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CONFORMAL EMBEDDINGS OF AFFINE VERTEX

ALGEBRAS IN MINIMAL W -ALGEBRAS II:

DECOMPOSITIONS

DRAŽEN ADAMOVIĆ, VICTOR G. KAC, PIERLUIGI MÖSENEDER FRAJRIA,
PAOLO PAPI, AND OZREN PERŠE

Abstract. We present methods for computing the explicit decompo-
sition of the minimal simple affine W -algebra Wk(g, θ) as a module for
its maximal affine subalgebra Vk(g

♮) at a conformal level k, that is,
whenever the Virasoro vectors of Wk(g, θ) and Vk(g

♮) coincide. A par-
ticular emphasis is given on the application of affine fusion rules to
the determination of branching rules. In almost all cases when g♮ is a
semisimple Lie algebra, we show that, for a suitable conformal level k,
Wk(g, θ) is isomorphic to an extension of Vk(g

♮) by its simple module.
We are able to prove that in certain cases Wk(g, θ) is a simple current
extension of Vk(g

♮). In order to analyze more complicated non simple
current extensions at conformal levels, we present an explicit realiza-
tion of the simple W -algebra Wk(sl(4), θ) at k = −8/3. We prove, as
conjectured in [3], that Wk(sl(4), θ) is isomorphic to the vertex alge-

bra R(3), and construct infinitely many singular vectors using screen-
ing operators. We also construct a new family of simple current mod-
ules for the vertex algebra Vk(sl(n)) at certain admissible levels and for
Vk(sl(m|n)),m 6= n,m, n ≥ 1 at arbitrary levels.
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7.5. ĝl(2)-singular vectors in R(3) 39
7.6. Proof of Theorem 6.5 39
8. Explicit decompositions from Theorem 6.4: g♮ is a Lie algebra 39
9. Explicit decompositions from Theorem 6.4: g♮ is not a Lie

algebra 43
9.1. Simple current Vk0(sl(m|n))–modules 43
9.2. The decomposition for Wk(sl(6|1), θ), k = −2. 46
References 47

1. Introduction

Let g = g0 ⊕ g1 be a basic simple Lie superalgebra. Choose a Cartan
subalgebra h for g0̄ and let ∆ be the set of roots. Choose a subset of
positive roots such that the minimal root −θ is even. Let Wk(g, θ) be the
simple minimal affine W -algebra at level k associated to (g, θ) [30], [31], [10].
Let Vk(g

♮) be its maximal affine subalgebra (see (3.2) and Definition 4.1). In
[10] we classified the levels k such that Vk(g

♮) is conformally embedded into
Wk(g, θ), i.e. such that the Virasoro vectors of Wk(g, θ) and Vk(g

♮) coincide.
We call these levels the conformal levels. We proved that, if k is a conformal
level, then Wk(g, θ) either collapses to Vk(g

♮) or

k ∈ {−2

3
h∨,−h∨ − 1

2
}.

(see Section 4 with review of main results from [10]).
In the present paper, we study the decomposition of Wk(g, θ) as a Vk(g

♮)-
module when k is a conformal level. It turns out that we can use methods
similar to those we developed for studying conformal embeddings of affine
vertex algebras in [9] (see also [7], [33]). Our main technical tool is the
representation theory of affine vertex algebras at admissible and negative
integer levels, in particular fusion rules for Vk(g

♮)-modules, as we shall ex-
plain below.

As in [9], it is natural to discuss the case in which g♮ is semisimple sepa-
rately from the case in which g♮ has a nontrivial center. In the latter case,
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one has the eigenspace decomposition for the action of the center:

Wk(g, θ) ∼=
⊕

i∈Z

Wk(g, θ)
(i),

and we prove the following result (see Theorems 6.4 and 6.5).

Theorem 1.1. Consider the conformal embeddings of Vk(g
♮) into Wk(g, θ):

(1) g = sl(n) or g = sl(2|n) (n ≥ 4), g = sl(m|n), m > 2, m 6=
n+ 3, n + 2, n, n− 1, conformal level k = −h∨−1

2 ;
(2) g = sl(n) (n = 5 or n ≥ 7), g = sl(2|n) (n ≥ 3), g = sl(m|n),

m > 2, m 6= n+ 6, n + 4, n + 2, n, conformal level k = −2
3h

∨.

(3) g = sl(4), conformal level k = −2
3h

∨ = −8
3 .

Then Vk(g
♮) is simple and, in cases (1), (2), each Wk(g, θ)

(i) is an irre-

ducible Vk(g
♮)-module, while in case (3) each Wk(g, θ)

(i) is an infinite sum
of irreducible Vk(g

♮)-modules.

It is quite surprising that there is only one case when each Wk(g, θ)
(i)

is an infinite sum of irreducible Vk(g
♮)-modules, namely the conformal em-

bedding of Vk(gl(2)) into Wk(sl(4), θ) and k = −2
3h

∨ = −8/3. This is
related to the new explicit realization of Wk(sl(4), θ), conjectured in [3], as
the vertex operator algebra R(3). This conjecture is proven in Section 7 of
the present paper. Our realization is based on the logarithmic extension
of the Wakimoto modules for V−5/3(gl(2)) by singular vectors constructed

using screening operators. The simplicity of R(3) is proved by construct-
ing certain relations in the corresponding Zhu algebra. A generalization of
this construction, together with more applications related to vertex algebras
appearing in LCFT will be considered in [4].

Theorem 1.1 is proved by studying fusion rules for Vk(g
♮)-modules. Recall

that fusion rules (or fusion coefficients) are the dimensions of certain spaces
of intertwining operators. The fact that a certain fusion coefficient is zero
implies that a given Vk(g

♮)-module cannot appear in the decomposition of

Wk(g, θ)
(i). In many cases this is the only information we need to establish

both the simplicity of Vk(g
♮) and the semisimplicity of Wk(g, θ) as a Vk(g

♮)-
module: see Theorem 6.2. This information, very often, is obtained just from
the decomposition of tensor products of certain simple finite dimensional g♮-
modules.

In the cases when we are able to compute precisely the fusion rules, we
are also able to describe explicitly the decomposition of Wk(g, θ) as a Vk(g

♮)-

module. Indeed, we prove that the modules Wk(g, θ)
(i) are simple currents

in a suitable category of Vk(g
♮)-modules in the following instances: either

when Vk(g
♮) contains a subalgebra which is an admissible affine vertex al-

gebra of type A (cf. Theorem 8.1), or in the case of the affine W -algebras
W−2(sl(5), θ) (cf. Corollary 8.3), W−2(sl(n+5|n), θ) (cf. Corollary 9.3, Re-

mark 9.2). We believe that this property of the modules Wk(g, θ)
(i) holds in

all cases (1) and (2) from Theorem 1.1.



4 ADAMOVIĆ, KAC, MÖSENEDER, PAPI, PERŠE

As a byproduct, we construct a new family of simple current modules for
the vertex superalgebra Vk(sl(m|n)) which belong to the category KLk (cf.
Theorem 9.1).

Next we consider the cases when g♮ is a semisimple Lie algebra. Then we
have a natural decomposition

Wk(g, θ) = Wk(g, θ)
0̄ ⊕Wk(g, θ)

1̄,

according to the parity of twice the conformal weight.
The subspaces Wk(g, θ)

ī are naturally Vk(g
♮)-modules, so we are reduced

to compute the decompositions of the Wk(g, θ)
ī. We solve our problem in

many cases by showing that the subspaces Wk(g, θ)
ī are actually irreducible

as Vk(g
♮)-modules:

Theorem 1.2. Consider the following conformal embeddings of Vk(g
♮) into

Wk(g, θ) [10]:

(1) g = so(n) (n ≥ 8, n 6= 11), g = osp(4|n) (n ≥ 2), g = osp(m|n)
(m ≥ 5, m 6= n+r, r ∈ {−1, 2, 3, 4, 6, 7, 8, 11}) or g is of type G2, F4

E6, E7, E8 or g is a Lie superalgebra D(2, 1, a) (a = 1, 1/4), F (4)

and k = −h∨−1
2 .

(2) g = sp(n)( n ≥ 6), g = spo(2|m) (m ≥ 3, m 6= 4), g = spo(n|m)
(n ≥ 4, m 6= n+ 2, n, n− 2, n − 4) and k = −2

3h
∨.

Then Vk(g
♮) is simple and each Wk(g, θ)

ī, i = 0, 1, is an irreducible Vk(g
♮)-

module.

In most cases, the proof of this theorem follows quite easily combining
information on fusion rules coming from tensor product decompositions of
g♮-modules with basic principles of vertex algebra theory, such as Galois
theory: see Theorem 6.8. In some cases our proof is technically involved
and it uses the representation theory of the admissible affine vertex algebra
V−1/2(sl(2)): see Theorem 6.9.

We also believe that the conformal embeddings listed in Theorem 1.2
provide all cases where Wk(g, θ) is isomorphic to an extension of Vk(g

♮) by
its simple module. This result is also interesting from the perspective of
extensions of affine vertex algebras, since it gives a realization of a broad
list of extensions which (so far) cannot be constructed by other methods.

In our forthcoming papers we shall consider embeddings of Vk(g
♮) into

Wk(g, θ) when critical levels appear.

Acknowledgments. Dražen Adamović and Ozren Perše are partially
supported by the Croatian Science Foundation under the project 2634 and by
the Croatian Scientific Centre of Excellence QuantixLie. Pierluigi Möseneder
Frajria and Paolo Papi are partially supported by PRIN project “Spazi di
Moduli e Teoria di Lie”.

Notation. The base field is C. As usual, tensor product of a fam-
ily of vector spaces ranging over the empty set is meant to be C. For
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a vector superspace V = V0̄ ⊕ V1̄ we set DimV = dimV0̄|dimV1̄ and
sdimV = dimV0̄ − dimV1̄.

2. Preliminaries

2.1. Vertex algebras. Here we fix notation about vertex algebras (cf.
[28]). Let V be a vertex algebra, with vacuum vector 1. The vertex op-
erator corresponding to the state a ∈ V is denoted by

Y (a, z) =
∑

n∈Z

a(n)z
−n−1, where a(n) ∈ EndV .

We frequently use the notation of λ-bracket and normally ordered product:

[aλb] =
∑

i≥0

λi

i!
(a(i)b), : ab := a(−1)b.

If V admits a Virasoro(=conformal) vector and ∆a is the conformal weight
of a, then we also write the corresponding vertex operator as

Y (a, z) =
∑

m∈Z−∆a

amz−m−∆a ,

so that

a(n) = an−∆a+1, n ∈ Z, am = a(m+∆a−1), m ∈ Z−∆a.

The product of two subsets A,B of V is

A ·B = span(a(n)b | n ∈ Z, a ∈ A, b ∈ B).

This product is associative (cf. [13]).

2.2. Intertwining operators and fusion rules. Let V be a vertex alge-
bra. A V -module is a vector superspaceM endowed with a parity preserving
map Y M from V to the superspace of End(M)-valued fields

a 7→ Y M (a, z) =
∑

n∈Z

aM(n)z
−n−1

such that

(1) Y M (|0〉, z) = IM ,
(2) for a, b ∈ V , m,n, k ∈ Z,

∑

j∈N

(
m

j

)
(a(n+j)b)

M
(m+k−j)

=
∑

j∈N

(−1)j
(
n

j

)
(aM(m+n−j)b

M
(k+j) − p(a, b)(−1)nbM(k+n−j)a

M
(m+j)),
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Given three V -modules M1, M2, M3, an intertwining operator of type[
M3

M1 M2

]
(cf. [22], [23]) is a map I : a 7→ I(a, z) =

∑
n∈Z a

I
(n)z

−n−1 from

M1 to the space of End(M2,M3)-valued fields such that for a ∈ V , b ∈ M1,
m,n ∈ Z,

∑

j∈N

(
m

j

)
(aM1

(n+j)b)
I
(m+k−j)

=
∑

j∈N

(−1)j
(
n

j

)
(aM3

(m+n−j)b
I
(k+j) − p(a, b)(−1)nbI(k+n−j)a

M2

(m+j)).

We let I
( M3

M1 M2

)
denote the space of intertwining operators of type

[
M3

M1 M2

]
,

and set

NM3
M1,M2

= dim I

(
M3

M1 M2

)
.

When NM3
M1,M2

is finite, it is usually called a fusion coefficient.
Assume that in a category K of Z≥0–graded V -modules, the irreducible

modules {Mi | i ∈ I}, where I is an index set, have the following properties

(1) for every i, j ∈ I NMk
Mi,Mj

is finite for any k ∈ I;

(2) NMk
Mi,Mj

= 0 for all but finitely many k ∈ I.

Then the algebra with basis {ei ∈ I} and product

ei · ej =
∑

k∈I

NMk
Mi,Mj

ek

is called the fusion algebra of V,K. (Note that we consider only fusion rules
between irreducible modules).

Let K be a category of V -modules. Let M1, M2 be irreducible V -modules
in K. Given an irreducible V -module M3 in K, we will say that the fusion
rule

(2.1) M1 ×M2 = M3

holds in K if NM3
M1,M2

= 1 and NR
M1,M2

= 0 for any other irreducible V -
module R in K which is not isomorphic to M3.

We say that an irreducible V -module M1 is a simple current in K if M1

is in K and, for every irreducible V -module M2 in K, there is an irreducible
V -module M3 in K such that the fusion rule (2.1) holds in K (see [19]).

2.3. Commutants. Let U be a vertex subalgebra of V . Then the commu-
tant of U in V (cf. [22]) is the following vertex subalgebra of V :

Com(U, V ) = {v ∈ V | [Y (a, z), Y (v,w)] = 0, ∀a ∈ U}.
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In the case when U is an affine vertex algebra, say U = Vk(g) (see below),
it is easy to see that

Com(U, V ) = {v ∈ V | x(n)v = 0 ∀x ∈ g, n ≥ 0}.
2.4. Zhu algebras. Assume that V is a vertex algebra, endowed with a
conformal vector ω such that the conformal weights ∆v of v ∈ V are in 1

2Z.
Then

V =
⊕

r∈ 1
2
Z

V (r), V (r) = {v ∈ V | ∆v = r}.

Set
V 0̄ =

⊕

r∈Z

V (r), V 1̄ =
⊕

r∈ 1
2
+Z

V (r).

We define two bilinear maps ∗ : V × V → V , ◦ : V × V → V as follows:
for homogeneous a, b ∈ V , let

a ∗ b =
{
ResxY (a, x) (1+x)∆a

x b if a, b ∈ V 0̄,

0 if a or b ∈ V 1̄
(2.2)

a ◦ b =




ResxY (a, x) (1+x)∆a

x2 b if a ∈ V 0̄,

ResxY (a, x) (1+x)∆a− 1
2

x b if a ∈ V 1̄.
(2.3)

Next, we extend ∗ and ◦ to V ⊗ V linearly, and denote by O(V ) ⊂ V the
linear span of elements of the form a ◦ b, and by A(V ) the quotient space
V/O(V ). The space A(V ) has a unital associative algebra structure, with
multiplication induced by ∗. The algebra A(V ) is called the Zhu algebra of
V . The image of v ∈ V , under the natural map V 7→ A(V ) will be denoted

by [v]. In the case when V 0̄ = V we get the usual definition of Zhu algebra
for vertex operator algebras.

An important result, proven by Zhu [38] for Z-graded V and later by
Kac-Wang [35] for 1

2Z-graded V , is the following theorem.

Theorem 2.1. There is a one-to-one correspondence between irreducible
1
2Z≥0-graded V -modules and irreducible A(V )-modules.

2.5. Affine vertex algebras. Let a be a Lie superalgebra equipped with
a nondegenerate invariant supersymmetric bilinear form B. The universal
affine vertex algebra V B(a) is the universal enveloping vertex algebra of the
Lie conformal superalgebra R = (C[T ]⊗ a)⊕C with λ-bracket given by

[aλb] = [a, b] + λB(a, b), a, b ∈ a.

In the following, we shall say that a vertex algebra V is an affine vertex

algebra if it is a quotient of some V B(a).
If a is simple or is a one dimensional abelian Lie algebra, then one usually

fixes a nondegenerate invariant supersymmetric bilinear form (·|·) on a. Any
invariant supersymmetric bilinear form is therefore a constant multiple of
(·|·). In particular, if B = k(·|·) (k ∈ C), then we denote V B(a) by V k(a).
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Let h∨a be half of the eigenvalue of the Casimir element corresponding to
(·|·); if h∨a 6= −k, then V k(a) admits a unique irreducible quotient which we
denote by Vk(a).

In the same hypothesis, V k(a) is equipped with a Virasoro vector

(2.4) ωa
sug =

1

2(k + h∨a )

∑

i=1

: biai :,

where {ai} is a basis of a and {bi} is its dual basis with respect to (·|·). If
a vertex algebra V is some quotient of V k(a), we will say that k is the level
of V .

A module M for â is said to be of level k if K acts on M by kIM . Finally
recall that an irreducible highest weight module L(λ), over an affine algebra
â is said to be admissible [26] if

(1) (λ+ ρ)(α) /∈ {0,−1,−2, . . .}, for each positive coroot α;
(2) the rational linear span of positive simple coroots equals the rational

linear span of the coroots which are integral valued on λ+ ρ.

2.6. Heisenberg vertex algebras. In the special case when a is an abelian
Lie algebra, V B(a) is of course a Heisenberg vertex algebra. If this is the
case, we will denote V B(a) by Ma(B). In the special case when a is one
dimensional, then we can choose a basis {α} of a and the form (·|·) so that
(α|α) = 1. With these choices we denote V k(a) by Mα(k) or simply by
M(k) when the reference to the generator α need not to be explicit. The
vertex algebra M(k) is called the universal Heisenberg vertex algebra of
level k generated by α. Recall that, if k 6= 0, Mα(k) is simple and that
M(k) ∼= M(1). The irreducible Mα(k)-modules are the modules Mα(k, s)
(or simply M(k, s)) generated by a vector vs with action, for n ∈ Z+, given
by α(n)vs = δn,0svs.

The irreducible modules of the Heisenberg vertex algebra M(k) are all
simple currents in the category of M(k)-modules. Indeed we have the fol-
lowing fusion rules (cf.[22]):

M(k, s1)×M(k, s2) = M(k, s1 + s2) (s1, s2 ∈ C).(2.5)

If a is simple or one-dimensional even abelian with fixed nondegenerate
invariant supersymmetric bilinear form (·|·), the affinization of a is the Lie
superalgebra â = (C[t, t−1] ⊗ a) ⊕ Cd ⊕ CK where K is a central element,
and d acts as td/dt. We choose the central element K so that

[ts ⊗ x, tr ⊗ y] = ts+r ⊗ [x, y] + δr,−srK(x|y).
Let h be a Cartan subalgebra of a and ĥ = h⊕CK⊕Cd a Cartan subalgebra

of â. Let Λ0 ∈ ĥ∗ be defined by Λ0(K) = 1, Λ0(h) = Λ0(d) = 0. We fix a set

of simple roots for â and denote by ρ ∈ ĥ∗ a corresponding Weyl vector. We
shall denote by La(λ) the irreducible highest weight V

k(a)-module of highest

weight λ ∈ ĥ∗. Sometimes, if no confusion may arise, we simply write L(λ).
Similarly, we shall denote by Va(λ) or simply by V (λ) the irreducible highest
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weight a-module of highest weight λ ∈ h∗. Note that in the case when a is
a one dimensional abelian Lie algebra Cα, then Mα(k, s) = L(kΛ0 + sλ1)
where λ1 ∈ (Cα)∗ is defined by setting λ1(α) = 1.

2.7. Rank one lattice vertex algebra VZα. Assume that L is an integral,
positive definite lattice; let L◦ be its dual lattice. Set VL to be the lattice
vertex algebra (cf. [28]) associated to L.

The set of isomorphism classes of irreducible VL-modules is parametrized
by L◦/L (cf. [16]). Let Vλ̄ denote the irreducible VL-module corresponding
to λ̄ = λ+ L ∈ L◦/L. Every irreducible VL-module is a simple current.

We shall now consider rank one lattice vertex algebras. For n ∈ Z>0,
let M(n) be the universal Heisenberg vertex algebra generated by α and
let Fn denote the lattice vertex algebra VZα = M(n) ⊗ C[Zα] associated to
the lattice L = Zα, 〈α,α〉 = n. The dual lattice of L is Lo = 1

nL. For

i ∈ {0, . . . , n− 1}, set F i
n = V i

n
α+Zα. Then the set

{F i
n | i = 0, . . . , n− 1}

provides a complete list of non-isomorphic irreducible Fn-module. We choose
the following Virasoro vector in Fn:

ωFn =
1

2n
: αα : .

As a M(n)-module, Fn decomposes as

Fn =
⊕

j∈Z

M(n)ejα =
⊕

j∈Z

M(n, jn)(2.6)

The following result is a consequence of the result of H. Li and X. Xu [37]
on characterization of lattice vertex algebras.

Proposition 2.2. Assume that V =
⊕

i∈Z Vi is a Z-graded vertex algebra
satisfying the following properties

(1) V is a subalgebra of a simple vertex algebra W ;
(2) there exists a Heisenberg vector α ∈ V0 such that V0 = Mα(n), and

Vi
∼= Mα(n, in) as a V0-module.

Then V is a simple vertex algebra and V ∼= Fn.

Proof. The Main Theorem of [37] implies that a simple vertex algebra satis-
fying condition (2) is isomorphic to Fn. To prove simplicity, we first observe
that

Y (v, z)w 6= 0 ∀ v,w ∈ V ,(2.7)

which in our setting holds since W is simple. Now (2.7) and the fusion rules
(2.5) imply that

Vi · Vj = Vi+j (i, j ∈ Z).

This implies that V is simple, and the claim follows. �
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3. Minimal quantum affine W -algebras

In this section we briefly recall some results of [30] and [10]. We include an
example which contains explicit λ–bracket formulas for W k(sl(4), θ) which
we shall need in Section 7.

We first recall the definition of minimal affine W -algebras.
Let g be a basic simple Lie superalgebra. Choose a Cartan subalgebra

h for g0̄ and let ∆ be the set of roots. Fix a minimal root −θ of g. (A
root −θ is called minimal if it is even and there exists an additive function
ϕ : ∆ → R such that ϕ|∆ 6= 0 and ϕ(θ) > ϕ(η), ∀ η ∈ ∆ \ {θ}). We choose
root vectors eθ and e−θ such that

[eθ, e−θ] = x ∈ h, [x, e±θ] = ±e±θ.

Due to the minimality of −θ, the eigenspace decomposition of adx defines
a minimal 1

2Z-gradation ([30, (5.1)]):

(3.1) g = g−1 ⊕ g−1/2 ⊕ g0 ⊕ g1/2 ⊕ g1,

where g±1 = Ce±θ. One has

(3.2) g0 = g♮ ⊕ Cx, g♮ = {a ∈ g0 | (a|x) = 0}.
For a given choice of a minimal root −θ, we normalize the invariant bilinear
form (·|·) on g by the condition

(3.3) (θ|θ) = 2.

The dual Coxeter number h∨ of the pair (g, θ) is defined to be half the
eigenvalue of the Casimir operator of g corresponding to (·|·).

The complete list of the Lie superalgebras g♮, the g♮-modules g±1/2 (they
are isomorphic and self-dual), and h∨ for all possible choices of g and of θ
(up to isomorphism) is given in Tables 1,2,3 of [30], and it is as follows

Table 1

g is a simple Lie algebra.

g g
♮

g1/2 h∨
g g

♮
g1/2 h∨

sl(n), n ≥ 3 gl(n − 2) C
n−2 ⊕ (Cn−2)∗ n F4 sp(6)

∧
3

0
C

6 9

so(n), n ≥ 5 sl(2) ⊕ so(n − 4) C
2 ⊗ C

n−4 n − 2 E6 sl(6)
∧

3
C

6 12

sp(n), n ≥ 2 sp(n − 2) C
n−2 n/2 + 1 E7 so(12) spin12 18

G2 sl(2) S3
C

2 4 E8 E7 dim = 56 30

Table 2

g is not a Lie algebra but g
♮ is and g±1/2 is purely odd (m ≥ 1).

g g
♮

g1/2 h∨
g g

♮
g1/2 h∨

sl(2|m), gl(m) C
m ⊕ (Cm)∗ 2 − m D(2, 1; a) sl(2) ⊕ sl(2) C

2 ⊗ C
2 0

m 6= 2

psl(2|2) sl(2) C
2 ⊕ C

2 0 F (4) so(7) spin7 −2
spo(2|m) so(m) C

m 2 − m/2 G(3) G2 Dim = 0|7 −3/2

osp(4|m) sl(2) ⊕ sp(m) C
2 ⊗ C

m 2 − m

Table 3
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Both g and g
♮ are not Lie algebras (m,n ≥ 1).

g g
♮

g1/2 h∨

sl(m|n), m 6= n,m > 2 gl(m − 2|n) C
m−2|n ⊕ (Cm−2|n)∗ m − n

psl(m|m), m > 2 sl(m − 2|m) C
m−2|m ⊕ (Cm−2|m)∗ 0

spo(n|m), n ≥ 4 spo(n − 2|m) C
n−2|m 1/2(n − m) + 1

osp(m|n), m ≥ 5 osp(m − 4|n) ⊕ sl(2) C
m−4|n ⊗ C

2 m − n − 2
F (4) D(2, 1; 2) Dim = 6|4 3
G(3) osp(3|2) Dim = 4|4 2

In this paper we shall exclude the case of g = sl(n + 2|n), n > 0. In all
other cases the Lie superalgebra g♮ decomposes in a direct sum of ideals,
called components of g♮:

(3.4) g♮ =
⊕

i∈I

g
♮
i ,

where each summand is either the (at most 1-dimensional) center of g♮ or
is a basic classical simple Lie superalgebra different from psl(n|n). We will
also exclude g = sl(2).

It follows from the tables that the index set I has cardinality r = 0, 1, 2,
or 3. The case r = 0, i.e. g♮ = {0}, happens if and only if g = spo(2|1). In
the case when the center is non-zero (resp. {0}) we use I = {0, 1, . . . , r− 1}
(resp. I = {1, . . . , r}) as the index set, and denote the center of g♮ by g

♮
0.

Let C
g
♮
i
be the Casimir operator of g♮i corresponding to (·|·)

|g♮i×g
♮
i
. We

define the dual Coxeter number h∨0,i of g♮i as half of the eigenvalue of C
g
♮
i

acting on g
♮
i (which is 0 if g♮i is abelian). Their values are given in Table 4

of [30].

Let W k(g, e−θ) be the minimal W-algebras of level k studied in [30]. It is
known that, for k non-critical, i.e., k 6= −h∨, the vertex algebra W k(g, e−θ)
has a unique simple quotient, denoted by Wk(g, e−θ).

To simplify notation, we set

W k(g, θ) = W k(g, e−θ), Wk(g, θ) = Wk(g, e−θ).

Throughout the paper we shall assume that k 6= −h∨. In such a case, it
is known that W k(g, f) has a Virasoro vector ω, [30, (2.2)] that has central
charge [30, (5.7)]

(3.5) c(g, k) =
k sdimg

k + h∨
− 6k + h∨ − 4.

It is proven in [30] that the universal minimal W-algebra W k(g, θ) is freely
and strongly generated by the elements J{a} (a runs over a basis of g♮), G{u}

(u runs over a basis of g−1/2), and the Virasoro vector ω. Furthermore the

elements J{a} (resp. G{u}) are primary of conformal weight 1 (resp. 3/2),
with respect to ω. The λ-brackets satisfied by these generators have been
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given in [30] and, in a simplified form, in [10]. This simplified form reads:

[J{a}
λJ

{b}] = J{[a,b]} + λ
(
(k + h∨/2)(a|b) − 1

4κ0(a, b)
)
, a, b ∈ g♮,(3.6)

[J{a}
λG

{u}] = G{[a,u]}, a ∈ g♮, u ∈ g−1/2.(3.7)

[G{u}
λG

{v}] = −2(k + h∨)(eθ|[u, v])ω + (eθ|[u, v])
dim g♮∑

α=1

: J{uα}J{uα} :

(3.8)

+

dim g1/2∑

γ=1

: J{[u,uγ ]♮}J{[uγ ,v]♮} : +2(k + 1)∂J{[[eθ ,u],v]
♮}

+ 4λ
∑

i∈I

p(k)

ki
J{[[eθ,u],v]

♮
i + 2λ2(eθ|[u, v])p(k)1.

Here κ0 is the Killing form of g0; {uα} (resp. {vγ}) is a basis of g♮ (resp.
g1/2) and {uα} (resp. {uγ}) is the corresponding dual basis w.r.t. (·|·) (resp
w.r.t. 〈·, ·〉ne = (e−θ|[·, ·])), a♮ is the image of a ∈ g0 under the orthogonal

projection of g0 on g♮ , a♮i is the projection of a♮ on the ith minimal ideal g♮i
of g♮, ki = k + 1

2 (h
∨ − h∨0,i), and p(k) is the monic polynomial given in the

following table [10]:
Table 4

g p(k) g p(k)
sl(m|n), n 6= m (k + 1)(k + (m − n)/2) E6 (k + 3)(k + 4)

psl(m|m) k(k + 1) E7 (k + 4)(k + 6)
osp(m|n) (k + 2)(k + (m − n − 4)/2) E8 (k + 6)(k + 10)
spo(n|m) (k + 1/2)(k + (n − m + 4)/4) F4 (k + 5/2)(k + 3)
D(2, 1; a) (k − a)(k + 1 + a) G2 (k + 4/3)(k + 5/3)

F (4), g♮ = so(7) (k + 2/3)(k − 2/3) G(3), g♮ = G2 (k − 1/2)(k + 3/4)

F (4), g♮ = D(2, 1; 2) (k + 3/2)(k + 1) G(3), g♮ = osp(3|2) (k + 2/3)(k + 4/3)

Note that the linear polynomials ki always divide p(k) so the coefficients
in (3.8) depend polynomially on k.

Example 3.1. Consider g = sl(4). Set

c =
1

2




1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 1


 .

In this case g♮ = g
♮
0 ⊕ g

♮
1 with

g
♮
0 = Cc, g

♮
1 =







0 0 0
0 A 0
0 0 0


 | A ∈ sl(2)



 ≃ sl(2),

so g♮ ≃ gl(2), while g−1/2 = span(e2,1, e3,1, e4,2, e4,3).
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The λ-brackets [G{u}
λG

{v}] are as follows:

[G{e2,1}
λG

{e2,1}] = [G{e3,1}
λG

{e3,1}] = 0

[G{e4,2}
λG

{e4,2}] = [G{e4,3}
λG

{e4,3}] = 0

[G{e2,1}
λG

{e3,1}] = [G{e4,3}
λG

{e4,2}] = 0

[G{e2,1}
λG

{e4,3}] = 2 : J{c}J{e2,3} : −(k + 2)∂J{e2,3} − λ2(k + 2)J{e2,3}

[G{e3,1}
λG

{e4,2}] = 2 : J{c}J{e3,2} : −(k + 2)∂J{e3,2} − λ2(k + 2)J{e3,2}

[G{e2,1}
λG

{e4,2}] =

(k + 4)ω − 2 :J{e2,3}J{e3,2} : −1

2
:J{e2,2−e3,3}J{e2,2−e3,3} :

− 3

2
:J{c}J{c} : + :J{c}J{e2,2−e3,3} : +(k + 1)∂J{c} − k

2
∂J{e2,2−e3,3}

+ λ2(k + 1)J{c} − λ(k + 2)J{e2,2−e3,3} − λ2(k + 1)(k + 2)1

[G{e4,3}
λG

{e3,1}] =

− (k + 4)ω + 2 :J{e2,3}J{e3,2} : +
1

2
:J{e2,2−e3,3}J{e2,2−e3,3} :

+
3

2
:J{c}J{c} : + :J{c}J{e2,2−e3,3} : +(k + 1)∂J{c} +

k

2
∂J{e2,2−e3,3}

+ λ2(k + 1)J{c} + λ(k + 2)J{e2,2−e3,3} + λ2(k + 1)(k + 2)1.

4. A classification of conformal levels from [10]

In this section we recall the definition of conformal embeddings of affine
vertex subalgebras into minimal affine W–algebras and review results from
[10] on the classification of conformal levels.

Let Vk(g♮) be the subalgebra of the vertex algebra W k(g, θ), generated by

{J{a} | a ∈ g♮}. By (3.6), Vk(g♮) is isomorphic to a universal affine vertex

algebra. More precisely, the map a 7→ J{a} extends to an isomorphism

(4.1) Vk(g♮) ≃
⊗

i∈I

V ki(g♮i).

Definition 4.1. We set Vk(g
♮) to be the image of Vk(g♮) in Wk(g, θ).

Clearly we can write

Vk(g
♮) ≃

⊗

i∈I

Vki(g
♮
i),

where Vki(g
♮
i) is some quotient (not necessarily simple) of V ki(g♮i).
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If ki + h∨0,i 6= 0, then V ki(g♮i) is equipped with the Virasoro vector ω
g
♮
i

sug

(cf. (2.4)). If ki + h∨0,i 6= 0 for all i, we set

ωsug =
∑

i∈I

ω
g
♮
i

sug.

Define

K = {k ∈ C | k + h∨ 6= 0, ki + h∨0,i 6= 0 whenever ki 6= 0}.
If k ∈ K we also set

ω′
sug =

∑

i∈I:ki 6=0

ω
g
♮
i

sug.

We define

csug = central charge of ω′
sug.

Definition 4.2. Assume k ∈ K. We say that Vk(g
♮) is conformally embed-

ded in Wk(g, θ) if ω
′
sug = ω. The level k is called a conformal level.

If Wk(g, θ) = Vk(g
♮), we say that k is a collapsing level.

Remark 4.3. The above definition of conformal level is slightly more gen-
eral than the one given in the Introduction. Indeed it makes sense also when
ki = h∨0,i = 0.

Next we recall the classification of collapsing levels from [10].

Proposition 4.1. [10, Theorem 3.3]
The level k is collapsing if and only if p(k) = 0 where p is the polynomial

listed in the Table 4.

The classification of non-collapsing conformal levels is given in Section 4
of [10]. It may be summarized as follows.

Proposition 4.2.

(I). Assume that g♮ is either zero or simple or 1-dimensional.
If g = sl(3), or g = spo(n|n+2) with n ≥ 2, g = spo(n|n−1) with n ≥ 2,

g = spo(n|n − 4) with n ≥ 4, then there are no non–collapsing conformal
levels. In all other cases the non-collapsing conformal levels are

(1) k = −h∨−1
2 if g is of type G2, F4, E6, E7, E8, F (4)(g♮ = so(7)), G(3)

(g♮ = G2, osp(3|2)), or g = psl(m|m) (m ≥ 2);

(2) k = −2
3h

∨ if g = sp(n) (n ≥ 6), or g = spo(2|m) (m ≥ 2), or
g = spo(n|m) (n ≥ 4).

(II). Assume that g♮ = g
♮
0 ⊕ g

♮
1 with g

♮
0 ≃ C and g

♮
1 simple.

If g = sl(m|m−3) with m ≥ 4, then there are no non–collapsing conformal
levels. In other cases the non–collapsing conformal levels are

(1) k = −2
3h

∨ if g = sl(m|m+1) (m ≥ 2), and g = sl(m|m−1) (m ≥ 3);
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(2) k = −2
3h

∨ and k = −h∨−1
2 in all other cases.

(III). Assume that g♮ =
∑r

i=1 g
♮
i with g

♮
1 ≃ sl(2) and r ≥ 2. If g =

osp(n+5|n) with n ≥ 2 or g = D(2, 1; a) with a = 1
2 ,−1

2 ,−3
2 , then there are

no non–collapsing conformal levels. In the other cases the non–collapsing
conformal levels are

(1) k = −h∨−1
2 if g = D(2, 1; a) (a 6∈ {1

2 ,−1
2 ,−3

2}), g = osp(n + 8|n)
(n ≥ 0), g = osp(n+ 2|n) (n ≥ 2), g = osp(n− 4|n) (n ≥ 8);

(2) k = −2
3h

∨ if g = osp(n+ 7|n) (n ≥ 0), g = osp(n+ 1|n) (n ≥ 4);

(3) k = −2
3h

∨ and k = −h∨−1
2 in all other cases.

It is important to observe that, if k is a conformal level, we have the
following identification of the Zhu algebra of Wk(g, θ).

Proposition 4.3. Assume that k is a conformal non-collapsing level. Let
J be any proper ideal in W k(g, θ) which contains ω− ωsug. Then there is a
surjective homomorphism of associative algebras

A(Vk(g♮)) → A(W k(g, θ)/J ).

In particular, A(Wk(g, θ)) is isomorphic to a certain quotient of U(g♮).

Proof. Recall first that if a vertex algebra V is strongly generated by the set
S ⊂ V , then Zhu’s algebra A(V ) is generated by the set {[a], a ∈ S} (cf. [1,
Proposition 2.5], [17]). Since W k(g, θ)/J is strongly generated by the set

{G{u}, u ∈ g−1/2} ∪ {J{x}, x ∈ g♮},

we have that A(W k(g, θ)/J ) is generated by the set

{[G{u}], u ∈ g−1/2} ∪ {[J{x}], x ∈ g♮}.

On the other hand, since G{u} = G{u} ◦ 1 ∈ O(W k(g, θ)/J ), we have
[G{u}] = 0 in A(W k(g, θ)/J ) for every u ∈ g−1/2. Therefore, A(W

k(g, θ)/J )

is only generated by the set {[J{x}], x ∈ g♮}. This gives a surjective homo-
morphism A(Vk(g♮)) = U(g♮) → A(W k(g, θ)/J ). �

We should also mention that a conjectural generalization of our results
to conformal embeddings of affine vertex algebras into more general W–
algebras have been recently proposed by T. Creutzig in [15].

5. Some results on admissible affine vertex algebras

Assume g is a simple Lie superalgebra. Let Ok be the category of ĝ-
modules from the category O of level k. Let KLk be the subcategory of Ok

consisting of modules on which g acts locally finitely. Note that modules
from KLk are V k(g)-modules. Moreover, every irreducible module M from
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KLk has finite-dimensional weight spaces with respect to (ωg
sug)0 and admits

the following Z≥0–gradation:

M =
⊕

n∈Z≥0

M(n), (ωg
sug)0|M(n) ≡ (n+ h)Id (h ∈ C),

(cf. [34]; such modules are usually called ordinary modules in the the ter-
minology of vertex operator algebra theory [20]). The graded component
M(0) is usually called the lowest graded component.

5.1. Fusion rules for certain affine vertex algebras. The classification
of irreducible modules in the category Ok for affine vertex algebras Vk(g) at
admissible levels was conjectured in [5] and proved by Arakawa in [12]. We
need the classification result in the subcategory KLk of the category Ok.

Definition 5.1. We define KLk to be the category of all modules M in
KLk which are Vk(g)-modules.

The classification of irreducible modules in the category KLk coincides
with the classification of irreducible Vk(g)-modules having finite-dimensional
weight spaces with respect to (ωg

sug)0 [5], [12].
We restrict our attention to g = sl(n) with (·|·) the trace form. We choose

a set of positive roots for g and let ωi ∈ h∗ (i = 1, . . . , n − 1) denote the
corresponding fundamental weights. Set Λi = Λ0 + ωi. Recall from 2.2 the
definition of fusion rules.

Proposition 5.1. Let k = 1
2 − n, n ≥ 2.

(1) The set

{Lsl(2n−2)(kΛ0 + Λi) | i = 0, . . . , 2n − 3}(5.1)

provides a complete list of irreducible Vk+1(sl(2n− 2))-modules in the cate-
gory KLk+1.

(2) The following fusion rule holds in KLk+1:

Lsl(2n−2)(kΛ0 + Λi1)× Lsl(2n−2)(kΛ0 + Λi2) = Lsl(2n−2)(kΛ0 + Λi3)

where 0 ≤ i1, i2, i3 ≤ 2n− 3 are such that i1 + i2 ≡ i3 mod(2n− 2).
In particular, the modules in (5.1) are simple currents in the category

KLk+1.

Proof. First we notice that the set of admissible weights of level k+1 which
are dominant with respect to sl(2n − 2) is {kΛ0 + Λi | i = 0, . . . , 2n − 3}.
Now assertion (1) follows from the main result from [12].

Assertion (2) follows from (1) and the fact that the tensor product

Vsl(2n−2)(ωi1)⊗ Vsl(2n−2)(ωi2)

contains a component Vsl(2n−2)(ωi3) if and only if i1 + i2 ≡ i3 mod (2n −
2). �

The proof of the following result is completely analogous to the proof of
Proposition 5.1.
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Proposition 5.2. Let k = 2
3(n− 2) /∈ Z. Then

(1) The set

{Lsl(n)(−(k + 2)Λ0 + Λi) | i = 0, . . . , n− 1}(5.2)

provides a complete list of irreducible V−k−1(sl(n))-modules in the category
KL−k−1.

(2) The following fusion rules hold in KL−k−1:

Lsl(n)(−(k+2)Λ0+Λi1)×Lsl(n)(−(k+2)Λ0+Λi2) = Lsl(n)(−(k+2)Λ0+Λi3)

where 0 ≤ i1, i2, i3 ≤ n− 1 are such that i1 + i2 ≡ i3 mod (n).
In particular, the modules in (5.2) are simple currents in the category

KL−k−1.

Remark 5.2. It is also interesting to notice that the fusion algebra gener-
ated by irreducible modules for V3/2−n(sl(2n− 2)) in the category KL3/2−n

(resp. for V− 2n−1
3

(sl(n)) in the category KL− 2n−1
3

) is isomorphic to the

fusion algebra for the rational affine vertex algebra V1(sl(2n − 2)) (resp.
V1(sl(n))). Moreover, all irreducible modules in the KLk category for these
vertex algebras are simple currents.

5.2. The vertex algebra Vk(sl(2)). Recall that a level k is called admis-
sible if kΛ0 is abmissible. If g = sl(2) then k is admissible if and only if
k+ 2 = p

q , p, q ∈ N, (p, q) = 1, p ≥ 2 [32]. Let e, h, f be the usual Chevalley

generators for sl(2).

Theorem 5.3. Assume that k = p
q − 2 is an admissible level for ŝl2. Then

we have:
(1) [32, Corollary 1]. The maximal ideal in Jk in V k(sl(2)) is generated by
a singular vector vλ of weight λ = (k − 2(p − 1))Λ0 + 2(p− 1)Λ1.
(2). The ideal Jk is simple.

Proof. We provide here a proof of (2) which uses Virasoro vertex algebras
and Hamiltonian reduction. This result can be also proved by using embed-

ding diagrams for submodules of the Verma modules for ŝl2.
Assume first that k /∈ Z≥0. Let V V ir(cp,q) be the universal Virasoro

vertex algebra of central charge cp,q = 1−6 (p−q)2

pq . Then the maximal ideal in

V V ir(cp,q) is irreducible and it is generated by a singular vector of conformal
weight (p−1)(q−1) (cf. [24], Theorem 4.2.1). So V V ir(cp,q) contains a unique
ideal which we shall denote by Ip,q. Then LV ir(cp,q) = V V ir(cp,q)/Ip,q is a
simple vertex algebra.

Recall that by quantum Hamiltonian reduction

W k(sl(2), θ) = V V ir(cp,q).

Let HV ir be the corresponding functor (denoted in [11] by H
∞
2
+0

f ), which

maps V k(sl(2))-modules to V V ir(cp,q)-modules. Assume that I is a non-

trivial, proper ideal in V k(sl(2)). By using the main result of [11], we get
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that HV ir(I) 6= 0, HV ir(I) 6= V V ir(cp,q). So HV ir(I) = Ip,q. Since the
functor HV ir is exact, we get that

HV ir(V
k(sl(2))/I) = V V ir(cp,q, 0)/Ip,q = LV ir(cp,q).

By using again the exactness and non-triviality result of the functor HV ir

we conclude that V k(sl(2))/I is simple. So I is the maximal ideal.
If k ∈ Z≥0, then the maximal ideal is Jk = V k(sl(2)) · (e(−1))

k+11 and we
have

HV ir(J
k) = W k(sl(2), θ) = V V ir(ck+2,1) = LV ir(ck+2,1).

Since HV ir(J
k) is irreducible, the properties of the functor HV ir imply that

Jk is a simple ideal. �

It follows from [24], Theorem 9.1.2, that, if g is a simple Lie algebra
different from sl(2), then the maximal ideal in V k(g) is either zero or it is
not simple.

5.2.1. Representation theory of V−1/2(sl(2)). We now recall some known
facts on the representation theory of the vertex algebra V−1/2(sl(2)) (cf.
[5] and Theorem 5.3).

We first fix notation. Let Lsl(2)(λ) be a highest weight V −1/2(sl(2))-
module with highest weight λ, and let vλ be the corresponding highest weight
vector. Writing λ = −1/2Λ0 + µ with µ ∈ h∗, we let Nsl(2)(λ) denote the
generalized Verma module induced from the simple sl(2)-module Vsl(2)(µ).

Let ω
sl(2)
sug be the Sugawara Virasoro vector for V −1/2(sl(2)). For i ∈ Z≥0

we define the following weights:

λi = −(i+ 1/2)Λ0 + iΛ1 = −1/2Λ0 + iω1.

Then one has:
(1). The maximal ideal of V −1/2(sl(2)) is generated by the singular vector

vλ4 ∈ V −1/2(sl(2)) of weight λ4. In particular,

V−1/2(sl(2)) = V −1/2(sl(2))
/
V −1/2(sl(2)) · vλ4 .

Moreover V −1/2(sl(2)) · vλ4 is simple.

(2). There is a singular vector vλ3 ∈ Nsl(2)(λ1) of weight λ3 such that

L(λ1) = Nsl(2)(λ1)
/
V −1/2(sl(2)) · vλ3 .

Moreover V −1/2(sl(2)) · vλ3 is simple.

(3). Lsl(2)(λi), i = 0, 1, are irreducible V−1/2(sl(2))-modules.
Every V−1/2(sl(2))-module from the category KL− 1

2
is completely reducible

and isomorphic to a direct sum of certain copies of Lsl(2)(λi), i = 0, 1.

(4). The following fusion rule holds in KL− 1
2
:

Lsl(2)(λ1)× Lsl(2)(λ1) = V−1/2(sl(2)).(5.3)
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This fusion rule follows from the tensor product decomposition

Vsl(2)(ω1)⊗ Vsl(2)(ω1) = Vsl(2)(2ω1) + Vsl(2)(0)

and the classification of irreducible modules for V−1/2(sl(2))-modules from
[5]). In particular, we only need to note that Lsl(2)(λ2) is not a V−1/2(sl(2))-
module.

6. Semisimplicity of conformal embeddings

The main goal of this section is to give criteria for establishing the simplic-
ity of Vk(g

♮) together with the semisimplicity of Wk(g, θ) as a Vk(g
♮)-module

when k is a non-collapsing conformal level. We will give two separate cri-
teria: one for the cases when g♮ has a nontrivial center and another for the
cases when g♮ is centerless.

6.1. Semisimplicity with nontrivial center of g♮. The next result col-
lects some structural facts proven in [10, Proposition 4.6] describing the
structure of g−1/2 as a g♮-module.

Lemma 6.1. Assume that g♮ is a Lie algebra and g
♮
0 6= {0} (which happens

only for g = sl(n) or g = sl(2|n), n 6= 2). Then

(1) Dim g
♮
0 = 1|0.

(2) A basis {c} of g♮0 can be chosen so that the eigenvalues of ad(c) acting
on g−1/2 are ±1.

(3) Let U+ (resp. U−) be the eigenspace for ad(c)|g−1/2
corresponding

to the eigenvalue 1 (resp. −1). Then g−1/2 = U+ ⊕ U− with U±

irreducible finite dimensional mutually contragredient g♮-modules.

By (3.7) and the above Lemma, J
{c}
(0) defines a Z-gradation on Wk(g, θ):

Wk(g, θ) =
⊕

Wk(g, θ)
(i), Wk(g, θ)

(i) = {v ∈ Wk(g, θ) | J{c}
(0) v = iv}.

Recall that a primitive vector in a module M for an affine vertex algebra
is a vector that is singular in some subquotient of M .

In light of Lemma 6.1, we have that, in the Grothendieck group of finite
dimensional representations of g♮, we can write

U+ ⊗ U− = V (0) +
∑

νi 6=0

V (νi).

Theorem 6.2. Assume that the embedding of Vk(g
♮) in Wk(g, θ) is confor-

mal and that Wk(g)
(0) does not contain Vk(g

♮)-primitive vectors of weight
νr.

Then Wk(g)
(0) = Vk(g

♮), Vk(g
♮) is a simple affine vertex algebra and

Wk(g, θ)
(i) are simple Vk(g

♮)-modules.
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Proof. Let U± = span(G{u} | u ∈ U±). Let A± = Vk(g
♮) · U±. We claim

that

(6.1) A− ·A+ ⊂ Vk(g
♮).

To check this, it is enough to check for all n ∈ Z, u ∈ U+, and v ∈ U−,
that G{u}

(n)G
{v} ∈ Vk(g

♮). Assume that this is not the case. Then we

can choose n maximal such that there are u ∈ U+, v ∈ U− such that
G{u}

(n)G
{v} /∈ Vk(g

♮). Since the map

φ : U+ ⊗ U− → Wk(g)/Vk(g
♮), φ : u⊗ v 7→ G{u}

(n)G
{v} + Vk(g

♮)

is g♮-equivariant, we can choose a weight vector w =
∑

ui ⊗ vi ∈ U+ ⊗
U− of weight ν such that φ(w) is a highest weight vector in φ(U+ ⊗ U−).
Since, by maximality of n, φ(w) is singular for Vk(g

♮), we have that y =∑
G{ui}

(n)G
{vi} is primitive in Wk(g, θ) so, by our hypothesis, ν = 0. Since

the embedding is conformal, y is an eigenvector for ω′
sug and since φ(w)

is singular for Vk(g
♮) of weight 0, we see that its eigenvalue is zero. Since

the embedding is conformal we have that y has conformal weight zero in
Wk(g, θ) so y ∈ C1 ⊂ Vk(g

♮), a contradiction.
Since the embedding is conformal, Wk(g, θ) is strongly generated by

span
{
J{a} | a ∈ g♮

}
+ U+ + U−.

It follows that Wk(g, θ)
(0) is contained in the sum of all fusion products of

type A1 ·A2 · . . . ·Ar with Ai ∈ {A+, A−,Vk(g
♮)} such that

♯{i | Ai = A+} = ♯{i | Ai = A−}.
By the associativity of fusion products, we see that (6.1) implies that A1 ·
A2 · . . . · Ar ⊂ Vk(g

♮), so Wk(g, θ)
(0) = Vk(g

♮). It follows that Vk(g
♮) is a

simple affine vertex algebra and Wk(g, θ)
(i) is a simple Vk(g

♮)-module for all
i. �

If V (µ), µ ∈ (h♮)∗, is an irreducible g♮-module, then we can write

(6.2) V (µ) =
⊗

j∈I

V
g
♮
j
(µj),

where V
g
♮
j
(µj) is an irreducible g

♮
j-module. Let ρj0 be the Weyl vector in g

♮
j

(with respect to the positive system induced by the choice of positive roots
for g).

Corollary 6.3. If the embedding of Vk(g
♮) in Wk(g, θ) is conformal and,

for each irreducible subquotient V (µ) with µ 6= 0 of the g♮-module U+⊗U−,
we have

∑

i∈I,ki 6=0

(µi, µi + 2ρi0)

2(ki + h∨0,i)
6∈ Z+,(6.3)
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then Wk(g)
(0) = Vk(g

♮), Vk(g
♮) is a simple affine vertex algebra and the

Wk(g, θ)
(i) are simple Vk(g

♮)-modules.

Proof. In order to apply Theorem 6.2, we need to check that if µ 6= 0 and
V (µ) is an irreducible subquotient of U+ ⊗ U−, then there is no primitive

vector v in Wk(g, θ)
(0) with weight µ. Since the embedding is conformal,

ω′
sug acts diagonally on Wk(g, θ). In particular, we can assume that v is an

eigenvector for ω′
sug. Let N ⊂ M ⊂ Wk(g, θ) be submodules such that v+N

is a singular vector in M/N . Then v + N is an eigenvector for the action

of ω′
sug on M/N and the corresponding eigenvalue is

∑r
i=0,ki 6=0

(µi,µi+2ρi0)
2(ki+h∨

0,i)
.

It follows that the eigenvalue for ω′
sug acting on v is

∑r
i=0,ki 6=0

(µi,µi+2ρi0)
2(ki+h∨

0,i)
.

It is easy to check that the conformal weights of elements in Wk(g, θ)
(0) are

positive integers hence, since ω′
sug = ω,

∑r
i=0,ki 6=0

(µi,µi+2ρi0)
2(ki+h∨

0,i)
must be in Z+,

a contradiction. �

We now apply Corollary 6.3 to the cases where g♮ is a basic Lie super-
algebra with nontrivial center. These can be read off from Tables 1–3 and
correspond to taking g = sl(n) (n ≥ 3), g = sl(2|n) (n ≥ 1, n 6= 2) or
g = sl(m|n) (n 6= m > 2).

Theorem 6.4. Assume that we are in the following cases of conformal
embedding of Vk(g

♮) into Wk(g, θ).

(1) g = sl(n), n ≥ 4, conformal level k = −n−1
2 = −h∨−1

2 ;

(2) g = sl(n), n ≥ 5, n 6= 6, conformal level k = −2n
3 = −2h∨

3 ;

(3) g = sl(2|n) , n ≥ 4, conformal level k = n−1
2 = −h∨−1

2 ;

(4) g = sl(2|n), n ≥ 3, conformal level k = 2(n−2)
3 = −2h∨

3 .
(5) g = sl(m|n), m > 2, m 6= n + 3, n + 2, n, n − 1, conformal level

k = n−m+1
2 = −h∨−1

2 ;
(6) g = sl(m|n), m > 2, m 6= n + 6, n + 4, n + 2, n, conformal level

k = 2(n−m)
3 = −2h∨

3 .

Then Vk(g
♮) is a simple affine vertex algebra and Wk(g, θ)

(i) is an irre-
ducible Vk(g

♮)-module for every i ∈ Z. In particular, Wk(g, θ) is a semisim-
ple Vk(g

♮)-module.

Proof. We verify that the assumptions of Corollary 6.3 hold. In cases (1)

and (2), g♮ ≃ gl(n − 2) = CId ⊕ sl(n − 2), hence g
♮
0 ≃ C and g

♮
1 ≃ sl(n −

2). Moreover U+ = Cn and U− = (Cn)∗. The tensor product U+ ⊗ U−

decomposes as V (0)⊕ V (µ) with

µ0 = 0, µ1 = ω1 + ωn−3.

Moreover k0 = k + h∨/2 6= 0 and k1 = k + 1 6= 0. Since

r∑

i=0,ki 6=0

(µi, µi + 2ρi0)

2(ki + h∨0,i)
=

1∑

i=0

(µi, µi + 2ρi0)

2(ki + h∨0,i)
=

n− 2

n+ k − 1
,
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we see that (6.3) holds in cases (1) and (2).

In cases (3) and (4), g♮ ≃ gl(n) = CId ⊕ sl(n), hence g
♮
0 ≃ C and g

♮
1 =

sl(n). Moreover U+ = Cn and U− = (Cn)∗. The tensor product U+ ⊗ U−

decomposes as V (0)⊕ V (µ) with

µ0 = 0, µ1 = ω1 + ωn−1.

Moreover k0 = k + h∨/2 6= 0 and k1 = k + 1 6= 0. Since

r∑

i=0,ki 6=0

(µi, µi + 2ρi0)

2(ki + h∨0,i)
=

1∑

i=0

(µi, µi + 2ρi0)

2(ki + h∨0,i)
=

n

n+ k
,

we see that (6.3) holds in cases (3) and (4).
In cases (5) and (6) we have g♮ ≃ gl(m− 2|n) = CId⊕ sl(m− 2|n) (recall

that we are assuming m 6= n + 2), hence g
♮
0 ≃ C and g

♮
1 = sl(m − 2|n).

Moreover U+ = Cm−2|n and U− = (Cm−n|n)∗. Then, as g♮-modules

U+ ⊗ U− ≃ sl(m− 2|n)⊕ C.

With notation as in [25], choose {ǫ1 − δ1, δ1 − δ2, . . . , δn−1 − δn, δn − ǫ2, . . . ,
ǫm−1 − ǫm} as simple roots for g, so that the highest root is even. The
set of positive roots induced on g♮ has as simple roots {δ1 − δ2, . . . , δn−1 −
δn, δn − ǫ2, . . . , ǫm−2 − ǫm−1}. Then we have µ0 = 0, µ1 = δ1 − ǫm−1. Since
2(ρ10)1 = −n(ǫ2 + . . .+ ǫm−1) + (m− 2)(δ1 + . . .+ δn), 2(ρ

1
0)0 = (m− 3)ǫ2 +

(m− 5)ǫ3 + · · ·+ (3−m)ǫm−1 + (n− 1)δ1 + (n− 3)δ2 + · · ·+ (1− n)δn, we
have that

(δ1 − ǫm−1, 2ρ
1
0) = −n+ 1 +m+ 2− (3−m)− n = 2(m− n− 2).

In case (5), we have k = −h∨−1
2 . Then k1 + h∨0,1 = m−n−1

2 and (µ, µ +

2ρ10) = (δ1 − ǫm−1, 2ρ
1
0) = 2(m− n− 2). Therefore

(µ1, µ1 + 2ρ10)

2(k1 + h∨0,1)
= 2

m− n− 2

m− n− 1
= 2(1− 1

m− n− 1
)

which is not an integer unless m = n+ 3, n + 2, n, n− 1.
In case (6), we have k = −2

3h
∨. Then k1 + h∨0,1 =

m−n−3
3 and

(µ1, µ1 + 2ρ10)

2(k1 + h∨0,1)
= 3

m− n− 2

m− n− 3
= 3(1 +

1

m− n− 3
)

which not an integer unless m = n+ 6, n+ 4, n + 2, n. �

In Section 8 we will discuss explicit decompositions for some occurrences
of cases (1) and (4) of Theorem 6.4, exploiting the fact that some of the

levels ki may be admissible for Vki(g
♮
i). We shall determine explicitly the

decomposition of Wk(g, θ) as a module for this admissible vertex algebra.

We now list the cases which are not covered by Theorem 6.4. Recall that,
if g = sl(m|n), then we excluded the case m = n + 2 from the beginning
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while the case m = n had to be excluded because g = sl(n|n) is not simple.
The remaining cases are

(1) sl(n− 1|n), k = 1;
(2) sl(n+ 3|n) n ≥ 0, k = −1;
(3) sl(n+ 4|n), k = −8

3 ;
(4) sl(n+ 6|n), k = −4;
(5) sl(2|1) = spo(2|2), k = −2

3 .

If g = sl(n− 1|n) and k = 1 then k + h∨ = 0, so we have to exclude this
case.

By Theorem 3.3 of [10] (stated in this paper as Proposition 4.1), k = −1
is a collapsing level for g = sl(n+ 3|n). It follows that W−1(sl(n + 3|n)) =
V−1(gl(n+1|n)). If n = 0, we obtain W−1(sl(3)) = V−1(gl(1)), which is the
Heisenberg vertex algebra V 1

2
(Cc).

In the case g = sl(2|1), k = −2
3 , Wk(g, θ) is the simple N = 2 supercon-

formal vertex algebra V N=2
c

(cf. [28], [30], [2]) with central charge c = 1.
In this case Vk(gl(1)) is the Heisenberg vertex algebra M(−2

3 ), so we have

conformal embedding of M(−2
3) into Wk(g, θ). It is well-known that V N=2

c

admits the free-field realization as the lattice vertex algebra F3. Using this
realization we see that each Wk(g, θ)

(i) is an irreducible M(−2
3 )-module.

Case (3) with n = 0 is of special interest: it turns out that Wk(g, θ) is

isomorphic to the vertex algebra R(3) introduced in [3]. This will require a
thoughtful discussion which will be performed in Section 7. There we will
prove the following

Theorem 6.5. Let g be of type A3 with k = −8
3 . Then, for all i ∈ Z,

Wk(g, θ)
(i) is an infinite sum of irreducible Vk(gl(2))-modules.

Remark 6.1. The only remaining open case is g of type A5 with k = −4.
It is surprising that this case (possibly) and the case discussed in Theorem
6.5 are the only instances of conformal embeddings into Wk(g, θ) where

Wk(g, θ)
(i) is not a finite sum of irreducible Vk(g

♮)-modules.

6.2. Finite decomposition when g♮ has trivial center. Recall that
Wk(g, θ) is a 1

2Z≥0-graded vertex algebra by conformal weight. It admits
the following natural Z2-gradation

Wk(g, θ) = Wk(g, θ)
0̄ ⊕Wk(g, θ)

1̄,

where

Wk(g, θ)
ī = {v ∈ Wk(g, θ) | ∆v ∈ i/2 + Z}.

Similarly to what we have done in Section 6.1, we start by developing a
criterion for checking when Vk(g

♮) = Wk(g, θ)
0̄, so that Vk(g

♮) is a simple

affine vertex algebra, and Wk(g, θ)
1̄ is an irreducible Vk(g

♮)-module. In
particular, in these cases, we have a finite decomposition of Wk(g, θ) as a
Vk(g

♮)-module.
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One checks, browsing Tables 1–3, that when g♮ has trivial center, then
g−1/2 is an irreducible g♮-module. Then, in the Grothendieck group of finite

dimensional representations of g♮, we can write

g−1/2 ⊗ g−1/2 = V (0) +
∑

νi 6=0

V (νi).

Theorem 6.6. Assume that the embedding of Vk(g
♮) in Wk(g, θ) is con-

formal and that Wk(g)
0̄ does not contain Vk(g

♮)-primitive vectors of weight
νi.

Then Wk(g)
0̄ = Vk(g

♮), Vk(g
♮) is a simple affine vertex algebra, and

Wk(g, θ)
1̄ is a simple Vk(g

♮)-module.

Proof. Let U = span{G{u} | u ∈ g−1/2}. Let A = Vk(g
♮) · U . Arguing as in

the proof of Theorem 6.2, we have

(6.4) A ·A ⊂ Vk(g
♮).

From (6.4) we obtain that Vk(g
♮) + A is a vertex subalgebra of Wk(g, θ).

Since the embedding is conformal, Wk(g, θ) is strongly generated by

span(J{a} | a ∈ g♮) + U ,
hence Vk(g

♮) +A contains a set of generators for Wk(g, θ). It follows that

Wk(g, θ) = Vk(g
♮) +A, Wk(g, θ)

0̄ = Vk(g
♮), Wk(g, θ)

1̄ = Vk(g
♮) · U .

The statement now follows by a simple application of quantum Galois
theory, for the cyclic group of order 2. �

The same argument of Corollary 6.3 provides a numerical criterion for a fi-
nite decomposition, actually, for a decomposition in a sum of two irreducible
submodules:

Corollary 6.7. If the embedding of Vk(g
♮) in Wk(g, θ) is conformal and,

for any irreducible subquotient V (µ) of g−1/2 ⊗ g−1/2 with µ 6= 0, we have
(see (6.2))

r∑

i=0,ki 6=0

(µi, µi + 2ρi0)

2(ki + h∨0,i)
6∈ Z+,(6.5)

then Wk(g)
0̄ = Vk(g

♮), Vk(g
♮) is a simple affine vertex algebra and Wk(g, θ)

1̄

is an irreducible Vk(g
♮)-module.

We now apply Corollary 6.7 to the cases where g♮ is a basic Lie super-
algebra. These can be read off from Tables 1–2 and correspond to taking
g = so(n) (n ≥ 7), g = sp(n) (n ≥ 4), g = psl(2|2), g = spo(2|m) (m ≥ 3),
g = osp(4|m) (m ≥ 1), g = psl(m|m) (m > 2), g = spo(m|n) (n ≥ 4),
g = osp(m|n) (m ≥ 5) or g of the following exceptional types: G2, F4, E6,
E7, E8, F (4), G(3), D(2, 1; a).
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Theorem 6.8. Assume that we are in the following cases of conformal
embedding of Vk(g

♮) into Wk(g, θ):

(1) g = so(n) (n ≥ 8, n 6= 11), g = osp(4|n) (n ≥ 2), g = osp(m|n)
(m ≥ 5, m 6= n + r, r ∈ {−1, 2, 3, 4, 6, 7, 8, 11}) or g is of type G2,

F4 E6, E7, E8, F (4) and k = −h∨−1
2 .

(2) g = sp(n)(n ≥ 6), g = spo(2|m) (m ≥ 3, m 6= 4), g = spo(n|m)
(n ≥ 4, m 6= n+ 2, n, n− 2, n − 4) and k = −2

3h
∨.

Then Wk(g, θ)
ī, i = 0, 1, are irreducible Vk(g

♮)-modules

Proof. We shall show case-by-case that the numerical criterion of Corollary
6.7 holds. We start by listing all cases explicitly.

(1) g is of type Dn, n ≥ 5, k = −h∨−1
2 = 3

2 − n;

(2) g is of type Bn, n ≥ 4, n 6= 5, k = −h∨−1
2 = 1− n;

(3) g is of type G2, k = −h∨−1
2 = −3/2;

(4) g is of type F4, k = −h∨−1
2 = −4;

(5) g is of type E6, k = −h∨−1
2 = −11/2;

(6) g is of type E7, k = −h∨−1
2 = −17/2;

(7) g is of type E8, k = −h∨−1
2 = −29/2;

(8) g = F (4), k = −h∨−1
2 = 3/2;

(9) g = osp(4|2n), n ≥ 2, k = −h∨−1
2 = n− 1/2;

(10) g is of type Cn+1, n ≥ 2, k = −2
3h

∨ = −2
3(n + 2);

(11) g = spo(2|2n), n ≥ 3, k = −2
3h

∨ = 2
3(n− 2);

(12) g = spo(2|2n + 1), n ≥ 1, k = −2
3h

∨ = 2
3(n − 3/2);

(13) g = spo(n|m) n ≥ 4, k = −2
3h

∨ = m−n−2
3 ;

(14) g = osp(m|n) m ≥ 5, k = −h∨−1
2 = n−m+3

2 .

If V (µ) is an irreducible representation of g♮, we set

hµ =

r∑

i=0,ki 6=0

(µi, µi + 2ρi0)

2(ki + h∨0,i)
.

For each case listed above we give g♮, g−1/2, and the decomposition of

g−1/2⊗ g−1/2 in irreducible modules for g♮. Then we list all values hµ for all
irreducible components V (µ) of g−1/2⊗g−1/2 with µ 6= 0, showing that they
are not positive integers. We also exhibit the decomposition of Wk(g, θ) as
a Vk(g

♮)-module. In cases (13)–(14) we will use the usual ǫ− δ notation for
roots in Lie superalgebras explained e.g. in [25].

Case (1): g♮ of Type A1 ×Dn−2, g−1/2 = VA1(ω1)⊗ VDn−2(ω1)

g−1/2 ⊗ g−1/2

= (VA1(2ω1) + VA1(0))⊗ (VDn−2(0) + VDn−2(ω2) + VDn−2(2ω1)).
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Values of hµ’s:

h2ω1,0 =
4

3
, h0,ω2 =

4n− 12

2n − 5
, h0,2ω1 =

4n− 8

2n− 5
,

h2ω1,ω2 =
4

3
+

4n− 12

2n− 5
, h2ω1,2ω1 =

4

3
+

4n − 8

2n − 5
.

These values are non-integral for n ≥ 5.
Decomposition:

Wk(Dn) = LA1(−1
2Λ0)⊗ LDn−2((

7
2 − n)Λ0)

⊕ LA1(−3
2Λ0 + Λ1)⊗ LDn−2((

5
2 − n)Λ0 + Λ1).

Case (2): g♮ of Type A1 ×Bn−2, g−1/2 = VA1(ω1)⊗ VBn−2(ω1)

g−1/2 ⊗ g−1/2

= (VA1(2ω1) + VA1(0))⊗ (VBn−2(0) + VBn−2(ω2) + VBn−2(2ω1)).

Values of hµ’s:

h2ω1,0 =
4

3
, h0,ω2 =

2n − 5

n− 2
, h0,2ω1 =

2n− 3

n− 2
,

h2ω1,ω2 =
4

3
+

2n− 5

n− 2
, h2ω1,2ω1 =

4

3
+

2n− 3

n− 2
.

These values are non-integral for n ≥ 4, n 6= 5.
Decomposition:

Wk(Bn) = LA1(−1
2Λ0)⊗ LBn−2((3 − n)Λ0)

⊕ LA1(−3
2Λ0 + Λ1)⊗ LBn−2((2− n)Λ0 + Λ1).

Case (3): g♮ of Type A1, g−1/2 = VA1(3ω1),

g−1/2 ⊗ g−1/2 = VA1(6ω1) + VA1(4ω1) + VA1(2ω1) + VA1(0).

Values of hµ’s:

h2iω1 =
2

5
i(i + 1) /∈ Z (i = 1, 2, 3).

Decomposition:

Wk(G2) = LA1(
1

2
Λ0)⊕ LA1(−

5

2
Λ0 + 3Λ1).

Case (4): g♮ of Type C3, g−1/2 = VC3(ω3)

g−1/2 ⊗ g−1/2 = VC3(0) + VC3(2ω1) + VC3(2ω3).

Values of hµ’s:

h2ω1 =
8

5
, h2ω3 =

18

5
.

Decomposition:

Wk(F4) = LC3(−
3

2
Λ0)⊕ LC3(−

5

2
Λ0 + Λ3).
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Case (5): g♮ of Type A5, g−1/2 = VA5(ω3)

g−1/2 ⊗ g−1/2 = VA5(0) + VA5(ω1 + ω5) + VA5(ω2 + ω4) + VA5(2ω3).

Values of hµ’s:

hω1+ω5 =
12

7
, hω2+ω4 =

20

7
, h2ω3 =

24

7
.

Decomposition:

Wk(E6) = LA5(−
5

2
Λ0)⊕ LA5(−

7

2
Λ0 + Λ3).

Case (6): g♮ of Type D6, g−1/2 = VD6(ω6)

g−1/2 ⊗ g−1/2 = VD6(0) + VD6(ω2) + VD6(ω4) + VD5(2ω6).

Values of hµ’s:

h2ω6 =
36

11
, hω4 =

32

11
, hω2 =

20

11
.

Decomposition:

Wk(E7) = LD6(−
9

2
Λ0)⊕ LD6(−

11

2
Λ0 + Λ6).

Case (7): g♮ of Type E7, g−1/2 = VE7(ω7)

g−1/2 ⊗ g−1/2 = VE7(0) + VE7(ω1) + VE7(ω6) + VE7(2ω7).

Values of hµ’s:

h2ω7 =
60

19
, hω6 =

56

19
, hω1 =

36

19
.

Decomposition:

Wk(E8) = LE7(−
17

2
Λ0)⊕ LE7(−

19

2
Λ0 +Λ7).

Case (8): g♮ of Type B3, g−1/2 = VB3(ω3)

g−1/2 ⊗ g−1/2

= VB3(ω3)⊗ VB3(ω3) = VB3(2ω3) + VB3(ω2) + VB3(ω1) + VB3(0).

Values of hµ’s:

h2ω3 =
24

7
, hω2 =

20

7
, hω1 =

12

7
,

which are not integers. Decomposition

Wk(F (4)) = LB3(−
13

4
Λ0)⊕ LB3(−

17

4
Λ0 + Λ3).

Case (9): g♮ of Type A1 × Cn, g−1/2 = VA1(ω1)⊗ VCn(ω1)

g−1/2 ⊗ g−1/2

= (VA1(2ω1) + VA1(0))⊗ (VCn(0) + VCn(ω2) + VCn(2ω1)).
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Values of hµ’s:

h2ω1,0 =
4

3
, h0,ω2 =

4n

2n + 1
, h0,2ω1 =

4n+ 4

2n+ 1
,

h2ω1,ω2 =
4

3
+

4n

2n+ 1
, h2ω1,2ω1 =

4

3
+

4n+ 4

2n+ 1
.

which are not integers if n ≥ 2.
Decomposition:

Wk(osp(4|2n)) = LA1(−
1

2
Λ0)⊗ LCn(−

2n+ 3

4
Λ0)

⊕ LA1(−
3

2
Λ0 + Λ1)⊗ LCn(−

2n+ 7

4
Λ0 + Λ1).

Case (10): g♮ of Type Cn, g−1/2 = VCn(ω1),

g−1/2 ⊗ g−1/2 = VCn(2ω1) + VCn(ω2) + VCn(0).

Values of hµ’s:

h2ω1 =
6(n + 1)

2n+ 1
, hω2 =

6n

2n+ 1
.

For n ≥ 2 we have that h2ω1 and hω2 are non-integral.
Decomposition:

Wk(Cn+1) = LCn(−
4n+ 5

6
Λ0)⊕ LCn(−

4n + 11

6
Λ0 + Λ1).

Case (11): g♮ of Type Dn, g−1/2 = VDn(ω1),

g−1/2 ⊗ g−1/2 = VDn(0)⊕ VDn(2ω1)⊕ VDn(ω2).

Values of hµ’s:

h2ω1 = 3 +
3

2n− 1
, hω2 = 3− 3

2n − 1
.

These values are non-integral for n ≥ 3.
Decomposition:

Wk(spo(2|2n)) = LDn(−
4n− 5

3
Λ0)⊕ LDn(−

4n− 2

3
Λ0 + Λ1).

Case (12): g♮ of Type Bn, g−1/2 =

{
VBn(ω1) if n ≥ 2

VA1(2ω1) if n = 1
,

g−1/2 ⊗ g−1/2 =

{
VBn(0)⊕ VBn(2ω1)⊕ VBn(ω2) if n ≥ 2

VA1(0)⊕ VA1(2ω1)⊕ VA1(4ω1) if n = 1
.

Values of hµ’s:

h2ω1 = 3 +
3

2n
, hω2 = 3− 3

2n
.

These values are non-integral for n ≥ 1.
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Decomposition:

Wk(spo(2|2n + 1)) = LBn(−
4n− 3

3
Λ0)⊕ LBn(−

4n

3
Λ0 + Λ1),

and for n = 1

Wk(spo(2|3)) = LA1(−
2

3
Λ0)⊕ LA1(−

8

3
Λ0 + 2Λ1)

Case (13) g♮ = spo(n− 2|m), g−1/2 = Cn−2|m. We have

(6.6) g−1/2 ⊗ g−1/2 = S2Cn−2|m ⊕ ∧2Cn−2|m.

As g♮-module, the first summand in the r.h.s. of (6.6) is the adjoint rep-
resentation of g♮ (which is irreducible, since g♮ is simple), and the second
summand in the sum of a trivial representation and an irreducible summand.
Fix in g the distinguished set of positive roots ΠB if m is odd and ΠD1 if m
is even (notation as in [25, 4.4]). This choice induces on g♮ a distinguished
set of positive roots and, with respect to it, the nonzero highest weights of
the irreducible g♮-modules appearing in (6.6) are 2δ2, δ2+δ3. Values of hµ’s:

h2δ2 = 3(1 +
1

n−m− 1
), hδ2+δ3 = 3(1− 1

n−m− 1
).

This values are integers if and only if m = n+ 2, n, n − 2, n − 4.
Case (14): g♮ = osp(m− 4|n)⊕ sl(2), g−1/2 = Cm−4|n ⊗ C2. We have

(6.7) g−1/2 ⊗ g−1/2 = (∧2Cm−4|n ⊕ S2Cm−4|n)⊗ (sl(2)⊕ C).

As osp(m− 4|n)-modules, ∧2Cm−4|n is the adjoint representation (which is

irreducible, since osp(m − 4|n) is simple), and S2Cm−4|n is the sum of a
trivial representation and an irreducible summand. If m = 2t+1 is odd, we
fix in g the set of positive roots corresponding to the diagram [25, (4.20)]
with αt odd isotropic, the short root odd non-isotropic, and the other roots
even. If m is even we choose the set of positive roots corpsonding to the
diagram ΠD2 of [25]. With respect to the induced set of positive roots for

osp(m − 4|n) the highest weight of ∧2Cm−4|n is ǫ3 + ǫ4 and the highest
weight of the nontrivial irreducible component of S2Cm−4|n is 2ǫ3. The
highest weight of sl(2) is ǫ1 − ǫ2. Values of hµ’s:

h2ǫ3,ǫ1−ǫ2 =
10

3
+

2

m− n− 5
, hǫ3+ǫ4,ǫ1−ǫ2 =

10

3
− 2

m− n− 5
,

h2ǫ3,0 = 2(1 +
1

m− n− 5
), hǫ3+ǫ4,0 = 2(1 − 1

m− n− 5
), h0,ǫ1−ǫ2 =

4

3
.

This values are not in Z+ for m,n in the range showed in the statement. �

We now list the cases that are not covered by Corollary 6.7. We list here
only the cases where there is a non-collapsing conformal level as described
in Proposition 4.2.

(1) g of type G(3), k = 5
4 ;

(2) g = D(2, 1; a) (a 6∈ {1
2 ,−1

2 ,−3
2}), k = 1

2 ;
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(3) g = psl(2|2), k = 1
2 ;

(4) g = spo(m+ r|m), (m ≥ 4, r ∈ {0, 2}), k = − r+2
3 ;

(5) g = osp(n+ r|n), (r ∈ {−1, 3, 4, 6, 8, 11}), k = 3−r
2 ;

(6) g = osp(m|n), k = 2
3(n−m+ 2);

(7) g = F (4), k = −1;
(8) g = G(3), k = −1

2 .

Sometimes Wk(g, θ) still decomposes finitely as a Vk(g
♮)-module. More ex-

plicitly, we have the following result:

Theorem 6.9. Vk(g
♮) is a simple affine vertex algebra and Wk(g, θ)

ī, i =
0, 1, are irreducible Vk(g

♮)-modules in the following cases:

(1) g = so(8), k = −5
2 ;

(2) g = D(2, 1; 1) = osp(4|2), k = 1
2 ;

(3) g = D(2, 1; 1/4), k = 1
2 .

The proof of Theorem 6.9 requires some representation theory of the
vertex algebra V−1/2(sl(2)).

Remark 6.2. Let k = 1
2 . In the case when k−a

a , where a ∈ Q, is an

admissible level for ŝl2 we also expect that Wk(g, θ) is a finite sum of Vk(g
♮)-

modules, but the decomposition is more complicated. We think that the
methods developed in [21] can be applied for this conformal embedding.
Here we shall only consider the cases a = 1 and a = 1/4, where we can
apply fusion rules for affine vertex algebras.

We will prove cases (1), (2), (3) of Theorem 6.9 in Sections 6.3.1, 6.3.2,
and 6.3.3, respectively.

The next result shows that in case (3) above we have an infinite decom-
position:

Theorem 6.10. If g = psl(2|2) and k = 1
2 then Vk(g

♮) is simple and Wk(g)

decomposes into an infinite direct sum of irreducible Vk(g
♮)-modules.

Proof. In this case Wk(g, θ) is isomorphic to the N = 4 superconformal
vertex algebra V N=4

c with c = −9 (cf. [30]). The explicit realization of this
vertex algebra from [3] gives the result. �

Remark 6.3. The remaining open cases are

• g of type G(3), k = 5
4 ;

• g = D(2, 1; a), (a 6∈ {1
2 ,−1

2 ,−3
2 , 1,

1
4}), k = 1

2 ;
• g = so(11), k = −4;
• g of type Bn (n ≥ 3), k = −4n−2

3 ;

• g of type Dn (n ≥ 5), k = −4n−4
3 ;

• g = osp(4|n) (n > 2, n 6= 8), k = −4−2n
3 .
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6.3. Proof of Theorem 6.9. As in Theorem 6.6, we set

U = span{G{u} | u ∈ g−1/2 }, A = Vk(g
♮) · U .

In order to apply Theorem 6.6, we have to prove that

A ·A ⊂ Vk(g
♮).

We first prove that Vk(g
♮) is simple and that A is a simple Vk(g

♮)-module.
Since Vk(g

♮) is admissible, we have that A · A is completely reducible [32].
Let A · A =

∑
iMi be its decomposition into simple modules. We have

to show that the only summands appearing are vacuum modules. This is
guaranteed by the fusion rules (5.3) presented in Subsection 5.2.1. Next we
provide details in each of the three cases.

6.3.1. Proof of Theorem 6.9, case (1). We claim that, as ŝl(2)-modules,

W−5/2(so(8), θ) = Lsl(2)(−1
2Λ0)

⊗3 ⊕ Lsl(2)(−3
2Λ0 + Λ1)

⊗3.

Recall that in this case g♮ ≃ sl(2)⊕sl(2)⊕sl(2). Then A is a highest weight
V −1/2(sl(2))⊗3-module with highest weight vector vλ1 ⊗ vλ1 ⊗ vλ1 .

Assume now that A is not irreducible. Then, as observed in Subsection
5.2.1 (2), a quotient of Nsl(2)(λ1) is either irreducible or it is Nsl(2)(λ1) itself.
It follows that

A ∼= Nsl(2)(λ1)⊗ L̃sl(2)(λ1)⊗ ˜̃Lsl(2)(λ1)

where L̃sl(2)(λ1) and
˜̃
Lsl(2)(λ1) are certain quotients of Nsl(2)(λ1) .

Let

w3 = vλ3 ⊗ vλ1 ⊗ vλ1 , W3 = U(g♮)w3 ⊂ A.

By using tensor product decompositions

Vsl(2)(3ω1)⊗ Vsl(2)(ω1) = Vsl(2)(4ω1)⊕ Vsl(2)(2ω1),

Vsl(2)(ω1)⊗ Vsl(2)(ω1) = Vsl(2)(2ω1)⊕ Vsl(2)(0),

and arguing as in the proof of Theorem 6.6 we see that U ·W3 cannot contain
primitive vectors of conformal weight ≤ 3. Since the conformal weight of
all elements of W3 equals the conformal weight of w3 which is 7

2 and the

conformal weight of all elements of U is 3
2 , we conclude that

U(n)W3 = 0 (n ≥ 1).

This implies that w3 is a non-trivial singular vector in W−5/2(so(8), θ). A

contradiction. Therefore W3 = 0 and A ∼= L(λ1)
⊗3.

We will now show that V−5/2(g
♮) is simple. If not, since a quotient of

V −1/2(sl(2)) is either simple or V −1/2(sl(2)) itself, we have

V−5/2(g
♮) = V −1/2(sl(2))⊗ Ṽ−1/2(sl(2)) ⊗ ˜̃

V −1/2(sl(2)),

where Ṽ−1/2(sl(2)) and
˜̃
V −1/2(sl(2)) are certain quotients of V −1/2(sl(2)).
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Set

w4 = vλ4 ⊗ 1⊗ 1, W4 = U(g♮)w4 ⊂ V−5/2(g
♮).

By using fusion rules again we see that U(1)W4 = W3 = 0. So w4 is a singular
vector in W−5/2(so(8), θ), a contradiction.

Therefore V−5/2(g
♮) = V−1/2(sl(2))

⊗3. By using fusion rules (5.3) we
easily get that

V−5/2(g
♮)⊕A = V−1/2(sl(2))

⊗3 ⊕ L(λ1)
⊗3

is a vertex subalgebra of W−5/2(so(8), θ). Since this subalgebra contains all
generators of W−5/2(so(8), θ), the claim follows. �

6.3.2. Proof of Theorem 6.9, case (2). The proof is similar to case (1).

We claim that, as ŝl(2)-modules,

W1/2(osp(4|2), θ)
= Lsl(2)(−1

2Λ0)⊗ Lsl(2)(−5
4Λ0)⊕ Lsl(2)(−3

2Λ0 +Λ1)⊗ Lsl(2)(−9
4Λ0 + Λ1).

Let U , A be as in Subsection 6.3.1. Then A is a highest weight V1/2(g
♮)-

module with highest weight vector vλ1⊗vλ̃1
where λ̃1 = −9

4Λ0+Λ1. Assume

now that V −1/2(sl(2))vλ1 is not simple. Then

A ∼= Nsl(2)(λ1)⊗ L̃sl(2)(λ̃1),

where L̃sl(2)(λ̃1) is certain a quotient of Nsl(2)(λ̃1).
Set

w3 = vλ3 ⊗ vλ̃1
, W3 = U(g♮)w3 ⊂ A.

The same argument of case (1), using fusion rules and evaluation of confor-
mal weights, shows that w3 is a non-trivial singular vector in W1/2(osp(4|2),
θ), a contradiction. Therefore W3 = 0 and

A ∼= L(λ1)⊗ L̃(λ̃1).

Assume next that V −1/2(sl(2)) · 1 is not simple. Then

V1/2(g
♮) = V −1/2(sl(2))⊗ Ṽ −5/4(sl(2))

where Ṽ −5/4(sl(2)) is a certain quotient of V −5/4(sl(2)).
Set

w4 = vλ4 ⊗ 1, W4 = U(g♮)w4 ⊂ V1/2(g
♮).

By using fusion rules again we see that U(1)W4 = W3 = 0. So w4 is a singular
vector in W1/2(osp(4|2), θ). A contradiction.

Therefore V1/2(g
♮) = V−1/2(sl(2)) ⊗ Ṽ −5/4(sl(2)). By using fusion rules

(5.3) we easily get that

V1/2(g
♮)⊕A = W1/2(osp(4|2), θ).

In particular V1/2(g
♮) is a simple vertex algebra and A is its simple module.

The claim follows. �
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6.3.3. Proof of Theorem 6.9, case (3). In case (3) we have

W1/2(D(2, 1; 1/4), θ) =

Lsl(2)(Λ0)⊗ Lsl(2)(−7
5Λ0)⊕ Lsl(2)(Λ1)⊗ Lsl(2)(−12

5 Λ0 +Λ1),

and the proof is completely analogous to that of case (2).

7. The vertex algebra R(3) and proof of Theorem 6.5

In this section we will present an explicit realization of the vertex algebra
Wk(sl(4), θ) and prove that it is isomorphic to the vertex algebra R(3) from
[3]. In this way we prove Conjecture 2 from [3]. Then we apply this new
realization to construct explicitly infinitely many singular vectors in each

charge component W
(i)
k , proving Theorem 6.5.

7.1. Definition of R(3). Let us first recall the definition of the vertex alge-
bra R(3) introduced in Section 12 of [3]. Let VL = M(1)⊗C[L] be the gen-
eralized lattice vertex algebra (cf. [14], [18]) associated to the (non-integral)
lattice

L = Zα+ Zβ + Zδ + Zϕ,

with non-zero inner products

〈α,α〉 = −〈β, β〉 = 1, 〈δ, δ〉 = −〈ϕ,ϕ〉 = 2

3
.

Set α1 = α+ β, α2 =
3
2(δ + ϕ), α3 =

3
2 (δ − ϕ), and

D = Zα1 + Zα2 + Zα3.

Then D is an even integral lattice. We choose a bi-multiplicative 2-cocycle
ε such that for every γ1, γ2 ∈ D we have

ε(γ1, γ2)ε(γ2, γ1) = (−1)〈γ1,γ2〉.

We fix the following choice of the cocycle:

ε(α1, αi) = ε(αi, α1) = ε(αi, αi) = 1 (i = 1, 2, 3)

ε(α2, α3) = −ε(α3, α2) = 1.

This cocycle can be extended to a 2-cocyle on L by bimultiplicativity. Then
we have

ε(α+ β − 3δ, α3) = ε(α1 − α2 − α3, α3) = 1,

ε(α+ β − 3δ, α2) = ε(α1 − α2 − α3, α2) = −1.

Let Cε[D] be the twisted group algebra associated to the lattice D and
cocycle ε. We consider the lattice type vertex algebra

V ext
D = M(1)⊗ Cε[D],

which is realized as a vertex subalgebra of VL. (Note that V ext
D contains

the complete Heisenberg vertex subalgebra M(1) of VL, and that the lattice
D has three generators.) All calculations below will be done in this vertex
algebra.
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For γ ∈ D we define the following elements of the Heisenberg vertex
algebra M(1):

S2(γ) =
1

2
((γ(−1))

2 + γ(−2)), S3(γ) =
1

6
(γ3(−1) + 3γ(−1)γ(−2) + 2γ(−3)).

First we recall that the vertex subalgebra V of V ext
D , generated by

e = eα+β ,(7.1)

h = −2β + δ,

f = (−2

3
(α2

(−1) + α(−2))− α(−1)δ(−1) +
1

3
α(−1)β(−1))e

−α−β ,

j = ϕ,

is an affine vertex algebra. More precisely, it is isomorphic to Mϕ(−2/3) ⊗
V−5/3(sl(2)) (Note that k = −5/3 is a generic level, i.e. V−5/3(sl(2)) =

V −5/3(sl(2)), cf. [24]).

Let Q = eα+β−3δ
(0) be the screening operator (cf. [3]). Note that Q is

a derivation of the vertex algebra V ext
D . We also have that the Sugawara

Virasoro vector ωV
sug of V maps to

(
1

2
(α2

(−1) − α(−2) − β2
(−1) + β(−2)) +

3

4
(δ2(−1) − 2δ(−2) − ϕ2

(−1))

)
1.

We define R(3) to be the vertex subalgebra of V ext
D generated by the gener-

ators of V and the following four even vectors of conformal weight 3/2:

E1 = e
3
2 (δ+ϕ),

E2 = Qe
3
2 (δ−ϕ) = S2(α+ β − 3δ)e−

3
2 (δ+ϕ)+α+β ,

F 1 = f(0)E
1 = −α(−1)e

−α−β+
3
2(δ+ϕ),

F 2 = f(0)E
2 = (−α(−1)S2(α+ β − 3δ) + S3(α+ β − 3δ))e−

3
2 (δ+ϕ).

The vertex algebra R(3) satisfies the following properties:

• R(3) is integrable, as a module over sl(2).
• R(3) has finite-dimensional weight spaces with respect to (ωV

sug)0.

The conformal weights lie in 1
2Z≥0.

• R(3) is contained in the following subalgebra of V ext
D :

M ⊗Π(0),

where M is the Weyl vertex algebra (i.e., the algebra of symplectic
bosons [28]) generated by

a = eα+β , a∗ = −α(−1)e
−α−β ,

and Π(0) is the ”half-lattice” vertex algebra

Π(0) = Mδ,ϕ(1)⊗ C[Z 3(δ+ϕ)
2 ]
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containing the Heisenberg vertex algebra Mδ,ϕ(1) generated by δ and
ϕ (cf. [3]).

Let (M⊗Π(0))int denote the maximal sl(2)-integrable submodule of M⊗
Π(0). It is clear that it is a vertex subalgebra of M ⊗Π(0).

We shall prove the following result.

Theorem 7.1.

(1) There is a vertex algebra homomorphism W k(sl(4), θ) → R(3).

(2) R(3) is a simple vertex algebra, i.e, Wk(sl(4), θ) = R(3).

(3) R(3) ∼= (M ⊗Π(0))int.

Remark 7.1. Theorem 7.1 gives a positive answer to Conjecture 2 from [3].
The representation theory of R(p) for p > 3 and its relation with C2-cofinite
vertex algebras appearing in LCFT (such as triplet vertex algebras) will be
studied in [4].

7.2. λ-brackets for R(3).

Proposition 7.2. We have the following λ-brackets:

[Ei
λE

i] = [F i
λF

i] = 0 (i = 1, 2),

[E1
λE

2] = 3(∂e + 3 : je :) + 6λe,

[F 1
λF

2] = −3(∂f + 3 : jf :)− 6λf,

[E1
λF

1] = 0,

[E1
λF

2] = −3(ωV
sug +

1

2
(∂h+ 3 : jh : −6 : jj : −5∂j)))

+3λ(−h+ 5j) + 5λ2,

[E2
λF

1] = −3(ωV
sug +

1

2
(∂h− 3 : jh : −6 : jj : +5∂j)))

−3λ(h+ 5j) + 5λ2,

[E2
λF

2] = 0.

Proof. The proof uses the standard computations in lattice vertex algebras
[28]. Let us discuss the calculation of [E1

λF
2] and of [E2

λF
1].

For [E1
λF

2], the only difficult part is to compute E1
(0)F

2. We have

E1
(2)F

2 = 10,

E1
(1)F

2 = −h+ 5ϕ = −h+ 5j,

E1
(0)F

2 = −9α(−1)(δ + ϕ)− 3α(−1)(α+ β − 3δ),

+10S2(
3
2(δ + ϕ))1+ 9(α(−1) + β(−1) − 3δ(−1))(δ + ϕ)

+3S2(α+ β − 3δ)1

= −3(ωsug + 1/2(h(−2) + 3ϕ(−1)h(−1) − 6ϕ2
(−1) − 5ϕ(−2))1).
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For the calculation of [E2
λF

1], we shall use the fact that Q is a derivation
in the lattice vertex algebra VD. Set

E
1
= e

3
2 (δ−ϕ),

F
2
= QF 1 = −(−α(−1)S2(α+ β − 3δ) + S3(α+ β − 3δ))e−

3
2 (δ−ϕ).

Note that the minus sign in front of the r.h.s. of the formula above comes
from the cocycle computation

ε(α+ β − 3δ,−α − β +
3

2
(δ + ϕ)) = ε(α1 − α2 − α3,−α1 + α2) = −1.

Next, we have

[E2
λF

1] = Q[e
3
2 (δ−ϕ)

λF
1]− [e

3
2 (δ−ϕ)

λQF 1] = −[E
1
λF

2
].

The calculation of [E
1
λF

2
] is essentially the same as for [E1

λF
2] (we just

replace j by −j). Now we have

[E2
λF

1] = −[E
1
λF

2
]

= (−3(ωsug +
1

2
(∂h− 3 : jh : −6 : jj : +5∂j))) + 3λ(−h − 5j) + 5λ2)

= −3(ωsug +
1

2
(∂h− 3 : jh : −6 : jj : +5∂j))) + 3λ(−h− 5j) + 5λ2

The claim follows. �

7.3. The homomorphism Φ : W k(sl(4), θ) → R(3). Recall from Exam-
ple 3.1 that the vertex algebra W k(sl(4), θ) is generated by the Virasoro
vector ω of central charge c(k) = 15k/(k + 4) − 6k, four even generators

J{e2,3}, J{e3,2}, J{e2,2−e3,3}, J{c} of conformal weight 1, and four even vectors
G{e2,1}, G{e3,1}, G{e4,2}, G{e4,3} of conformal weight 3/2.

By comparing λ-brackets from Proposition 7.2 and λ-brackets for the
vertex algebra W−8/3(sl(4), θ) we get the following result:

Proposition 7.3. Let k = −8/3. There is a vertex algebra homomorphism

Φ : W k(sl(4), θ) → R(3)

such that

J{e2,3} 7→ e, J{e3,2} 7→ f, J{e2,2−e3,3} 7→ h, J{c} 7→ j,

G{e2,1} 7→
√
2

3
E1, G{e3,1} 7→

√
2

3
F 1, G{e4,3} 7→

√
2

3
E2, G{e4,2} 7→ −

√
2

3
F 2,

ω 7→ ωV
sug.
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Proof. It is enough to check λ-brackets from Example 3.1 in the case k =
−8/3. In particular, taking into account that

ω = ωsug =
3

2
(2 : J{e2,3}J{e3,2} : −∂J{e2,2−e3,3}

+
1

2
: J{e2,2−e3,3}J{e2,2−e3,3} :)− 3

4
: J{c}J{c} :,

we get

[G{e2,1}
λG

{e4,2}] =
2

3
ω − 2 : J{c}J{c} : +

1

3
∂J{e2,2−e3,3} − 5

3
∂J{c}

+ : J{c}J{e2,2−e3,3} : +
2

3
λ(−5J{c} + J{e2,2−e3,3})− 10

9
λ2

= −2

9
(−3(ωV

sug +
1

2
(∂h+ 3 : jh : −6j2 − 5∂j))) + 3λ(−h+ 5j) + 5λ2).

= −2

9
[E1

λF
2].

All other λ-brackets are checked similarly. �

Proposition 7.3 implies that R(3) is conformally embedded into a certain
quotient of W k(sl(4), θ). In the following subsection we will prove that R(3)

is isomorphic to Wk(sl(4), θ).

7.4. Simplicity of R(3) and proof of Theorem 7.1. Our proof of sim-
plicity is similar to the proof of simplicity of the N = 4 superconformal
vertex algebra realized in [3]. As a tool we shall use the theory of Zhu alge-
bras associated to the Neveu-Schwarz sector of 1

2Z≥0-graded vertex algebras.

Let V is a 1
2Z≥0-graded vertex algebra and A(V ) = V/O(V ) the associated

Zhu algebra. Let [a] = a+O(V ) (cf. Subsection 2.4).

Lemma 7.4.

(1) The Zhu algebra A(R(3)) is isomorphic to a quotient of U(gl(2)).
(2) In the Zhu algebra A(R(3)) the following relation holds:

[e]([ω] +
2

3
− 3

2
[j]2) = 0.

Proof. Since R(3) is a quotient of W k(sl(4), θ), the first assertion follows
from Proposition 4.3. Let us prove the second assertion. We notice that

: E1E2 :=

(S2(α+ β − 3δ) + 6S2(
3
2 (δ + ϕ)) +

9

2
(α+ β − 3δ)(−1)(δ + ϕ)(−1))e

α+β .

: eω :=

(−(α(−1) + β(−1))β(−1) + β(−2) +
3

4
(δ2(−1) − 2δ(−2) − ϕ2

(−1)))e
α+β .

By direct calculation we get the following relation:
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: E1E2 : +3 : eω :=

(e(−3) +
3
2 (h(−1)e(−2) − h(−2)e(−1))+

9
2((ϕ

2
(−1) + ϕ(−2))e(−1) + ϕ(−1)e(−2)))1.

We have

E1 ◦ E2 = (E1
(−1) +E1

(0))E
2 =

−3e(−1)ω + e(−3) +
3

2
(h(−1)e(−2) − h(−2)e(−1)) +

9

2
(ϕ2

(−1) + ϕ(−2))e(−1)

+
9

2
ϕ(−1)e(−2) + 3e(−2) + 9ϕ(−1)e(−1).

This gives the following relation in the Zhu algebra:

−3[e][ω] − 2[e] +
9

2
([j]2 + [j] − [j])[e] = −3[e][ω] − 2[e] +

9

2
[j]2[e] = 0.

The claim follows. �

Proposition 7.5.

(1) R(3) is a simple vertex algebra.

(2) R(3) ∼= (M ⊗Π(0))int.

Proof. By using the fact that R(3) is a subalgebra of M ⊗Π(0), we conclude
that if wsing is a singular vector for W k(sl(4), θ) in R(3), it must have gl(2)-
weight (nω1,m) for n ∈ Z≥0 and m ∈ Z. This means that

h(0)wsing = nwsing, ϕ(0)wsing = mwsing.

This leads to the relation

L(0)wsing = (
3n(n+ 2)

4
− 3

4
m2)wsing.

On the other hand, wsing generates a submodule whose lowest component
must be a module the for Zhu algebra. Now Lemma 7.4 implies that
U(gl(2))wsing is annihilated by [e]([ω] + 2

3 − 3
2 [j]

2). If n > 0, we get

3n(n+ 2)

4
− 3

4
m2 − 3

2
m2 =

3n(n+ 2)− 9m2

4
= −2

3
,

which gives a contradiction since m ∈ Z. So n = 0. Then the fact that
conformal weight must be positive implies that m = 0. Therefore wsing

must be proportional to the vacuum vector. We deduce that there are no
non-trivial singular vectors, and therefore R(3) is a simple vertex algebra.
This proves (1). The proof of assertion (2) is completely analogous. �

Proof of Theorem 7.1. Apply Propositions 7.3 and 7.5. �
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7.5. ĝl(2)-singular vectors in R(3).

Lemma 7.6. Let ℓ ∈ Z.

(1) If ℓ ≥ 0, then for every j ≥ 0

vℓ,j = Qje
3ℓ
2
(δ+ϕ)+3jδ

is a non-trivial singular vector in R(3) .
(2) If ℓ ≤ 0, then for every j ≥ 0

vℓ,j = Qj−ℓe−
3ℓ
2
(δ−ϕ)+3jδ

is a non-trivial singular vector in R(3).

In particular, the set {vℓ,j | j ≥ 0} provides an infinite family of linearly

independent ĝl(2)-singular vectors in the ℓ-eigenspace of ϕ(0).

Proof. The non-triviality of the singular vectors vℓ.j is well known (cf. [5]).
The assertions now follow from the fact vℓ,j belongs to a maximal sl(2)-
integral part of M ⊗Π(0). �

7.6. Proof of Theorem 6.5. Since we have proved that Wk(sl(4), θ) is

isomorphic to the simple vertex algebra R(3), Lemma 7.6 shows that each
Wk(sl(4), θ)

(i) contains infinitely many linearly independent singular vec-
tors.

Remark 7.2. Assertion (3) of Theorem 7.1 implies that Wk(sl(4), θ) = R(3)

is an object of the category KLk+1 of Vk+1(sl(2))-module. In particular,

each Wk(sl(4), θ)
(i) is an object this category. Since k + 1 = −5/3 is a

generic level for ŝl(2), and the category KLk+1 is semisimple (this follows
easily from [34], we skip details), we have that Wk(sl(4), θ)

(i) is completely

reducible. So we actually proved that each Wk(sl(4), θ)
(i) is a direct sum of

infinitely many irreducible Vk+1(gl(2))-modules.

8. Explicit decompositions from Theorem 6.4: g♮ is a Lie

algebra

In Theorem 6.4 we proved a semisimplicity result for conformal embed-
dings of Vk(g

♮) in Wk(g, θ) where g = sl(n) or g = sl(2|n). But this semisim-

plicity result does not identify highest weights of the componentsWk(g, θ)
(i).

In this section we shall identify these components in certain cases and prove
that then Wk(g, θ) is a simple current extension of Vk(g

♮).
Recall from Section 2.7 that Fn denotes a rank one lattice vertex algebra

and F i
n, i = 0, · · · , n−1, denote its irreducible modules. The following result

refines Theorem 6.4.

Theorem 8.1. (1) If g = sl(2n) and k = 1
2 − n, n ≥ 2, then

Com(Vk+1(sl(2n− 2)),Wk(g, θ)) ∼= F4n(n−1).
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Moreover, we have the following decomposition of Wk(g, θ) as a
Vk+1(sl(2n − 2))⊗ F4n(n−1)-module:

Wk(g, θ) ∼=
2n−3⊕

i=0

Lsl(2n−2)(kΛ0 + Λi)⊗ F 2in
4n(n−1).(8.1)

(2) If g = sl(2|n) and k = −2
3h

∨ /∈ Z, then

Com(V−k−1(sl(n)),Wk(g, θ)) ∼= F3n.

Moreover, we have the following decomposition of Wk(g, θ) as a
V−k−1(sl(n))⊗ F3n-module:

Wk(g, θ) ∼=
n−1⊕

i=0

Lsl(n)(−(k + 2)Λ0 + Λi)⊗ F 3i
3n.(8.2)

Proof. (1) Let α = 2nJ{c} and note that

Vk(g
♮) = Vk+1(sl(2n− 2))⊗Mα(4n(n − 1)).

By Theorem 6.4 we have that each Wk(g, θ)
(i) is an irreducible Vk(g

♮)-

module, and, by checking the action of J
{c}
(0) , we see that there is a weight Λ

such that

Wk(g, θ)
(i) = Lsl(2n−2)(Λ)⊗Mα(4n(n− 1), 2in).

Since

Wk(g, θ)
(1) ∼= Lsl(2n−2)(kΛ0 +Λ1)⊗Mα(4n(n − 1), 2n),

Wk(g, θ)
(−1) ∼= Lsl(2n−2)(kΛ0 +Λ2n−3)⊗Mα(4n(n − 1),−2n),

the fusion rules result from Proposition 5.1 and the fusion rules (2.5) imply
that

Wk(g, θ)
(i) ∼= Lsl(2n−2)(kΛ0 + Λī)⊗Mα(4n(n− 1), 2in),(8.3)

where

ī ∈ {0, . . . , 2n − 3}, i ≡ ī mod (2n − 2).

Since

Com(Vk+1(sl(2n− 2)),Wk(g, θ)) = {v ∈ Wk(g, θ)| J{u}
(n) v = 0, n ≥ 0, u ∈ g♮},

we get that

Com(Vk+1(sl(2n − 2)),Wk(g, θ)) ∼=
⊕

i∈Z

Mα(4n(n− 1), 4in(n − 1))

as a Mα(4n(n− 1))-module. Now Proposition 2.2 implies that

Com(Vk+1(sl(2n− 2)),Wk(g, θ)) ∼= F4n(n−1).

The decomposition (8.1) now easily follows from (8.3). This proves (1).
The proof of (2) is based on Proposition 5.2 and it is completely analogous

to the proof of assertion (1). �
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Remark 8.1. Decompositions (8.1) and (8.2), together with the fusion rules
result from Propositions 5.1 and 5.2 imply that the minimalW -algebras from
Theorem 8.1 are finite simple current extensions of the tensor product of an
admissible affine vertex algebra with a rank one lattice vertex algebra. It is
also interesting to notice that the r.h.s. of (8.1) and (8.2) have sense for the
cases g = sl(n), n odd, and g = sl(2|n), k = −2

3h
∨ ∈ Z. But Corollary 8.3

shows that most likely we won’t get lattice vertex subalgebra in these cases.

Remark 8.2. The computation of the explicit decompositions in Theorem
6.4 when Vk(g) does not contain an admissible vertex algebra of type A
needs a subtler analysis. Our approach motivates the study of the following
non-admissible affine vertex algebras:

• Vk′(sl(2n + 1)) for k′ = −n,
• Vk′(sl(n)) for k

′ = −2n+1
3 ,

• Vk′(sl(3n + 2)) for k′ = −2n− 1,
• Vk′(sl(n)) for k

′ = −n+1
2 , n ≥ 4.

Their representation theory is known only for V−1(sl(3)) (cf. [8]):

Proposition 8.2. [8] For s ∈ Z≥0 set

Us = Lsl(3)(−(1 + s)Λ0 + sΛ1), U−s = Lsl(3)(−(1 + s)Λ0 + sΛ2).

• The set {Us | s ∈ Z} provides a complete list of irreducible V−1(sl(3))
modules from the category KL−1.

• The following fusion rules hold in the category KL−1:

Us1 × Us2 = Us1+s2 (s1, s2 ∈ Z).

By using this proposition we get the following refinement of Theorem 6.4
(1) for the case n = 5:

Corollary 8.3. We have the following isomorphism of V−2,3/5(g
♮)-modules:

W−2(sl(5), θ) ∼=
⊕

s∈Z

Us ⊗M(3/5, s).

Proof. Set α = J{c}. Then V−2(g
♮) = V−1(sl(3)) ⊗Mα(3/5). By Theorem

6.4, we have that each Wk(g, θ)
(i) is an irreducible Vk(g

♮)-module, and, by

checking the action of J
{c}
(0) , we see that there is a weight Λ such that

Wk(g, θ)
(i) = Lsl(3)(Λ)⊗Mα(3/5, i).

The assertion follows as in the proof of Theorem 8.1 from the fusion rules
result from Proposition 8.2. �

Remark 8.3. In [28], the vertex algebra U0 and its modules Us from Propo-
sition 8.2 are realized inside of the Weyl vertex algebra M3 of rank three. It
was proved in [8] that

M3
∼=
⊕

s∈Z

Us ⊗M(−3, s).
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Note that although W−2(sl(5), θ) admits an analogous decomposition, one
can easily see that this W -algebra is not isomorphic to any subalgebra of
M3.

We also believe that the modules which appear in the decomposition of
Wk(g, θ) in Theorem 6.4 (3) are also simple currents, so one can also ex-
pect the decomposition like in Corollary 8.3. Indeed, we can show that
such decomposition holds but instead of applying fusion rules (which we
don’t know yet), we will apply results from our previous papers [9] and
[10]. In [9] we proved that the affine vertex algebra V

−
n+1
2

(sl(n + 1))

(n ≥ 4) is semisimple as a V
−
n+1
2

(gl(n))-module and identified highest

weights of all modules appearing in the decomposition. In [10] we proved
that V

−
n+1
2

(sl(n + 1)) (n ≥ 4, n 6= 5) is embedded in the tensor product

vertex algebra Wk(sl(2|n), θ)⊗F−1. An application of these results will give
the branching rules.

For s ∈ Z≥0, we set

U (n)
s = Lsl(n)(−(n+1

2 + s)Λ0 + sΛ1), U
(n)
−s = Lsl(n)(−(n+1

2 + s)Λ0 + sΛn).

Theorem 8.4. Let g = sl(2|n), k = 1−h∨

2 , n = 4 or n ≥ 6. We have an

isomorphism as Vk(g
♮)-modules:

Wk(g, θ) ∼=
⊕

s∈Z

U (n)
s ⊗M(

n

n− 2
, s).

Proof. We first consider the Heisenberg vertex algebra Mα(
n

n−2)⊗Mϕ(−1)

generated by the Heisenberg fields α = J{c} and ϕ such that

[αλα] =
n

n− 2
λ, [ϕλϕ] = −λ.

Define

ϕ = α+ ϕ, ϕ̂ =
2− n

2
(α+

n

n− 2
ϕ).

Then

Mα(
n

n− 2
)⊗Mϕ(−1) = Mϕ̂(−

n

2
)⊗Mϕ(

2

n− 2
).

Theorem 6.4 (3) implies that

Wk(g, θ)
(s) ∼= Lsl(n)(Λ

(s))⊗Mα(
n

n− 2
, s),
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where Lsl(n)(Λ
(s)) is an irreducible highest weight module from KL

−
n+1
2

. It

was proved in [10, Theorem 5.6] that

V
−
n+1
2

(sl(n+ 1))⊗Mϕ(
2

n− 2
)

=
⊕

s∈Z

Wk(g, θ)
(s) ⊗Mϕ(−1,−s)

=
⊕

s∈Z

Lsl(n)(Λ
(s)) ⊗Mα(

n

n− 2
, s)⊗Mϕ(−1,−s).

=

(⊕

s∈Z

Lsl(n)(Λ
(s)) ⊗Mϕ̂(−

n

2
, s)

)
⊗Mϕ(

2

n− 2
).

This implies that

V
−
n+1
2

(sl(n+ 1)) ∼=
⊕

s∈Z

Lsl(n)(Λ
(s))⊗Mϕ̂(−

n

2
, s).

Now results from [9] (see in particular [9, Theorem 2.4, Theorem 5.1 (2)])
imply that

Lsl(n)(Λ
(s)) ∼= U (n)

s .

The claim follows. �

9. Explicit decompositions from Theorem 6.4: g♮ is not a Lie

algebra

In this section we describe the decomposition of W−2(sl(n + 5|n), θ) as
Vk(g

♮)-module. We obtain, similarly to the results of Section 8, that
W−2(sl(n+ 5|n), θ) is a simple current extension of Vk(g

♮). We expect this
to hold in general.

9.1. Simple current Vk0(sl(m|n))–modules. Let us first recall a few de-
tails on simple current modules obtained by using the simple current oper-
ator ∆(α, z).

Let V be a conformal vertex algebra with conformal vector ω. Let α be
an even vector in V such that

ωnα = δn,0α, α(n)α = δn,1γ1 (n ≥ 0),

where γ is a complex number. Assume that α(0) acts semisimply on V with
eigenvalues in Z. Let [19]

∆(α, z) = zα(0) exp

(
∞∑

n=1

α(n)

−n
(−z)−n

)
.

Then [19]

(V (α), Yα(·, z)) := (V, Y (∆(α, z)·, z))(9.1)
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is a V –module, called a simple current V –module, and

Yα(ω, z) = Y (ω, z) + z−1Y (α, z) + 1/2γz−2.(9.2)

When V is the simple affine vertex algebra associated to sl(m|n), we will use
this construction to produce simple current modules in a suitable category.

Let g = sl(m|n) (m 6= n), k0 ∈ C. Let ei,j denote the standard matrix
units in sl(m|n); consider the following vector in Vk0(sl(m|n)):

αm,n =
1

m− n
(ne1,1 + · · ·+ nem,m +mem+1,m+1 + · · ·+mem+n,m+n)(−1)1.

Note that

(9.3) g = g−1 + g0 + g1, gi = {x ∈ g| [αm,n, x] = ix}.
In particular, g0 ∼= sl(m)× sl(n)×Cαm,n is the even part of g and g−1 + g1

is its odd part.
For i ∈ {−1, 0, 1} and n ∈ Z set

gi(n) = gi ⊗ tn.

The decomposition (9.3) implies that αm,n
(0) acts semi-simply on Vk0(sl(m|n))

with integral eigenvalues. Moreover

[αm,n
λ αm,n] =

1

(m− n)2
(n2mk0 −m2nk0)λ = − nmk0

m− n
λ.

Set

Um,n
s = Vk0(g)

(sαm,n) (s ∈ Z).

By definition (9.1), we see that Um,n
s is obtained from Vk0(g) by applying

the automorphism πs of ĝ (and Vk0(g)) uniquely determined by

πs(x
±
(r)) = x±(r∓s) (x± ∈ g±1),(9.4)

πs(x(r)) = x(r) (x ∈ sl(m)× sl(n) ⊂ g0),(9.5)

πs(α
m,n
(r) ) = αm,n

(r) − nmk0
m− n

sδr,0,(9.6)

where r, s ∈ Z. Note that in Um,n
s we have

g±1(n ± s).1 = 0 (n ≥ 0).

Theorem 9.1. Assume that m,n ≥ 1. We have:
(1) Um,n

s , s ∈ Z, are irreducible Vk0(g)–modules from the category KLk0.
(2) Let s = ±1. Then the lowest graded component of Um,n

s is, as a vector
space, isomorphic to ∧

(gs(0)) .1.

It has conformal weight −nmk0
m−n .

(3) Um,n
s , s ∈ Z, are simple current Vk0(g)–modules in KLk0 and the fol-

lowing fusion rules holds in KLk0:

Um,n
s1 × Um,n

s2 = Um,n
s1+s2 (s1, s2 ∈ Z).(9.7)
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Proof. (1) Since Um,n
s = πs(Vk0(g)), we get that Um,n

s is irreducible Vk0(g)–
module. Relations (9.4) -(9.6) together with (9.2) imply that Um,n

s belongs
to KLk0 . In fact, the lowest graded component is contained in the vector
space

∧(
g1(0) + · · ·+ g1(s− 1)

)
.1 (s ≥ 1)

∧(
g−1(0) + · · ·+ g−1(−s− 1)

)
.1 (s ≤ −1).

For s = ±1 we get assertion (2). Assertion (3) follows from [36]. More pre-
cisely, for any irreducible Vk0(g)–module (M,YM ) from the category KLk0

one can show that

(Ms, ỸM (·, z)) = (M,YM (∆(αm,n, z)·, z))(9.8)

is also an irreducible Vk0(g)–modules from the category KLk0 (this follows
from the fact that Ms is essentially obtained by applying the automorphism
πs). Then [36, Theorem 2.13] gives the fusion rules

M × Um,n
s = Ms.

In particular, this proves the fusion rules (9.7). �

Remark 9.1. Let us consider the case s = ±1. Then the lowest weight
component Um,n

s (0) of Um,n
s is a irreducible (sub)quotient of the Kac module

Ks
m,n(k0) induced from the 1–dimensional (g0+g−s)–module C1 with action

g−s.1 = 0,

x.1 = 0 (x ∈ sl(m)× sl(n)),

αm,n.1 = −s
nmk0
m− n

1.

As a vector space Ks
m,n(k0)

∼=
∧

gs. If we take an odd coroot β = ei,i +
em+j,m+j, 1 ≤ i ≤ m, 1 ≤ j ≤ n, by direct calculation we get

(9.9) β.1 = −sk0.1.

This implies that Ks
m,n(k0) is typical iff k0 /∈ {−(m− 1), . . . , n − 1}.

Recall that a weight λ of a basic Lie superalgebra is said to be typical if
(λ+ ρ)(β) 6= 0 for each isotropic odd root β. To derive the above condition
on k0, we make computations in a distinguished set of positive roots; we
have

ρ = −s

2




m∑

i=1

(m− n− 2i+ 1)ǫi +

n∑

j=1

(n+m− 2j + 1)δj


 ,

and from (9.9) we deduce that

(λ+ ρ)(β) = −s(k0 +m− i− j + 1),

which is non-zero if k0 /∈ {−(m− 1), . . . , n− 1}. Under this hypothesis, the
lowest graded component Um,n

s (0) of Um,n
s is isomorphic to Ks

m,n(k0) as a
g–module.
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Now we specialize the previous construction to g = sl(4|1) and k0 = −1.
So

α = α4,1 =
1

3
(e1,1 + · · ·+ e4,4 + 4e5,5)(−1)1 ∈ V−1(sl(4|1)).

and

[αλα] =
4

3
λ, Us = U4,1

s = V−1(sl(4|1))(sα) (s ∈ Z).

Corollary 9.2. We have:
(1) Us, s ∈ Z, are irreducible V−1(sl(4|1))–modules from the category KL−1.
(2) The lowest graded component of U1 is isomorphic to C4|1 and that of

U−1 is isomorphic to (C4|1)∗.
(3) Us is an irreducible, simple current V−1(sl(4|1))–module and the follow-
ing fusion rules hold:

Us1 × Us2 = Us1+s2 (s1, s2 ∈ Z).

Proof. Proof follows from Theorem 9.1 and the fact that top component of
U1 (resp. U−1) has the same highest weight as the sl(4|1)–module C4|1 (resp.

(C4|1)∗. �

Modules Us are actually obtained from the vertex algebra Vk0(sl(4|1)) by
applying the spectral flow automorphism πs of ŝl(4|1) which leaves ŝl(4)–
invariant.

9.2. The decomposition for Wk(sl(6|1), θ), k = −2. We now consider the
minimal W–algebra Wk(g, θ) for Lie superalgebra g = sl(6|1) at the confor-

mal, non-collapsing level k = −2. We shall prove that each Wk(g, θ)
(i) is a

simple current Vk(g
♮)–module. In order to see this, essentially it suffices to

prove that Wk(g, θ)
(±1) are the simple current modules described in previous

section. Note that g♮ = sl(4|1) + C, and that

Vk(g) = Vk+1(sl(4|1)) ⊗Mβ(
2h∨−4
h∨ (k + h∨/2)),

where β = J{c}, [βλβ] =
2h∨−4
h∨ (k + h∨/2) = 3

5 .
By the irreducibility statement from Theorem 6.4 we see that there are

weights Λ± such that

Wk(g, θ)
(±1) ∼= Lsl(4|1)(Λ

±)⊗Mβ(
3
5 ,±1).

The lowest graded component of Lsl(4|1)(Λ
+) (resp. Lsl(4|1)(Λ

+) ) is isomor-

phic as sl(4|1)–module to C4|1 (resp. (C4|1)∗ ) and it has conformal weight
h1 =

2
3 . By Corollary 9.2, we get that

Wk(g, θ)
(±1) ∼= U±1 ⊗Mβ(

3
5 ,±1).

Since U±1 and Mβ(
3
5 ,±1) are simple current modules we get that Wk(g, θ) is

a simple current extension. In this way we have proved the following result,
which gives a super-analog of Corollary 8.3. (Arguments are essentially

the same, only the proof that Wk(g, θ)
(±1) are simple current modules uses

different techniques).
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Corollary 9.3. Let g = sl(6|1). We have the following isomorphism of
V−2,3/5(g

♮)-modules:

W−2(g, θ) ∼=
⊕

s∈Z

Us ⊗Mβ(3/5, s).

Remark 9.2. By using similar arguments one can obtain analogous decom-
positions for g = sl(n+5|n) and conformal level k = −2. For decompositions
in the case of other conformal levels we need more precise fusion rules analy-
sis. This and related questions will be discussed in our forthcoming papers.
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[6] D. Adamović, A. Milas , On the triplet vertex algebra W (p), Adv. Math. 217 (2008),
2664–2699.
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