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Scaling phenomena driven by inhomogeneous conditions at first-order quantum transitions
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We investigate the effects of smooth inhomogeneities at first-order quantum transitions (FOQTs), such as
those arising in the presence of a space-dependent external field, which smooths out the discontinuities of the
low-energy properties at the transition. We argue that a universal scaling behavior emerges in the space transition
region close to the point in which the external field takes the value for which the homogeneous system undergoes
the FOQT. We verify the general theory in two model systems. We consider the quantum Ising chain in the
ferromagnetic phase and the q-state Potts chain for q = 10, investigating the scaling behavior which arises in the
presence of an additional inhomogeneous parallel and transverse magnetic field, respectively. Numerical results
are in full agreement with the general theory.
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I. INTRODUCTION

The theories of classical and quantum phase transitions
[1–3] generally apply to homogeneous systems. However,
homogeneity is often an ideal limit of experimental conditions.
Inhomogeneous conditions generally smooth out the singular-
ities at phase transitions. This is also expected at first-order
transitions, which are characterized by discontinuities in the
thermodynamic quantities in the classical case or in the
ground-state properties in the quantum case.

In the presence of smooth inhomogeneities, we may
simultaneously observe different phases in different space
regions, separated by crossover regions in which the system
goes from one phase to another. For example, this behavior
is observed in typical cold-atom experiments [4], in which
the atoms are constrained in a limited space region by an
inhomogeneous (usually harmonic) trap, which effectively
makes the chemical potential space dependent.

The effects of the inhomogeneous conditions have been
much investigated at continuous transitions [4–46]. For suffi-
ciently smooth inhomogeneities, classical or quantum systems,
at classical (finite-temperature) or quantum (zero-temperature)
transitions, show a universal scaling behavior in a space
region whose size is controlled by the typical length scale
� of the inhomogeneity. The scaling behavior is universal and
somewhat analogous to the standard finite-size scaling (FSS)
occurring in homogeneous systems [47–50]. In particular,
it only depends on the universality class of the transition
occurring in the homogeneous system. There is, however, a
crucial difference between the usual FSS and that observed
in the presence of an inhomogeneity. In the latter case, there
are indeed two relevant length scales. Besides the correlation
length ξ there is the length scale �, related to ξ by a nontrivial
power law at the critical point, ξ ∼ �θ , where θ is a universal
exponent depending on the homogeneous universality class
and on some general features of the external space-dependent
field [19,25].

Scaling phenomena also emerge at first-order classical
transitions in the presence of a temperature gradient [46] or a
space-dependent external field. They are observed in the transi-
tion region in which the space-dependent temperature assumes
values close to the critical temperature of the homogeneous

system. Thermodynamic quantities show a universal scaling
behavior, characterized by nontrivial power laws, which is
quite similar to that observed at continuous transitions.

In this paper we study the effects of inhomogeneous
conditions at first-order quantum transitions (FOQTs). FOQTs
are of great interest, as they occur in a large number of quantum
many-body systems, such as quantum Hall samples [51],
itinerant ferromagnets [52], heavy fermion metals [53–55], and
so on. They also occur in multicomponent cold-atom systems
in optical lattices, with spin-orbit coupling and synthetic gauge
fields. These systems show several phases, some of them
separated by FOQTs [56–62].

We investigate the scaling behavior arising when one of the
model parameters smoothly depends on space. We put forward
a scaling theory, which describes the low-energy properties in
the crossover space region where the system changes phase.
We verify this scaling theory in two relatively simple quantum
many-body systems, the quantum Ising and Potts chains in
the presence of space-dependent magnetic fields. Numerical
results are in full agreement with the theoretical predictions.

The paper is organized as follows. In Sec. II we define
the quantum Ising and Potts chains with a space-dependent
magnetic field hx and present numerical results for their
behavior around the spatial point where hx = 0, the value at
which the FOQT occurs in the homogeneous case. In Sec. III
we present a general theory for the scaling behavior in the
crossover region close to the transition spatial point. In Sec. IV
we check the scaling theory by analyzing numerical results for
the Ising and the Potts chain with q = 10. Finally, in Sec. V
we draw our conclusions.

II. QUANTUM ISING AND POTTS CHAINS

In order to make the discussion concrete, we first define
the quantum models that we use as theoretical laboratories to
study FOQTs in the presence of a spatial inhomogeneity. We
consider the Ising chain in the ordered phase in the presence
of a parallel magnetic field coupled to the order-parameter
spin operator and the quantum q-state Potts chain with
q = 10 in the presence of a transverse magnetic field. In the
homogeneous case, both models undergo a FOQT. For each
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model, we compute several quantities using the density matrix
renormalization-group (DMRG) method [63]. Some details
of the DMRG implementation can be found in Refs. [64,65],
where we presented numerical studies of the same models in
homogeneous conditions. From the numerical point of view,
simulations of the inhomogeneous system do not present any
additional difficulty.

A. The quantum Ising chain

We consider a quantum Ising chain of size 2L + 1 with a
space-dependent parallel magnetic field hx coupled with the
order-parameter spin operator. Its Hamiltonian is

HI = −J

L−1∑
x=−L

σ (1)
x σ

(1)
x+1

−g

L∑
x=−L

σ (3)
x −

L∑
x=−L

hx σ (1)
x , (1)

where σ (a)
x are the Pauli matrices, g � 0 is the transverse

magnetic field, J is a coupling that will be taken equal to
1 in the following, and hx is a space-dependent magnetic field,
which we write as

hx ≡ h(x/�), (2)

where � is a length scale. The most interesting case corresponds
to the linear function

h(x) = x. (3)

Indeed, as we shall discuss, models with h(x) given by Eq. (3)
and models with generic functions h(x) such that h(x0) = 0
and h′(x0) �= 0 show the same scaling behavior around the
point where hx vanishes, provided that we rescale � so hx ≈
(x − x0)/� for x → x0. In other words, if h(x) admits the
expansion

h(x) ≈ a1(x − x0) + a2(x − x0)2 + . . . (4)

around the point x0, where h(x0) = 0, with a1 �= 0, then
the scaling behavior is identical to that obtained by simply
considering the model with h(x) = a1(x − x0).

It is also convenient to extend the analysis to a more general
class of functions,

h(x) = sgn(x) |x|p, (5)

parametrized by p. This allows us to crosscheck the scaling
theory we shall put forward to describe these phenomena.
We study the system in the L → ∞ limit and investigate the
scaling behavior with respect to the length scale �. In the
limit p → ∞ the only allowed states |s〉 are those such that
σ (1)

x |s〉 = +1 for x > � and σ (1)
x |s〉 = −1 for x < −�. Thus,

in this limit we obtain the Hamiltonian of an Ising chain
of size 2
�� + 1, with fixed opposite boundary conditions
(FOBC). Integrating out all states with |x| > � we obtain the

Hamiltonian with a boundary term [64],

HI,FOBC = −

��−1∑

x=−
��
σ (1)

x σ
(1)
x+1

−g


��∑
x=−
��

σ (3)
x + (

σ
(1)
−
�� − σ

(1)

��

)
. (6)

The homogeneous Ising chain, i.e., model (1) with a uniform
magnetic field hx = h, has a continuous transition at g =
1, h = 0, belonging to the two-dimensional Ising universality
class. This quantum critical point separates a paramagnetic
(g > 1) and a ferromagnetic (g < 1) phase. In the ferromag-
netic phase g < 1, the parallel magnetic field h drives a FOQT
at h = 0, with a discontinuity of the magnetization, i.e., of the
ground-state expectation value of σ (1)

x . Indeed, we have [66]

m± = limh→0± limL→∞
〈
σ (1)

x

〉 = ±mc, (7)

mc = (1 − g2)1/8. (8)

Therefore, in the presence of an inhomogeneous field which
vanishes changing sign at x = 0, such as that defined in Eq. (3),
the point x = 0 effectively corresponds to the spatial point
which separates the two oppositely magnetized phases, with
〈↑|σ (1)

x |↑〉 = m+ and 〈↓|σ (1)
x |↓〉 = m−.

Numerical DMRG estimates of the local magnetization

m(x) = 〈
σ (1)

x

〉
(9)

are shown in Figs. 1, 2, and 3 for linearly and quadratically
varying fields h(x). The system size L is always large enough
to guarantee that the data are in the infinite-size limit. This
is easily checked by comparing data with the same � and
increasing values of L. Examples are reported in Figs. 1 and
3. Note that, with increasing �, smaller and smaller ratios L/�

are needed to observe the large-L limit around x = 0. This
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FIG. 1. (Color online) The local magnetization m(x) ≡ 〈σ (1)
x 〉 for

the Ising chain (1) with g = 1/2 and hx = x/� versus x/�. The dotted
lines correspond to the transition values m± = ±mc given in Eq. (8).
The data for the same � and different L cannot be distinguished on the
scale of the figure, showing that they effectively provide the L → ∞
limit.
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FIG. 2. (Color online) The local magnetization m(x) for model
(1) with hx = x/� for g = 3/4 (bottom) and g = 9/10 (top). The
values of mc are given in Eq. (8). We also show the LEA predictions,
obtained by using the DMRG estimates of the magnetization mh(h)
as a function of a uniform parallel magnetic field h.
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FIG. 3. (Color online) The local magnetization m(x) for model
(1) in the presence of a quadratic space-dependent (p = 2) hx at
g = 1/2. The data for the same � and different L practically coincide,
hence they provide a good approximation of m(x) in the L → ∞
limit.

is explained by the scaling theory of Sec. III, which shows
that the relevant scaling length in the crossover region around
x = 0 is ξ ∼ �θ with θ = 1/4 for h(x) = x and θ = 2/5 for
the h(x) ∼ |x|2. Therefore, the relevant length ratio in the
crossover region is L/�θ and not L/�, so the infinite-L limit is
observed for L/� � �θ−1 ∼ �−3/4 for p = 1 and L/� � �−3/5

for p = 2. Therefore, the ratio L/� decreases for � → ∞.
The data around x = 0 show a crossover between the two

magnetization values m± defined in Eq. (7), which becomes
sharper and sharper with increasing �. The results for p = 1
and p = 2, shown in Figs. 1 and 3 for the same value g = 1/2,
show a similar behavior. The only difference is the size of the
crossover region. As expected, for the same value of �, it is
larger for p = 2 than for p = 1.

In noncritical regimes, away from phase transitions, inho-
mogeneity effects can be effectively taken into account by
using the local-equilibrium approximation (LEA). It assumes
that the behavior at a given point is only determined by the local
values of the Hamiltonian parameters. As a consequence, the
behavior in the inhomogeneous system at a given point x is ap-
proximately equal to that observed in the homogeneous system
for the same values of the Hamiltonian parameters. An exam-
ple is the local-density approximation, which is widely used
to study particle systems with an effective space-dependent
chemical potential, see, e.g., Refs. [4,32,67–70]. The LEA
assumes the absence of significant space correlations, hence it
does not provide a satisfactory description of the system in the
presence of classical or quantum transitions, characterized by
large-scale correlations [32,39,70]. The failure of the LEA is
also observed at first-order classical transition in the presence
of a temperature gradient [46].

In our model, the LEA predicts

m(x) ≈ mlea(x/�) = mh[h(x/�)], (10)

where mh(h) is the infinite-size magnetization in the homoge-
neous system in the presence of a uniform magnetic field h.
Note that since the external field hx is a function of the ratio
x/�, the LEA estimate scales as x/�. The LEA is expected
to provide a good approximation when hx varies smoothly,
thus for large �, and far from the transition. In particular, since
the magnetization in the homogeneous system takes values in
mc � |m| � 1, the LEA can not be applied in the crossover
region where |m| < mc.

LEA results are shown in Fig. 2. The numerical data
at fixed x/� approach the LEA estimate with increasing
�. Convergence is fast far from x = 0, but it becomes
significantly slower when approaching x = 0. As we shall
see, this nonuniform behavior as |x| → 0 reflects a different
nontrivial scaling behavior which characterizes the crossover
region around x = 0 in the limit � → ∞. This is a novel
regime, somehow probing the mixed quantum phase where
−mc < m(x) < mc.

B. The quantum Potts chain

The quantum q-state Potts chain is the quantum counterpart
of the classical two-dimensional Potts model [71–73] whose
Hamiltonian is

Hc = −J
∑
〈ij〉

δ(si,sj ), (11)
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where the sum is over the nearest-neighbor sites of a square
lattice, si are spin variables taking q integer values, i.e., si =
1, . . . ,q, and δ(m,n) = 1 if m = n and zero otherwise. The
quantum Hamiltonian can be derived from the time continuum
limit of the transfer matrix, with q states per site, which can
be labeled by an integer number |n = 1〉, . . . ,|n = q〉. For a
chain of size 2L + 1 it reads [65,74,75]

HP = −
L−1∑

x=−L

q−1∑
k=1

�k
x�

q−k

x+1 − g

L∑
x=−L

q−1∑
k=1

Mk
x −

q−1∑
k=1

�k
−L,

(12)

where �x and Mx are q × q matrices:

�mn = δmn ωn−1, ω = ei2π/q, (13)

Mmn = δmod(m,q),n−1 =

⎛
⎜⎜⎝

0 1
. . .

. . .
1

1 0

⎞
⎟⎟⎠. (14)

These matrices commute on different sites and satisfy the alge-
bra: �k

x�
l
x = �k+l

x , Mk
xMl

x = Mk+l
x , �q

x = M
q
x = I, Mk

x�l
x =

ωkl�l
xM

k
x .

The last term in the right-hand side of Eq. (12) is a boundary
term which breaks the q-state symmetry, favoring the state
n = 1. It ensures the self-dual property [75]

HP (g) = gHP (1/g) (15)

even for finite chains [65]. The Hamiltonian HP corresponds
to a chain with mixed self-dual boundary conditions (SDBC),
with a fixed state n = 1 at site x = −L − 1 and an unmag-
netized disordered state ∝ ∑q

n=1 |n〉 at x = L + 1. For q = 2
Hamiltonian HP corresponds to that of a quantum Ising chain
with mixed fixed-free boundary conditions.

Like the quantum Ising chain, the quantum Potts chain
shows two phases: a disordered phase for sufficiently large
values of g and an ordered phase for small g, in which the
system magnetizes along one of the q directions. The transition
point is easily inferred from the duality relation (15), obtaining
g = gc = 1. For q > 4 the two phases are separated by a
FOQT, where the energy density and the magnetization are
discontinuous [72–75]. We define the energy density as

e(xb) = 〈Ex〉, Ex = δ(nx,nx+1) = 1

q

q∑
k=1

�k
x�

q−k

x+1, (16)

where xb = x + 1/2 is the position of the bond center. The
infinite-volume energy density changes discontinuously across
the FOQT, i.e., the two limits

e± = limg→1± limL→∞ e(x) (17)

differ for q > 4. Their difference 
e ≡ e+ − e− is the analog
of the latent heat in first-order finite-temperature transitions.
For example [65], for the q = 10 Potts chain we have e− =
0.8060(1) and e+ = 0.3745(5).

Also the magnetization is discontinuous at the transition,
varying from zero in the disorder (g > 1) phase to a nonzero
value in the ordered (g < 1) phase. We define the local

magnetization of the ground state as

m(L,g,x) = 〈Mx〉, (18)

Mx = qδ(nx,1) − 1

q − 1
, δ(nx,1) = 1

q

q∑
k=1

�k
x. (19)

The limit

mc = limg→1− limb→0 limL→∞ m(x) (20)

is nonzero for q > 4, where b is a magnetic field coupled to
the projector onto the n = 1 state, i.e., associated with the
Hamiltonian term

HPb = −b

L∑
x=−L

q∑
k=1

�k
x. (21)

mc is known exactly [76,77]: mc = 0.857 107 . . . for q = 10
[78].

We generalize the homogeneous model (12), considering a
space-dependent transverse magnetic field. We fix g = gc = 1
and add to Hamiltonian (12) the term

HPh = −
L∑

x=−L

hx

q−1∑
k=1

Mk
x , (22)

obtaining an inhomogeneous system with a transverse mag-
netic field 1 + hx at point x. With this choice, the transverse
field is 1 at the center x = 0 of the chain, which is therefore the
point where the phase change occurs. Moreover, we consider
L � � so the local transverse field satisfies 1 + hx > 0 for all
values of x. Again we consider different functions h(x), as in
Eq. (3) or Eq. (5). For p → ∞, we recover the homogeneous
system with SDBC.

In Fig. 4 we show DMRG estimates of the local mag-
netization m(x) for q = 10 in the presence of a magnetic

m
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FIG. 4. (Color online) The local magnetization m(x) for the
quantum q = 10 Potts chain in the presence of a linearly varying
transverse field. The dashed line correspond to the value mc ≈ 0.8571
defined in Eq. (20). The data for the same � and different L practically
coincide, showing that they are already asymptotic and do not depend
on L.
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FIG. 5. (Color online) The energy density e(x) defined in
Eq. (16) for the quantum q = 10 Potts chain in the presence of
a linearly varying transverse field. The dashed lines correspond to
e− = 0.8060 and e+ = 0.3745 defined in Eq. (17). The data for the
same � and different L practically coincide, showing that they are
already asymptotic and do not depend on L.

field linearly varying with x as in Eq. (3). As expected, the
magnetization rapidly drops in the space region corresponding
to the disordered phase, i.e., x > 0. Data for the local energy
density are shown in Fig. 5. They clearly show a crossover
region in which e(x) varies rapidly from e− to e+, which are
the values of the energy density in the ordered and disordered
phases, respectively.

Like the Ising case, the estimates of the different observ-
ables close to x = 0, i.e., for sufficiently small ratios x/�,
rapidly converge when increasing the ratio L/� keeping �

fixed. Estimates of m(x) and e(x) are shown in Figs. 4 and
5. As for the energy differences between the lowest states,
for � = 200 we have E1 − E0 = 0.909 56 for L = 18 and
E1 − E0 = 0.909 52 for L = 25. As before, with increasing
�, smaller and smaller ratios L/� are sufficient to effectively
obtain L-independent results. This is essentially related to the
fact that the relevant scaling length in the crossover region
is ξ ∼ �θ with θ = 1/3 for linear h(x), as we will discuss in
Sec. III.

Note that since the Potts chain with q = 10 is much more
complex than the Ising chain, DMRG computations allow us
to get reliable results only for smaller chain sizes and therefore
not-too-large length scales of the external magnetic field. This
is essentially related to the fact that many more states per site
must be kept in the computations.

III. SCALING BEHAVIOR IN THE CROSSOVER
SPACE REGION

In this section we present a scaling theory for the behavior
observed at FOQTs in the presence of inhomogeneous external
fields, whose x dependence is given in Eqs. (2) and (5) for
generic values of p.

Before discussing the general theory, we consider the case
p → ∞. In this limit we obtain

hx = +∞ for x > �

hx = 0 for − � < x < �

hx = −∞ for x < −�.

(23)

Therefore, in this limit the infinite-size inhomogeneous system
is equivalent to a finite-size homogeneous system defined for
−
�� � x � 
��, with appropriate boundary conditions that
depend on the quantity coupled to the field hx . In the Ising
case one obtains FOBC, i.e., Hamiltonian (6), while in the Potts
case one obtains SDBC, i.e., Hamiltonian (12) with hx = 0.
Therefore, in the p → ∞ limit the scaling behavior predicted
by the general theory for generic values of p must reproduce
the finite-size behavior of the corresponding homogeneous
system. Although at FOQTs there is no diverging correlation
length in the infinite-volume limit, one can observe FSS close
to the transition point, both in the case of classical and quantum
first-order transitions [64,65,75,79–90].

The relevant FSS variable at a FOQT is the ratio κ =
EL/
L between the energy contribution EL of the perturbation
driving the transition and the energy difference (gap) of the
lowest states 
L ≡ E1 − E0 at the transition point. The L

dependence of the gap 
L depends on the model and on
the specific boundary conditions considered—a very specific
feature of FOQTs. In general, we parametrize this dependence
as


L ∼ L−z, (24)

introducing a dynamic exponent z. Assuming that the pertur-
bation is uniform, the energy associated with the perturbation
scales as EL ∼ hLd , where d is the space dimension. It follows
that

κ ∼ hLd+z. (25)

In the language of renormalization-group (RG) theory, this
relation allows us to associate a RG dimension with the
perturbation h, given by

yh = d + z. (26)

The above-reported considerations can be generalized to
space-dependent quantities. The scaling variable is x/L or,
equivalently,

xh1/yh , (27)

given that L ∼ h−1/yh in the FSS limit.
We wish now to extend these FSS scaling relations [64] to

the inhomogeneous case. In the presence of inhomogeneous
fields whose space behavior is given by Eq. (5), FSS can be
heuristically derived by replacing the parameter h with hx ∼
(x/�)p in Eq. (27). Therefore, assuming that L is sufficiently
large not to play any role, we obtain the scaling variable

x
(x

�

)p/yh =
( x

�θ

)1+p/yh

, (28)

where the exponent θ is given by

θ = p

p + yh

. (29)
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Therefore, in the presence of an inhomogeneous external field
FSS is obtained by taking x → 0, � → ∞, keeping

X = x/�θ (30)

fixed. Relation (30) expresses the fact that, in the crossover
region around the transition point, a new length scale ξ ,
behaving as

ξ ∼ �θ , (31)

controls the crossover. Note that θ → 1 for p → ∞, con-
sistently with the fact that one must recover the FSS of the
homogeneous system in this limit. It is important to stress
that definition (30) assumes that h(x = 0) is the value of the
field for which the transition occurs. If criticality occurs for
h = hx0 , then the scaling variable is X = (x − x0)�−θ .

For the Ising chain with FOBC and for g < 1 (ferromag-
netic phase) the gap behaves as [64] L−2, so

z = 2, yh = 3, θ = p

p + 3
. (32)

In particular, we have θ = 1/4, 2/5 for p = 1, 2, respectively.
In the case of the Potts chain with SDBC one finds instead [65]

L ∼ L−1, so

z = 1, yh = 2, θ = p

p + 2
. (33)

In particular, we have θ = 1/3, 1/2 for p = 1, 2, respectively.
The previous results allow us to predict the scaling behavior

of the different quantities for � → ∞. The energy difference

� of the two lowest levels is expected to scale as


� ∼ ξ−z ∼ �−zθ , (34)

where θ is given in Eq. (29). Analogously, the local magneti-
zation is expected to asymptotically behave as

m(x) = mc fm(X), X = x/�θ , (35)

where mc is a nonuniversal normalization constant, which
can be identified with the value of the magnetization in
one of the magnetized phases. In the Ising and Potts case
we identify mc with the quantities reported in Eqs. (7)
and (20), so limX→−∞ fm(X) = −1 in the Ising case and
limX→−∞ fm(X) = 1 in the Potts case. We also consider the
two-point function of the order parameter. In the Ising case it
is defined as

G(x,y) = 〈
σ (1)

x σ (1)
y

〉
, (36)

while in the Potts case we consider the function

G(x,y) = 〈MxMy〉, (37)

and its connected part,

Gc(x,y) = 〈MxMy〉 − 〈Mx〉〈My〉, (38)

where Mx is defined in Eq. (19). For � → ∞, in the crossover
region x ∼ �−θ , we expect the scaling behavior

G(x1,x2) ≈ m2
c fg(X1,X2). (39)

An analogous scaling is expected for its connected part
Gc(x1,x2). The scaling functions fm and fg are expected to
be universal, i.e., independent of the microscopic details of
the model. For example, in the case of the Ising chain, they

are expected to be independent of g (as long as g < 1, so the
system is in the ordered phase), apart from a rescaling of the
arguments.

When the energy density is discontinuous at the FOQT, as
in the Potts case, we expect that the local energy density scales
as

e(x) ≈ fe(X). (40)

The scaling function fe is expected to satisfy

limX→±∞fe(X) = e±, (41)

where e± are defined in Eq. (17), because it describes
the crossover between the two pure phases in which the
energy density of the system takes the values e±. We note
that analogous scaling behaviors have been conjectured, and
numerically checked, at classical first-order transitions in the
presence of a temperature gradient [46].

All scaling expressions hold for � → ∞. For finite values
of �, scaling corrections occur. Numerical data are always
consistent with corrections decaying as �−θ . A posteriori, such
a behavior can be interpreted as a boundary effect. Indeed,
for a finite-size homogeneous system, scaling corrections
for the boundary conditions that we have discussed, i.e.,
those obtained in the limit p → ∞, decay as 1/L. In the
inhomogeneous case, the role of L is played by �θ in all scaling
expressions, hence it looks natural to expect �−θ corrections,
as confirmed numerically.

It is important to note that θ < 1 for all finite values of p, so
in the crossover limit at fixed X, we have x/� = X�−1+θ → 0.
This implies that the scaling behavior is completely determined
by the small-x behavior of h(x/�). For instance, we obtain
the same scaling behavior for any h(x) with h(0) = 0 and
h′(0) �= 0, as we already discussed in Sec. II A. Higher-order
terms give rise to O(�−1+θ ) corrections. In the language of the
RG theory, they are irrelevant.

The theory we have presented also provides a general
method to determine the value of the external field at which
the FOQT occurs. Consider indeed a general model with
Hamiltonian

H = H0 + g
∑

x

Ox (42)

that has a FOQT for g = gc. If gc is not known, it can be
determined by studying the inhomogeneous system with the
Hamiltonian

H = H0 +
∑

x

gxOx, (43)

with gx = g0 + x/� in the large-� limit. Let us describe the
method. If A is a quantity that is discontinuous at the transition
and A(x,�) the corresponding local quantity [in the Potts case,
one might consider, for instance, e(x)], the crossover scaling
relation is

A(x,�) = A0f [(x − x0)/�θ ] + B�−θf1[(x − x0)/�θ ], (44)

neglecting additional corrections. Here x0 is such that gx0 = gc

[hence, x0 = �(gc − g0)], and A0 and B are normalization
constants. Equation (44) is valid close to x0 and for large
�. Since x0 corresponds to the transition coupling, A(x,�)
assumes different values for x > x0 and x < x0, changing
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rapidly in an interval of size �θ around x0. In particular, as
evident from Figs. 1–5, the curves corresponding to different
values of � have an intersection for x close to x0. We can
exploit this property to determine gc (this is the analog of the
Binder cumulant procedure often used in homogeneous critical
systems). Indeed, given two different values of �, �1, and �2,
we determine x̄ in the crossover region so

A(x̄,�1) = A(x̄,�2). (45)

If we choose A0 and B so f (y) = 1 + ay + O(y2) and f1(y) =
1 + O(y) for small y, we obtain

x̄ = x0 − B

A0a
+ O(�−θ ). (46)

It follows that

gx̄ = g0 + x̄

�
≈ gc − B

A0a�
. (47)

In other words, gx̄ converges to gc with corrections of order
1/�, providing an estimate of the position of the transition.

IV. SCALING PHENOMENA INDUCED BY THE
INHOMOGENEOUS FIELDS

In this section we verify the general theory presented in
Sec. III, considering the Ising chain and the Potts chain with
q = 10 in the presence of inhomogeneous magnetic fields. We
only study the scaling behavior with respect to the length scale
� in the infinite-size limit. As already discussed in Sec. II, the
data we present correspond to values of L large enough to
provide accurate estimates of the infinite-size behavior.

A. Results for the Ising chain

Figure 6 shows the energy difference 
� of the two lowest
states for p = 1, 2 and for the homogeneous system with
FOBC (p → ∞) as a function of �. They confirm the behavior
(34) with z = 2, i.e., 
� ∼ �−2θ .

2 4 6 8 10 12
lnl

−10

−5

0

ln
Δ l

p=1       g=1/2
p=1       g=3/4
p=1       g=9/10
p=2       g=1/2
p → ∞   g=1/2

FIG. 6. (Color online) The gap 
� as a function of � for Hamil-
tonian (1) for inhomogeneous magnetic fields hx with p = 1, p = 2
and for the homogeneous case (p → ∞). The dotted lines correspond
to the expected behavior 
 ∼ �−2θ with θ = 1/4 for p = 1, θ = 2/5
for p = 2, and θ = 1 for p = ∞.

−2 −1 0 1 2
ng x / lh

1/4
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1.0
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(0

,x
) /
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02

g=1/2  lh=10
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g=3/4  lh=1000
lh=100000

g=9/10,lh=100000
1-|m(x)/m0| lh=100000

−2 −1 0 1 2
ng x / lh

1/4
−1

0

1

m
(x

) /
 m

0

g=1/2,  lh=10
g=1/2,  lh=100
g=1/2,  lh=1000
g=1/2,  lh=10000
g=1/2,  lh=100000
g=3/4,  lh=1000
g=3/4,  lh=100000
g=9/10,lh=100000

FIG. 7. (Color online) Local magnetization m(x) and two-point
function G(0,x) for Hamiltonian (1) at g = 1/2, 3/4, 9/10, with
a linearly varying magnetic field hx = x/�. We plot the ratios
m(x)/mc (bottom) and G(0,x)/m2

c (top) versus ngx/�1/4, where
ng is a normalization factor. We use ng ≈ 1, 3/4, 4/7 for g =
1/2, 3/4, 9/10, respectively. In the top panel, the data are in full
agreement with 1 − |m(x)/mc|, supporting prediction (53).

In Fig. 7 we show the local magnetization m(x) and the two-
point function G(0,x) for p = 1—in this case θ = 1/4—for
three values of g, g = 1/2, 3/4, 9/10. They nicely confirm the
asymptotic scaling relations (35) and (39) and the universality
of the scaling functions fm and fg with respect to g. All data
fall onto a single curve, provided one appropriately rescales X

for each value of g.
As in the homogeneous system with FOBC, also in the

inhomogeneous case we expect the lowest energy states to
be associated with kink states |x0〉, i.e., with configurations
that have a positive local magnetization for x > x0 and a
negative local magnetization for x < x0. In homogeneous
systems [64,91] the states

∑
x eipx |x〉 with momenta p of

order L−1 are eigenstates of the Hamiltonian with FOBC,
with energies that differ by terms of order 1/L2 from that of
the ground state. We expect these states to provide the lowest
eigenstates even in the presence of a linearly varying magnetic
field hx = x/�. In particular, we expect—numerical data are
fully consistent with this conjecture, as we discuss below—that
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−2 −1 0 1 2
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m
(x

) /
 m

c
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FIG. 8. (Color online) Rescaled local magnetization m(x)/mc

versus x/�2/5 for Hamiltonian (1) at g = 1/2 with a quadratically
varying magnetic field, see Eq. (5) with p = 2. As in the linear case
p = 1, the asymptotic relation (53) is satisfied by the data.

the kink states are the relevant ones in the crossover region
where Eqs. (35) and (39) are supposed to hold. If kinks control
the low-energy behavior, the local magnetization m(x) and
the two-point function G(0,x) must be asymptotically related.
The argument goes as follows. Given a kink state |x0〉, we
assume that

σ (1)
x |x0〉 = −mc|x0〉 for x < x0

(48)
σ (1)

x |x0〉 = mc|x0〉 for x > x0.

We do not expect these relations to be exact, but we only
need them to be valid asymptotically for � → ∞, apart from
x-dependent corrections of order �−θ . Then we assume that the
ground state is a superposition of kink states |x0〉 and define
p(x1,x2) as the probability of finding a kink state |x0〉 with

−1/3

Δ
Δ 2

0

1

2

3

4

0 0.1 0.2 0.3 0.4 0.5

FIG. 9. (Color online) The � dependence of the energy differ-
ences of the lowest states, i.e., 
� = E1 − E0 and 
�,2 = E2 − E0.
They are consistent with an asymptotic �−1/3 behavior, as predicted
by Eq. (34) with θ = 1/3 and z = 1. The dotted lines show fits of the
data for the largest chains to c1�

−1/3 + c2�
−2/3.

m
(x

)
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FIG. 10. (Color online) Local magnetization m(x) for the q = 10
Potts chain in the presence of a linearly varying magnetic field hx . The
dashed line corresponds to the asymptotic value mc. This is slowly
approached by the data, due to the expected O(�−1/3) corrections.
The convergence is much faster for x > 0. The inset shows the data
for x > 0 in logarithmic scale.

x0 belonging to the interval (x1,x2). Then it is immediate to
obtain

m(x) = 〈
σ (1)

x

〉 = mcp(−∞,x) − mcp(x,∞) (49)

so

fm(X) = m(x)

mc

= 2p(−∞,X�θ ) − 1. (50)

Let us now consider the two-point function G(x1,x2). If x2 >

x1 we obtain

G(x1,x2) = m2
c[p(−∞,x1) − p(x1,x2) + p(x2,∞)]

= m2
c[1 − 2p(x1,x2)]

= m2
c[1 − 2p(−∞,x2) + 2p(−∞,x1)]. (51)

G
c
(0

,x
)

−1/3

= 16
= 28
= 36
= 40
= 80
= 100
= 200

10−5

10−4

10−3

10−2

10−1

-2 -1 0 1 2 3 4

FIG. 11. (Color online) Connected two-point function Gc(0,x),
defined in Eq. (38), for the q = 10 Potts chain in the presence of a
linearly varying magnetic field hx .
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FIG. 12. (Color online) Local energy density for the q = 10 Potts
chain in the presence of a linearly varying magnetic field hx . The
data appear to approach an asymptotic scaling curve supporting the
scaling behavior (40). The dashed lines show the expected asymptotic
values e± of the scaling function fe, cf. Eq. (41). The central dotted
line indicates the average value ea = (e+ + e−)/2, which seems to
be approached by the data at x = 0. Scaling corrections are clearly
observed, in particular far from the center; they are consistent with
the expected �−1/3 behavior.

Using Eq. (50) we obtain finally

fg(X1,X2) = 1 − |fm(X2) − fm(X1)|, (52)

where we have added the absolute sign to relax the condition
X2 > X1. For X1 = 0 it becomes

fg(0,X) = 1 − |fm(X)|. (53)

Numerical data satisfy this relation, see the top panel of Fig. 7,
confirming that kink states control the low-energy behavior of
the model.

Analogous results are obtained in the case of quadratic
space dependence, i.e., for p = 2, see Fig. 8. As already
mentioned, the scaling behaviors in the p → ∞ limit must
reproduce the FSS of the Ising chain with FOBC [64]. In
particular, for any g < 1 and h = 0, the FSS function of the
local magnetization is given by [92]

fm(X) = X + 1

π
sin(πX), X = x/�, (54)

in the large-� limit keeping X fixed, with −1 � X � 1. The
two-point function satisfies Eq. (52).

B. Results for the q = 10 Potts chain

We now present an analogous analysis of the DMRG data
of the q = 10 Potts chain with a linearly varying field hx ,
cf. Eq. (22). In this case we have that θ = 1/3 according to
Eq. (29).

The energy difference of the lowest states is expected to
decrease as �−1/3, as predicted by Eq. (34) with θ = 1/3
and z = 1. This is supported by the analysis of the energy
differences 
� = E1 − E0 and 
�,2 = E2 − E0. As shown in

Fig. 9, the data are consistent with an asymptotic behavior


�,# ≈ c1�
−1/3 + c2�

−2/3 + . . . . (55)

The data reported in Figs. 10 and 11 for the local magneti-
zation m(x) and the two-point function G(0,x), respectively,
appear to approach asymptotic curves when they are plotted
versus x/�θ , supporting the scaling behaviors (35) and (39).
Scaling corrections are also clearly observed: They apparently
decrease as �−θ . Figure 12 shows the energy density, whose
behavior is consistent with the scaling ansatz (40), derived in
Sec. III, and with Eq. (41).

Let us finally note the similarity of these scaling behaviors
with those observed at the first-order classical transition of
two-dimensional Potts models in the presence of a temperature
gradient along one of the spatial directions, with the other one
taken to infinity [46]. Actually, this should not be considered
as unexpected, because the quantum Potts chain and the
classical two-dimensional Potts model are somehow related
by a quantum-to-classical mapping.

V. CONCLUSIONS

We have shown that scaling phenomena emerge at FOQTs
in the presence of inhomogeneous conditions, such as those
arising from a space-dependent external field, e.g., hx ≈ x/�,
where � is a length scale. They occur in the transition region
where the space-dependent parameter h(x) assumes the value
hc corresponding to the FOQT of the homogeneous system.

We put forward a general scaling theory to describe the
behavior in the crossover space region where the system
effectively changes its phase and the discontinuities, that are
typical of FOQTs, are smoothed out, i.e., where the system
is effectively probing the mixed phase. This scaling behavior
is characterized by a critical exponent θ , defined in Eq. (29),
which relates the spatial extension ξ of the crossover region
with the length scale � of the inhomogeneous field, i.e., ξ ∼ �θ .
The exponent θ depends on some general features of the
external field giving rise to the inhomogeneity, such as the
effective power law that is satisfied by the space dependence
at the transition point and on how it is coupled to the system
variables. This scaling behavior is such that the singularities
characterizing the FOQT are recovered in the limit � → ∞,
where the system becomes homogeneous. We always have
θ < 1, the value θ = 1 being obtained for p → ∞. In this limit
the inhomogeneous scaling behavior matches that of the homo-
geneous system with appropriate boundary conditions [64,65].

We verify the general theory for two classes of FOQTs. We
consider the quantum Ising chain in the ferromagnetic phase,
which undergoes a FOQT driven by a parallel magnetic field,
and the q-state Potts chain with q = 10, which undergoes
a FOQT driven by an even parameter, giving rise to a
discontinuity in the ground-state energy density.

Our approach is quite general: The results can be straight-
forwardly extended to other systems undergoing FOQTs and to
other types of inhomogeneities smoothing out the singularities
of the transition.

These peculiar inhomogeneous scaling phenomena should
be observable in experiments of physical systems, as they only
require the measure of local quantities and the control/tuning
of the length scale of the inhomogeneity. Such conditions may

022108-9



CAMPOSTRINI, NESPOLO, PELISSETTO, AND VICARI PHYSICAL REVIEW E 91, 022108 (2015)

be realized in cold-atom experiments, in particular in optical
lattices, when the atomic system is such to have a FOQT
in homogeneous conditions, but the space dependence of the
effective chemical potential (arising from the trap) smooths
out its discontinuities. Around this region we should observe

a crossover region with the scaling features put forward in
this paper. For example, FOQT lines are expected in the zero-
temperature phase diagrams of atomic systems described by
multicomponents Bose-Hubbard models [4], with spin-orbit
coupling and synthetic gauge fields, see, e.g., Refs. [56–62].
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