → θ0 in H2 and w1

n → w1, θ1n → θ1 in L2 as n→∞.
Therefore we pass to the limit the problem (4.5), so that there exists an approximable solution of

(4.2)-(4.3), (w, θ) ∈ X2
T in the sense of Definition 4.3.

8 Conclusions

In this paper, we proposed a model in which both the hangers and the cables are deformable. This
was previously considered in [4] through a four DOF model, but here we have only focused on the
vertical displacements and the torsional rotations of the deck, thereby dealing with a two DOF model.
In this case it appears out of reach to obtain a precise explanation of the origin of torsional instability
in terms of Poincaré maps as in [3]. However, our numerical results still show the same qualitative
phenomenon: after exceeding a certain energy threshold the system becomes unstable and sudden and
violent torsional oscillations appear.

The analyisis of this new model for suspension bridges requires the study of the variation of an energy
functional depending on the convexification of the involved functions. The computation of the Gateaux
derivatives of the functional is quite involved and, apart of “spoiling” the action of the smooth test
functions, it does not exist in some situations. After a full energy balance, in Section 4 we derived the
weak form of the system of nonlinear nonlocal partial differential inclusions. This system is nonlinear
due to the convexification, the geometric configuration of the cables and the rotation of the deck;
moreover, we avoided the linearization based on smallness assumptions on the torsional angle of the
deck.
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The typical behavior of civil structures enabled us to consider approximable solutions as representative
enough of our problem, thereby reducing to a system of ordinary differential equations, through the
Galerkin procedure. We then proved existence of weak approximable solutions. This enabled us to
study the problem numerically, considering 10 longitudinal modes interacting with 4 torsional modes
and we found a threshold of torsional instability for each longitudinal mode excited. We compared
these thresholds with those of the correspondent model without convexification. Our numerical results
show that, for structures displaying only low modes of vibration (e.g. 1st, 2nd, 3rd), we may assume
inextensible hangers, reducing the computational costs and obtaining safe instability thresholds. On
the other hand, if the structure vibrates on higher modes (e.g. 9th, 10th) as the TNB, this assumption
may provide overestimated thresholds. Here the slackening of the hangers increases dangerously the
torsional instability; this fact should be a warning for the designers of bridge structures, that are
able to exhibit, in realistic situations, large vibration frequencies. Let us recall that the wind velocity
determines the excited mode, see [2, pp.21-27] and that an explicit rule has been recently found in
[10]. It turns out that the longitudinal modes that were torsionally unstable at the TNB were the 9th

and 10th, precisely the ones for which we found lower thresholds of instability in the new model with
convexification (that is, with hangers slackening).
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[29] G. Holubová, J. Janousek, One-dimensional model of a suspension bridge: revision of uniqueness
results, Appl. Math. Lett. 71, (2017), 6–13

26
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