
Travelling waves, spreading and extinction
for Fisher-KPP propagation driven by a line

with fast diffusion

Henri Berestyckia , Jean-Michel Roquejoffreb , Luca Rossia

a Ecole des Hautes Etudes en Sciences Sociales, PSL Research University, CNRS

Centre d’Analyse et Mathématiques Sociales,

190 - 198 avenue de France F-75244 Paris Cedex 13, France

b Institut de Mathématiques de Toulouse, Université Paul Sabatier

118 route de Narbonne, F-31062 Toulouse Cedex 4, France

À Juan Luis Vázquez, en signe d’amitié

Abstract

In an earlier work [9], we introduced a parabolic system to describe biological
invasions in the presence of a line (the “road”) with a specific diffusion, included
in a domain (the “field”) subject to Fisher–KPP propagation. We determined
the asymptotic spreading speed in the direction of the road, w∗, in terms of
the various parameters. The new result we establish here is the existence of
travelling fronts for this system for any speed c > w∗. In addition, we show that
no front can travel with a speed c < w∗. We further extend the results to a new
model where there is Fisher-KPP growth on the road, embedded in an elsewhere
unfavourable plane. This is relevant to discuss certain invasions that have been
observed along roads. We establish sharp conditions for extinction/invasion and
describe the invasion dynamics.

1 Introduction, presentation of the models
The goal of this paper is to study the existence of travelling waves to a class of reaction-
diffusion systems where the overall propagation is guided by a line having a diffusion on
its own. This type of system arises in the description of biological invasions in oriented
habitats, where the presence of pathways allows for a more rapid overall movement.
For instance, it is observed that the pine processionary moth advances northwards in
Europe at a faster pace than anticipated, and the road network system is believed to
play a significant role. This is reported in the collective work [23]. The yellow-legged
hornet has now colonised the whole South West of France, and it is interesting to
examine the maps provided in [17]: it first travelled occurred along the main rivers,
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and from them propagated inland. The invasion of other dangerous insects can be
facilitated by road networks, this is believed to be the case for the Aedes Albopictus
Mosquito, also referred to as "tiger mosquito", see for instance [2]. Related situations
are the movements of animals directed by roads: see for instance the data reported
in [21] for the displacements of wolves in the Western Canadian forest. A purely
diffusive model has been proposed in [16] to account for the observation of [21]. The
propagation of diseases directed by roads is also a related issue, see [24], which makes
an interesting parallel with the propagation of rumors.

Let us present the models that will be dealt with in this paper. The first one,
introduced in [9], reads:

∂tv − d∆v = f(v), x ∈ R, y > 0, t > 0,

∂tu−D∂xxu = νv − µu, x ∈ R, y = 0, t > 0,

−d∂yv = µu− νv, x ∈ R, y = 0, t > 0.

(1.1)

The unknowns are the functions u(t, x) and v(t, x, y). The constants µ, ν > 0 and
the diffusion coefficients d,D > 0 are parameters of the model. We assume that
f ∈ C1([0, 1]) satisfies the usual Fisher-KPP type condition:

f(0) = f(1) = 0, ∀s ∈ (0, 1), 0 < f(s) 6 f ′(0)s,

and it is extended to a negative function outside [0, 1]. This system arises as a descrip-
tion of invasions by a homogeneous reaction and diffusion mechanism of the Fisher–
KPP type in a plane - that we call the field - in the presence of a line, that we call
the road. By symmetry, one can restrict the problem to the half-plane R × (0,+∞).
The Robin boundary condition for v describes the exchanges between the field and
the road: the field yields the amount νv to the road, whereas the road yields the
amount µu to the field.
By now, we have derived several informations about this model. We studied the inva-
sion along the road in [9], showing its dramatic influence. We studied the invasion in
the field in [11], revealing that the road had a stronger influence on the overall prop-
agation than expected. In [5], we proved exponential in time invasion on the road in
the presence of nonlocal diffusion. In order to check that the last item of Theorem 2.1
persists for other nonlinearities than the logistic one, L. Dietrich [14], [15] constructed
travelling waves for (1.1) in a strip, with ignition-type nonlinearity. He proved that
their speed grows like

√
D as D grows to infinity. We refer the reader to the survey [4].

The next setting we wish to study is an extension of system (1.1), which proved to
have interesting further effects - see [10]. It is obtained by adding a transport and a
mortality term on the road:

∂tv − d∆v = f(v), x ∈ R, y > 0, t > 0,

∂tu−D∂xxu+ q∂xu+ ρu = νv − µu, x ∈ R, y = 0, t > 0,

−d∂yv = µu− νv, x ∈ R, y = 0, t > 0,

(1.2)

where ρ > 0 accounts for a death factor on the road, and q∂xu is a transport term, that
can be of any sign. It is especially relevant to describe situations when the invasive
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species is confronted to external conditions such as water currents, if we think of the
line of fast diffusion as a river. Such a situation occurs, for instance, in the diffusion
of parasites along rivers, as reported in [18]. The mortality rate on the road may
represent adverse conditions on the road.

In this paper we also introduce a new model that shares many common features
with the two previous ones, but also reveals interesting qualitative differences. The
motivation here is to understand to what extent a hostile field will prevent propagation
with growth on the road. The model then reads

∂tv − d∆v = −ρv, x ∈ R, y > 0, t > 0,

∂tu−D∂xxu = νv − µu+ f(u), x ∈ R, y = 0, t > 0,

−d∂yv = µu− νv, x ∈ R, y = 0, t > 0.

(1.3)

In other words, reproduction occurs on the road, and the field is a purely hostile
medium with a death rate ρ > 0. Similarly to models (1.1) and (1.2), system (1.3)
has (u, v(y)) ≡ (0, 0) as 1D steady states. However we will see that it does not always
have nontrivial steady states, and this will induce new effects.

Model (1.3) may be relevant to describe the movement of certain parasite weeds,
such as the scentless chamomile in Western Canada, which spreads on roads, but which
also competes with crops in the surrounding fields. The important agricultural issues
posed by this species are described on [13], and a modelling of its spread is proposed
in [12]. We will discuss a biological interpretation of certain aspects of our findings
after Theorem 2.6 in the next section.

2 Statement of results
Previous studies were concerned with the spreading speed for the Cauchy problem,
but no results had been derived up to now about travelling waves, except in [14] for
the model in a finite strip with a reaction term f of ignition-type. Here we construct
travelling waves for (1.1)-(1.3) and obtain a complete characterization of the admissible
speeds. For the new model (1.3), we also derive the spreading results for the Cauchy
problem.

2.1 Previous spreading results for Models (1.1) and (1.2)
In [9], after showing that the unique positive, bounded, stationary solution of the
system is (ν/µ, 1), we derived the asymptotic speed of spreading in the direction of
the road. The main result of that paper is the following.

Theorem 2.1 ([9]). (i) There exists w∗ = w∗(µ, ν, d,D) > 0 such that the following is
true. Let (u, v) be a solution of (1.1) with a nonnegative, compactly supported initial
datum (u0, v0) 6≡ (0, 0). Then,

− For all c > w∗, there holds

lim
t→+∞

sup
|x|>ct

(u(x, t), v(x, y, t)) = (0, 0), (2.1)
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− for all c ∈ [0, w∗), for all a > 0, there holds

lim
t→+∞

sup
|x|6ct, 06y6a

|u(x, t), v(x, y, t))− (ν/µ, 1)| = 0. (2.2)

(ii) Let cK = 2
√
d f ′(0) denote the Fisher-KPP invasion speed. The following relations

hold (for fixed µ, ν):

− If D 6 2d, then w∗(µ, ν, d,D) = cK.

− If D > 2d, then w∗(µ, ν, d,D) > cK. Furthermore, lim
D→+∞

w∗(µ, ν, d,D)√
D

exists

and is a positive real number.

When (2.1)-(2.2) hold for all solutions with nontrivial compactly supported initial
datum, then w∗ is called the (asymptotic) spreading speed in the direction of the road.
Roughly speaking, the theorem says that the region of the road (or at finite distance
from the road) where the solution is close to the nonzero steady state, and the region
of the road where the solution is roughly equal to (0, 0) are separated by a boundary
moving at velocity w∗. We refer to [1] for some of the first results of that type. As
we will see here, the spreading speed will also turn out to be the minimal speed of
travelling waves.

Let us now turn to Model (1.2). The first question is that of steady states. We see
that, under the assumptions listed in Section 1, no homogeneous steady states may
exist. However, it is proved in [10] that under the extra assumption

s 7→ f(s)/s is decreasing for s ∈ (0, 1], (2.3)

Model (1.2) has a unique positive, bounded, steady solution, which additionally is
independent of x, that we call (us, vs(y)). The system for (us, vs) reads−dv

′′
s = f(vs), y > 0,

dv′s(0) =
νρ

µ+ ρ
vs(0),

(2.4)

and we have us ≡
ν

µ+ ρ
vs(0). The function vs is increasing and tends to 1 at +∞.

For this general system, we obtained a result that is very close to Theorem 2.1, with
the difference that the propagation velocity is not the same in the direction of positive
x and negative x. Moreover, the threshold D/d > 2 for the spreading speed to be
larger than cK is replaced by

D

d
> 2 +

ρ

f ′(0)
∓ q√

df ′(0)
.

In this formula, the − sign accounts for the propagation in the direction x > 0, and
the + sign accounts for propagation in the x < 0 direction.
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2.2 Travelling waves for Models (1.1) and (1.2)
After characterizing the spreading properties, the remaining question is that of the
existence of invasion profiles. This is what we study here. We consider travelling
waves, that is, solutions of the type u(t, x) = ϕ(x− ct), v(x, y, t) = ψ(x− ct, y), where
c ∈ R is the speed of the wave, and (u, v) approaches the two steady states (0, 0) and
(ν/µ, 1) when t→ −∞ and t→ +∞ respectively.

First, consider Model (1.1). We are led to the following elliptic system:
−c∂xψ − d∆ψ = f(ψ), x ∈ R, y > 0,

−c∂xϕ−D∂xxϕ = νψ − µϕ, x ∈ R, y = 0,

−d∂yψ = µϕ− νψ, x ∈ R, y = 0,

(2.5)

with limiting conditions{
ϕ(−∞) = ν/µ, ϕ(+∞) = 0,

ψ(−∞, y) = 1, ψ(+∞, y) = 0, locally uniformly in y > 0.
(2.6)

Our main result is the following:

Theorem 2.2. Let w∗ > 0 be the asymptotic spreading speed of Theorem 2.1. Then,

(i) For all c < w∗, there exists no travelling front solution (ϕ, ψ) for (2.5)–(2.6).

(ii) For all c > w∗, there exists a travelling front solution (ϕ, ψ) for (2.5)–(2.6). It
satisfies ∂xϕ < 0 on R and ∂xψ < 0 in R× (0,+∞).

Thus, the classical result for Fisher-KPP extends to our system (1.1): there exist
travelling front solutions for a closed half line of speeds bounded from below by the
asymptotic speed of spreading for initial data with compact support.

Let us consider next Model (1.2). The travelling wave problem for u(t, x) = ϕ(x−
ct), v(x, y, t) = ψ(x− ct, y) is now formulated as follows:

−c∂xψ − d∆ψ = f(ψ), x ∈ R, y > 0,

(q − c)∂xϕ−D∂xxϕ = νψ − (µ+ ρ)ϕ, x ∈ R, y = 0,

−d∂yψ = µϕ− νψ, x ∈ R, y = 0,

(2.7)

and the limiting conditions are{
ϕ(−∞) = us, ϕ(+∞) = 0,

ψ(−∞, y) = vs(y), ψ(+∞, y) = 0, locally uniformly in y > 0.
(2.8)

Here we prove an analogue of Theorem 2.2.

Theorem 2.3. Assume that f satisfies (2.3). Let w∗ > 0 be the spreading speed for
(1.2). Then,

(i) For all c < w∗, there exists no travelling front solution (ϕ, ψ) for (2.7)–(2.8).

(ii) For all c > w∗, there exists a travelling front solution (ϕ, ψ) for (2.7)–(2.8). It
satisfies ∂xϕ < 0 on R and ∂xψ < 0 in R× (0,+∞).
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2.3 The study of Model (1.3)
Finally, let us consider Model (1.3). Contrary to systems (1.1) and (1.2), nonzero
steady states do not exist in some ranges of parameters. Once this issue is settled, we
should worry about spreading speeds. Finally, we will introduce the travelling wave
problem.

As for Model (1.2), we will need f to satisfy (2.3). In the whole sequel, whenever
dealing with Model (1.3), this assumption will be always implicitly understood.

Theorem 2.4. Under the condition

µ
√
ρd

ν +
√
ρd

> f ′(0), (2.9)

any solution of (1.3), starting from a bounded initial datum, tends to 0 as t → +∞,
uniformly in x ∈ R, y > 0.

This result means, in particular, that no nonzero steady state exists in the range
of parameters (2.9). Conversely, as soon as (2.9) does not hold, the system admits a
unique nontrivial steady state, like in Models (1.1) and (1.2).

Theorem 2.5. Under condition

µ
√
ρd

ν +
√
ρd

< f ′(0), (2.10)

system (1.3) has a unique positive, bounded steady state (us, vs). Moreover, us is
constant, equal to the only positive root of

µ
√
ρd

ν +
√
ρd

us = f(us),

and vs = vs(y) =
µus

ν +
√
ρd

e−
√
ρ/d y.

The next question is that of the spreading speed.

Theorem 2.6. Under the condition (2.10), there is a positive spreading speed w∗. In
other words, let (u, v) be a solution of (1.3) with a nonnegative, compactly supported
initial datum (u0, v0) 6≡ (0, 0). Then,

− For all c > w∗, we have

lim
t→+∞

sup
|x|>ct

(u(x, t), v(x, y, t)) = (0, 0),

− for all c ∈ [0, w∗), for all a > 0, we have

lim
t→+∞

sup
|x|6ct, 06y6a

|u(x, t), v(x, y, t))− (us, vs(y))| = 0.
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Theorems 2.4 and 2.6 thus provide a necessary and sufficient condition for extinc-
tion or persistence of a species described by model (1.3). In this context, formulas
(2.9) and (2.10) lend themselves to an interesting biological interpretation which we
now describe.

− First, all else equal, there is a threshold value with respect to the parameter µ
for extinction. That is, there is a value

µ0 := f ′(0)[
ν√
ρd

+ 1]

such that if µ > µ0, there is extinction. In other words there is always a critical
rate of loss from the road above which the population goes extinct.

− In particular, if µ < f ′(0), then no matter what the other parameters are, there
is always persistence. That is, if the loss rate is below the growth rate, there is
always persistence.

− Assume now that µ > f ′(0). Then, there is an explicit threshold value ν0 for ν
so that there is persistence if and only if ν > ν0. In other words, a sufficiently
large gain term from the field to the road will offset the relatively high loss term.

− Assume again that µ > f ′(0) and that ν is fixed. Then there is a critical threshold
γ so that there is persistence of the species if and only if ρd < γ. Thus, all else
equal, too large a value of d, the diffusion in the field, is lethal for the species.
Likewise, too large a death rate in the field will offset the influence of the road
and becomes lethal. It is worthy to note that only the product ρd comes into
play. Thus, for instance, a large mortality rate in the field may be offset by a
slow diffusion.

We can now state an existence result of travelling waves that is a counterpart of
Theorem 2.6. The problem for u(t, x) = ϕ(x − ct), v(x, y, t) = ψ(x − ct, y) reads as
follows.

−c∂xψ − d∆ψ = −ρψ, x ∈ R, y > 0,

−c∂xϕ−D∂xxϕ+ µϕ− νψ = f(ϕ), x ∈ R, y = 0,

−d∂yψ = µϕ− νψ, x ∈ R, y = 0,

(2.11)

and the limiting conditions are{
ϕ(−∞) = us, ϕ(+∞) = 0,

ψ(−∞, y) = vs(y), ψ(+∞, y) = 0, locally uniformly in y > 0.
(2.12)

The existence result is the following

Theorem 2.7. Under the condition (2.10), let w∗ be the spreading speed given by
Theorem 2.6. For all c > w∗, there is an x-decreasing solution to (2.11)-(2.12), and
no solution for c < w∗.
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The paper is organized as follows. In the next section we first show that no front can
travel with speed less than w∗ in the x-direction, that is, Theorem 2.2 (i). The same
proof will be valid for Theorems 2.3 and 2.7, (i). We then turn, in Section 4, to Model
(1.3), and prove the general extinction result in the absence of steady solutions, that is,
Theorem 2.4. Section 5 is devoted to the proof of Theorem 2.5. In Section 6 we recall
the construction of the asymptotic speed of propagation w∗ in Models (1.1) and (1.2),
then we carry the computations for (1.3) and prove Theorem 2.6. In Section 7, we
prove the existence of travelling waves for Model (1.1). We will see that an important
ingredient is the existence of planar waves, which act a super solutions. Lastly, in
Section 8 we discuss the adaptation of the method to Models (1.2) and (1.3).

3 Lower bound on the speed of travelling fronts
We consider here system (1.1). In a moving frame with speed c ∈ R in the x direction
this system reads

∂tv − c∂xv − d∆v = f(v), x ∈ R, y > 0, t > 0,

∂tu− c∂xu−D∂xxu = νv − µu, x ∈ R, y = 0, t > 0,

−d∂yv = µu− νv, x ∈ R, y = 0, t > 0,

(3.1)

The well-posedness for the associated Cauchy problem with continuous initial datum is
derived in [9] (see also [10]). The proof works exactly in the same way for System (1.3).
The solutions we deal with in this paper are always nonnegative and bounded. Let us
quote from [9] the strong comparison principle.

Proposition 3.1 ([9]). Let (u, v) and (u, v) be respectively a subsolution bounded from
above and a supersolution bounded from below of (3.1) satisfying u 6 u and v 6 v
at t = 0. Then, either u < u and v < v for all t, or there exists T > 0 such that
(u, v) = (u, v) for t 6 T .

We show now how the non-existence of fronts with slow speed is immediately
obtained from the spreading result of [9].

Proof of Theorem 2.2, part (i). Observe preliminarily that, owing to Proposition 3.1,
we do not need the requirement that the initial datum (u0, v0) has compact support in
the second statement of Theorem 2.1 (i). Indeed, one can always consider a solution
with a compactly supported initial datum lying below (u0, v0) to which apply the
result, and then obtain the conclusion for (u, v) by comparison.

Suppose that problem (2.5)-(2.6) admits a solution (ϕ, ψ), for some c ∈ R. Then
(ϕ(x−ct), ψ(x−ct, y)) is a solution of system (1.1). We can apply the second statement
of Theorem 2.1 (i) and deduce

∀c′ ∈ [0, w∗), ∀a > 0, lim
t→+∞

sup
|x|6c′t, 06y6a

|(ϕ(x− ct), ψ(x− ct, y))− (ν/µ, 1)| = 0.

In particular, for any c′ ∈ [0, w∗), we find that

lim
t→+∞

ϕ((c′ − c)t) = ν/µ,
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and therefore (2.6) implies that c′ 6 c. Since this is true for any c′ ∈ [0, w∗), we
eventually obtain c > w∗.

The proof of that fact for Systems (1.2) and (1.3) (when w∗ > 0) is the same.

4 Condition for extinction in system (1.3)
We now show that extinction always occurs for Model (1.3) when the reaction f is
not strong enough, in the sense that (2.9) holds. Namely, we prove Theorem 2.4.
This is done by deriving two simple properties concerning, respectively, the large time
behaviour of general solutions and the existence of nontrivial, x-independent steady
states.

Lemma 4.1. Any solution (u, v) to (1.3) satisfies

lim sup
t→+∞

u(t, x) 6 û, lim sup
t→+∞

v(t, x, y) 6 v̂(y),

uniformly in x ∈ R and y > 0, where (û, v̂(y)) is a nonnegative, bounded, x-independent
steady state.

Proof. Direct computation shows that, for K > 1 large enough, the pair K(1, µ/ν)
is a supersolution to (1.3) and it is larger than the initial datum of (u, v). By the
comparison principle - which is the analogous of Proposition 3.1 but for system (1.3) -
the solution (u, v) with initial datum K(1, µ/ν) remains above (u, v) for all positive
times. Moreover, always because of the comparison principle, (u, v) is x-independent
and nonincreasing in t. It follows that, as t → +∞, it converges locally uniformly
in y > 0 to an x-independent steady state (û, v̂(y)). It remains to prove that the
convergence is uniform in y > 0. For ε > 0, let Tε > 0 be such that v(t, 0) 6 v̂(0) + ε
for t > Tε. Consider the function

vε(t, y) := v̂(y) + ε+K
µ

ν
e−ρ(t−Tε).

This is a supersolution of the first equation of (1.3). Furthermore, it satisfies

vε(Tε, y) > K
µ

ν
= max v, vε(t, 0) > v̂(0) + ε > v(t, 0) for all t > Tε.

Hence, applying the comparison principle, we derive v(t, y) 6 vε(t, y) for t > Tε and
y > 0, and therefore v(t, y) 6 v̂(y) + 2ε for t large enough and y > 0. This concludes
the proof of the lemma.

Let us mention that it could happen that (û, v̂(y)) is the trivial solution (0, 0).
Actually, this is what always happens when (2.10) does not hold.

Lemma 4.2. Model (1.3) has a (unique) positive, x-independent steady state (us, vs(y))
if and only if (2.10) holds.
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Proof. Let (u, v(y)) be an x-independent steady state. The equation in the field and
the exchange condition yield, respectively,

v(y) = v(0)e−
√
ρ/d y, v(0) =

µu

ν +
√
ρd
.

Inserting this in the equation for u yields

µ
√
ρd

ν +
√
ρd

u = f(u).

Since, by Assumption (H), the function (0, 1] 3 u 7→ f(u)/u decreases from f ′(0) to 0,
the above equation has a unique solution us ∈ (0, 1) if and only if (2.10) holds.

We point out that Lemma 4.2 is much weaker than Theorem 2.5, the latter ex-
cluding the existence of x-dependent steady states. As we will see in the next section,
some additional work is needed to get rid of the x-dependence.

Proof of Theorem 2.4. Let (u, v) be a solution to System (1.3). Because (2.10) is not
satisfied, Lemma 4.2 implies that the steady state given by Lemma 4.1 is (û, v̂(y)) ≡
(0, 0). Hence, (u, v)→ (0, 0) uniformly in space as t→ +∞.

We conclude this section by showing that, when condition (2.10) is violated with
a strict inequality, extinction occurs exponentially fast in time.

Proposition 4.3. Assume that f ′(0) <
µ
√
ρd

ν +
√
ρd

. Then there exists δ > 0 such that

0 6 u(t), v(t, y) 6 Ce−δt. (4.1)

Proof. Because f(s) 6 f ′(0)s, it is sufficient to argue on the linear system
u̇+ µu− νv(t, 0) = f ′(0)u t > 0

−dvy + νv = µu(t) t > 0, y = 0

vt − dvyy = −ρv t > 0, y > 0

(4.2)

with initial datum (u0, v0). One could prove (4.1) via a Laplace transform argument,
but that would be a little tedious. We prefer to argue via a supersolution argument,
that will be less precise, but shorter and more transparent. In order to get rid of
the initial datum v0, we define v(t) := ‖v0‖∞e−ρt and we introduce the new unknown
w(t, y) = v(t, y)− v(t). The system for (u,w) reads

(∂t − d∂yy + ρ)w = 0 t > 0, y > 0

−dwy + ν(w + v) = µu t > 0, y = 0

u̇+ µu− ν(w + v) = f ′(0)u t > 0, y = 0

(4.3)

with w(0, y) 6 0. The game is to find a super-solution (u(t), w(t, y)) to the new system.
We first choose

w(t, y) = Me−y
√

(ρ−δ)/d−δt
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with M > 0 large and δ > 0 small to be chosen later. The function w solves the
equation for w in the field. Then we decide to satisfy the exchange condition exactly,
namely we choose

µu(t) = (
√
d(ρ− δ) + ν)Me−δt + ν‖v0‖∞e−ρt.

We now only have to choose M and δ so that (u,w) satisfies the third equation of
(4.3), maybe not with an = sign, but at least with a > sign. By computation, there
exists C > 0 independent of δ, M such that

u̇+ µu− ν(w + v)− f ′(0)u > −CδMe−δt − ρν

µ
‖v0‖∞e−ρt +

√
d(ρ− δ)Me−δt − f ′(0)u

>

(
−Cδ +

√
d(ρ− δ)− f ′(0)

√
d(ρ− δ) + ν

µ

)
Me−δt

− ν

µ
(ρ+ f ′(0))‖v0‖∞e−ρt.

By hypothesis, the factor in front of Me−δt of the RHS is positive for δ = 0. We can
therefore choose δ > 0 sufficiently small in such a way that this remains true. Then,
taking in addition δ < ρ, we find that the RHS is positive for M large enough. At the
expense of increasing M a little more, we also obtain (u(0), w(0, y)) 6 (u(0), w(0, y)).
This implies

(u(t), w(t, y)) 6 (u(t), w(t, y)),

which concludes the proof.

5 The steady states of Model (1.3)
Let us assume (2.10) to hold. We know from Lemma 4.2 that in this case the system
admits a unique one-dimensional equilibrium (us, vs(y)). Our task is now to prove
that there are no x-dependent equilibria, and we are going to do it in the

Proof of Theorem 2.5. What is behind this result is nothing else than the instability
of the steady state (0, 0), and (2.10) can be seen as a necessary and sufficient condition
for that. Let us confirm it by performing a linear stability analysis of the (0, 0) state.
We first consider the x-independent, one-dimensional linear system

−dv′′(y) + ρv(y) = λv(y), y > 0,

µu− νv(0) = f ′(0)u+ λu,

−dv′(0) = µu− νv(0).

A solution λ < 0, u > 0, v(y) > 0 bounded, exists if and only if

µ
√

(ρ− λ)d

ν +
√

(ρ− λ)d
= f ′(0) + λ. (5.1)

The LHS of (5.1) decreases from µ to
µ
√
ρd

ν +
√
ρd

as λ increases from −∞ to 0, whereas

the RHS increases from −∞ to f ′(0). From the condition (2.10), equation (5.1) has a
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unique solution λ0 < 0, and one may choose a positive corresponding eigenfunction, as
can easily seen by inspection. In order to work with these, we need to check that the
(0, 0) state is also unstable for the Dirichlet problem in some sufficiently large domain;
in [9] it was sufficient to perform the analysis in large balls far from the road, but this
is not possible here because, in order to take advantage of the reaction term f , we
need to consider a domain touching the road. Take L > 0 and consider the problem

−d∆v + ρv = λv, x ∈ (−L,L), y > 0,

v(x, L) = 0, x ∈ (−L,L),

−D∂xxu+ µu− νv = f ′(0)u+ λu, x ∈ (−L,L), y = 0,

−d∂yv = µu− νv, x ∈ (−L,L), y = 0,

u(±L) = v(±L, 0) = 0.

(5.2)

We may look for a solution of the form

uL(x) = ũ cos(
π

2L
x), vL(x, y) = ṽ(y) cos(

π

2L
x).

with ũ, ṽ > 0. The first two equations of (5.2) yield

ṽ(y) =
ṽ(0)

1− e−2ωLL

(
e−ωLy − eωL(y−2L)

)
, where ωL :=

√
ρ− λ
d

+
π2

4L2
.

Then, by explicit computation, the eigenvalue problem (5.2) reduces to the algebraic
equation

µ dLωL
ν + dLωL

= f ′(0) + λ− Dπ2

4L2
, where dL := d

1 + e−2ωLL

1− e−2ωLL
. (5.3)

For L → +∞, (5.3) is a perturbation of (5.1), and so has a unique root λL = λ0 +
O(L−2) < 0. From now on, choose L0 > 0 large enough so that the above is true for
L = L0. Denote by (uL0(x), vL0(x, y)) the corresponding eigenfunction. A well-known
consequence of the fact that λL0 < 0 - the computation can easily be done - is that,
for ε > 0 small enough, the couple ε(uL0(x), vL0(x, y)) is a subsolution to (1.3) in the
rectangle [−L,L] × [0, L], and thus, extending it by 0 outside the rectangle, it is a
generalized subsolution (in the sense of [9, Proposition 3.3]).

We now follow the lines of [9], based on a variant of the sliding method of [7]. We
will actually show that any nontrivial solution (u, v) of (1.3) converges, as t→ +∞, to
the unique x-independent steady state (us, vs) locally uniformly in space; in particular,
there are no other steady states.

So, let (u, v) 6≡ (0, 0) be a solution of the Cauchy problem. Lemma 4.1 provides
us with the upper bound (û, v̂(y)) for the large-time behaviour of (u, v). Let us derive
now a lower bound, which will also show that (û, v̂(y)) 6≡ (0, 0) and thus (û, v̂(y)) ≡
(us, vs(y)). By the strong maximum principle, u and v are strictly positive at, say, t =
1. Take ε > 0 small enough in such a way that the generalized subsolution ε(uL0 , vL0)
lies below the pair (u, v) at t = 1. The solution (u, v) starting from ε(uL0 , vL0) at
t = 1 stays below (u, v) for all t > 1 and, moreover, it increasing in t. Therefore,
as t → +∞, it converges locally uniformly in space to a steady state (ǔ, v̌) lying

12



between ε(uL0 , vL0) and (û, v̂). Note that, owing to the strong maximum principle,
ǔ(x) > εuL0(x) and v̌(x, y) > εvL0(x, y) and therefore, because ε(uL0 , vL0) has compact
support, the inequalities remain true even if we slide the subsolution a bit, namely,

ǔ(x) > εuL0(x+ τ), v̌(x, y) > εvL0(x+ τ, y),

provided |τ | is small enough. Comparing then the stationary solution (ǔ, v̌) with the
solution emerging from ε(uL0(x + τ), vL0(x + τ, y)), which is nothing else that (u, v)
translated in x by τ , and letting t → +∞, we eventually infer that (ǔ, v̌) is larger
than (ǔ, v̌) itself translated in x by τ . This means that (ǔ, v̌) is x-independent. Since
we know from Lemma 4.2 that there is a unique x-independent, positive, stationary
solution (us, vs), we conclude that (ǔ, ǔ) ≡ (û, v̂) ≡ (us, vs), and therefore (u, v) →
(us, vs) as t→ +∞, locally uniformly in space.

6 Construction of the asymptotic speed of spreading
We recall here from [9] the construction of the spreading speed w∗. We obtained w∗
from the system giving exponential solutions for the linearised problem

∂tv − d∆v = f ′(0)v, x ∈ R, y > 0, t ∈ R,
∂tu−D∂xxu = νv − µu, x ∈ R, y = 0, t ∈ R,
−d∂yv = µu− νv, x ∈ R, y = 0, t ∈ R.

(6.1)

Looking for solutions of (6.1) of the form

(u(x, t), v(x, y, t)) = (e−α(x−ct), γe−α(x−ct)−βy), (6.2)

with α, γ > 0 and β ∈ R (not necessarily positive) leads to the following system:
−d(α2 + β2) + cα = f ′(0)

−Dα2 + cα = νγ − µ
dβγ = µ− νγ

(6.3)

With respect to the stationary travelling front system, we observe that when α, β, γ
solve (6.3), then

(ϕ(x), ψ(x, y)) = (e−αx, γe−αx−βy)

is a supersolution of (2.5) due to the KPP defining property f(s) 6 f ′(0)s, and also
of the limiting condition (2.6).

We recall the analysis of [9]. In the (β, α) plane, the first equation of (6.3) is

that of the circle Γc,d with centre (0,
c

2d
) and radius

√
c2 − c2K

2d
. The second equation

represents a curve Γc,D passing through the points (0, 0) and (0,
c

D
), made up of two

branches:
α = α±D(c, β)
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α+
D increasing in β, α−D decreasing in β, joining at the point (βlim, αlim) with

βlim =
1

d

(
µ

c2/4D + µ
− ν
)
, αlim =

c

2D
.

This point is the leftmost point of Γc,D. The construction of the spreading speed is
from then on quite intuitive: first, if D > 2d, then Γc,D is outside Γc,d; for very large
c one my check that the interior of Γc,D contains points of the interior of Γc,d. This
implies, increasing c from cK to infinity, the existence of c∗ such that Γc,D and Γc,d
are tangent at one point. This minimum value is w∗. Second, if D 6 2d, Γc,d is inside
the interior of Γc,D. So, for all c > cK , there is a linear supersolution to (6.1). Set
cK := w∗. To prove that w∗ is the spreading speed, the main step is to prove lower
estimates, that are obtained by approximating (1.1) in infinite strips of larger and
larger widths, see [9]. The same considerations hold for System (1.2), see [10]. So, let
us turn to model (1.3).

Proof of Theorem 2.6. The first task is to look for exponential solutions for
∂tv − d∆v = −ρv, x ∈ R, y > 0, t ∈ R,
∂tu−D∂xxu = νv − µu+ f ′(0)u, x ∈ R, y = 0, t ∈ R,
−d∂yv = µu− νv, x ∈ R, y = 0, t ∈ R.

Once this is done, the proof goes exactly as in [9].
Looking for solutions of the form (6.2) yields −d(α2 + β2) + cα = −ρ

−Dα2 + cα +
dβµ

ν + dβ
= f ′(0)

(6.4)

In the (β, α) plane, the first equation of (6.4) is that of the circle Γc,d with centre
(0,

c

2d
) and radius √

c2 + 4dρ

2d
>

c

2d
. (6.5)

As for the second equation, it has solutions if and only if

c2 + 4D

(
µ− f ′(0)− µν

ν + dβ

)
> 0. (6.6)

We are going to study two different cases. They will in the end produce results of the
same kind, but we believe that it is of interest to distinguish them, because they deal
with a biologically interesting threshold.
Case 1. µ > f ′(0). This condition means that the road yields to the field more
than what it produces. Then, for all c > 0, the second equation of (6.4) represents
two branches α = α±D(c, β) whose union we call Γc,D and which meet at the point
(βlim(c), αlim(c)), with

dβlim(c) =
ν(f ′(0)− c2/4D)

µ− f ′(0) + c2/4D
, αlim(c) =

c

2D
. (6.7)
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This point is the leftmost point of Γc,D. Inspection of the value of α±D reveals that
α−D(c, β) < 0 for large β. It will be useful to have in mind the following values:

dβlim(0) =
νf ′(0)

µ− f ′(0)
, αlim(c) = 0. (6.8)

Case 2. µ 6 f ′(0). This means that the reproduction rate when the density of the
species is very small is larger than what is yielded to the road. Condition (6.6) for
the existence of solutions means that (6.4) has a solution only if c > 4D(f ′(0) − µ),
a condition that is almost void if f ′(0) = µ. For c > 4D(f ′(0)− µ), the properties of
these solutions are the same as in the preceding case.

Let us study how Γc,d and Γc,D intersect. For this we go by the above two cases. In
the case µ > f ′(0), let us first investigate whether or not c = 0 is an acceptable speed.
This is equivalent to saying that the radius of Γ0,d is less than βlim(0), in other words,

using (6.8): f ′(0) 6
µ
√
ρd

µ− f ′(0)
, a contradiction with (2.10). So, Γ0,D is strictly to the

right of Γ0,d and we need to increase c in order to get a tangency point. Because of
(6.7), we have on the one hand

lim
c→+∞

βlim(c) = −ν
d
.

On the other hand, because of (6.5), Γc,d ∩ {α < 0} is non void, for all c. So, Γc,d
and Γc,D have to cross for some c, and, for that, must have a common tangency point.
This defines w∗, and it is a positive number.

In the case µ 6 f ′(0), we have, unconditionally, w∗ > 0. Indeed, for c slightly

larger than

√
c2

4D
− (f ′(0)− µ), then (βlim(c), αlim(c)) is very much to the right of

Γc,d. From the same considerations as before, there is w∗ > 0 for which Γc,D and Γc,d
are tangent.

Now, the rest of the proof follows the same lines as in [9]. On the one hand, one sees
that the spreading speed cannot be larger than w∗ by comparison with the exponential
(super)solution moving with speed c = w∗. For the lower bound, one constructs
compactly supported generalized subsolutions for c < w∗ close to w∗ by using Rouché’s
theorem. These are the key ingredient to derive the large-time convergence to (us, vs)
for solutions of the problem in the moving frame with speed c in the x-direction,
which is precisely what one needs to prove. Namely, one repeats the argument of the
proof of Theorem 2.5 above, using these generalized subsolutions in place of the pair
ε(uL0(x), vL0(x, y)).

7 Existence of travelling fronts in System (1.1)
In this section, we prove part (ii) of Theorem 2.2, that is, the existence of travelling
front solutions of (2.5)–(2.6) when c > w∗, as well as their monotonicity in x.

Throughout this section, c > w∗ is fixed. To construct a solution of (2.5)–(2.6), we
are going to approximate the half-plane R× (0,+∞) by the finite truncations

Ωab := (−a, a)× (0, b),

15



with a, b positive parameters. The construction follows some ideas of [6] and [3] which
modify the approach in [8], based on the sliding method. To start the method one
needs to have a supersolution connecting the steady states (ν/µ, 1) and (0, 0) which is
strictly decreasing in x. The natural candidate would be the exponential pair (ϕ, ψ)
defined in the previous section. In order to fulfil the limiting condition, this needs to
be truncated by (ν/µ, 1), but doing so it is no longer strictly monotone in x. An extra
argument is therefore required.

Lemma 7.1. There exists a pair (Φ,Ψ) which is a supersolution of the first two equa-
tions of (2.5) and a solution of the third one. Moreover, Φ and Ψ are strictly decreasing
in x and satisfy (2.6).

Proof. Because c > w∗, system (6.3) admits a solution α, β, γ with α, γ > 0. That is,

(ϕ(x), ψ(x, y)) = (e−αx, γe−αx−βy)

is a supersolution of the travelling front problem (2.5). Let (u, v) be the solution of
the system in the moving frame (3.1) with initial datum(

min{ϕ(x), ν/µ},min{ψ(x, y), 1}
)
.

Since both (ϕ, ψ) and (ν/µ, 1) are supersolutions of (3.1), it follows from the com-
parison principle - Proposition 3.1 - that (u, v) is nonincreasing in t and that it is
nonincreasing in x because the initial datum is. Suppose that the monotonicity in x
is not strict for some T > 0, that is, there exists h > 0 such that

min
x∈R

(
u(x, T )− u(x+ h, T )

)
= 0 or min

x∈R, y>0

(
v(x, y, T )− v(x+ h, y, T )

)
= 0.

The strong comparison principle implies that (u, v) coincides with its x-translation by
h for all t 6 T , which is not true at t = 0. This shows that (u, v) is strictly decreasing
in x for all t > 0. Observe that, because ∂tu, ∂tv 6 0, (u, v) is a supersolution of the
stationary problem (2.5) for any t > 0 frozen. We then define

Φ(x) := u(x, 1), Ψ(x, y) := v(x, y, 1).

It only remains to check that (Φ,Ψ) satisfies the limiting conditions (2.6). For the
limit at +∞, we already know that

Φ(+∞) = u(+∞, 1) 6 ϕ(+∞) = 0, Ψ(+∞, y) = v(+∞, y, 1) 6 ψ(+∞, y) = 0.

Consider now a sequence (xn)n∈N diverging to −∞. Then, by standard parabolic
estimates (see, e.g., [20]) the sequence of translations

(u(x+ xn, t), v(x+ xn, y, t))

converges locally uniformly in x ∈ R, y > 0, t > 0, to the solution of (3.1) with initial
datum (ν/µ, 1), that is, to the constant function (ν/µ, 1). In particular, Φ(−∞) = ν/µ,
Ψ(−∞, y) = 1.
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Notice that, since the problem (2.5) is invariant under x-translations, the pair

(Φh(x),Ψh(x, y)) := (Φ(x+ h),Ψ(x+ h, y)) (7.1)

is still a supersolution of system (2.5), for any h ∈ R.
Another technical difficulty in the application of the sliding method is that we need

to impose a boundary datum on the right face which coincides with a subsolution of
the system. This will be achieved by setting

kba := min

{
µ

ν
Φ(a) , min

y∈[0,b]
Ψ(a, y)

}
. (7.2)

We can now consider the problem in the truncated domain Ωab for unknowns
w = w(x, y) and z = z(x) meant to approximate ψ and ϕ respectively:

−c∂xw − d∆w = f(w), (x, y) ∈ Ωab = (−a, a)× (0, b),

−c∂xz −D∂xxz = νw − µz, x ∈ (−a, a), y = 0,

−d∂yw = µz − νw, x ∈ (−a, a), y = 0,

w(x, y) =
a− x

2a
Ψh(x, y) +

a+ x

2a
kba+h, (x, y) ∈ ∂Ωab, y 6= 0,

z(−a) = Φh(−a), z(a) =
ν

µ
kba+h.

(7.3)

For fixed parameters a, b > 0, we require the following.

Proposition 7.1. For all h ∈ R, there exits a unique solution (z, w) of (7.3) satisfying

ν

µ
kba+h 6 z 6 Φh, kba+h 6 w 6 Ψh. (7.4)

Moreover, this solution is nonincreasing in x and it is continuous with respect to the
parameters c, h.

Proof. The proof is divided into three parts. In the first two, we assume without loss
of generality that h = 0.

Existence and lower bound.
Explicit computation shows that kba(ν/µ, 1) and (Φ,Ψ) are respectively a subso-

lution and a supersolution of (7.3). By Proposition A.1 in the Appendix - notice
that the datum satisfies the compatibility condition (A.2) - there exists a solution of
problem (7.3) satisfying (7.4). Let us derive the qualitative properties of this solution.
First, we know from (7.4) that the function ẑ := z− ν

µ
kba is nonnegative in (−a, a) and

that there satisfies

−c∂xẑ −D∂xxẑ + µẑ = νw(x, 0)− νkba > 0.

Since ẑ(−a) > 0, it follows from the strong maximum principle (see for instance [22])
that ẑ > 0 in (−a, a). Assume now by contradiction that there exists (x0, y0) ∈
[−a, a) × [0, b] such that w(x0, y0) = kba. We know that x0 6= −a because w(−a, y) =
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Φ(−a, y) > kba. Moreover, y0 /∈ (0, b) because otherwise using f(kba) > 0 and the strong
maximum principle one would get w ≡ kba. We also observe that

∀x ∈ (−a, a), ∂xw(x, b) =
1

2a
(−Ψ(x, b) + kba) +

a− x
2a

∂xΨ(x, b) < 0, (7.5)

and therefore y0 6= b. The remaining case x0 ∈ (−a, a), y0 = 0 is also ruled out because
it would imply

0 > −d∂yw(x0, 0) = µz(x0)− νw(x0, 0) = µz(x0)− νkba > 0,

where the last inequality follows from the strict lower bound on z. We have eventually
shown that

∀x ∈ [−a, a),
ν

µ
kba < z(x), ∀y ∈ [0, b], kba < w(x, y). (7.6)

Uniqueness and monotonicity.
We prove uniqueness and monotonicity at the same time, using the sliding method.

Suppose that (z̃, w̃) is another solution of (7.3) satisfying (7.4). For τ > 0, consider
the translation Ωτ

ab := (−a− τ, a− τ)× (0, b) and the shifted functions

z̃τ (x) = z̃(x+ τ), w̃τ (x, y) = w̃(x+ τ, y)

defined in (−a − τ, a − τ) and Ωτ
ab respectively. Thus, for 0 < τ < 2a, w and w̃τ are

simultaneously defined in the rectangle Dτ := Ωτ
ab ∩ Ωab and, likewise, z and z̃τ are

defined on (−a, a− τ). For τ ∼ 2a the functions on (−a, a− τ) or in Dτ are close to
their boundary values: for (x, y) ∈ Dτ we have

z(x) ∼ Φ(−a), z̃τ (x) ∼ ν

µ
kba 6 Φ(a), w(x, y) ∼ Ψ(−a, y), w̃τ (x, y) ∼ kba 6 Ψ(a, y).

where we have used the definition (7.2) of kba. Recalling that Φ and Ψ are strictly
decreasing in x, we get, for 2a− τ small,

z̃τ 6 z in (−a, a− τ), w̃τ 6 w in Dτ .

We now start to decrease τ > 0 and define

σ := inf{τ > 0 : ∀τ ′ ∈ [τ, 2a), z̃τ ′ 6 z in (−a, a− τ ′) and w̃τ ′ 6 w in Dτ ′}.

We show that σ > 0 leads to a contradiction. Suppose indeed that σ > 0. Then, by
continuity, we still have z̃σ 6 z in (−a, a− σ) and w̃σ 6 w in Dσ. We claim that

z̃σ < z in [−a, a− σ], w̃σ < w in Dσ. (7.7)

The inequalities on the “sides” follow from (7.4) and (7.6):

z̃σ(−a) = z̃(−a+σ) 6 Φ(−a+σ) < Φ(−a) = z(−a), z̃σ(a−σ) =
ν

µ
kba < z(a−σ),

w̃σ(−a, y) 6 Ψ(−a+σ, y) < Ψ(−a, y) = w(−a, y), w̃σ(a−σ, y) = kba < w(a−σ, y).
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Thus, by the strong maximum principle, z̃σ < z on the whole [−a, a− σ], and w̃σ < w
on Dσ\(−a, a − σ) × {0, b}. The inequality w̃σ < w holds when y = b because
there the datum is strictly decreasing, as seen in (7.5), and when y = 0 because
(w − w̃σ)(x0, 0) = 0 leads to the contradiction

0 > −d∂y(w − w̃σ)(x0, 0) = µ(z − z̃σ)(x0) > 0.

Therefore, (7.7) is proved. By continuity, (7.7) holds true with σ replaced by σ′ < σ
close enough to σ, contradicting the definition of σ. We have thereby shown that
σ = 0, i.e.,

∀τ ′ ∈ [0, 2a), z̃τ ′ 6 z in (−a, a− τ) and w̃τ ′ 6 w in Dτ .

Applying these inequalities with τ ′ = 0 and switching the roles of (z, w) and (z̃, w̃) we
derive the uniqueness result, while applying the inequalities with (z̃, w̃) = (z, w) we
deduce that (z, w) is nonincreasing in z.

Dependence with respect to the parameters.
On one hand, the continuity of Φ, Ψ implies that the functions Φh, Ψh are con-

tinuous with respect to h (in the L∞([−a, a]) and L∞(Ωab) norms). On the other,
the solutions (α, β, γ) of (6.3) obtained in [9] are continuous with respect to c > w∗.
It then follows from parabolic estimates and the well-posedness of the Cauchy prob-
lem associated with (3.1) that Φ, Ψ are continuous with respect to c too (always in
L∞([−a, a]) and L∞(Ωab)). Then, likewise, the fact that the solution of (7.3)-(7.4) is
unique implies that it is continuous with respect to c and h.

Proof of Theorem 2.2, part (ii). Fix a, b > 0. Let (z, w) be the solution of (7.3), with
h ∈ R, satisfying (7.4). We have that

ν

µ
kba+h 6 z(0) 6 Φ(h).

Recalling the definition (7.2) of k and knowing that (Φ,Ψ) satisfies (2.6), we get

lim
h→−∞

ν

µ
kba+h = lim

h→−∞
Φ(h) =

ν

µ
, lim

h→+∞
kba+h = lim

h→+∞
Φ(h) = 0.

It then follows from the continuity of z with respect to the parameter h that there
exists h ∈ R for which z(0) = ν/(2µ). Next, we let a, b vary and, for each pair, we
choose h accordingly to this normalization condition. As a, b → +∞, by parabolic
estimates, the associated (z, w) converge (up to subsequences) locally uniformly to a
solution (ϕ, ψ) for the complete travelling front system (2.5), which is nonincreasing
in x and satisfies

0 6 ϕ 6
ν

µ
, 0 6 ψ 6 1,

together with the normalization condition

ϕ(0) =
ν

2µ
. (7.8)

Let us show that (ϕ, ψ) fulfils the limiting conditions (2.6). Consider any sequence
(xn)n∈N diverging to either −∞ or +∞. We have that (up to subsequences) ϕ(xn)
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converges to a constant U and that ψ(xn, y) converges to a function V (y) locally
uniformly in y > 0. The pair (U, V ) is a nonnegative solution of

−dV ′′ = f(V ), y > 0,

V (0) = µ
ν
U,

V ′(0) = 0,

with V 6 1. Hence, V is concave, from which one readily deduces that either
(U, V ) ≡ (0, 0) or (U, V ) ≡ (ν/µ, 1) (this can also be obtained from the general
Liouville-type result [9, Proposition 4.1]). Consequently, because ϕ is nonincreas-
ing and satisfies (7.8), we eventually infer that (U, V ) ≡ (ν/µ, 1) if xn → −∞ and
(U, V ) ≡ (0, 0) if xn → +∞.

Finally, for the monotonicity in x, we already know that ∂xz and ∂xw are nonposi-
tive and not identically equal to 0, due to (2.6). Then, differentiating the system (7.3)
with respect to x and applying the usual arguments based on the strong maximum
principle and Hopf’s lemma, one derives ∂xz < 0 and ∂xw < 0.

8 Existence of travelling fronts in Systems (1.2) and
(1.3)

Let us sketch the adaptations that allow one to extend the previous arguments to the
problem which takes into account transport and mortality on the road, hence to prove
Theorem 2.3. The tools needed - well posedness and comparison principle for the
Cauchy problem associated with (1.2), Liouville-type result and spreading properties
- have been derived in [10].

The construction of the strictly monotone supersolution (Φ,Ψ) follows the same
lines of the proof of Lemma 7.1: one starts from an initial datum given by the expo-
nential supersolution (ϕ, ψ) for (1.2) - which is obtained in [10] solving an algebraic
system similar to (6.3) - truncated by the steady state, which is now (us, vs(y)) instead
of (ν/µ, 1).

The y-dependence of the steady state entails a technical difficulty in the application
of the sliding method, and this is where the extra hypothesis on f comes into play.
Indeed, for the problem in the truncated domain Ωab, we need to impose a y-dependent
datum on the side x = a. Namely, we consider

−c∂xw − d∆w = f(w), (x, y) ∈ Ωab = (−a, a)× (0, b),

(q − c)∂xz −D∂xxz = νw − (µ+ ρ)z, x ∈ (−a, a), y = 0,

−d∂yw = µz − νw, x ∈ (−a, a), y = 0,

w(x, y) = a−x
2a

Ψh(x, y) + a+x
2a

kba+hvs(y), (x, y) ∈ ∂Ωab, y 6= 0,

z(−a) = Φh(−a), z(a) = kba+hus,

where kba is now defined by

kba := min

{
Φ(a)

us
, min
y∈[0,b]

Ψ(a, y)

vs(y)

}
.

20



Observe that kba < 1 because (Φ,Ψ) satisfies (2.8). Then, being f(s)
s

decreasing, the
pair kba(us, vs(y)) is a subsolution to the above problem, and this is what is needed to
make the sliding method work and prove the analogous of Proposition 7.1.

Finally, using the normalization condition z(0) = us/2, one eventually gets in the
limit a, b→ +∞ a nontrivial solution for the travelling front problem (2.7). In order to
show that it fulfils the limiting conditions (2.8), one proceeds as at the end of the proof
of Theorem 2.2 part (ii), and concludes applying the Liouville-type result for (2.4),
i.e., [10, Proposition 3.1].

The existence proof of travelling wave solutions for System (1.3) follows the same
lines, and works precisely because the existence of a 1D steady solution allow to con-
struct a super-solution that has the correct behaviour to the right of the cylinder.
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Appendix: existence in truncated domain
The problem under investigation is

−c∂xw − d∆w = f(w), (x, y) ∈ Ωab = (−a, a)× (0, b),

−c∂xz −D∂xxz = νw − µz, x ∈ (−a, a), y = 0,

−d∂yw = µz − νw, x ∈ (−a, a), y = 0,

w = w̃, (x, y) ∈ ∂Ωab, y 6= 0,

z = z̃, x = ±a,

(A.1)

where the data w̃, z̃ are of class C2 and satisfy the compatibility condition

− d∂yw̃(±a, 0) = µz̃(±a)− νw̃(±a, 0), (A.2)

Using an iterative method, we derive an existence result to (A.1). The compatibility
condition (A.2) will keep the technicalities due to the corners to a minimum.

Proposition A.1. Assume that the problem (A.1) admits a subsolution (z, w) and a
supersolution (z, w) satisfying

z 6 z̃ 6 z on {±a}, w 6 w̃ 6 w on (∂Ωab)\
(
(a, b)× {0}

)
.

Then, there exists a solution (z, w) satisfying

z 6 z 6 z, w 6 w 6 w.

Proof. With split the coupled system into two separate problems. Set z0 := z and
w0 := w. Consider the problem for z:{

−c∂xz −D∂xxz = νw(x, 0)− µz, x ∈ (−a, a),

z = z̃, x = ±a,
(A.3)

with w ≡ w0. The functions z and z0 = z are a sub and a supersolution for this
problem. Then, by standard arguments, there exists a solution z1 satisfying z 6 z1 6
z0. Next, consider the problem for w:

−c∂xw − d∆w = f(w), (x, y) ∈ Ωab,

−d∂yw = µz − νw, x ∈ (−a, a), y = 0,

w = w̃, (x, y) ∈ ∂Ωab, y 6= 0,

(A.4)

with z ≡ z1. The functions w and w0 = w are a sub and a supersolution of this
problem and then, thanks to the compatibility condition (A.2), there exists a solution
w 6 w1 6 w0.

We iterate the above procedure obtaining two nonincreasing sequences (zn)n∈N and
(wn)n∈N such that

∀n ∈ N, z 6 zn 6 zn−1 and w 6 wn 6 wn−1,
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with zn solution of (A.3) with w = wn−1, and wn solution of (A.4) with z = zn.
Notice, indeed, that if the above properties hold for some n, then the problem (A.3)
with w = wn admits z 6 zn as sub and supersolution, which allows us to define zn+1;
then, (A.4) with z = zn+1 admits w 6 wn as sub and supersolution and thus we can
define wn+1.

The desired solution (z, w) is the uniform limit of ((zn, wn))n∈N.

Systems (1.2) and (1.3) are treated along the same lines.
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