A new model for suspension bridges involving the convexification of the cables

Graziano CRASTA ${ }^{\dagger}$ - Alessio FALOCCHI ${ }^{\ddagger}$ - Filippo GAZZOLA ${ }^{\ddagger}$
${ }^{\dagger}$ Dipartimento di Matematica "G. Castelnuovo" - Sapienza Università di Roma, P.le Aldo Moro 5-00185 Roma, Italy
${ }^{\ddagger}$ Dipartimento di Matematica - Politecnico di Milano, Piazza Leonardo da Vinci 32-20133 Milano, Italy
graziano.crasta@uniroma1.it - alessio.falocchi@polimi.it - filippo.gazzola@polimi.it

Abstract

The final purpose of this paper is to show that, by inserting a convexity constraint on the cables of a suspension bridge, the torsional instability of the deck appears at lower energy thresholds. Since this constraint is suggested by the behavior of real cables, this model appears more reliable than the classical ones. Moreover, it has the advantage to reduce to two the number of degrees of freedom (DOF), avoiding to introduce the slackening mechanism of the hangers. The drawback is that the resulting energy functional is extremely complicated, involving the convexification of unknown functions. This paper is divided in two main parts. The first part is devoted to the study of these functionals, through classical methods of calculus of variations. The second part applies this study to the suspension bridge model with convexified cables.

Keywords: suspension bridges, instability, convexification.
AMS Subject Classification (MSC2010): 35C31, 74B20.

1 Introduction

A suspension bridge is composed by four towers, a rectangular deck, two sustaining cables and a large number of hangers, see Figure 1 for a sketch of the side view. In the reference system (O, x, y) the vertical displacement w is positive downwards while x is oriented horizontally along the deck. We view

Figure 1: Sketch of the side view of a suspension bridge.
the part of the deck between the towers as a degenerate plate occupying at rest the planar position $(0, L) \times(-\ell, \ell)$, and composed by a central beam of length L and by cross sections of length $2 \ell \ll L$ whose midpoints lie on the beam. Each cross section is free to rotate around the beam and to leave the horizontal position. The hangers link the endpoints of the cross sections (the long edges of the plate)
to the cables. This model is called fish-bone in [7] and a linear version of it was suggested in [40, p.458, Chapter VI].

While the mathematical community [8, 19, 20, 28, 29, 30, 32, 33] is prone to take into account the hangers slackening, the elastic deformation of the hangers is usually neglected in the engineering literature, this simplification being only partially justified by precise studies on linearized models. The hangers are considered as rigid bars so that the deck and the cables undergo the same movement. Nevertheless, this assumption is unreasonable since the hangers resist to traction but not to compression. Slackening of the hangers was observed by Farquharson [2, V-12] during the Tacoma Narrows Bridge (TNB) collapse. In the model with rigid hangers considered in [23], the cables displayed shapes similar

Figure 2: In case of rigid hangers, cable shape with the deck oscillating on the 9 th longitudinal mode of initial amplitude 3.87 m , see [23].
to those depicted in Figure 2, that reproduce the shape every 10s on $[0, L]$ (with $L=853.44 \mathrm{~m}$ as for the TNB). The nonconvex shape becomes more evident as the energy in the system (the amplitude of oscillation) increases. For the plots in Figure 2, the oscillating mode of the deck is the 9 th and the initial amplitude is 3.87 m , which lies in a physical range. Whence, the assumption of rigid hangers leads to unrealistic pictures never seen in real bridges. The cables are always convex due to their mass and to the hangers slackening. A nonconvex configuration would also increase the tension of the cable, against the principle of minimal energy. For these reasons, as in [27], we will assume that the actual shape of the cables coincides with its convexified form, namely the shape minimizing the length under the same load conditions. Acting only on this geometric feature, we propose a two DOF model in which the slackening of the hangers is considered indirectly. The great advantage is that we do not need an explicit nonlinearity describing the slackening mechanisms.

The drawback is that the convexity constraint leads to some technical mathematical difficulties, see [11, 12, 14] and also [1, 16] for different but related equations. This is why Section 2 is devoted to general results related to the convexification of one dimensional functions. In Theorem 2.5 we compute the variation of functionals containing a convexification. This characterization is new and, in our opinion, of independent interest with possible applications to more general variational problems. The convexification makes the energy function non-differentiable: its variation yields a weak form of a system of partial differential inclusions (see (4.2) in Section 4.2) for which the uniqueness of the solution is not expected. However, by exploiting the peculiarity of the model, we are able to show that Galerkin approximation of the problem admits a unique classical solution, because the obstruction to the differentiability of the energy is ruled out in a finite dimensional phase space. This suggests to introduce the class of approximable solutions of the problem, namely solutions that are the limit of the Galerkin subsequences, see Definition 4.3 in Section 4.2. This class of solutions will be physically justified and it will be shown that they are representative of the full problem; moreover, within this class we are able to obtain existence results, see Theorem 4.4. This requires some particular attention due to the convexification and to the unusual behavior of test functions.

The torsional oscillations of the deck were the main cause for the TNB collapse [2] and of several other collapses, see e.g. [26]. A new mathematical explanation for the origin of torsional oscillations was given in [3] through the introduction of suitable Poincaré maps: these oscillations appear whenever there is a large amount of energy within the bridge and this happens due to the nonlinear behavior of structures. The model in [3] was fairly simplified, but the very same conclusion was subsequently reached in more sophisticated models [4, 5, [7, 13, 22, 23]. A further purpose of the paper is to study the torsional
instability of the deck through the model with convexified cables. To this end, we proceed numerically by introducing a new algorithm dealing with the convexification at the beginning of each temporal iteration. We then numerically show that the slackening mechanism hidden in the convexification of the cables yields energy thresholds of instability for high modes significantly smaller than in models where slackening is neglected. This means that the slackening of the hangers must be taken into account because it gives lower thresholds of torsional instability.
This paper is organized as follows. In Section 2 we recall some features of the convexification of a function: we merely focus on the situation that applies to cables since the general setting is fairly complicated. In Section 3 we complete the analysis of the model through a careful energy balance. This enables us to derive the differential inclusions and the differential equations related to approximable solutions in Section 4. In Section 5 we quote our numerical experiments and results. Sections 6 and 7 are devoted to the proofs of our results. Finally, in Section 8 we outline the conclusions. Throughout this paper we denote the derivatives of a function $f=f(t)$ (depending only on t), of a function $g=g(x)$ (depending only on x) and the partial derivatives of a function $w=w(x, t)$, respectively by

$$
\dot{f}=\frac{d f}{d t}, \quad g^{\prime}=\frac{d g}{d x}, \quad w_{x}=\frac{\partial w}{\partial x}, \quad w_{t}=\frac{\partial w}{\partial t},
$$

and similarly for higher order derivatives.

2 The one-dimensional variational problem

Let $\mathcal{J}=(a, b) \subset \mathbb{R}$ be an open bounded interval. Since we are interested in the specific application of a real physical cable, whose shape is described by a function in $H^{2}(\mathcal{J}) \subset C^{1}(\overline{\mathcal{J}})$, in all the paper we shall consider only profiles f of class $C^{1}(\overline{\mathcal{J}})$, avoiding more general assumptions on f.
We shall denote by $f^{* *}$ the convex envelope (or convexification) of f, i.e. the largest convex function satisfying $f^{* *} \leq f$ in $\overline{\mathcal{J}}$. Since f is of class C^{1}, then also $f^{* *}$ belongs to $C^{1}(\overline{\mathcal{J}})$.
In the sequel a major role will be played by the maximal intervals where $f^{* *}$ is affine. We denote by $K^{i}=\left[c^{i}, d^{i}\right], i \in J_{C}$, the (possibly countable) family of all these intervals. Let $K_{f} \subset \mathcal{J}$ be the contact set of f, i.e.

$$
K_{f}:=\left\{x \in \mathcal{J}: f(x)=f^{* *}(x)\right\}
$$

and note that $c^{i}, d^{i} \in K_{f} \cup\{a, b\}$. The set $N:=\mathcal{J} \backslash K_{f}$ is the union of an at most countable family $I_{i}:=\left(a^{i}, b^{i}\right), i \in J$ of open intervals.

We also use the notation

$$
\widetilde{K}_{f}:=K_{f} \backslash \bigcup_{i \in J_{C}} K^{i} .
$$

Around points $x \in \widetilde{K}_{f}$ the function f is strictly convex, meaning that

$$
f^{* *}(x)>f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right), \quad \forall x \in[a, b], x \neq x_{0} .
$$

More precisely, the set $\left\{\left(x, f^{* *}(x)\right): x \in \widetilde{K}_{f} \cup\{a, b\}\right\}$ coincides with the set of exposed points of the epigraph of $f^{* *}$, see Section 6 for the precise definitions.

2.1 The variation of functionals of convexified functions

In order to study the behavior of the cables, we need to compute the variation of energies depending on the convexification of a function. We deal with functionals such as $u \mapsto \int_{\mathcal{J}}[\Lambda(u)]^{* *} d x$ with $\Lambda \in C^{1}(\mathbb{R})$ and we need to compute the Gateaux derivative of such functionals. As we shall see, in general these functionals are not Gateaux differentiable at every point. To illustrate this phenomenon, let us consider first the particular case $\Lambda(u)=u$.

Proposition 2.1. Let $f \in C^{1}(\overline{\mathcal{J}})$ and let $f^{* *}, K^{i}=\left[c^{i}, d^{i}\right]\left(i \in J_{C}\right)$ and \widetilde{K}_{f} be as above. Let $\varphi \in C_{c}^{\infty}(\mathcal{J})$, and, for $i \in J_{C}$, consider the extended real-valued functions

$$
\varphi_{i}^{ \pm}: K^{i} \rightarrow \overline{\mathbb{R}}, \quad \varphi_{i}^{ \pm}(x):= \begin{cases}\varphi(x) & x \in K^{i} \cap\left(K_{f} \cup\{a, b\}\right) \\ \pm \infty & x \in K^{i} \backslash\left(K_{f} \cup\{a, b\}\right)\end{cases}
$$

Then we have

$$
\begin{equation*}
\lim _{s \rightarrow 0^{ \pm}} \int_{\mathcal{J}} \frac{(f+s \varphi)^{* *}-f^{* *}}{s} d x=\int_{\mathcal{J}} \mathcal{J}_{ \pm}^{\varphi} d x \tag{2.1}
\end{equation*}
$$

where

$$
\partial_{ \pm}^{\varphi}(x):= \begin{cases} \pm\left(\pm \varphi_{i}^{ \pm}\right)^{* *}(x) & x \in K^{i}, i \in J_{C} \tag{2.2}\\ \varphi(x) & x \in \widetilde{K}_{f}\end{cases}
$$

Proposition 2.1, whose proof is given in Section 6, has an important consequence.
Corollary 2.2. Under the same assumptions of Proposition 2.1, the functional $f \mapsto \int_{\mathcal{J}} f^{* *}$ is Gateauxdifferentiable at f if and only if

$$
\begin{equation*}
\overline{K_{f}}=\overline{\widetilde{K}_{f}}, \quad \text { i.e., } f>f^{* *} \text { on any open interval where } f^{* *} \text { is affine. } \tag{2.3}
\end{equation*}
$$

In this case, for every $\varphi \in C_{c}^{\infty}(\mathcal{J})$ it holds that $\mathcal{J}_{+}^{\varphi}=\mathcal{J}_{-}^{\varphi}=: \mathcal{J}^{\varphi}$, with

$$
\mathcal{J}^{\varphi}(x):= \begin{cases}\varphi\left(a^{i}\right)+\frac{\varphi\left(b^{i}\right)-\varphi\left(a^{i}\right)}{b^{i}-a^{i}}\left(x-a^{i}\right) & x \in I^{i}, i \in J \tag{2.4}\\ \varphi(x) & x \in K_{f}\end{cases}
$$

Remark 2.3. When condition 2.3 is satisfied, the intervals I^{i} coincide with the interior of the intervals K^{i}, i.e. one has that $a^{i}=c^{i}$ and $b^{i}=d^{i}$ for every $i \in J$. Also note that if $f \in C^{1}(\overline{\mathcal{J}})$ and $\varphi \in C_{c}^{\infty}(\mathcal{J})$, then $\mathfrak{g}_{ \pm}^{\varphi}, \mathcal{g}^{\varphi} \in W^{1,1}(0, L)$.

If f is convex the shape of φ is maintained and we have the classical Gateaux derivative. Proposition 2.1 states that the shape of the test function φ may change if the variation involves a convexification, see Figure 3b). This possible change of φ makes the problem very challenging and is the price for having a physically reliable modeling of the cables. The next example explains why assumption (2.3) is necessary in order to have the Gateaux-differentiability.
Example 2.4. For some $\mu, v \in \mathbb{R}$, take $f(x)=\mu x+v$ on $\mathcal{J}=(-2,2)$ and let

$$
\varphi(x)=e^{\frac{1}{x^{2}-1}} \text { if } x \in(-1,1), \quad \varphi(x)=0 \text { if } x \in \overline{\mathcal{J}} \backslash(-1,1), \quad\left(\varphi \in C_{c}^{\infty}(\mathcal{J})\right)
$$

The limits (2.1) depend on the sign of s. Indeed,

$$
\begin{equation*}
\lim _{s \rightarrow 0 \pm} \int_{\mathcal{J}} \frac{(s \varphi)^{* *}}{s} d x=\int_{\mathcal{J}} \pm(\pm \varphi)^{* *} d x \tag{2.5}
\end{equation*}
$$

and if $s>0$ we have $(s \varphi)^{* *} \equiv 0$ so that 2.5 vanishes, while if $s<0$ we have that $(s \varphi)^{* *}=s\left[-(-\varphi)^{* *}\right]$ and we obtain the point $\zeta \approx 0.25$, such that

$$
-(-\varphi)^{* *}(x)=\varphi(x) \text { if }|x| \in[0, \zeta], \quad-(-\varphi)^{* *}(x)=\frac{e^{\frac{1}{\zeta^{2}-1}}}{\zeta-2}(|x|-2) \text { if }|x| \in(\zeta, 2)
$$

see Figure 4 . It is readily seen that the right and left limits of 2.5 are different, implying the nonexistence of the Gateaux derivative.

Figure 3: a) Convexification of a function f. b) The corresponding $\mathcal{J}_{ \pm}^{\varphi}(x)$, $J^{\varphi}(x)$ as in (2.2), (2.4).

Figure 4: Plot of $(s \varphi)^{* *}$ and $s \varphi$ (dashed), for some values of the parameter s.

The main result of this section is the following generalization of Proposition 2.1
Theorem 2.5. Consider $u \in C^{1}(\overline{\mathcal{J}}, \mathbb{R}), \Lambda \in C^{1}(\mathbb{R})$ and let Λ^{\prime} be its derivative. Let $f:=\Lambda \circ u: \overline{\mathcal{J}} \rightarrow \mathbb{R}$ and let $f^{* *}$, $I^{i}(i \in J), K^{i}\left(i \in J_{C}\right)$ and \widetilde{K}_{f} be as above. Furthermore, assume that f satisfies (2.3). Then, for all $\varphi \in C_{c}^{\infty}(\mathcal{J})$, we have

$$
\lim _{s \rightarrow 0} \int_{\mathcal{J}} \frac{[\Lambda(u+s \varphi)]^{* *}-[\Lambda(u)]^{* *}}{s} d x=\int_{\mathcal{J}} \mathcal{G}^{u, \varphi} d x
$$

where

$$
\mathcal{G}^{u, \varphi}(x):= \begin{cases}\varphi\left(a^{i}\right) \Lambda^{\prime}\left(u\left(a^{i}\right)\right)+\frac{\varphi\left(b^{i}\right) \Lambda^{\prime}\left(u\left(b^{i}\right)\right)-\varphi\left(a^{i}\right) \Lambda^{\prime}\left(u\left(a^{i}\right)\right)}{b^{i}-a^{i}}\left(x-a^{i}\right) & x \in I^{i}, \\ \varphi(x) \Lambda^{\prime}(u(x)) & x \in \overline{\mathcal{J}} \backslash \bigcup_{i \in J} I^{i} .\end{cases}
$$

Theorem 2.5, whose proof is given in Section 6, has an instructive application.
Example 2.6. If $\theta \in C^{1}(\overline{\mathcal{J}}), \Lambda(\theta)=\sin \theta, \psi \in C_{c}^{\infty}(\mathcal{J})$, Theorem 2.5 yields

$$
\lim _{s \rightarrow 0} \int_{\mathcal{J}} \frac{[\sin (\theta+s \psi)]^{* *}-[\sin \theta]^{* *}}{s} d x=\int_{\mathcal{J}} \mathcal{G}^{\theta, \psi} d x
$$

with

$$
\mathcal{G}^{\theta, \psi}(x):= \begin{cases}\psi\left(a^{i}\right) \cos \left(\theta\left(a^{i}\right)\right)+\frac{\psi\left(b^{i}\right) \cos \left(\theta\left(b^{i}\right)\right)-\psi\left(a^{i}\right) \cos \left(\theta\left(a^{i}\right)\right)}{b^{i}-a^{i}}\left(x-a^{i}\right) & x \in I^{i}, \tag{2.6}\\ \psi(x) \cos (\theta(x)) & x \in \overline{\mathcal{J}} \backslash \bigcup_{i \in J} I^{i} .\end{cases}
$$

2.2 Properties of the projection on the cone of convex functions

In this section we give some properties of convexified functions that we will use in the sequel to obtain a priori estimates. In the sequel we denote by $\|\cdot\|_{p}$ the norm related to the Lebesgue space $L^{p}(a, b)$ with $1 \leq p \leq \infty$. All the proofs are given in Section 6 .

Proposition 2.7. Let $T: C^{0}([a, b]) \rightarrow C^{0}([a, b])$ be the operator defined by

$$
\begin{equation*}
T f:=\left(F^{* *}\right)^{\prime}, \quad \text { where } F(x):=\int_{a}^{x} f(y) d y, \quad y \in[a, b] . \tag{2.7}
\end{equation*}
$$

Then

$$
\begin{array}{r}
\int_{a}^{b}|T f-T g| \leq \int_{a}^{b}|f-g| \quad \forall f, g \in C^{0}([a, b]), \\
\|T f-T g\|_{1} \leq\|f-g\|_{1} \quad \forall f, g \in L^{1}(a, b) . \tag{2.9}
\end{array}
$$

Proposition 2.7 shows that the map T is Lipschitzian from L^{1} to L^{1} and it enables us to prove that the convexification is Lipschitzian from $W_{0}^{1,1}$ to $W_{0}^{1,1}$.
Corollary 2.8. The operator $P: W_{0}^{1,1}(a, b) \rightarrow W_{0}^{1,1}(a, b)$, defined by $P[F]:=F^{* *}$, is Lipschitz continuous. More precisely,

$$
\left\|F^{* *}-G^{* *}\right\|_{W^{1,1}} \leq\left(\frac{b-a}{2}+1\right)\left\|F^{\prime}-G^{\prime}\right\|_{1} \quad \forall F, G \in W_{0}^{1,1}(a, b) .
$$

In the sequel we denote by $\mathcal{J}_{F}^{\varphi}, \mathcal{G}^{F, \psi}$ and $\mathcal{J}_{G}^{\varphi}, \mathcal{G}^{G, \psi}$ the corresponding functions associated respectively to F and G as in (2.4) and (2.6). About the regularity of $\mathcal{J}_{F}^{\varphi}$ and $\mathcal{J}_{G}^{\varphi}$ we refer to Remark 2.3 and similarly for $\mathcal{G}^{F, \psi}$ and $\mathcal{G}^{G, \psi}$. The next statement is crucial for the existence and uniqueness result in Section 4.2.

Proposition 2.9. Let $T: L^{1}(a, b) \rightarrow L^{1}(a, b)$ be as in 2.7). Then

$$
\left|\int_{a}^{b}\left[T f\left(\mathcal{J}_{F}^{\varphi}\right)^{\prime}-T g\left(\mathcal{J}_{G}^{\varphi}\right)^{\prime}\right] d x\right| \leq\left\|\varphi^{\prime}\right\|_{\infty}\|f-g\|_{1} \quad \forall f, g \in L^{1}(a, b), \forall \varphi \in C_{c}^{\infty}(\mathcal{J}) .
$$

Similarly, it is possible to state the following more general result.
Proposition 2.10. Let Λ and $\mathcal{G}^{\theta, \psi}$ be as in Example 2.6. $\mathcal{H} \in \operatorname{Lip}(\mathbb{R})$ with Lipschitz constant $\mathcal{L}>0$. Then:
i) $\left|\int_{a}^{b}\left[\mathcal{H}(T f)\left(\mathcal{J}_{F}^{\varphi}\right)^{\prime}-\mathcal{H}(T g)\left(\mathcal{J}_{G}^{\varphi}\right)^{\prime}\right] d x\right| \leq \mathcal{L}\left\|\varphi^{\prime}\right\|_{\infty}\|f-g\|_{1} \quad \forall f, g \in L^{1}(a, b), \forall \varphi \in C_{c}^{\infty}(\mathcal{J})$;
ii) $\exists C>0,\left|\int_{a}^{b}\left[\mathcal{H}(T f)\left(\mathcal{G}^{F, \psi}\right)^{\prime}-\mathcal{H}(T g)\left(\mathcal{G}^{G, \psi}\right)^{\prime}\right] d x\right| \leq C\|F-G\|_{W^{1,1}} \quad \forall f, g \in L^{1}, \forall \psi \in C_{c}^{\infty}(\mathcal{J})$.

We conclude this section with the continuous dependence of $\left(\mathcal{d}^{\varphi}\right)^{\prime}$ on f.
Proposition 2.11. Let $f, f_{n} \in C^{1}(\overline{\mathcal{J}}), n \in \mathbb{N}$, satisfy assumption (2.3), assume that the sequence $\left\{f_{n}\right\}$ converges uniformly to f, and let $\varphi \in C_{c}^{\infty}(\mathcal{J})$. Denote by \mathcal{J}^{φ} the function related to f defined in (2.4) and by $\mathscr{J}_{n}^{\varphi}$ the corresponding function related to f_{n}. Then $\left\|\left\|_{n}^{\varphi}-\mathcal{J}^{\varphi}\right\|_{1} \rightarrow 0\right.$ and $\|\left(\mathscr{J}_{n}^{\varphi}\right)^{\prime}-\left(\mathcal{J}^{\varphi}\right)^{\prime} \|_{1} \rightarrow 0$.

3 Energy balance in a suspension bridge

3.1 The energy of the deck

In this section we define all the energetic contributions involved in the cable-hangers-beam system aiming to derive the variational form of the problem. In Figure 5 is sketched a cross section of the bridge, in which the degrees of freedom $w(x, t)$ and $\theta(x, t)$ correspond respectively to the downward displacement and the torsional angle around the barycentric line of the deck. We do not consider the

Figure 5: Mutual positions of the cross section of the bridge and of the cables.
masses of the hangers and of the cables, since they are negligible with respect to the mass of the deck. The deformations of the deck deriving from bending and torsion are modeled, as for a beam, according to the de Saint Venant and Vlasov theory: the deck is characterized by the flexural rigidity $E I$, the torsional rigidity $G K$ (by de Saint Venant) and the torsional warping EJ (by Vlasov [37]). The energy of the deck is given by the kinetic, the gravitational and the deformation contributions, for details see [24],

$$
\begin{aligned}
E_{d} & =\frac{M}{2} \int_{0}^{L} w_{t}^{2} d x+\frac{M \ell^{2}}{6} \int_{0}^{L} \theta_{t}^{2} d x-M g \int_{0}^{L} w d x \\
& +\frac{E I}{2} \int_{0}^{L} w_{x x}^{2} d x+\frac{G K}{2} \int_{0}^{L} \theta_{x}^{2} d x+\frac{E J}{2} \int_{0}^{L} \theta_{x x}^{2} d x
\end{aligned}
$$

where M is the mass linear density of the deck, ℓ its semi width, g the gravitational acceleration, E the Young modulus, G the shear modulus, I the moment of inertia, K the torsional constant and J is the warping constant of the cross section. The last term was added by Vlasov [37] to the de Saint Venant's deformation terms.

3.2 The deformation energy of the cables

We assume that the cables have the same mechanical properties and, at rest, they take a parabolic shape given by

$$
\begin{equation*}
y(x)=-\frac{4 f}{L^{2}} x^{2}+\frac{4 f}{L} x-y_{0} \quad \forall x \in[0, L] \tag{3.1}
\end{equation*}
$$

where y_{0} is the height of the towers and f is the cable sag as in Figure 1; for details on the derivation of (3.1) we refer to [31, 23]. The local length of the cables is given for all $x \in[0, L]$ by the bounded function

$$
\xi(x):=\sqrt{1+y^{\prime}(x)^{2}}, \quad 1 \leq \xi(x) \leq \xi_{M}:=\sqrt{1+\left(\frac{4 f}{L}\right)^{2}}
$$

From [35, p.68] we know that in bridge design the sag-span ratio f / L varies between $1 / 12$ and $1 / 8$, implying a little variation of $\xi(x)$ on $[0, L]$; indeed, its maximum value, assumed for $x \in\{0, L\}$, is $\xi(0)=\xi(L)=\xi_{M} \in\left[\frac{\sqrt{10}}{3}, \frac{\sqrt{5}}{2}\right]=[1.05,1.11]$. In engineering literature $\xi(x)$ is often approximated with 1 , see [31]. But $\xi(x)$ remains closer to its mean value $\bar{\xi}$ over the interval [$0, L]$; for these reasons we shall use the approximation

$$
\begin{equation*}
\xi(x) \approx \bar{\xi}:=\frac{\int_{0}^{L} \xi(x) d x}{L} \tag{3.2}
\end{equation*}
$$

We recall that for the TNB, by assuming (3.2), the maximum error is less than 2.86%.
To obtain the energy of the cables we need to find their convexified shapes. Figure 5 a) shows the situation with tensioned hangers, in which the edges of the deck have moved downwards of $w \pm \ell \sin \theta$. In this case, the cables have a convex shape and the hangers behave like inextensible elements so that the cables have the same displacement of the deck and their positions are $(w \pm \ell \sin \theta+y)$. In Figure $5 \mathrm{~b})$ we represent the innovative part of our model. If the endpoints of the cross section of the deck move upwards, above the position $(w \pm \ell \sin \theta+y)=0$, then the slackening of the hangers may occur, producing a vertical displacement in the cables equal to $(w \pm \ell \sin \theta+y)^{* *}$. The shape of the cables is then given by the convexification of the function $(w \pm \ell \sin \theta+y)$, that depends on both x and t. To determine the deformation energy of a cable we need to compute its variation of length with respect to its initial length $\left.L_{c}:=\int_{0}^{L} \sqrt{1+\left(y^{\prime}\right)^{2}}\right) d x$. Then, we introduce the functional

$$
\begin{equation*}
\Gamma: C^{1}[0, L] \rightarrow \mathbb{R}, \quad \Gamma(u):=\int_{0}^{L}\left(\sqrt{1+\left\{\left[(u+y)^{* *}\right]_{x}\right\}^{2}}\right) d x-L_{c} \tag{3.3}
\end{equation*}
$$

which is well-defined, since the convexification preserves the C^{1}-regularity of u. The deformation energy E_{C} of the cables is composed by two contributions. The first is related to the tension at rest and the second to the additional tension due to the increment of the length $\Gamma(w \pm \ell \sin \theta)$ of each cable. Hence if $\bar{\xi}$ is as in (3.2), we have

$$
\begin{align*}
E_{C}= & H \bar{\xi}\left[\int_{0}^{L}\left(\sqrt{1+\left\{\left[(w+\ell \sin \theta+y)^{* *}\right]_{x}\right\}^{2}}+\sqrt{1+\left\{\left[(w-\ell \sin \theta+y)^{* *}\right]_{x}\right\}^{2}}\right) d x-2 L_{c}\right] \tag{3.4}\\
& +\frac{A E_{c}}{2 L_{c}}\left([\Gamma(w+\ell \sin \theta)]^{2}+[\Gamma(w-\ell \sin \theta)]^{2}\right)
\end{align*}
$$

with $H=$ horizontal tension, $A=$ sectional area, $E_{c}=$ Young modulus of the cable.

3.3 Functional spaces and total energy of the system

We consider the Hilbert spaces $L^{2}(0, L), H_{0}^{1}(0, L)$ and $H^{2} \cap H_{0}^{1}(0, L)$, endowed respectively with the scalar products

$$
(u, v)_{2}=\int_{0}^{L} u v, \quad(u, v)_{H^{1}}=\int_{0}^{L} u^{\prime} v^{\prime}, \quad(u, v)_{H^{2}}=\int_{0}^{L} u^{\prime \prime} v^{\prime \prime}
$$

We denote by $H^{*}(0, L)$ the dual space of $H^{2} \cap H_{0}^{1}(0, L)$ with the corresponding duality $\langle\cdot, \cdot\rangle_{*}$. The solutions of the equations are required to satisfy $(w, \theta) \in X_{T}^{2}$, where

$$
\begin{equation*}
X_{T}:=C^{0}\left([0, T] ; H^{2} \cap H_{0}^{1}(0, L)\right) \cap C^{1}\left([0, T] ; L^{2}(0, L)\right) \cap C^{2}\left([0, T] ; H^{*}(0, L)\right) \tag{3.5}
\end{equation*}
$$

Then, by adding all the energetic contributions of the system, for every $(w, \theta) \in X_{T}^{2}$ we find the functional

$$
\begin{align*}
\mathcal{E}(w, \theta):= & \int_{0}^{L}\left(\frac{M}{2} w_{t}^{2}+\frac{M \ell^{2}}{6} \theta_{t}^{2}\right) d x+\int_{0}^{L}\left(\frac{E I}{2} w_{x x}^{2}+\frac{E J}{2} \theta_{x x}^{2}+\frac{G K}{2} \theta_{x}^{2}\right) d x \\
& +H \bar{\xi}\left\{\int_{0}^{L}\left(\sqrt{1+\left\{\left[(w+\ell \sin \theta+y)^{* *}\right]_{x}\right\}^{2}}+\sqrt{1+\left\{\left[(w-\ell \sin \theta+y)^{* *}\right]_{x}\right\}^{2}}\right) d x\right\} \tag{3.6}\\
& -2 H \bar{\xi} L_{c}+\frac{A E_{c}}{2 L_{c}}\left([\Gamma(w+\ell \sin \theta)]^{2}+[\Gamma(w-\ell \sin \theta)]^{2}\right)-M g \int_{0}^{L} w d x
\end{align*}
$$

that is well-defined and represents the energy of the system.
Proposition 3.1. The functional $\mathcal{E}: X_{T}^{2} \rightarrow \mathbb{R}$ is locally Lipschitz continuous.
Proof. The statemant holds if, for every bounded subset $X \subset X_{T}^{2}$ there exists $\mathcal{L}>0$ such that, given (w_{1}, θ_{1}) and $\left(w_{2}, \theta_{2}\right) \in X$ we have

$$
\begin{equation*}
\left|\mathcal{E}\left(w_{1}, \theta_{1}\right)-\mathcal{E}\left(w_{2}, \theta_{2}\right)\right| \leq \mathcal{L}\left(\left\|\left(w_{1}-w_{2}\right)_{t}\right\|_{1}+\left\|\left(\theta_{1}-\theta_{2}\right)_{t}\right\|_{1}+\left\|w_{1}-w_{2}\right\|_{W^{2,1}}+\left\|\theta_{1}-\theta_{2}\right\|_{W^{2,1}}\right) . \tag{3.7}
\end{equation*}
$$

By (3.6) we observe that the most tricky terms are those including $\Gamma(\cdot)$ and $\bar{\xi}$, while for the others (3.7) is easily proved. Let us recall the inequality

$$
\left|\sqrt{1+\left(u_{1}+v\right)^{2}}-\sqrt{1+\left(u_{2}+v\right)^{2}}\right| \leq\left|\left(u_{1}+v\right)-\left(u_{2}+v\right)\right|=\left|u_{1}-u_{2}\right| \quad \forall u_{1}, u_{2}, v \in \mathbb{R},
$$

that gives

$$
\begin{aligned}
& \left|\sqrt{1+\left\{\left[\left(w_{1} \pm \ell \sin \theta_{1}+y\right)^{* *}\right]_{x}\right\}^{2}}-\sqrt{1+\left\{\left[\left(w_{2} \pm \ell \sin \theta_{2}+y\right)^{* *}\right]_{x}\right\}^{2}}\right| \\
& \leq\left|\left[\left(w_{1} \pm \ell \sin \theta_{1}+y\right)^{* *}-\left(w_{2} \pm \ell \sin \theta_{2}+y\right)^{* *}\right]_{x}\right| .
\end{aligned}
$$

Hence, it is possible to use (2.9) so that there exists $L_{1}>0$ such that

$$
\begin{aligned}
& H \bar{\xi} \int_{0}^{L}\left|\sqrt{1+\left\{\left[\left(w_{1} \pm \ell \sin \theta_{1}+y\right)^{* *}\right]_{x}\right\}^{2}}-\sqrt{1+\left\{\left[\left(w_{2} \pm \ell \sin \theta_{2}+y\right)^{* *}\right]_{x}\right\}^{2}}\right| d x \\
& \leq H \bar{\xi}\left(\left\|\left(w_{1}-w_{2}\right)_{x}\right\|_{1}+\ell\left\|\left(\sin \theta_{1}-\sin \theta_{2}\right)_{x}\right\|_{1}\right) \leq L_{1}\left(\left\|\left(w_{1}-w_{2}\right)_{x}\right\|_{1}+\left\|\theta_{1}-\theta_{2}\right\|_{W^{1,1}}\right) .
\end{aligned}
$$

The same argument can be applied to the terms $[\Gamma(w \pm \ell \sin \theta)]^{2}$, see (3.3).
This result enables us to use the notion of Clarke subdifferential [15] and to compute the variation of (3.6) in the general framework of the differential inclusions. We also point out that some problems in elasticity may be tackled with a slightly different notion of nonsmooth critical points, see [18].

4 Suspension bridges with convexified cables

4.1 The variation of the deformation energy of the cables

The presence of the convexified functions within the functional $\mathcal{E}(w, \theta)$ in (3.6) introduces some difficulties in computing its variation; from Proposition 2.1 the unilateral Gateaux derivative exists and is always bounded, while the Gateaux derivative may not exist in some cases. Let us focus on one cable, the other being similar. We introduce

$$
\begin{aligned}
& D^{-}:=\left[H \bar{\xi}+\frac{A E_{c}}{L_{c}} \Gamma(w+\ell \sin \theta)\right] \int_{0}^{L} \frac{\left[(w+\ell \sin \theta+y)^{* *}\right]_{x}\left(\partial^{\varphi}\right)^{\prime}}{\sqrt{1+\left\{\left[(w+\ell \sin \theta+y)^{* *}\right]_{x}\right\}^{2}}} d x \\
& D^{+}:=\left[H \bar{\xi}+\frac{A E_{c}}{L_{c}} \Gamma(w+\ell \sin \theta)\right] \int_{0}^{L} \frac{\left[(w+\ell \sin \theta+y)^{* *}\right]_{x}\left(\partial^{\varphi}\right)^{\prime}}{\sqrt{1+\left\{\left[(w+\ell \sin \theta+y)^{* *}\right]_{x}\right\}^{2}}} d x,
\end{aligned}
$$

where $\mathcal{J}_{ \pm}^{\varphi}(x)$ are defined in 2.2 with $f=(w+\ell \sin \theta+y)$. By applying Proposition 2.1, we find the following inclusion related to the variation of the energy (3.4) with respect to w

$$
\left\langle d E_{C}(w, \theta), \varphi\right\rangle \in\left[\min \left\{D^{-}, D^{+}\right\}, \max \left\{D^{-}, D^{+}\right\}\right] .
$$

To avoid this heavy notation, in the sequel we always write

$$
\left\langle d E_{C}(w, \theta), \varphi\right\rangle \in\left[H \bar{\xi}+\frac{A E_{c}}{L_{c}} \Gamma(w+\ell \sin \theta)\right] \int_{0}^{L} \frac{\left[(w+\ell \sin \theta+y)^{* *}\right]_{x}\left(\mathcal{g}_{ \pm}^{\varphi}\right)^{\prime}}{\sqrt{1+\left\{\left[(w+\ell \sin \theta+y)^{* *}\right]_{x}\right\}^{2}}} d x \quad \forall \varphi \in C_{c}^{\infty}(\mathcal{J}) .
$$

By applying Theorem 2.5 with $\Lambda(\theta)=\sin \theta$ we obtain the inclusion related to the variation of the energy (3.4 with respect to θ

$$
\left\langle d E_{C}(w, \theta), \psi\right\rangle \in\left[H \bar{\xi}+\frac{A E_{c}}{L_{c}} \Gamma(w+\ell \sin \theta)\right] \ell \int_{0}^{L} \frac{\left[(w+\ell \sin \theta+y)^{* *}\right]_{x}\left(\mathcal{G}_{ \pm}^{\theta, \psi}\right)_{x}}{\sqrt{1+\left\{\left[(w+\ell \sin \theta+y)^{* *}\right]_{x}\right\}^{2}}} d x \quad \forall \psi \in C_{c}^{\infty}(\mathcal{J})
$$

where $\mathcal{G}_{ \pm}^{\theta, \psi}(x)$ is defined for every $t \geq 0$ as follows: given $g_{i}^{ \pm}: K^{i} \rightarrow \overline{\mathbb{R}}$, with $i \in J_{C}$

$$
g_{i}^{ \pm}(x):=\left\{\begin{array}{ll}
\psi(x) \cos (\theta(x)) & x \in K^{i} \cap\left(K_{f} \cup\{a, b\}\right), \tag{4.1}\\
\pm \infty & x \in K^{i} \backslash\left(K_{f} \cup\{a, b\}\right) .
\end{array} \quad \mathcal{G}_{ \pm}^{\theta, \psi}(x):= \begin{cases} \pm\left(\pm g_{i}^{ \pm}\right)^{* *}(x) & x \in K^{i} \\
\psi(x) \cos (\theta(x)) & x \in \widetilde{K}_{f}\end{cases}\right.
$$

Note that the functions $\mathcal{J}_{ \pm}^{\varphi}$ and $\mathcal{G}_{ \pm}^{\theta, \psi}$ are spatially continuous with a finite number of angular points, so that $\left(\mathcal{J}_{ \pm}^{\varphi}\right)^{\prime}$ and $\left(\mathcal{G}_{ \pm}^{\theta, \psi}\right)_{x}$ are bounded on the interval $[0, L]$ and continuous almost everywhere in $[0, L]$, see Remark 2.3,

In the simple cases in which the cable is strictly convex (or concave!) we gain the differentiability of (3.6) and the inclusions become equalities. In the first case, because $\widetilde{K}_{f}=\mathcal{J}$ so that $\mathcal{J}_{ \pm}^{\varphi}$ and $\mathcal{G}_{ \pm}^{\theta, \psi}$ coincide respectively with φ and $\psi \cos \theta$. In the second case, $K^{1}=\bar{I}^{1}=\overline{\mathcal{J}}$ so that $\mathcal{J}^{\varphi}=\mathcal{G}^{\theta, \psi}=0$ and $(w+\ell \sin \theta+y)^{* *}=-y_{0}$ for all $x \in[0, L]$; this situation corresponds to a zero variation in the cable energy since the slackening of all the hangers occurs, implying the total disconnection between the cable and the deck. We point out that in the case where the cable is perfectly horizontal we obtain the same physical result, due to $(w+\ell \sin \theta+y)_{x}=\left[(w+\ell \sin \theta+y)^{* *}\right]_{x}=0$ for all $x \in[0, L]$, while $\mathcal{J}_{ \pm}^{\varphi}$ and $\mathcal{G}_{ \pm}^{\theta, \psi}$ maintain their oscillatory nature.

4.2 The system of partial differential inclusions

We set here the problem in the general framework of partial differential inclusions, resulting from the variation of (3.6). The subscripts α and β denote the terms corresponding respectively to the cable with shape $(w+\ell \sin \theta+y)^{* *}$ and $(w-\ell \sin \theta+y)^{* *}$. Hence, we have $\mathcal{J}_{\alpha \pm}^{\varphi}(x), \mathcal{G}_{\alpha \pm}^{\theta, \psi}(x)$ and $\mathcal{J}_{\beta \pm}^{\varphi}(x), \mathcal{G}_{\beta \pm}^{\theta, \psi}(x)$ that correspond to $\mathscr{\partial}_{ \pm}^{\varphi}(x), \mathcal{G}_{ \pm}^{\theta, \psi}(x)$ related respectively to $f_{\alpha}=(w+\ell \sin \theta+y)$ and $f_{\beta}=(w-\ell \sin \theta+y)$, as defined in (2.2) and 4.1$)$. Moreover, we include all the nonlinearities into the functionals

$$
\begin{aligned}
& h_{\alpha}(Z, \Theta):=-\left(H \bar{\xi}+\frac{A E_{c}}{L_{c}} \Gamma(Z+\ell \sin \Theta)\right) \frac{\left[(Z+\ell \sin \Theta+y)^{* *}\right]_{x}}{\sqrt{1+\left\{\left[(Z+\ell \sin \Theta+y)^{* *}\right]_{x}\right\}^{2}}} \\
& h_{\beta}(Z, \Theta):=-\left(H \bar{\xi}+\frac{A E_{c}}{L_{c}} \Gamma(Z-\ell \sin \Theta)\right) \frac{\left[(Z-\ell \sin \Theta+y)^{* *}\right]_{x}}{\sqrt{1+\left\{\left[(Z-\ell \sin \Theta+y)^{* *}\right]_{x}\right\}^{2}}}
\end{aligned}
$$

As for the action, one has to take the difference between kinetic energy and potential energy and integrate over an interval of time $[0, T]$:

$$
\begin{aligned}
\mathcal{A}(w, \theta):= & \int_{0}^{T}\left[\int_{0}^{L}\left(\frac{M}{2} w_{t}^{2}+\frac{M \ell^{2}}{6} \theta_{t}^{2}\right) d x-\int_{0}^{L}\left(\frac{E I}{2} w_{x x}^{2}+\frac{E J}{2} \theta_{x x}^{2}+\frac{G K}{2} \theta_{x}^{2}\right) d x\right. \\
& -H \bar{\xi}\left\{\int_{0}^{L}\left(\sqrt{1+\left\{\left[(w+\ell \sin \theta+y)^{* *}\right]_{x}\right\}^{2}}+\sqrt{1+\left\{\left[(w-\ell \sin \theta+y)^{* *}\right]_{x}\right\}^{2}}\right) d x-2 L_{c}\right\} \\
& \left.-\frac{A E_{c}}{2 L_{c}}\left([\Gamma(w+\ell \sin \theta)]^{2}+[\Gamma(w-\ell \sin \theta)]^{2}\right)+M g \int_{0}^{L} w d x\right] d t .
\end{aligned}
$$

The differential inclusion describing the motion of the bridge is obtained by considering the critical points of the functional \mathcal{A}, which leads to the following
Definition 4.1. We say that $(w, \theta) \in X_{T}^{2}$, see (3.5), is a weak solution of the differential inclusion, resulting from critical points of the action \mathcal{A}, if (w, θ) satisfies

$$
\left\{\begin{array}{l}
M\left\langle w_{t t}, \varphi\right\rangle_{*}+E I(w, \varphi)_{H^{2}}-(M g, \varphi)_{2} \in\left(h_{\alpha}(w, \theta),\left(\mathcal{J}_{\alpha \pm}^{\varphi}\right)^{\prime}\right)_{2}+\left(h_{\beta}(w, \theta),\left(\mathcal{J}_{\beta \pm}^{\varphi}\right)^{\prime}\right)_{2}, \tag{4.2}\\
\frac{M \ell}{3}\left\langle\theta_{t t}, \psi\right\rangle_{*}+\frac{E J}{\ell}(\theta, \psi)_{H^{2}}+\frac{G K}{\ell}(\theta, \psi)_{H^{1}} \in\left(h_{\alpha}(w, \theta),\left(\mathcal{G}_{\alpha \pm}^{\theta, \psi}\right)_{x}\right)_{2}-\left(h_{\beta}(w, \theta),\left(\mathcal{G}_{\beta \pm}^{\theta, \psi}\right)_{x}\right)_{2},
\end{array}\right.
$$

for all $\varphi, \psi \in H^{2} \cap H_{0}^{1}(0, L)$ and $t>0$.
The system 4.2 is complemented with the initial conditions:

$$
\begin{array}{ll}
w(x, 0)=w^{0}(x), \quad \theta(x, 0)=\theta^{0}(x) & \text { for } x \in(0, L) \\
w_{t}(x, 0)=w^{1}(x), \quad \theta_{t}(x, 0)=\theta^{1}(x) & \text { for } x \in(0, L) \tag{4.3}
\end{array}
$$

having the following regularity

$$
\begin{equation*}
w^{0}, \theta^{0} \in H^{2} \cap H_{0}^{1}(0, L), \quad w^{1}, \theta^{1} \in L^{2}(0, L) \tag{4.4}
\end{equation*}
$$

From [6, 14, 15] we learn that existence results for a differential inclusion can be a difficult task, requiring some regularity of the right hand side terms, e.g. the continuity. For our purposes, to approach problem 4.2-4.3) in fully generality is not necessary: since we deal with a civil structure, we perform some simplifications. We follow a suggestion from [9, p.23] which says that "... out of the infinite number of possible modes of motion in which a suspension bridge might vibrate, we are interested only in a few, to wit: the ones having the smaller numbers of loops or half waves". Indeed, civil structures typically oscillate on low modes since higher modes do not appear in real situations due to large bending energy, see [9]. This suggestion mathematically corresponds to project an infinite dimensional space on a finite dimensional subspace, using the Galerkin approximation. Whence, we take $\left\{e_{k}\right\}_{k=1}^{\infty}$ as an orthogonal basis of $L^{2}(0, L), H_{0}^{1}(0, L), H^{2} \cap H_{0}^{1}(0, L)$, where

$$
e_{k}(x)=\sqrt{\frac{2}{L}} \sin \left(\frac{k \pi x}{L}\right), \quad\left\|e_{k}\right\|_{2}=1, \quad\left\|e_{k}\right\|_{H^{1}}=\frac{k \pi}{L}, \quad\left\|e_{k}\right\|_{H^{2}}=\frac{k^{2} \pi^{2}}{L^{2}}
$$

and, for any $n \geq 1$, we introduce the space $E_{n}:=\operatorname{span}\left\{e_{1}, \ldots, e_{n}\right\}$. For any $n \geq 1$ we seek a couple $\left(w_{n}, \theta_{n}\right) \in X_{T}^{2}$ such that

$$
w_{n}(x, t)=\sum_{k=1}^{n} w_{n}^{k}(t) e_{k}(x), \quad \theta_{n}(x, t)=\sum_{k=1}^{n} \theta_{n}^{k}(t) e_{k}(x)
$$

and satisfying (4.2) only for the test functions $\varphi, \psi \in E_{n}$, thereby obtaining a finite system of ordinary differential inclusions. In fact, in this finite dimensional setting, the inclusions become equalities, since for every fixed $n \in \mathbb{N}$, all the intervals of affinity (if any) of $\left(w_{n} \pm \ell \sin \theta_{n}+y\right)^{* *}$ are such that $\left(w_{n} \pm \ell \sin \theta_{n}+y\right)>\left(w_{n} \pm \ell \sin \theta_{n}+y\right)^{* *}$. Then Corollary 2.2 applies and the Gateaux derivative exists, leading to a finite system of ordinary differential equations $(r=1, \ldots, n)$ with initial conditions

$$
\left\{\begin{align*}
& M\left(\left(w_{n}\right)_{t t}, e_{r}\right)_{2}+ E I\left(w_{n}, e_{r}\right)_{H^{2}}-\left(M g, e_{r}\right)_{2}= \tag{4.5}\\
&\left(h_{\alpha}\left(w_{n}, \theta_{n}\right),\left[\mathcal{J}_{\alpha}^{e_{r}}\right]^{\prime}\right)_{2}+\left(h_{\beta}\left(w_{n}, \theta_{n}\right),\left[g_{\beta}^{e_{r}}\right]^{\prime}\right)_{2} \\
& \frac{M \ell}{3}\left(\left(\theta_{n}\right)_{t t}, e_{r}\right)_{2}+ \frac{E J}{\ell}\left(\theta_{n}, e_{r}\right)_{H^{2}}+\frac{G K}{\ell}\left(\theta_{n}, e_{r}\right)_{H^{1}}= \\
&\left(h_{\alpha}\left(w_{n}, \theta_{n}\right),\left[\mathcal{G}_{\alpha}^{\left.\left.\theta_{n}, e_{r}\right]_{x}\right)}-\left(h_{\beta}\left(w_{n}, \theta_{n}\right),\left[\mathcal{G}_{\beta}^{\theta_{n}, e_{r}}\right]_{x}\right)_{2}\right.\right. \\
& w_{n}^{k}(0)=\left(w^{0}, e_{k}\right)_{2}, \quad \theta_{n}^{k}(0)=\left(\theta^{0}, e_{k}\right)_{2} \quad \dot{w}_{n}^{k}(0)=\left(w^{1}, e_{k}\right)_{2}, \quad \dot{\theta}_{n}^{k}(0)=\left(\theta^{1}, e_{k}\right)_{2} .
\end{align*}\right.
$$

In Section 7 we prove
Theorem 4.2. Let $n \geq 1$ an integer and $T>0$ (possibly $T=\infty$), then for all $w^{0}, \theta^{0}, w^{1}, \theta^{1}$ satisfying (4.4) there exists a unique solution $\left(w_{n}, \theta_{n}\right) \in X_{T}^{2}$ of 4.5.

This justifies the following
Definition 4.3. For all $n \in \mathbb{N}$, we say that the solution $\left(w_{n}, \theta_{n}\right)$ of (4.5) is an approximate solution of (4.2)- (4.3). We say that $(w, \theta) \in X_{T}^{2}$ is an approximable solution of (4.2)-(4.3) if there exists a sequence of approximate solutions of (4.2)-(4.3), converging to it as $n \rightarrow \infty$, up to a subsequence.

We now state the main result of this section, whose proof is given in Section 7 .
Theorem 4.4. Let $T>0$ (possibly $T=\infty$), then for all $w^{0}, \theta^{0}, w^{1}, \theta^{1}$ satisfying (4.4) there exists an approximable solution of (4.2) which satisfies 4.3) on $[0, T]$.

Remark 4.5. We refer to [24] for some consequences in existence and uniqueness results when we consider the same problem with variable $\xi(x)$, i.e. not assuming 3.2 . The results obtained on $\left(w_{n}, \theta_{n}\right)$ can be achieved in the same way considering a different number of modes for w and θ, i.e. taking $\left(w_{n}, \theta_{\nu}\right)$ with $n \neq \nu$.

5 Numerical results

In this section we present some numerical experiments on the system 4.5). The results are obtained with the software Matlab ${ }^{\circledR}$, adopting the mechanical constants of the TNB in Table 1 .

$E:$	200000 MPa	Young modulus of the deck (steel)
$E_{c}:$	185000 MPa	Young modulus of the cables (steel)
$G:$	81000 MPa	Shear modulus of the deck (steel)
$L:$	853.44 m	Length of the main span
$\ell:$	6 m	Half width of the deck
$f:$	70.71 m	Sag of the cable
$I:$	$0.154 \mathrm{~m}^{4}$	Moment of inertia of the deck cross section
$K:$	$6.07 \cdot 10^{-6} \mathrm{~m}^{4}$	Torsional constant of the deck
$J:$	$5.44 \mathrm{~m}^{6}$	Warping constant of the deck
$A:$	$0.1228 \mathrm{~m}^{2}$	Area of the cables section
$M:$	$7198 \mathrm{~kg} / \mathrm{m}^{2}$	Mass linear density of the deck
$H:$	45413 kN	Initial tension in the cables
$L_{c}:$	868.815 m	Initial length of the cables, see $\sqrt{3.3}$

Table 1: TNB mechanical constants.
When we speak about a mode like $\sin \left(\frac{k \pi}{L} x\right)$, we refer to a motion with $k-1$ nodes, in which the latter are the zeros of the sine function in $(0, L)$. Let us recall some meaningful witnesses that led our modeling choices. From [2, p.28] we know that for the TNB "seven different motions have been definitely identified on the main span of the bridge". The morning of the failure Farquharson, a witness of the collapse described a torsional motion like $\sin \left(\frac{2 \pi}{L} x\right)$, writing [2, V-2] "a violent change in the motion was noted. [...] the motions, which a moment before had involved a number of waves (nine or ten) had shifted almost instantly to two [...] the node was at the center of the main span and the structure was subjected to a violent torsional action about this point".

By Theorem 4.4 we may consider an approximable solution of 4.2) and decide how many modes to include in the finite dimensional approximation. From [2] we learn that, at the TNB, oscillations with more than 10 nodes on the main span were never seen. Hence, we consider the first 10 longitudinal modes and the first 4 torsional modes; this is a good compromise between limiting computational
burden and focusing on the instability phenomena visible at TNB. Further experiments with a larger number of modes did not highlight significant changes in the instability thresholds. Given the boundary conditions, we seek solutions of 4.5 in the form

$$
\begin{equation*}
w(x, t)=\sum_{k=1}^{10} w_{k}(t) e_{k}, \quad \theta(x, t)=\sum_{k=1}^{4} \theta_{k}(t) e_{k} \tag{5.1}
\end{equation*}
$$

where $e_{k}(x)=\sqrt{\frac{2}{L}} \sin \left(\frac{k \pi x}{L}\right)$ and $\sqrt{\frac{2}{L}}$ is a pure number with no unit of measure; we call $\bar{w}_{k}(t):=$ $\sqrt{\frac{2}{L}} w_{k}(t)$ the k-th longitudinal mode and $\bar{\theta}_{k}(t):=\sqrt{\frac{2}{L}} \theta_{k}(t)$ the k-th torsional mode. We obtain a system of 14 ODEs as 7.2 with initial conditions

$$
\begin{array}{lll}
w_{k}(0)=w_{k}^{0}=\left(w^{0}, e_{k}\right)_{2}, & \dot{w}_{k}(0)=w_{k}^{1}=\left(w^{1}, e_{k}\right)_{2}, & \forall k=1, \ldots, 10 \\
\theta_{k}(0)=\theta_{k}^{0}=\left(\theta^{0}, e_{k}\right)_{2}, & \dot{\theta}_{k}(0)=\theta_{k}^{1}=\left(\theta^{1}, e_{k}\right)_{2} & \forall k=1, \ldots, 4
\end{array}
$$

We put $\bar{w}_{k}^{0}:=\sqrt{\frac{2}{L}} w_{k}^{0}, \bar{w}_{k}^{1}:=\sqrt{\frac{2}{L}} w_{k}^{1}$ and similarly for the θ initial conditions. Since we study an isolated system we assume that on the bridge there is a balance between damping and wind on an interval $[0, T]$ for sufficiently small $T>0$. We consider a time lapse of $[0,120 s]$, which is a small time interval compared to 70 minutes of violent oscillations recorded prior to the TNB collapse [2], enough to see the possible sudden transfer of energy between modes. We study the system during its steady motion, in which the oscillation of a j-th longitudinal mode prevails, and we perturb all the other modes with an initial condition 10^{-3} smaller, i.e. in dimensionless form

$$
\bar{w}_{k}^{0}=10^{-3} \cdot \bar{w}_{j}^{0} \quad \forall k \neq j, \quad \bar{\theta}_{k}^{0}=\bar{w}_{k}^{1}=\bar{\theta}_{k}^{1}=10^{-3} \cdot \bar{w}_{j}^{0} \quad \forall k
$$

Following this approach we say that the initial energy of our system corresponds to that of the longitudinal mode excited and represents, indirectly, the wind energy introduced on the bridge through the so-called vortex shedding (see e.g. [38, 39, 41] and the monograph [34]), although in the present paper the energy will be inserted through the initial conditions in a conservative system.

According to the Report [2, p.20], in the months prior to the collapse, "one principal mode of oscillation prevailed and the modes of oscillation frequently changed". Therefore, we follow [25] and we consider that the approximate solution (5.1) has an initially prevailing longitudinal mode, that is, there exists $j=1, \ldots, 10$ such that $w_{j}(0)$ is much larger than all the other initial data (both longitudinal and torsional). Then the j-th longitudinal mode is torsionally stable if all the torsional components $\theta_{k}(t)$ remain small for all t. In our analysis we aim to be more precise and we give a quantitative characterization of "smallness". We consider thresholds of instability following [25] and we say that the j-th longitudinal mode is torsionally unstable if at least one torsional mode grows about 1 order in amplitude in the time lapse $[0,120 s]$. From a numerical point of view we define the threshold of instability of the j-th longitudinal mode excited as

$$
\begin{equation*}
W_{j}^{0}:=\left\{\inf \bar{w}_{j}^{0}: \max _{k}\left\{\max _{t \in[0, T]}\left|\bar{\theta}_{k}(t)\right|\right\} \geq 10^{-2} \cdot \bar{w}_{j}^{0}\right\} \tag{5.2}
\end{equation*}
$$

this condition allows us to obtain thresholds W_{j}^{0} accurate enough for our purposes.
As explained in Section 3.2, through the convexification procedure, we are able to simulate the slackening of the hangers. To measure the slackening quantity occurring in our numerical experiments, we identify the two cables by the subscripts α and β as in Section 4.2 , and we recall that, in the numerical discretization, $[0, T]$ is equally divided in m time steps; for each time step we compute Δt_{h}
$(h=1, \ldots, m)$, a measure of the percentage of slacken hangers, i.e. the ratio between the measure of the union of the intervals of linearity for each cable and the length of the deck L :

$$
\mathcal{M}_{h}^{\alpha}:=\frac{1}{L}\left|\bigcup_{i \in J_{\alpha}} I_{\alpha}^{i}\right| \quad \mathcal{M}_{h}^{\beta}:=\frac{1}{L}\left|\bigcup_{j \in J_{\beta}} I_{\beta}^{j}\right| \quad \forall h=1, \ldots, m
$$

Since the angle of rotation is small, the two cables behave quite similarly and, therefore, we define a mean value of the measure of slackening as

$$
\begin{equation*}
\mathcal{M}=\frac{1}{2 m}\left[\sum_{h=1}^{m} \mathcal{M}_{h}^{\alpha}+\sum_{h=1}^{m} \mathcal{M}_{h}^{\beta}\right] . \tag{5.3}
\end{equation*}
$$

Our purpose is to compare the instability thresholds of the model with convexification to those of the same model without convexification, see [23], i.e. we study how the slackening of the hangers affects the system. In Table 2 we have this comparison in terms of initial energy and amplitude threshold of instability of the j-th longitudinal mode excited, computed following (5.2). For each numerical experiment we verified the energy conservation, ascertaining a relative error, $\mid(\max \mathcal{E}(t)-$ $\min \mathcal{E}(t)) / \mathcal{E}(0) \mid$, on the integration time $[0,120 s]$, less than $4 \cdot 10^{-3}$.

Mode	Convexification (Slackening)			No convexification (Rigid hangers)	
	$W_{j}^{0}[\mathrm{~m}]$	$\mathcal{E}(0)[\mathrm{J}]$	$\mathcal{M}[\%]$	$W_{j}^{0}[\mathrm{~m}]$	$\mathcal{E}(0)[\mathrm{J}]$
	4.09	$7.96 \cdot 10^{7}$	1.92	4.09	$7.96 \cdot 10^{7}$
2	8.37	$8.74 \cdot 10^{7}$	2.94	8.22	$8.37 \cdot 10^{7}$
3	4.89	$8.58 \cdot 10^{7}$	2.40	4.82	$8.23 \cdot 10^{7}$
4	5.35	$1.63 \cdot 10^{8}$	41.79	4.92	$1.35 \cdot 10^{8}$
5	4.25	$1.77 \cdot 10^{8}$	39.40	3.93	$1.52 \cdot 10^{8}$
6	3.64	$1.64 \cdot 10^{8}$	43.46	2.64	$8.72 \cdot 10^{7}$
7	3.65	$2.38 \cdot 10^{8}$	51.72	5.25	$8.29 \cdot 10^{8}$
8	3.28	$2.27 \cdot 10^{8}$	50.05	5.15	$1.12 \cdot 10^{9}$
9	2.31	$1.54 \cdot 10^{8}$	42.55	3.87	$7.40 \cdot 10^{8}$
10	2.65	$2.34 \cdot 10^{8}$	52.73	3.41	$6.97 \cdot 10^{8}$

Table 2: Thresholds of instability as in (5.2), corresponding energy and measure of slackening as in (5.3), varying the longitudinal mode excited on $[0,120 s]$.

From the data in Table 2 we notice different tendencies depending on the mode excited. The first 3 longitudinal modes give substantially the same thresholds of instability in the case with convexification and without, due to the very low percentage of slackening, see \mathcal{M}. This fact is not surprising, since a longitudinal motion of the deck like a $\sin \left(\frac{\pi}{L} x\right)$ modifies the convexity of the cable only for very large displacements, requiring a so large amount of energy that the threshold of instability is achieved before the appearance of slackening.

Figure 6: Plots of $\bar{w}_{k}(t)(k=1, \ldots, 10)$ in meters and $\bar{\theta}_{k}(t)(k=1, \ldots, 4)$ in radians on $[0,120 s]$ with $\bar{w}_{10}^{0}=0.75 \mathrm{~m}$.

Quite different is the behavior of the modes from the $4^{t h}$ onward, since in these cases we appreciate differences between two models. We distinguish two tendencies respectively for the intermediate modes $\left(4^{t h}, 5^{t h}\right.$ and $\left.6^{t h}\right)$ and the higher modes. The thresholds of the intermediate modes reveal that the instability arises earlier for the model with inextensible hangers, so that the latter can be adopted in favor of safety. We point out that the $4^{t h}, 5^{t h}$ and $6^{t h}$ modes were not seen the day of the collapse of the TNB; the witnesses recorded that, before the rise of the torsional instability, the bridge manifested longitudinal oscillations with 9 or 10 waves, involving the motion of higher longitudinal modes. For these modes the presence of the slackening puts down the thresholds of instability so that the assumption of rigid hangers is not in favor of safety. We underline that in these cases we see more instability despite the injection of energy is smaller; this behavior is peculiar of the hangers slackening that favors a greater transfer of energy between modes with respect to the case with inextensible hangers, see also [22]. The results in Table 2 highlight furthermore that the $9^{t h}$ and $10^{t h}$ longitudinal modes present the lowest torsional instability threshold in the case with slackening, confirming the real observations at the TNB collapse.

In Figure 6 we exhibit an example of stability obtained on the system with convexification, imposing $\bar{w}_{10}^{0}=0.75 \mathrm{~m}$; we notice a very little exchange of energy between modes and, in general, the torsional modes oscillate around their initial amplitude, revealing a stable behavior. In this case some slack is present ($\mathcal{M}=13.50 \%$), while reducing further the initial amplitude, e.g. $\bar{w}_{9}^{0} \leq 0.60 \mathrm{~m}$ or $\bar{w}_{10}^{0} \leq 0.55 \mathrm{~m}$, would produce the total absence of slackening and a clear stable situation, see [23].

For brevity in Figure 7 we present only the torsional modes related to the instability thresholds of the $9^{\text {th }}$ and $10^{\text {th }}$ longitudinal modes, obtained respectively applying $\bar{w}_{9}^{0}=2.31 \mathrm{~m}$ and $\bar{w}_{10}^{0}=2.65 \mathrm{~m}$. In general, when 5.2 is verified all the torsional modes begin to grow, but Figure 7 confirms that the $9^{\text {th }}$ and $10^{\text {th }}$ longitudinal modes are more prone to develop instability on the $2^{\text {nd }}$ torsional mode, since it attains the largest growth on $[0,120 s]$.

Our numerical results show that structures displaying only low modes of vibration may be treated assuming inextensible hangers; this simplification reduces the computational costs and gives safe instability thresholds. On the other hand, if the structure vibrates on higher modes, this assumption could give overestimated thresholds to the detriment of safety; in this case the slackening of the hangers plays

Figure 7: $\bar{\theta}_{k}(t)(k=1, \ldots, 4)$ in rad. on $[0,120 s]$ with $\bar{w}_{9}^{0}=2.31 \mathrm{~m}$ (above) and $\bar{w}_{10}^{0}=2.65 \mathrm{~m}$ (below).
an important role. This fact should be a warning for the designers of bridges that are able to exhibit, in realistic situations, large vibration frequencies.

6 Proofs of the results on the convexification

The proofs of the results of Section 2 require some basic tools of convex analysis (see e.g. [21, 36]). Given a closed convex set $E \subset \mathbb{R}^{n}$, a point $p \in \partial E$ is an extreme point of E if it is not contained in any open segment $] r, q[$ with $r, q \in \partial E$, whereas it is an exposed point of E if there exists a support hyperplane H to E with $H \cap E=\{p\}$. We denote by $\operatorname{extr} E$ and expo E, respectively, the sets of extremal and exposed points of E, see Figure 8 .

Figure 8: An example of $f^{* *}(x)$ in which extr E and expo E are in evidence.
Let us prove the following preliminary
Lemma 6.1. Let $f \in C^{1}(\overline{\mathcal{J}})$, and let $\left(f_{n}\right) \subset C^{1}(\overline{\mathcal{J}})$ be a sequence converging uniformly to f. Then it holds:
(a) If $x_{0} \in \widetilde{K}_{f}$ and, for every $n \in \mathbb{N},\left[a_{n}, b_{n}\right] \subset \overline{\mathcal{J}}, \lambda_{n} \in[0,1]$ satisfy

$$
x_{0}=\left(1-\lambda_{n}\right) a_{n}+\lambda_{n} b_{n}, \quad f_{n}^{* *}\left(x_{0}\right)=\left(1-\lambda_{n}\right) f_{n}\left(a_{n}\right)+\lambda_{n} f_{n}\left(b_{n}\right),
$$

then $a_{n}, b_{n} \rightarrow x_{0}$.
(b) If, in addition, f satisfies (2.3), i.e. $\overline{K_{f}}=\widetilde{K}_{f}$, and $\left(a_{0}, b_{0}\right)$ is one of the maximal intervals I^{i} where $f^{* *}$ is affine, then for every $n \in \mathbb{N}$ there exists a maximal interval $\left(a_{n}, b_{n}\right)$ where $f_{n}^{* *}$ is affine such that $a_{n} \rightarrow a_{0}, b_{n} \rightarrow b_{0}$.

Proof. (a) Since x_{0} is an exposed point of the epigraph of $f^{* *}$, it holds

$$
f(x) \geq f^{* *}(x)>f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right) \quad \forall x \neq x_{0} .
$$

Assume by contradiction that at least one of the sequences $\left(a_{n}\right),\left(b_{n}\right)$ does not converge to x_{0}. Then there exists a subsequence $\left(n_{j}\right)$ such that $a_{n_{j}} \rightarrow \bar{a}, b_{n_{j}} \rightarrow \bar{b}$, with $\bar{a} \leq x_{0} \leq \bar{b}$ and $\bar{a}<\bar{b}$. Moreover, we clearly have $\lambda_{n_{j}} \rightarrow \lambda:=\left(x_{0}-\bar{a}\right) /(\bar{b}-\bar{a})$. Hence,

$$
f^{* *}\left(x_{0}\right)=\lim _{j} f_{n_{j}}^{* *}\left(x_{0}\right)=\lim _{j}\left(1-\lambda_{n_{j}}\right) f_{n_{j}}\left(a_{n_{j}}\right)+\lambda_{n_{j}} f_{n_{j}}\left(b_{n_{j}}\right)=(1-\lambda) f(\bar{a})+\lambda f(\bar{b})>f^{* *}\left(x_{0}\right),
$$

a contradiction.
(b) In view of (a), it is enough to prove that, if $x_{0} \in\left(a_{0}, b_{0}\right)$, then $x_{0} \notin K_{f_{n}}$ for n large enough. Assume by contradiction that there exists a subsequence $\left(n_{j}\right)$ such that $x_{0} \in K_{f_{n_{j}}}$ for every j, i.e., $f_{n_{j}}\left(x_{0}\right)=f_{n_{j}}^{* *}\left(x_{0}\right)$ for every j. Since, by assumption, $f>f^{* *}$ on (a_{0}, b_{0}), one has

$$
f\left(x_{0}\right)>f^{* *}\left(x_{0}\right)=\lim _{j} f_{n_{j}}^{* *}\left(x_{0}\right)=\lim _{j} f_{n_{j}}\left(x_{0}\right)=f\left(x_{0}\right),
$$

a contradiction.
Proof of Proposition 2.1. Let $M>\max _{[a, b]} f$, so that $E:=\operatorname{epi} f^{* *} \cap\{y \leq M\}$ is a compact convex subset of \mathbb{R}^{2}. Moreover, we have that

$$
\left\{(x, f(x)): x \in \widetilde{K}_{f} \cup\{a, b\}\right\}=\operatorname{expo} E \cap\{y<M\}
$$

i.e., the set at left-hand side coincides with the set of exposed points of epi $f^{* *}$. Let

$$
f_{s}:=f+s \varphi, \quad f_{s}^{* *}:=\left(f_{s}\right)^{* *}, \quad s \in \mathbb{R} .
$$

By the Dominated Convergence Theorem, Proposition 2.1 will be a consequence of the following pointwise convergences:

$$
\begin{array}{rr}
\lim _{s \rightarrow 0} \frac{f_{s}^{* *}\left(x_{0}\right)-f^{* *}\left(x_{0}\right)}{s}=\varphi\left(x_{0}\right) & \text { if } x_{0} \in \widetilde{K}_{f}, \\
\lim _{s \rightarrow 0^{ \pm}} \frac{f_{s}^{* *}\left(x_{0}\right)-f^{* *}\left(x_{0}\right)}{s}= \pm\left(\varphi_{i}^{ \pm}\right)^{* *}\left(x_{0}\right) & \text { if } x_{0} \in K^{i}, i \in J_{C} . \tag{6.2}
\end{array}
$$

Proof of (6.1). We have already observed that, if $x_{0} \in \widetilde{K}_{f}$, then $f^{* *}\left(x_{0}\right)=f\left(x_{0}\right)$ and $\left(x_{0}, f\left(x_{0}\right)\right) \in$ expo E. Since $f \in C^{1}$, by definition of exposed point we have that

$$
f(x) \geq f^{* *}(x)>f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)=: h(x), \quad \forall x \in[a, b], x \neq x_{0} .
$$

For every $s \in \mathbb{R}$ let $a_{s} \in\left[a, x_{0}\right], b_{s} \in\left[x_{0}, b\right]$, and $\lambda_{s} \in[0,1]$ be such that

$$
\begin{equation*}
x_{0}=\left(1-\lambda_{s}\right) a_{s}+\lambda_{s} b_{s}, \quad f_{s}^{* *}\left(x_{0}\right)=\left(1-\lambda_{s}\right) f_{s}\left(a_{s}\right)+\lambda_{s} f_{s}\left(b_{s}\right) . \tag{6.3}
\end{equation*}
$$

Let us first prove that

$$
\begin{equation*}
\lim _{s \rightarrow 0^{+}} \frac{f_{s}^{* *}\left(x_{0}\right)-f^{* *}\left(x_{0}\right)}{s}=\varphi\left(x_{0}\right) . \tag{6.4}
\end{equation*}
$$

Since

$$
\frac{f_{s}^{* *}\left(x_{0}\right)-f^{* *}\left(x_{0}\right)}{s} \leq \frac{f_{s}\left(x_{0}\right)-f\left(x_{0}\right)}{s}=\varphi\left(x_{0}\right), \quad \forall s>0,
$$

it follows that

$$
\limsup _{s \rightarrow 0^{+}} \frac{f_{s}^{* *}\left(x_{0}\right)-f^{* *}\left(x_{0}\right)}{s} \leq \varphi\left(x_{0}\right)
$$

hence it remains to prove that

$$
l:=\liminf _{s \rightarrow 0^{+}} \frac{f_{s}^{* *}\left(x_{0}\right)-f^{* *}\left(x_{0}\right)}{s} \geq \varphi\left(x_{0}\right)
$$

Let $s_{n} \searrow 0$ be a sequence such that $l=\lim _{n \rightarrow+\infty} \frac{f_{s}^{* *}\left(x_{0}\right)-f^{* *}\left(x_{0}\right)}{s_{n}}$. Using (6.3) it holds

$$
\begin{align*}
& \frac{f_{s_{n}}^{* *}\left(x_{0}\right)-f^{* *}\left(x_{0}\right)}{s_{n}}=\frac{\left(1-\lambda_{s_{n}}\right) f_{s_{n}}\left(a_{s_{n}}\right)+\lambda_{s_{n}} f_{s_{n}}\left(b_{s_{n}}\right)-f\left(x_{0}\right)}{s_{n}} \tag{6.5}\\
& =\frac{\left(1-\lambda_{s_{n}}\right) f\left(a_{s_{n}}\right)+\lambda_{s_{n}} f\left(b_{s_{n}}\right)-f\left(x_{0}\right)}{s_{n}}+\left(1-\lambda_{s_{n}}\right) \varphi\left(a_{s_{n}}\right)+\lambda_{s_{n}} \varphi\left(b_{s_{n}}\right)
\end{align*}
$$

Since the sequence $\left\{f_{s_{n}}\right\}$ converges uniformly to f, by Lemma 6.1(i) it follows that $a_{s_{n}}, b_{s_{n}} \rightarrow x_{0}$, hence the right-hand side of (6.5) converges to a quantity greater than or equal to $\varphi\left(x_{0}\right)$, so that $l \geq \varphi\left(x_{0}\right)$ and (6.4) follows. The computation of the limit (6.4) for $s \rightarrow 0^{-}$can be done similarly, observing that the same inequalities as above hold with reversed signs. Hence, we conclude that (6.1) holds.

Proof of 6.2) We shall prove (6.2 only for $s \rightarrow 0^{+}$, being the proof for $s \rightarrow 0^{-}$entirely similar. Let $i \in J_{C}$ and let us denote

$$
B:=K^{i} \cap\left(K_{f} \cup\{a, b\}\right), \quad A:=K^{i} \backslash B
$$

Clearly, the set B is closed and contains both the endpoints of the interval K^{i}.
It is not restrictive to assume that $f^{* *}(x)=0$ for every $x \in K^{i}$, so that

$$
\begin{equation*}
f(x)=0 \quad \forall x \in B, \quad f(x)>0 \quad \forall x \in A \tag{6.6}
\end{equation*}
$$

Let us extend the function φ_{i}^{+}to $+\infty$ outside K^{i}. Since $\varphi \leq \varphi_{i}^{+}$and $\left(f+s \varphi_{i}^{+}\right)(x)=s \varphi_{i}^{+}(x)$ for every $x \in K^{i}$, we have that

$$
f_{s}^{* *}(x)=(f+s \varphi)^{* *}(x) \leq\left(f+s \varphi_{i}^{+}\right)^{* *}(x)=s\left(\varphi_{i}^{+}\right)^{* *}(x), \quad \forall x \in K^{i}
$$

hence

$$
\limsup _{s \rightarrow 0^{+}} \frac{f_{s}^{* *}\left(x_{0}\right)-f^{* *}\left(x_{0}\right)}{s} \leq\left(\varphi_{i}^{+}\right)^{* *}\left(x_{0}\right), \quad \forall x_{0} \in K^{i}
$$

Let $s_{n} \searrow 0$ be a sequence such that

$$
l:=\liminf _{s \rightarrow 0^{+}} \frac{f_{s}^{* *}\left(x_{0}\right)-f^{* *}\left(x_{0}\right)}{s}=\lim _{n \rightarrow+\infty} \frac{f_{s_{n}}^{* *}\left(x_{0}\right)-f^{* *}\left(x_{0}\right)}{s_{n}}
$$

and let $E_{n}:=\operatorname{epi} f_{s_{n}}^{* *} \cap\{y \leq M\}, n \in \mathbb{N}$. By (6.6), for every $\varepsilon>0$, there exists $N_{\varepsilon} \in \mathbb{N}$ such that, for $n \geq N_{\varepsilon}$, the extreme points of E_{n} belong to $B+B_{\varepsilon}$, so that

$$
\begin{equation*}
K_{f_{s_{n}}} \cap K^{i} \subset B+B_{\varepsilon} \quad \forall n \geq N_{\varepsilon} \tag{6.7}
\end{equation*}
$$

Let

$$
\varphi_{\epsilon}(x):= \begin{cases}\varphi(x) & x \in B+B_{\varepsilon} \\ +\infty & \text { otherwise }\end{cases}
$$

so that $\varphi_{\epsilon}(x)=\varphi_{i}^{+}(x)$ for all $x \in B$ and $\varphi_{\epsilon} \rightarrow \varphi_{i}^{+}$pointwise in K_{i}. From (6.7) we know that $f_{s_{n}}^{* *}(x)=\left(f+s_{n} \varphi_{\epsilon}\right)^{* *}(x)$ for all $x \in K^{i}$ and all $n \geq N_{\varepsilon}$ so that

$$
l=\lim _{n \rightarrow+\infty} \frac{f_{s_{n}}^{* *}\left(x_{0}\right)-f^{* *}\left(x_{0}\right)}{s_{n}} \geq \liminf _{n \rightarrow+\infty} \frac{\left(f+s_{n} \varphi_{\epsilon}\right)^{* *}\left(x_{0}\right)-f^{* *}\left(x_{0}\right)}{s_{n}} \geq \varphi_{\varepsilon}^{* *}\left(x_{0}\right)
$$

Finally, letting $\varepsilon \rightarrow 0$, we conclude that $l \geq\left(\varphi_{i}^{+}\right)^{* *}\left(x_{0}\right)$, concluding the proof.

Proof of Theorem 2.5. Since f satisfies assumption 2.3, we can use the same arguments of Step 1 in Proposition 2.1. We omit the details.
Proof of Proposition 2.7. If $f \in C^{0}([a, b])$, then $T f \in C^{0}([a, b]), F \in C^{1}([a, b]), F^{* *} \in C^{1}([a, b])$, and $F(a)=F^{* *}(a)=0, F(b)=F^{* *}(b)$. Hence,

$$
\begin{equation*}
\int_{a}^{b} T f(y) d y=\int_{a}^{b} f(y) d y \quad \forall f \in C^{0}([a, b]) \tag{6.8}
\end{equation*}
$$

In the following, we shall denote by K_{F} the contact set of F, defined by $K_{F}:=\{x \in(a, b): F(x)=$ $\left.F^{* *}(x)\right\}$. We remark that $f=T f$ on K_{F}. Moreover, we have the following characterization of K_{F} :

$$
\begin{align*}
K_{F} & =\left\{x \in(a, b): F(y)-F(x)-(y-x) F^{\prime}(x) \geq 0, \forall y \in[a, b]\right\} \\
& =\left\{x \in(a, b): \int_{x}^{y}[f(s)-f(x)] d s \geq 0, \forall y \in[a, b]\right\} \tag{6.9}
\end{align*}
$$

Let $f, g \in C^{0}([a, b])$ and let $F(x):=\int_{a}^{x} f(y) d y, G(x):=\int_{a}^{x} g(y) d y, x \in[a, b]$. We claim that

$$
\begin{equation*}
f, g \in C^{0}([a, b]), f \leq g \quad \Longrightarrow \quad T f \leq T g \tag{6.10}
\end{equation*}
$$

Before proving (6.10), we observe that, from (6.8), 6.10 and [17, Proposition 1], we can conclude that (2.8) holds. So, it remains to prove (6.10). It will be convenient to perform a couple of reductions.

Reduction 1: it is not restrictive to prove (6.10) under the additional assumption

$$
\begin{equation*}
f(a)=T f(a), \quad f(b)=T f(b), \quad g(a)=T g(a), \quad g(b)=T g(b) \tag{6.11}
\end{equation*}
$$

Specifically, since

$$
T f(a)=\inf _{x \in(a, b]} \frac{F(x)-F(a)}{x-a}=\inf _{x \in(a, b]} \frac{1}{x-a} \int_{a}^{x} f(s) d s
$$

it is clear that $T f(a) \leq f(a)$. If $T f(a)<f(a)$, then there exists $\beta \in(a, b]$ such that (a, β) is a connected component of $(a, b) \backslash K_{F}$. Given $\varepsilon>0$, let $c_{\varepsilon}:=(1+1 / \sqrt{2}) \varepsilon$, and define the function

$$
\varphi_{\varepsilon}(t):= \begin{cases}-1+t / \varepsilon & \text { if } t \in\left[0, c_{\varepsilon}\right] \\ -1+\left(2 c_{\varepsilon}-t\right) / \varepsilon & \text { if } t \in\left[c_{\varepsilon}, 2 c_{\varepsilon}-\varepsilon\right] \\ 0 & \text { otherwise }\end{cases}
$$

so that $\varphi_{\varepsilon}(0)=-1$ and $\int_{0}^{2 c_{\varepsilon}-\varepsilon} \varphi_{\varepsilon}=0$. It is not difficult to show that, for $\varepsilon>0$ small enough, the function $f_{\varepsilon}(x):=f(x)+[f(a)-T f(a)] \varphi_{\varepsilon}(x-a)$ satisfies $T f_{\varepsilon}=T f$ and $T f_{\varepsilon}(a)=f_{\varepsilon}(a)$. Moreover, we have $\left\|f_{\varepsilon}-f\right\|_{1} \rightarrow 0$ as $\varepsilon \rightarrow 0$; similarly, we can modify f near b and the same for g.

Reduction 2: it is not restrictive to prove 6.10 under the additional assumption

$$
\begin{equation*}
f<g \quad \text { in }[a, b] \tag{6.12}
\end{equation*}
$$

Specifically, it is enough to check that $T(g+\varepsilon)=T g+\varepsilon$.
We are thus reduced to prove (6.10) when $f, g \in C([a, b])$ satisfy also (6.11) and 6.12). Let

$$
x_{0}:=\max \{x \in[a, b]: T f(y) \leq T g(y) \forall y \in[a, x]\}
$$

Since $F \leq G$, we have that $F^{* *} \leq G^{* *}$ and hence $T f(a) \leq T g(a)$. Moreover, by 6.11) and 6.12), we clearly have $x_{0}>a$.

Assume by contradiction that $x_{0}<b$, so that $T f\left(x_{0}\right)=T g\left(x_{0}\right)$, and let us consider the following cases.

Case 1: $x_{0} \in K_{F} \cap K_{G}$. Hence,

$$
T f\left(x_{0}\right)=f\left(x_{0}\right)<g\left(x_{0}\right)=T g\left(x_{0}\right)
$$

in contradiction with $T f\left(x_{0}\right)=T g\left(x_{0}\right)$.
Case 2: $x_{0} \in K_{F}, x_{0} \notin K_{G}$. Let (α, β) be the maximal connected component of $(a, b) \backslash K_{G}$ containing x_{0}, so that $T g$ is constant on $[\alpha, \beta]$ and $g(\alpha)=T g(\alpha), g(\beta)=T g(\beta)$. Here it is worth to remark that these equalities hold also in the case $\alpha=a$ or $\beta=b$ thanks to (6.11). By the characterization (6.9) we have that:

$$
x_{0} \in K_{F} \Longrightarrow \int_{x_{0}}^{\beta}\left[f(s)-f\left(x_{0}\right)\right] d s \geq 0, \quad \beta \in K_{G} \text { or } \beta=b \Longrightarrow \int_{x_{0}}^{\beta}[g(\beta)-g(s)] d s \geq 0
$$

so that

$$
\begin{equation*}
\int_{x_{0}}^{\beta}\left[g(\beta)-g(s)+f(s)-f\left(x_{0}\right)\right] d s \geq 0 \tag{6.13}
\end{equation*}
$$

On the other hand $g(\beta)=T g(\beta)=T g\left(x_{0}\right)$ and $f\left(x_{0}\right)=T f\left(x_{0}\right)$. Since $T f\left(x_{0}\right)=T g\left(x_{0}\right)$, we conclude that $g(\beta)=f\left(x_{0}\right)$, hence from (6.13) it holds

$$
\int_{x_{0}}^{\beta}[f(s)-g(s)] d s \geq 0
$$

contradicting the assumption $f<g$.
Case 3: $x_{0} \notin K_{F}, x_{0} \in K_{G}$. We can reason as in the previous case, considering the connected component (α, β) of $(a, b) \backslash K_{f}$ containing x_{0}, and obtaining the inequality

$$
\int_{\alpha}^{x_{0}}\left[g\left(x_{0}\right)-g(s)+f(s)-f(\alpha)\right] d s \geq 0
$$

Since, here, $g\left(x_{0}\right)=f(\alpha)$, we get again a contradiction with the assumption $f<g$.
Case 4: $x_{0} \notin K_{F}, x_{0} \notin K_{G}$. In this case $T f$ and $T g$ are locally constant in a neighborhood of x_{0}, again contradicting the definition of x_{0}. This proves (2.8).

We divide the proof of (2.9) into two steps.
$S T E P$ 1. If $f \in L^{1}(a, b)$ and the sequence $\left\{f_{n}\right\} \subset C^{0}([a, b])$ converges to f in L^{1}, then

$$
T f_{n} \rightarrow T f \quad \text { a.e., } \quad \text { and } \quad\left\|T f_{n}-T f\right\|_{1} \rightarrow 0
$$

Let $F(x):=\int_{a}^{x} f, F_{n}(x):=\int_{a}^{x} f_{n}$. We have that $F_{n} \rightarrow F$ uniformly in $[a, b]$, hence also $F_{n}^{* *} \rightarrow F^{* *}$ uniformly in $[a, b]$. (Proof: use the characterization $F^{* *}(x)=\min \left\{(1-\lambda) F\left(x_{0}\right)+\lambda F\left(x_{1}\right): \lambda \in\right.$ $\left.[0,1],(1-\lambda) x_{0}+\lambda x_{1}=x\right\}$.) By Theorem 24.5 in [36] we deduce that $\left(F_{n}^{* *}\right)^{\prime} \rightarrow\left(F^{* *}\right)^{\prime}$ at every point of differentiability of $F^{* *}$, i.e. almost everywhere in $[a, b]$. By definition of T, it follows that $T f_{n} \rightarrow T f$ a.e. in $[a, b]$.

The L^{1} convergence of $\left\{T f_{n}\right\}$ to $T f$ follows from (2.8). Namely, from (2.8) we have that $\| T f_{n}-$ $T f_{m}\left\|_{1} \leq\right\| f_{n}-f_{m} \|_{1}$, hence $\left\{T f_{n}\right\}$ is a Cauchy sequence in L^{1} (and so it converges to its pointwise limit), thereby proving the claim of Step 1.
$S T E P$ 2. Given $f, g \in L^{1}(a, b)$, let $\left\{f_{n}\right\},\left\{g_{n}\right\} \subset C^{0}([a, b])$ sequences converging in L^{1} respectively to f and g. By (2.8), we have that $\left\|T f_{n}-T g_{n}\right\|_{1} \leq\left\|f_{n}-g_{n}\right\|_{1}$ for every n. Hence, by Step 1 , passing to the limit as $n \rightarrow+\infty$ we obtain 2.9 .
Proof of Proposition 2.9. By 2.4 we have that

$$
T f=\left\{\begin{array}{ll}
\frac{F\left(b^{i}\right)-F\left(a^{i}\right)}{b^{i}-a^{i}} & x \in I^{i}, i \in J, \\
F^{\prime}(x) & x \in K_{F} .
\end{array} \quad\left(\mathcal{\partial}_{F}^{\varphi}\right)^{\prime}= \begin{cases}\frac{\varphi\left(b^{i}\right)-\varphi\left(a^{i}\right)}{b^{i}-a^{i}}=\frac{\int_{a^{i}}^{b^{i}} \varphi^{\prime} d x}{b^{i}-a^{i}} & x \in I^{i}, i \in J, \\
\varphi^{\prime}(x) & x \in K_{F},\end{cases}\right.
$$

and similarly for $T g$ and $\left(\mathcal{J}_{G}^{\varphi}\right)^{\prime}$. Then we have the fundamental integral equivalence

$$
\int_{a}^{b}\left[T f\left(\mathcal{J}_{F}^{\varphi}\right)^{\prime}-T g\left(\mathcal{J}_{G}^{\varphi}\right)^{\prime}\right] d x=\int_{a}^{b}[T f-T g] \varphi^{\prime} d x, \quad \forall \varphi \in C_{c}^{\infty}(\mathcal{J})
$$

so that the thesis is achieved by applying the Hölder inequality and 2.9 .
Proof of Proposition 2.10, i) Let us observe that

$$
\int_{a}^{b}\left[\mathcal{H}(T f)\left(\mathcal{J}_{F}^{\varphi}\right)^{\prime}-\mathcal{H}(T g)\left(\mathcal{J}_{G}^{\varphi}\right)^{\prime}\right] d x=\int_{a}^{b}[\mathcal{H}(T f)-\mathcal{H}(T g)] \varphi^{\prime} d x, \quad \forall \varphi \in C_{c}^{\infty}(\mathcal{J})
$$

then we proceed as in Proposition 2.9, considering the Lipschitz property of \mathcal{H}.
ii) We consider the equivalence

$$
\begin{align*}
& \int_{a}^{b}\left[\mathcal{H}(T f)\left(\mathcal{G}^{F, \psi}\right)^{\prime}-\mathcal{H}(T g)\left(\mathcal{G}^{G, \psi}\right)^{\prime}\right] d x=\int_{a}^{b}\left[\mathcal{H}(T f)(\psi \cos F)^{\prime}-\mathcal{H}(T g)(\psi \cos G)^{\prime}\right] d x \\
& =\int_{a}^{b}[\mathcal{H}(T f)-\mathcal{H}(T g)](\psi \cos F)^{\prime} d x+\int_{a}^{b} \mathcal{H}(T g)(\psi \cos F-\psi \cos G)^{\prime} d x \quad \forall \psi \in C_{c}^{\infty}(\mathcal{J}) \tag{6.14}
\end{align*}
$$

Since $(\psi \cos F-\psi \cos G)^{\prime}=\psi^{\prime}(\cos F-\cos G)-\psi[(f-g) \sin F+g(\sin F-\sin G)]$, the thesis follows by the Lipschitzianity of \sin , \cos and by arguing as in the above proofs.

Proof of Proposition 2.11. The functions ∂_{n}^{φ} are Lipschitz continuous, with

$$
\left\|\partial_{n}^{\varphi}\right\|_{\infty} \leq\|\varphi\|_{\infty}, \quad\left\|\left(\partial_{n}^{\varphi}\right)^{\prime}\right\|_{\infty} \leq\left\|\varphi^{\prime}\right\|_{\infty}
$$

Hence, by the Dominated Convergence Theorem, it is enough to show that $\mathcal{J}_{n}^{\varphi} \rightarrow \mathcal{J}^{\varphi}$ and $\left(\mathcal{J}_{n}^{\varphi}\right)^{\prime} \rightarrow\left(\mathcal{J}^{\varphi}\right)^{\prime}$ a.e. in \mathcal{J}. The pointwise convergence of $\left\{\mathcal{J}_{n}^{\varphi}\right\}$ to \mathcal{J}^{φ} is a direct consequence of Lemma 6.1. To prove the a.e. convergence of $\left\{\left(\partial_{n}^{\varphi}\right)^{\prime}\right\}$ to $\left(\partial^{\varphi}\right)^{\prime}$, it will be convenient to distinguish between the two cases (a) and (b) in Lemma 6.1.

Let x_{0} be as in case (a), and assume that all the function $\mathscr{J}_{n}^{\varphi}$ are differentiable at x_{0} (this condition is satisfied at almost every point). For every n, if $x_{0} \in K_{f_{n}}$ (i.e. $a_{n}=b_{n}$) then $\left(\mathcal{J}_{n}^{\varphi}\right)^{\prime}\left(x_{0}\right)=\varphi^{\prime}\left(x_{0}\right)$, otherwise there exists $x_{n} \in\left(a_{n}, b_{n}\right)$ such that

$$
\left(\partial_{n}^{\varphi}\right)^{\prime}\left(x_{0}\right)=\frac{\varphi\left(b_{n}\right)-\varphi\left(a_{n}\right)}{b_{n}-a_{n}}=\varphi^{\prime}\left(x_{n}\right)
$$

Since $a_{n}, b_{n} \rightarrow x_{0}$, we finally get $\left(\mathcal{J}_{n}^{\varphi}\right)^{\prime}\left(x_{0}\right) \rightarrow \varphi^{\prime}\left(x_{0}\right)=\left(\mathcal{J}^{\varphi}\right)^{\prime}\left(x_{0}\right)$.
Let x_{0} be as in case (b). Then, for n large enough,

$$
\left(\mathcal{J}_{n}^{\varphi}\right)^{\prime}\left(x_{0}\right)=\frac{\varphi\left(b_{n}\right)-\varphi\left(a_{n}\right)}{b_{n}-a_{n}} \rightarrow \frac{\varphi\left(b_{0}\right)-\varphi\left(a_{0}\right)}{b_{0}-a_{0}}=\left(\mathcal{J}^{\varphi}\right)^{\prime}\left(x_{0}\right)
$$

and the proof is complete.

7 Proofs of existence and uniqueness results

To simplify the notations we define the functionals

$$
\begin{equation*}
\chi(u):=\frac{u^{\prime}}{\sqrt{1+\left(u^{\prime}\right)^{2}}}, \quad \gamma(u):=\sqrt{1+\left(u^{\prime}\right)^{2}} \tag{7.1}
\end{equation*}
$$

and we state a preliminary

Lemma 7.1. $\chi, \gamma: C^{1}[0, L] \rightarrow C^{0}[0, L]$ are locally Lipschitz continuous.
Proof. Given $v, w \in C^{1}[0, L]$, we apply the Lagrange Theorem, so that there exists $\varrho:=\varrho(x) \in\left(v^{\prime}, w^{\prime}\right)$ such that

$$
\left.\mid \chi(v)-\chi(w))\left|=\frac{\left|v^{\prime}-w^{\prime}\right|}{\sqrt{\left(1+\varrho^{2}\right)^{3}}} \leq\left|v^{\prime}-w^{\prime}\right|, \quad\right| \gamma(v)-\gamma(w)\right)\left|=\frac{|\varrho|\left|v^{\prime}-w^{\prime}\right|}{\sqrt{1+\varrho^{2}}} \leq\left|v^{\prime}-w^{\prime}\right|\right.
$$

Proof of Theorem 4.2. Let $n \geq 1$ an integer. Testing n times equations 4.5 for $r=1, \ldots, n$ and $t \geq 0$ we obtain a system of ODE's for $k=1, \ldots, n$

$$
\left\{\begin{align*}
M \ddot{w}_{n}^{k}(t)+ & E I \frac{k^{4} \pi^{4}}{L^{4}} w_{n}^{k}(t)+M g \frac{\sqrt{2 L}\left((-1)^{k}-1\right)}{k \pi}= \tag{7.2}\\
& \left(h_{\alpha}\left(w_{n}, \theta_{n}\right),\left[\mathscr{g}_{\alpha}^{e_{k}}\right]^{\prime}\right)_{2}+\left(h_{\beta}\left(w_{n}, \theta_{n}\right),\left[\mathcal{g}_{\beta}^{e_{k}}\right]^{\prime}\right)_{2} \\
\frac{M \ell}{3} \ddot{\theta}_{n}^{k}(t)+ & \left(E J \frac{k^{4} \pi^{4}}{L^{4} \ell}+G K \frac{k^{2} \pi^{2}}{L^{2} \ell}\right) \theta_{n}^{k}(t)= \\
& \left(h_{\alpha}\left(w_{n}, \theta_{n}\right),\left[\mathcal{G}_{\alpha}^{\theta_{n}, e_{k}}\right]_{x}\right)_{2}-\left(h_{\beta}\left(w_{n}, \theta_{n}\right),\left[\mathcal{G}_{\beta}^{\theta_{n}, e_{k}}\right]_{x}\right)_{2}
\end{align*}\right.
$$

with the initial conditions as in 4.5). The local existence of a solution $\left(w_{n}^{k}, \theta_{n}^{k}\right)$ for all $k=1, \ldots, n$ and $t \geq 0$ depends on the regularity of the right hand side terms of 7.2 . We introduce the vectors $W=\left[w_{n}^{1}, \ldots, w_{n}^{n}\right], \Theta=\left[\theta_{n}^{1}, \ldots, \theta_{n}^{n}\right]$ and $e(x)=\left[e_{1}(x), \ldots, e_{n}(x)\right]$ in \mathbb{R}^{n}; we study the nonlinearities related to one cable.

If the functions

$$
\begin{aligned}
& F_{k}(W, \Theta):=\left[H \bar{\xi}+\frac{A E_{c}}{L_{c}} \Gamma(W \cdot e+\ell \sin (\Theta \cdot e)] \int_{0}^{L} \chi\left([W \cdot e+\ell \sin (\Theta \cdot e)+y]^{* *}\right)\left(\mathcal{J}_{\alpha}^{e_{k}}\right)^{\prime} d x\right. \\
& G_{k}(W, \Theta):=\left[H \bar{\xi}+\frac{A E_{c}}{L_{c}} \Gamma(W \cdot e+\ell \sin (\Theta \cdot e)] \int_{0}^{L} \chi\left([W \cdot e+\ell \sin (\Theta \cdot e)+y]^{* *}\right)\left(\mathcal{G}_{\alpha}^{\Theta \cdot e, e_{k}}\right)^{\prime} d x\right.
\end{aligned}
$$

are locally Lipschitz continuous with respect to W, Θ for all $k=1, \ldots, n$, we have the existence and uniqueness of a solution of 7.2 on some interval $\left[0, t_{n}\right)$ with $t_{n} \in(0, T]$.

Thanks to Lemma 7.1, Proposition 2.10-i) and (3.3), for every compact subset $X \subset \mathbb{R}^{n}$ there exists $C_{0}>0$ such that, for every $W_{1}, W_{2}, \Theta_{1}, \Theta_{2} \in X$ we have

$$
\begin{aligned}
& \left|F_{k}\left(W_{1}, \Theta_{1}\right)-F_{k}\left(W_{2}, \Theta_{2}\right)\right|=\left\lvert\,\left[H \bar{\xi}+\frac{A E_{c}}{L_{c}} \Gamma\left(W_{1} \cdot e+\ell \sin \left(\Theta_{1} \cdot e\right)\right)\right] .\right. \\
& \cdot \int_{0}^{L}\left[\chi\left(\left[W_{1} \cdot e+\ell \sin \left(\Theta_{1} \cdot e\right)+y\right]^{* *}\right)\left[\left(\partial_{\alpha}^{e_{k}}\right)_{1}\right]^{\prime}-\chi\left(\left[W_{2} \cdot e+\ell \sin \left(\Theta_{2} \cdot e\right)+y\right]^{* *}\right)\left[\left(\partial_{\alpha}^{e_{k}}\right)_{2}\right]^{\prime}\right] d x \\
& +\frac{A E_{c}}{L_{c}}\left\{\int_{0}^{L}\left[\gamma\left(\left[W_{1} \cdot e+\ell \sin \left(\Theta_{1} \cdot e\right)+y\right]^{* *}\right)-\gamma\left(\left[W_{2} \cdot e+\ell \sin \left(\Theta_{2} \cdot e\right)+y\right]^{* *}\right)\right] d x\right\} . \\
& \left\{\int_{0}^{L} \chi\left(\left[W_{2} \cdot e+\ell \sin \left(\Theta_{2} \cdot e\right)+y\right]^{* *}\right)\left[\left(\partial_{\alpha}^{e_{k}}\right)_{2}\right]^{\prime} d x\right\} \mid \leq C_{0}\left\|e_{k}^{\prime}\right\|_{\infty}\left(\left|W_{1}-W_{2}\right|+\left|\Theta_{1}-\Theta_{2}\right|\right)\|e\|_{W^{1,1}},
\end{aligned}
$$

so that $F_{k}(W, \Theta)$ is locally Lipschitz continuous for all $k=1, \ldots, n$. With some additional computations due to the presence of the trigonometric functions, see Proposition 2.10 fii), the same arguments can be applied to obtain the locally Lipschitz continuity of $G_{k}(W, \Theta)$.

We now seek a uniform bound for the sequence $\left(w_{n}, \theta_{n}\right)$. We omit for the moment the spatial dependence of the approximated solutions. We test the first equation in 4.5 by \dot{w}_{n}, the second by $\dot{\theta}_{n}$ and we sum the two equations. Hence, we obtain

$$
\begin{align*}
& \frac{d}{d t}\left[\frac{M}{2}\left\|\dot{w}_{n}\right\|_{2}^{2}+\frac{E I}{2}\left\|w_{n}\right\|_{H^{2}}^{2}+\frac{M \ell^{2}}{6}\left\|\dot{\theta}_{n}\right\|_{2}^{2}+\frac{E J}{2}\left\|\theta_{n}\right\|_{H^{2}}^{2}+\frac{G K}{2}\left\|\theta_{n}\right\|_{H^{1}}^{2}-M g \int_{0}^{L} w_{n} d x\right]= \\
& \int_{0}^{L} h_{\alpha}\left(w_{n}, \theta_{n}\right)\left[\partial_{\alpha}^{\dot{w}_{n}}+\ell \mathcal{G}_{\alpha}^{\theta_{n}, \dot{\theta}_{n}}\right]_{x} d x+\int_{0}^{L} h_{\beta}\left(w_{n}, \theta_{n}\right)\left[\partial_{\beta}^{\dot{w}_{n}}-\ell \mathcal{G}_{\beta}^{\theta_{n}, \dot{\theta}_{n}}\right]_{x} d x . \tag{7.3}
\end{align*}
$$

Let us define the energy of the system for the approximate solution $\left(w_{n}, \theta_{n}\right)$ as

$$
\begin{aligned}
\mathcal{E}_{n}(t):= & \frac{M}{2}\left\|\dot{w}_{n}\right\|_{2}^{2}+\frac{E I}{2}\left\|w_{n}\right\|_{H^{2}}^{2}+\frac{M \ell^{2}}{6}\left\|\dot{\theta}_{n}\right\|_{2}^{2}+\frac{E J}{2}\left\|\theta_{n}\right\|_{H^{2}}^{2}+\frac{G K}{2}\left\|\theta_{n}\right\|_{H^{1}}^{2}-M g \int_{0}^{L} w_{n} d x \\
& +H \bar{\xi} \int_{0}^{L}\left(\sqrt{1+\left\{\left[\left(w_{n}+\ell \sin \theta_{n}+y\right)^{* *}\right]_{x}\right\}^{2}}+\sqrt{1+\left\{\left[\left(w_{n}-\ell \sin \theta_{n}+y\right)^{* *}\right]_{x}\right\}^{2}}\right) d x \\
& +\frac{A E_{c}}{2 L_{c}}\left(\left[\Gamma\left(w_{n}+\ell \sin \theta_{n}\right)\right]^{2}+\left[\Gamma\left(w_{n}-\ell \sin \theta_{n}\right)\right]^{2}\right) .
\end{aligned}
$$

Since we are in the finite dimensional setting it holds the assumption (2.3), so that we apply Corollary 2.2 and Theorem 2.5, finding the energy conservation. This is the point where we take advantage of the final dimensional nature of the problem. Hence from (7.3) we have $\dot{\mathcal{E}}_{n}(t)=0$, that is

$$
\begin{align*}
& \varepsilon_{n}(t)=\varepsilon_{n}(0)=\frac{M}{2}\left\|w_{n}^{1}\right\|_{2}^{2}+\frac{E I}{2}\left\|w_{n}^{0}\right\|_{H^{2}}^{2}+\frac{M \ell^{2}}{6}\left\|\theta_{n}^{1}\right\|_{2}^{2}+\frac{E J}{2}\left\|\theta_{n}^{0}\right\|_{H^{2}}^{2}+\frac{G K}{2}\left\|\theta_{n}^{0}\right\|_{H^{1}}^{2} \\
& +H \bar{\xi} \int_{0}^{L}\left(\sqrt{1+\left\{\left[\left(w_{n}^{0}+\ell \sin \theta_{n}^{0}+y\right)^{* *}\right]^{\prime}\right\}^{2}}+\sqrt{1+\left\{\left[\left(w_{n}^{0}-\ell \sin \theta_{n}^{0}+y\right)^{* *}\right]^{\prime}\right\}^{2}}\right) d x \\
& +\frac{A E_{c}}{2 L_{c}}\left(\int_{0}^{L}\left[\sqrt{1+\left\{\left[\left(w_{n}^{0}+\ell \sin \theta_{n}^{0}+y\right)^{* *}\right]^{\prime}\right\}^{2}}\right] d x-L_{c}\right)^{2} \tag{7.4}\\
& +\frac{A E_{c}}{2 L_{c}}\left(\int_{0}^{L}\left[\sqrt{1+\left\{\left[\left(w_{n}^{0}-\ell \sin \theta_{n}^{0}+y\right)^{* *}\right]^{\prime}\right\}^{2}}\right] d x-L_{c}\right)^{2}-M g \int_{0}^{L} w_{n}^{0} d x .
\end{align*}
$$

We recall the Poincaré inequality $\|w\|_{2} \leq \Lambda\|w\|_{H^{2}}$ for every $w \in H^{2} \cap H_{0}^{1}(\Lambda>0)$ and we observe that in $\mathcal{E}_{n}(t)$ only the gravitational term has undefined sign. In order to estimate this term we notice that for all $\varepsilon \in\left(0, \frac{1}{4}\right]$ we have

$$
-\int_{0}^{L} w_{n} d x \geq-\int_{0}^{L}\left(1+\varepsilon w_{n}^{2}\right) d x=-\left(L+\varepsilon\left\|w_{n}\right\|_{2}^{2}\right) \geq-\left(L+\varepsilon \Lambda^{2}\left\|w_{n}\right\|_{H^{2}}^{2}\right) .
$$

Choosing a sufficiently small $\varepsilon \in\left(0, \frac{1}{4}\right]$, we find $\eta>0$ such that

$$
\begin{aligned}
\mathcal{E}_{n}(t) \geq & \frac{M}{2}\left\|\dot{w}_{n}\right\|_{2}^{2}+\left(\frac{E I}{2}-M g \Lambda \varepsilon\right)\left\|w_{n}\right\|_{H^{2}}^{2}+\frac{M \ell^{2}}{6}\left\|\dot{\theta}_{n}\right\|_{2}^{2}+\frac{E J}{2}\left\|\theta_{n}\right\|_{H^{2}}^{2}+\frac{G K}{2}\left\|\theta_{n}\right\|_{H^{1}}^{2} \\
& +H \bar{\xi} \int_{0}^{L}\left(\sqrt{1+\left\{\left[\left(w_{n}+\ell \sin \theta_{n}+y\right)^{* *}\right]_{x}\right\}^{2}}+\sqrt{1+\left\{\left[\left(w_{n}-\ell \sin \theta_{n}+y\right)^{* *}\right]_{x}\right\}^{2}}\right) d x \\
& +\frac{A E}{2 L_{c}}\left(\left[\Gamma\left(w_{n}+\ell \sin \theta_{n}\right)\right]^{2}+\left[\Gamma\left(w_{n}-\ell \sin \theta_{n}\right)\right]^{2}\right)-M g L \\
& \geq \eta\left(\left\|\dot{w}_{n}\right\|_{2}^{2}+\left\|w_{n}\right\|_{H^{2}}^{2}+\left\|\dot{\theta}_{n}\right\|_{2}^{2}+\left\|\theta_{n}\right\|_{H^{2}}^{2}+\left\|\theta_{n}\right\|_{H^{1}}^{2}\right)-M g L .
\end{aligned}
$$

Then from (7.4) we infer for all $t \in\left[0, t_{n}\right)$ and $n \geq 1$

$$
\begin{equation*}
\eta\left(\left\|\dot{w}_{n}\right\|_{2}^{2}+\left\|w_{n}\right\|_{H^{2}}^{2}+\left\|\dot{\theta}_{n}\right\|_{2}^{2}+\left\|\theta_{n}\right\|_{H^{2}}^{2}+\left\|\theta_{n}\right\|_{H^{1}}^{2}\right) \leq \varepsilon_{n}(0)+M g L . \tag{7.5}
\end{equation*}
$$

Thanks to 7.5 we obtain $t_{n}=T$, ensuring the global existence and uniqueness of the solution $\left(w_{n}, \theta_{n}\right)$ on $[0, T]$. Moreover, since the total energy of 4.5 is conserved in time, the solution cannot blow up in finite time and the global existence is obtained for an arbitrary $T>0$, including $T=\infty$.

Proof of Theorem 4.4. To simplify the notation we denote by $L^{p}(V)$ the space $L^{p}((0, T) ; V(0, L))$ for $1 \leq p \leq \infty$, by $Q=(0, T) \times(0, L)$ and by $C>0$ all the positive constants. We observe that $\sup _{n}\left|\mathcal{E}_{n}(0)\right|+M g L<\infty$ is independent of n and t, since w_{n}^{0} and θ_{n}^{0}. belong to $C^{1}[0, L]$. Then from (7.5) we infer the boundedness of $\left\{w_{n}\right\},\left\{\theta_{n}\right\}$ in $L^{\infty}\left(H^{2}\right)$ and of $\left\{\dot{w}_{n}\right\},\left\{\dot{\theta}_{n}\right\}$ in $L^{\infty}\left(L^{2}\right)$, implying, up to a subsequence, the weak* convergence respectively to w, θ and to $\dot{w}, \dot{\theta}$ in the previous spaces. In particular from the boundedness of $\left\{w_{n}\right\},\left\{\theta_{n}\right\}$ and $\left\{\dot{w}_{n}\right\},\left\{\dot{\theta}_{n}\right\}$ we also have weak convergence respectively in $L^{2}\left(H^{2}\right)$ and $L^{2}(Q)$; then, due to the compact embedding $H^{1}(Q) \subset L^{2}(Q)$, we obtain the strong convergence $w_{n} \rightarrow w, \theta_{n} \rightarrow \theta$ in $L^{2}(Q)$, from which $\sin \theta_{n} \rightarrow \sin \theta$ in $L^{2}(Q)$, since $\left\|\sin \theta_{n}-\sin \theta\right\|_{L^{2}(Q)} \leq$ $\left\|\theta_{n}-\theta\right\|_{L^{2}(Q)} \rightarrow 0$ as $n \rightarrow \infty$ (similarly $\cos \theta_{n} \rightarrow \cos \theta$).

About Γ in (3.3), thanks to Lemma 7.1, (2.9), Hölder and Poincaré inequalities, there exists $C>0$ such that

$$
\begin{array}{r}
\left|\Gamma\left(w_{n} \pm \ell \sin \theta_{n}\right)-\Gamma(w \pm \ell \sin \theta)\right| \leq\left(\left\|\left(w_{n}-w\right)_{x}\right\|_{1}+\left\|\theta_{n}-\theta\right\|_{W^{1,1}}\right) \\
\leq C\left(\left\|w_{n}-w\right\|_{L^{\infty}\left(H^{2}\right)}+\left\|\theta_{n}-\theta\right\|_{L^{\infty}\left(H^{2}\right)}\right) \rightarrow 0,
\end{array}
$$

up to a subsequence, implying $\Gamma\left(w_{n} \pm \ell \sin \theta_{n}\right) \rightarrow \Gamma(w \pm \ell \sin \theta)$.
We consider the functional χ defined in 7.1), and we note that $|\chi(u)|<1$ for all $u \in H^{2}(0, L) \subset$ $C^{1}[0, L]$. Then, we have $\chi^{2}\left(\left[w_{n} \pm \ell \sin \theta_{n}+y\right]^{* *}\right)<1$ and

$$
\left\|\chi\left(\left[w_{n} \pm \ell \sin \theta_{n}+y\right]^{* *}\right)\right\|_{L^{2}(Q)}^{2}=\int_{0}^{T} \int_{0}^{L} \frac{\left\{\left[\left(w_{n} \pm \ell \sin \theta_{n}+y\right)^{* *}\right]_{x}\right\}^{2}}{1+\left\{\left[\left(w_{n} \pm \ell \sin \theta_{n}+y\right)^{* *}\right]_{x}\right\}^{2}} d x d t<L T .
$$

Hence $\chi\left(\left[w_{n} \pm \ell \sin \theta_{n}+y\right]^{* *}\right)$ converges weakly, up to a subsequence, to $\chi\left([w \pm \ell \sin \theta+y]^{* *}\right)$ in $L^{2}(Q)$. Therefore we pass to the limit the first equation in (4.5), since $\left\|\left(J_{\alpha}^{e_{k}}\right)^{\prime}\right\|_{\infty} \leq\left\|e_{k}^{\prime}\right\|_{\infty}$. To do the same for the second equation in (4.5) we use (6.14) and the bounds

$$
\begin{aligned}
& \left\|\chi\left(\left[w_{n} \pm \ell \sin \theta_{n}+y\right]^{* *}\right) \cos \theta_{n}\right\|_{L^{2}(Q)}^{2}<L T \\
& \left\|\chi\left(\left[w_{n} \pm \ell \sin \theta_{n}+y\right]^{* *}\right) \theta_{n x} \sin \theta_{n}\right\|_{L^{2}(Q)}^{2} \leq T\left\|\theta_{n}\right\|_{L^{\infty}\left(H^{1}\right)}^{2}
\end{aligned}
$$

which imply the weak convergence of these terms in $L^{2}(Q)$, up to a subsequence.
Next, for any $n \geq 1$ we put

$$
\begin{aligned}
& w_{n}^{0}:=\sum_{k=1}^{n}\left(w^{0}, e_{k}\right)_{2} e_{k}=\frac{L^{4}}{\pi^{4}} \sum_{k=1}^{n} \frac{\left(w^{0}, e_{k}\right)_{H^{2}}}{k^{4}} e_{k}, \\
& \theta_{n}^{0}:=\sum_{k=1}^{n}\left(\theta^{0}, e_{k}\right)_{2} e_{k}=\sum_{k=1}^{n}\left(E J \frac{k^{4} \pi^{4}}{L^{4}}+G K \frac{k^{2} \pi^{2}}{L^{2}}\right)^{-1}\left[E J\left(\theta^{0}, e_{k}\right)_{H^{2}}+G K\left(\theta^{0}, e_{k}\right)_{H^{1}}\right] e_{k}, \\
& w_{n}^{1}:=\sum_{k=1}^{n}\left(w^{1}, e_{k}\right)_{2} e_{k}, \quad \theta_{n}^{1}:=\sum_{k=1}^{n}\left(\theta^{1}, e_{k}\right)_{2} e_{k},
\end{aligned}
$$

so that $w_{n}^{0} \rightarrow w^{0}, \theta_{n}^{0} \rightarrow \theta^{0}$ in H^{2} and $w_{n}^{1} \rightarrow w^{1}, \theta_{n}^{1} \rightarrow \theta^{1}$ in L^{2} as $n \rightarrow \infty$.
Therefore we pass to the limit the problem (4.5), so that there exists an approximable solution of 4.2)-4.3), $(w, \theta) \in X_{T}^{2}$ in the sense of Definition 4.3 .

8 Conclusions

In this paper, we proposed a model in which both the hangers and the cables are deformable. This was previously considered in [4] through a four DOF model, but here we have only focused on the vertical displacements and the torsional rotations of the deck, thereby dealing with a two DOF model. In this case it appears out of reach to obtain a precise explanation of the origin of torsional instability in terms of Poincaré maps as in [3]. However, our numerical results still show the same qualitative phenomenon: after exceeding a certain energy threshold the system becomes unstable and sudden and violent torsional oscillations appear.
The analyisis of this new model for suspension bridges requires the study of the variation of an energy functional depending on the convexification of the involved functions. The computation of the Gateaux derivatives of the functional is quite involved and, apart of "spoiling" the action of the smooth test functions, it does not exist in some situations. After a full energy balance, in Section 4 we derived the weak form of the system of nonlinear nonlocal partial differential inclusions. This system is nonlinear due to the convexification, the geometric configuration of the cables and the rotation of the deck; moreover, we avoided the linearization based on smallness assumptions on the torsional angle of the deck.

The typical behavior of civil structures enabled us to consider approximable solutions as representative enough of our problem, thereby reducing to a system of ordinary differential equations, through the Galerkin procedure. We then proved existence of weak approximable solutions. This enabled us to study the problem numerically, considering 10 longitudinal modes interacting with 4 torsional modes and we found a threshold of torsional instability for each longitudinal mode excited. We compared these thresholds with those of the correspondent model without convexification. Our numerical results show that, for structures displaying only low modes of vibration (e.g. $1^{\text {st }}, 2^{\text {nd }}, 3^{\text {rd }}$), we may assume inextensible hangers, reducing the computational costs and obtaining safe instability thresholds. On the other hand, if the structure vibrates on higher modes (e.g. $9^{t h}, 10^{t h}$) as the TNB, this assumption may provide overestimated thresholds. Here the slackening of the hangers increases dangerously the torsional instability; this fact should be a warning for the designers of bridge structures, that are able to exhibit, in realistic situations, large vibration frequencies. Let us recall that the wind velocity determines the excited mode, see [2, pp.21-27] and that an explicit rule has been recently found in [10]. It turns out that the longitudinal modes that were torsionally unstable at the TNB were the $9^{t h}$ and $10^{t h}$, precisely the ones for which we found lower thresholds of instability in the new model with convexification (that is, with hangers slackening).

Acknowledgements. The third Author is partially supported by the PRIN project Equazioni alle derivate parziali di tipo ellittico e parabolico: aspetti geometrici, disuguaglianze collegate, e applicazioni and by the Gruppo Nazionale per l'Analisi Matematica, la Probabilità e le loro Applicazioni (GNAMPA) of the Istituto Nazionale di Alta Matematica (INdAM).

References

[1] C.O. Alves, J.V.A. Goncalves, J.A. Santos, Existence of solution for a partial differential inclusion in \mathbb{R}^{N} with steep potential well, Z. Angew. Math. Phys. 70, no. 2, Art. 41, 18 pp. (2019)
[2] O.H. Ammann, T. von Kármán, G.B. Woodruff, The failure of the Tacoma Narrows Bridge, Federal Works Agency, 1941.
[3] G. Arioli, F. Gazzola, A new mathematical explanation of what triggered the catastrophic torsional mode of the Tacoma Narrows Bridge collapse, Appl. Math. Modelling 39, (2015), 901-912.
[4] G. Arioli, F. Gazzola, On a nonlinear nonlocal hyperbolic system modeling suspension bridges, Milan J. Math. 83, (2015), 211-236.
[5] G. Arioli, F. Gazzola, Torsional instability in suspension bridges: the Tacoma Narrows Bridge case, Communications Nonlinear Sci. Numerical Simulation 42, (2017), 342-357.
[6] J. P. Aubin, A. Cellina, Differential inclusions. Set-valued maps and viability theory, SpringerVerlag, Berlin, 1984.
[7] E. Berchio, F. Gazzola, A qualitative explanation of the origin of torsional instability in suspension bridges, Nonlinear Analysis TMA 121, (2015), 54-72.
[8] J. Berkovits, P. Drábek, H. Leinfelder, V. Mustonen, G. Tajcová, Time-periodic oscillations in suspension bridges: existence of unique solutions, Nonlinear Anal. Real World Appl. 1, (2000), 345-362
[9] F. Bleich, C.B. McCullough, R. Rosecrans, G.S. Vincent, The mathematical theory of vibration in suspension bridges, U.S. Dept. Commerce, Bureau Public Roads, Washington DC, 1950.
[10] D. Bonheure, F. Gazzola, E. Moreira dos Santos, Periodic solutions and torsional instability in a nonlinear nonlocal plate equation, to appear in SIAM J. Math. Anal.
[11] D. Bucur, Regularity of optimal convex shapes, J. Convex Anal. 10, no.2, 501-516 (2003).
[12] G. Buttazzo, V. Ferone, B. Kawohl, Minumum problems over sets of concave functions and related questions, Math. Nachr. 173, 71-89 (1995).
[13] A. Capsoni, R. Ardito, A. Guerrieri, Stability of dynamic response of suspension bridges, J. Sound Vibration 393, 285-307 (2017).
[14] A. Cellina, A view on differential inclusions, Rend. Semin. Mat. Univ. Politec. Torino 63, (2005), 197-209.
[15] F.H. Clarke, Optimization and nonsmooth analysis, Jhon Wiley \& Sons, New York, 1983.
[16] F. Colasuonno, A. Iannizzotto, D. Mugnai, Three solutions for a Neumann partial differential inclusion via nonsmooth Morse theory, Set-Valued Var. Anal. 25, 405-425 (2017)
[17] M.G. Crandall, L. Tartar, Some relations between nonexpansive and order preserving mappings, Proc. Amer. Math. Soc. 78 , no. 3, (1980), 385-390.
[18] M. Degiovanni, F. Schuricht, Buckling of nonlinearly elastic rods in the presence of obstacles treated by nonsmooth critical point theory, Math. Ann. 311, (1998), 675-728
[19] P. Drábek, H. Leinfelder, G. Tajčová, Coupled string-beam equations as a model of suspension bridges, Appl. Math. 44, (1999), 97-142
[20] P. Drábek, P. Nečesal, Nonlinear scalar model of a suspension bridge: existence of multiple periodic solutions, Nonlinearity 16, (2003), 1165-1183
[21] I. Ekeland, R. Temam, Convex analysis and variational principles, North-Holland, Amsterdam, 1976.
[22] A. Falocchi, Torsional instability in a nonlinear isolated model for suspension bridges with fixed cables and extensible hangers, IMA Journal of Applied Mathematics 83, (2018), 1007-1036.
[23] A. Falocchi, Torsional instability and sensitivity analysis in a suspension bridge model related to the Melan equation, Communications Nonlin. Sci. Numerical Simul. 67, (2019), 60-75.
[24] A. Falocchi, Stability analysis in suspension bridges through some new mathematical models, Phd Dissertation, Politecnico di Milano, Milano, 2019.
[25] M. Garrione, F. Gazzola, Loss of energy concentration in nonlinear evolution beam equations, J. Nonlinear Sci. 27, (2017), 1789-1827.
[26] F. Gazzola, Mathematical models for suspension bridges, MS\&A Vol. 15, Springer, 2015.
[27] F. Gazzola, G. Sperone, Thresholds for hanger slackening and cable shortening in the Melan equation for suspension bridges, Nonlin. Anal. Real World Appl. 39, (2018), 520-536.
[28] J. Glover, A.C. Lazer, P.J. McKenna, Existence and stability of large scale nonlinear oscillations in suspension bridges, Zeit. Angew. Math. Phy. 40, (1989), 172-200
[29] G. Holubová, J. Janousek, One-dimensional model of a suspension bridge: revision of uniqueness results, Appl. Math. Lett. 71, (2017), 6-13
[30] G. Holubová, A. Matas, Initial-boundary value problem for the nonlinear string-beam system, J. Math. Anal. Appl. 288, (2003), 784-802
[31] T. von Kármán, M.A. Biot, Mathematical methods in engineering: an introduction to the mathematical treatment of engineering problems, McGraw-Hill, New York, 1940.
[32] A.C. Lazer, P.J. McKenna, Large-amplitude periodic oscillations in suspension bridges: some new connections with nonlinear analysis, SIAM Rev. 32, (1990), 537-578.
[33] P.J. McKenna, W. Walter, Nonlinear oscillations in a suspension bridge, Arch. Rat. Mech. Anal. 98, (1987), 167-177
[34] M. Paidoussis, S. Price, E. de Langre, Fluid-structure interactions. Cross-flow-induced instabilities, Cambridge University Press, Cambridge, 402 pp., 2011
[35] W. Podolny, Cable-suspended bridges, In: Structural steel designer's handbook: AISC, AASHTO, AISI, ASTM, AREMA and ASCE-07 Design standards, Ed. by R.L. Brockenbrough, F.S. Merritt, 5th edn., McGraw-Hill, New York 2011.
[36] R.T. Rockafellar, Convex Analysis, Princeton Univ. Press, Princeton, NJ, 1970.
[37] V.Z. Vlasov, Thin-walled elastic bars, (Russian) Fizmatgiz, Moscow, 1959.
[38] S. Wang, L. Liu, S.B. Zhang, F.B. Wen, X. Zhou, Stability analysis of the onset of vortex shedding for wakes behind flat plates, Theor. Comput. Fluid Dyn. 32, (2018), 411-423
[39] D. Xin, H. Zhang, J. Ou, Secondary wake instability of a bridge model and its application in wake control, Comput. \& Fluids 160, (2018), 108-119
[40] V.A. Yakubovich, V.M. Starzhinskii, Linear differential equations with periodic coefficients, J. Wiley \& Sons, New York, 1975 (Russian original in Izdat. Nauka, Moscow, 1972).
[41] V. Zampoli, M.A. Sumbatyan, Flow-induced vortex field generated by a thin oscillating plate in an aeroacoustics framework, Z. Angew. Math. Phys. 70, no. 1, Art. 33, 21 pp. (2019)

