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Simple Summary: Olive oil is the most common vegetable oil used for human nutrition, and its
production represents a major economic sector in Mediterranean countries. The milling industry
generates large amounts of liquid and solid residues, whose disposal is complicated and costly
due to their polluting properties. However, olive mill waste (OMW) may also be seen as a source
of valuable biomolecules including plant nutrients, anthocyanins, flavonoids, polysaccharides,
and phenolic compounds. This review describes recent advances and multidisciplinary approaches in
the identification and isolation of valuable natural OMW-derived bioactive molecules. Such natural
compounds may be potentially used in numerous sustainable applications in agriculture such as
fertilizers, biostimulants, and biopesticides in alternative to synthetic substances that have a negative
impact on the environment and are harmful to human health.

Abstract: Olive oil production generates high amounts of liquid and solid wastes. For a long time,
such complex matrices were considered only as an environmental issue, due to their polluting
properties. On the other hand, olive mill wastes (OMWs) exert a positive effect on plant growth
when applied to soil due to the high content of organic matter and mineral nutrients. Moreover,
OMWs also exhibit antimicrobial activity and protective properties against plant pathogens possibly
due to the presence of bioactive molecules including phenols and polysaccharides. This review
covers the recent advances made in the identification, isolation, and characterization of OMW-derived
bioactive molecules able to influence important plant processes such as plant growth and defend
against pathogens. Such studies are relevant from different points of view. First, basic research
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in plant biology may benefit from the isolation and characterization of new biomolecules to be
potentially applied in crop growth and protection against diseases. Moreover, the valorization of
waste materials is necessary for the development of a circular economy, which is foreseen to drive the
future development of a more sustainable agriculture.

Keywords: Olea europaea L.; olive mill wastes; plant growth; plant nutrition; plant protection; phenols;
oligosaccharides; bioactive molecules

1. Introduction

Olive tree (Olea europaea L.) cultivation for olive oil production is one of the most ancient
agricultural practices known by mankind. Olive oil is an important component of the Mediterranean
diet known for its high nutritional properties and beneficial health effects. On average, 3 million tons
of olive oil are produced around the world every year and 2 million tons of this production takes place
in the European Union (EU) representing the first producer, exporter, and consumer of olive oil in
the world. The Mediterranean area alone including Spain, Italy, Greece, and Portugal covers around
99% of the olive oil EU production [1].

Olive oil extraction includes washing of olive fruits, fruit crushing, malaxation to brake off the
emulsion and facilitate coalescence, and finally oil separation and extraction.

Olive oil extraction processes have improved over time due to the intensification of oil production
and to the modernization of the technology aimed to upgrade the quality of the final product.

The milling industry generates in a short period, usually 4 months (October–January),
large amounts of waste (olive mill wastes, OMWs). For instance, an estimated average volume
of olive mill wastewater (OMWW) ranging from about 0.3 to 1.2 m3/tons of processed olives and
an average quantity of solid residue ranging from 500 to 735 kg/tons of processed olives have been
reported depending on the adopted extraction systems [2]. OMWs due to their acidity, high levels
of biological oxygen demand (BOD) and chemical oxygen demand (COD) are characterized by a
high polluting and phytotoxic degree [3]. On the other hand, OMWs are a source of valuable
molecules including plant nutrients, anthocyanins, flavonoids, polysaccharides, and several phenolic
compounds [4–6] with potential industrial applications as fertilizers, antioxidants, antifungal and
antibacterial drugs, cytoprotective agents, gelling and stabilizing agents in food preservation [4,7].
Consequently, significant efforts have been devoted to the transition from OMW detoxification
to its valorization by optimizing the recovery of high added-value bioactive compounds to be
commercially reused.

The increasing consumption of vegetables and the ongoing climate changes, with negative effects
on crop production and plant diseases diffusion, requires the large utilization of stimulants, fertilizers,
and pesticides to improve plant growth, crop yield, and phytopathogens control [8]. The future challenge
for modern agriculture is to operate in a sustainable way reducing the over-application of synthetic
fertilizers and pesticides that have a negative impact on the environment and on human health and high
persistence in the ecosystems. As an alternative to synthetic chemicals, biostimulants and biopesticides
are the best candidates for sustainable integrated crop productivity and pest management [9,10].
Bioactive molecules with growth promotion and antimicrobial effects, identified and characterized in
OMW by-products, have stimulated many researchers to employ these compounds as biostimulants,
biopesticides, and plant protectants for crop improvement. However, more extensive field research is
required to evaluate their effects to solve serious plant diseases affecting commercially important crops
with a sustainable, large-scale, agro-economical perspective.

This review summarizes recent advances and multidisciplinary approaches in the identification and
possible agronomic exploitation of valuable natural OMW-derived bioactive compounds. The acquired
knowledge could also lead to the discovery of new plant growth and disease resistance regulators.
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2. Olive oil Extractive Methods and Olive Mill Wastes

From the classic traditional discontinuous system, modern mills have moved to the use
of continuous cycle extraction processes including two-, three-phase decanter systems [3] and,
more recently, multi-phase decanter (MPD) technology in which all the oil extraction steps take place
automatically and in succession with higher efficiency and capacity of centrifuge-based extraction [11].

In the three-phase decanter system, warm water up to 50 L for 100 kg olive paste is added
during malaxation to enhance oil extraction. At the end of the process, a large quantity of OMWWs
(0.3–1.2 m3/tons of processed olives) and dried olive pomace (DOP) (about 580 kg/tons of processed
olives; 55% moisture) are produced [2].

The two-phase decanter system requires lower water addition, thus smaller amounts of OMWWs
(about 0.2–0.3 m3/tons of processed olives) are generated and a semi-solid waste, defined wet olive
pomace (WOP) (about 740 kg/tons of processed olive; 62% moisture) is produced [2]. The WOP
treatment is difficult due to the high moisture and high concentration in solids, lipids, carbohydrates,
and polyphenols [12].

The MPD technology is a modern two-phase system performed without adding water during the
process. The introduction of a pulp-kernel separation system produces a dehydrated kernel-enriched
fraction and a novel by-product, named Patè olive cake (POC) recovered during and not after the milling
process by an exclusively mechanical treatment. POC consists of a wet fraction composed by olive
pulp, olive skin, and vegetative water. POC is rich in several bioactive molecules, more concentrated
with respect to OP derived from three- or two-phase systems [13–16].

OMWW is an expensive waste to dispose of and a major environmental concern in olive producing
countries due to its high pollutant charge. OMWW is a dark-brown liquid (pH 3–6), constituted by
a stable emulsion of vegetative water, process water, olive oil residues, and fragments of olive
pulp. The OMWW composition depends on the extraction system, processed fruits, and processing
conditions. OMWW consists of water (83–94% w/w) and organic compounds (4–18% w/w) including
sugars, polysaccharides, tannins, organic acids, phenolic compounds, and lipids [17]. Its great
complexity and variability in chemical composition represents a limit to its direct use as a raw material
for industrial purposes.

3. Active Molecules in OMW and Their Analytical Characterization

In order to valorize wastes and introduce valuable by-products into the production cycle,
it is of paramount importance to define their chemical-physical properties, as well as their
chemical composition. For a long time, the most important parameters to define wastes were
the chemical-physical ones, such as total solid, volatile solid, fixed solid, oil and grease content,
polyphenol content, volatile phenol content, organic nitrogen, COD, and reducing sugar content.

More recently, analytical platforms were employed to better characterize the OMW parameters and
a greater emphasis was placed on the evaluation of the antioxidant properties of these matrices [18,19].

The most used methods in order to detect the antioxidant capacity of single or multiple molecules,
are oxygen radical absorbance capacity [20], total radical trapping antioxidant parameter [21],
Ferric reducing antioxidant power [22], antioxidant reaction with an organic cation radical [23],
(diphenyl-1-picrythydrazyl) copper (II) reduction capacity [24], and crocin bleaching assay [25,26].

The natural evolution of such studies is the investigation of the composition of OMW in terms
of phenols, polyphenols, and sugars with more powerful techniques such as Fourier Transform IR,
Mass Spectroscopy, Nuclear Magnetic Resonance Spectroscopy, or a combination of these [4,18,27–33]
(see Table 1).

The content of bioactive molecules in OMW is heavily influenced by agronomic factors, such as
pedoclimatic conditions of olive groves, as well as olive variety, harvest period, production year,
and extraction process, as well as microbial treatments [6,34,35]. This observation implies that the
chemical characterization of OMW is a step which must be repeated every time a new batch is to be
employed for any kind of application [36].
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Only recently, POC is being considered for other uses in addition to biofuel production [15,16],
and as such a more detailed biochemical analysis is necessary. HPLC chromatography and gas mass
spectroscopy could be fast and economical methods to detect phenols [37], while hyphenated platforms
such as ultra-performance liquid chromatography coupled with a mass spectrometry detector without
pre-treatment of the sample [38] can provide greater selectivity and sensitivity. A summary of the most
recent studies concerning the bioactive molecules of OMW is reported in Table 1, and some of the most
important molecules and their properties are briefly introduced in the following paragraphs.

Table 1. Recent studies on the characterization of bioactive phenolic compounds in olive mill wastes
(OMWs).

Molecule Analytical
Platform

Amount in
OMWW (mg/g

Dry Matter)

OMWW
References

Amount in
POC (mg/g
Dry Matter)

POC
References

Phenols

Tyrosol HPLC, MS,
GC, NMR 1.0–2.8 [6,32,39–42] 0.4–1 [13–16]

Hydroxytyrosol HPLC, MS,
GC, NMR 0.9–24 [6,32,39–42] 0.6–2 [13–16]

Hydroxybenzoic acid HPLC, MS,
GC, NMR 2–9 [6,32,39] / /

Coumaric acid HPLC, MS,
GC, NMR 1–2 [32,39] 0.1–0.6 [13,16]

Gallic acid HPLC, MS 2–6 [6,39] / /
Vanillic acid HPLC, MS 0.1–0.6 [6,39] 0.5–0.8 [16]
Caffeic acid HPLC, MS 0.3–1.9 [6,39] 0.9–5.0 [13–15]

Hydroxycinnamic acid HPLC, MS Detected [41] / /

Polyphenols
Quercetin-3-O-glucoside HPLC, MS 0.5–2.1 [39,42] / /
Luteolin-7-O-glucosides HPLC, MS 25–55 [6,40,42] 0.5–1.2 [13,15]

Secoiridoids
Oleuropein HPLC, MS, GC 18–92 [6,39–42] 0.1–9.2 [14–16]

Oleuropein aglycone HPLC, MS Detected [40] Detected [14]
Ligstroside HPLC, MS Detected [40] / /

Ligstroside aglycone HPLC, MS Detected [40] / /
Olecantal HPLC, MS Detected [40,42] 0.1–0.4 [13]

3.1. Phenols and Polyphenols

Phenolics in plants are mainly synthesized through the phenylpropanoid pathway. Several phenols
and polyphenols have been detected in OMWs (e.g., 32.8–103.4 mg/g dry matter in OMWW and
3.0–10.6 mg/g dry matter in POC, see Table 1), the most important ones being tyrosol, hydroxytyrosol,
and their secoiridoid derivatives oleuropein and ligstroside. These compounds play an important
role against inflammatory, aging, cancer, bacterial, etc. [43]. From a technological point of view,
hydroxytyrosol could be very useful, but its synthesis is very expensive and it is not commercially
available in large amounts [44]. For such reasons, the possibility to recover these compounds from
natural matrices such as OMW could be an important goal.

3.2. Secoiridoids

The most diffused secoiridoids in OMW (e.g., 18–91 mg/g dry matter in OMWW and 0.2–9.6 mg/g
dry matter in POC, see Table 1) are derived from elenolic acid, which is often esterified with
hydroxytyrosol or tyrosol to form the aglycons of, respectively, oleuropein and ligstroside [29,42,45–47].
Other common derivatives are based on decarboxymethyl dialdehyde elenolic acid (oleacein) instead
of elenolic acid. These molecules possess several properties in addition to their antioxidant potential
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with oleuropein, ligstroside, and their aglycons showing a significant antifungal and antimicrobial
activity, as well as potential health benefits [48–51].

3.3. Carbohydrates

Carbohydrates in OMWs are released following cell wall degradation during the milling process and
during the olives ripening process. The knowledge of the composition of the cell wall polysaccharides
of the olive fruit and of OMWs is useful to evaluate their potential applications [52]. Green olives,
mostly used for oil production, have a cell wall composed of 46% of pectin polysaccharides (mainly
galacturonan and arabinans), 28% Cellulose, 17% Glucuronoxylan, 10% Xyloglucan, 1% Mannan,
and Arabinose-Rich Glycoprotein in traces [53,54]. Differences can be revealed between cultivars and
ripening stages. Pectin-related sugars (Galacturonic Acid; GalA, Rhamnose; Rha, and Arabinose; Ara)
are abundant in olives early during ripening, whereas hemicellulose monosaccharides (Xylose; Xyl,
Mannose; Man, Galactose; Gal, and Glucose; Glc) increase later during maturation [55,56].

Cell wall isolation from OMW typically requires a hot ethanol precipitation followed by an alkali,
acid, or solvent treatment. The monosaccharide composition is usually performed by HPAEC-PAD
or GS-MS analysis associated with several colorimetric assays [56–58]. Differently from the OP,
where insoluble cellulose and hemicelluloses are mainly present, OMWW is enriched in soluble
pectins [58,59]. Polysaccharides isolated from OMWW are mainly enriched in GalA, followed by Ara,
Glc, and Gal [58,60]. Conversely, Nadour et al. found that Glc was the major monosaccharide in
the cell wall from OMWW, followed by Rha, Gal, Ara, Man, Xyl, and GalA. GlcA and fucose (Fuc)
appear as minor sugars [5]. The differences observed among different studies can be explained by
the different extraction or analytical methods used, and/or by different varieties or ripening stages of
the olives. Evidence suggests that OMW is a source of partially soluble cellooligo-saccharides (COS),
pectooligosaccharides (POS), and xylooligosaccharides (XOS) [61]. These oligomers compose a class of
value-added compounds with enormous potential. All these oligosaccharides play a fundamental role
as plant growth promoters or as defenders against pathogens [62–65]. Moreover, cell wall-derived
products may have different nutritional and physiological benefits [66,67]. Possibly due to a recent
interest in these OMW-derived oligosaccharides, a fine characterization of their chemical structure
is not yet available in the literature. Such information is essential for designing new paths for the
exploitation of OMW and its by-products in agriculture. The presence of glycosylated phenolic acids
was also proposed for OMWW [4,5,68].

OMW are also enriched in soluble sugars, including significant amounts of Glc and Man and
small quantities of Sucrose and Fructose [69]. Mannose can increase tolerance to salt and osmotic
stress as “compatible solute” and can play a role in the responses to pathogen attack, as well as being
heavily used in the food industry [70,71]. However, caution is required since it can have a negative
effect on plant growth and defense when administered to plants in high doses [72]. A polymeric
mixture, named polymerin, was also recovered from OMWW. It is composed of polysaccharides
(54.4%), melanin (26.1%), protein (10.4%), and minerals (11.06%) strongly linked through covalent and
hydrogen bonds. Polymerin could be used as a potential amendment, and/or metal biointegrator and
as a biofilter for toxic metals [73,74].

4. Sustainable Processes for the Isolation of Bioactive Molecules from OMWs

Several extraction methodologies for the recovery of OMW-derived bioactive substances are
mostly based on the use of organic solvents. However, there is an increasing need for green and
sustainable extraction approaches at low environmental impact. Membrane-based techniques such as
microfiltration (MF), ultrafiltration (UF), nanofiltration (NF), and reverse osmosis (RO), constitute one
of the most effective approaches to separate, concentrate, and finally recover active compounds [75].
These technologies considered best available techniques (BAT) are characterized by high separation
efficiency, easy scale-up, and high productivity. These features make cross-flow processes more
performing than conventional separation technologies. The effectiveness of MF as a pre-treatment for
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OMWW clarification was investigated in coupling with the membrane distillation process. The MF
permeate was further treated through a membrane distillation stage, in order to obtain both clean water
and a fraction containing concentrated phenols and sugars for fertilization purposes [76]. With this
strategy, hydroxytyrosol was the main phenolic substance recovered and concentrated to 8.16 g/L.
The UF 50 kDa cut-off was applied to separate the phenolic fraction and to lower the COD content
of OMWW [77]. Different operating conditions were evaluated in terms of rejection to: COD, color,
total solids, and total phenolic content. The results indicate that the UF in acidic condition is a
suitable pre-treatment for OMWW to improve phenolic compounds recovery and environmental
impact reduction. Different UF and NF membranes were used to separate from OMWW a pectin and a
phenol-enriched fraction. Specific UF membranes (25 and 100 kDa cut-off) were effective to separate
pectins from a mixture of cations and phenols. Finally, NF was utilized to separate phenols from
cations in the solution [78] making this approach useful to separate different molecules from OMWW.
Oligosaccharides fractions (1–3 kDa) were separated from WOP treated in a hydrothermal reactor
and subjected to further chemical and enzymatical hydrolysis. UF was applied to separate tetra-,
tri- and di-galacturonic acids, neutral and acidic xylo-oligosaccharides, and low molecular weight
oligosaccharides of xyloglucan [79]. A membrane process based on ceramic UF, polymeric NF, and RO
was adopted on water extracts of OP in order to concentrate the target compounds. The UF concentrate
contains polyphenols (550 mg/L) and carbohydrates (4000 mg/L), in comparison, the NF concentrate
shows more polyphenols (652 mg/L) and less carbohydrates (3000 mg/L). RO retains the remaining
organic fraction returning a clean permeate with a total COD of 284 mg/L [12].

Photocatalysis has been studied as the OMW pretreatment to be applied before membrane
fractionation. In order to achieve economic feasibility of the process, the catalyst must be recovered
but immobilized systems cannot be used due to the high opacity of OMWW. Magnetic core titania
particles, recoverable by means of a magnetic trap, were developed [80]. Their use permitted efficiently
performing the pretreatment process of the wastewater stream, using a suspended photocatalyst
photoreactor, and recovering up to 98% of the catalyst. By adopting photocatalysis as a pretreatment
step for membranes, it was possible to increase the process productivity of 19% on average. COD values
below 1.3 g/L were measured in the final permeate streams, achieving the quality standards for irrigation.

Supercritical fluid extraction (SFE) is being considered an advantageous eco-sustainable technique
for biomass fractionation, starting from solid dehydrated materials [81–83]. Olive leaves have
been used as a polyphenols source for SFE. CO2 modified by water was more efficient than that
modified by ethanol in extracting oleouropein from olive leaves [84,85]. Water swells the matrix,
opening pores, and allowing better access to solutes. Other authors described the use of different
waste materials such as pruning biomass, leaves, and exhaust pomace as a source of polyphenols [86].
For all materials, SFE afforded extracts with a higher concentration of total polyphenols and higher
antioxidant activity compared to SE. Hydroxytyrosol was the most prominent detected compound.
Schievano et al. proposed an integrated biorefinery concept for the management of pomace, using SFE
for extracting polyphenols and fatty acids, followed by the thermochemical recovery of energy, biofuels,
and materials [87].

5. Application of OWS and OMW-Derived Bioactive Molecules in Plant Growth and Protection

5.1. Effects of OMW as Plant Biostimulants

The new EU Regulation 2019/1009 [88] defines a plant biostimulant (PB) as: “An EU fertilizing
product the function of which is to stimulate plant nutrition processes independently of the product’s
nutrient content with the sole aim of improving one or more of the following characteristics of the
plant or the plant rhizosphere: (i) nutrient use efficiency, (ii) tolerance to abiotic stress, (iii) quality
traits, or (iv) availability of confined nutrients in the soil or rhizosphere”.

The members of the European Biostimulant Industry Council also proposed general principles
and guidelines for trials and assays to be performed to allow PBs to be placed on the EU market [89].
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In the last 10 years (2011–2020), about 1000 scientific papers were published on PBs and OMWs are
recognized as biostimulants, although there is still little specific research on them [90].

Palumbo’s research [91] indicates that humic acids extracted from an amendment obtained
combining OMWs with a pre-treated organic material derived from solid urban waste can be used
as PB in agriculture, thanks to their positive effects on biomass production, nutrition, and activity of
enzymes implied in N metabolism and glycolysis. Other studies have shown that PB formed as a
by-product of the two-stage process of squeezing olive oil can induce an increase in the protein content
of maize grains up to 19% [9]. OMW, at low concentrations, can efficiently trigger positive metabolic
and physiological responses in plants [9].

Phenols are important signaling molecules and it has been established that in adequate
concentrations they can produce several positive effects in plants, even when they are exogenously
applied or present in PB formulations [9,92]. Conversely, at concentrations as high as those normally
recorded in OMW, phenols may be responsible for the inhibition of soil microbiome activity and
induction of several phytotoxic effects, including reduced seed germination, plant growth impairment,
and drops in productivity [93,94].

5.2. Effects of OMW on Soil Properties and Plant Nutrition

The effects of land spreading of OMW on soil properties have been investigated and the results
show that the effects on soil properties and plant growth are different according to the kind of OMW
(liquid or solid, raw or processed). The form and rate in which OMWs are applied to soils play a
significant role in determining their effectiveness as organic fertilizers and in soil health [95]. On the
other hand, many studies investigated the effects of unprocessed OMWW on soil characteristics,
recording negative effects on soil properties [96] and phytotoxic effects in seeds and plants when
OMW is used directly as an organic fertilizer [97]. These wastes, due to their acidity, high organic
load, high levels of BOD, COD, presence of high and low molecular weight polyphenols, short and
long-chain fatty acids, and inorganic substances, can be characterized by a high polluting and phytotoxic
degree. The reduction of OMW toxicity has been related to the degradation of phenolic compounds
considered as the main responsible for the toxic effects on seed germination, on bacteria and on
different species of soil and aquatic invertebrates [98]. Nevertheless, OMWs characteristics make them
suitable for use as low-cost soil fertilizers recycling the organic matter and mineral nutrients [99].
Moreover, the clarified OMWW can represent a convenient source of irrigation water in Mediterranean
countries suffering from water scarcity [100–105]. To solve the environmental problems linked to
OMW disposal costs and allow its application to agricultural soils, several physico-chemical and
biotechnological processes have been proposed for the OMW treatment based on evaporation ponds,
reverse osmosis, filtration, oxidation, thermal drying, aerobic and anaerobic treatments, composting,
phyto-depuration, and phenolic components extraction [106]. The impact on soil properties depends
on the techniques used. Treated OMWs have no toxic effects and in general enhance soil fertility and
plant growth [102,107,108]. However, the technological process application is limited due to the high
investment or running cost [109] and the most frequently used ways to dispose of OMW nowadays
are the application to agricultural soils of unprocessed OMW or after composting [33,95,110–113] or
co-composting [114–116].

From the literature, OMW, solid and liquid, raw or processed forms, may affect soil chemical,
physical and biological properties in different ways that, in turn, influence the growth and yield of
crops as follows.

- Chemical properties: The physico-chemical characteristics of raw or processed OMW are adequate
for an agronomic use as an organic fertilizer such as a slightly acidic pH, a very high content of
organic matter, and balanced concentrations of mineral elements [117]. An important advantage
of OMW is that it is free of heavy metals and other potential pollutants [118]. Many studies
reported the general increase of the organic matter, organic N, macro and micronutrients on the
soil, in particular, the available K [99,109,119,120]. The long term application of OMW in general
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did not cause significant differences in pH, EC, P, Na. However, pH, EC, and salinity can increase
temporarily in topsoil after spreading high rates (200 m3/(ha*year)) of OMWW [103–105,121–123].

- Physical and hydrological properties: Different results are reported in the function of forms of
OMW (solid or liquid), rates of application, and pretreatments.

Land applications of raw or composted PO increase water retention and saturated hydraulic
conductivity, reduce bulk density, and enhance the stability of aggregates with improved water
availability for the crops. The increase in water holding capacity and wilting point can be attributed to
changes in soil structure, which result from increases in soil organic carbon [124–126].

However, the accumulation of salts coming from irrigation with OMWW could lead to the
disintegration of the soil structure and therefore the decrease of the hydraulic conductivity and a
temporary reduction in the soil infiltration rate. In the topsoil, irrigation with OMWW produced an
increase of stability of aggregates, lower bulk density, and relatively higher total porosity, but lower
macroporosity [104,127–129].

Further advantages of OMW application is the reduction of erosion, runoff, soil losses [124],
and pesticides persistence and mobility, decreasing groundwater risk contamination [130].

- Biological properties: The high polyphenols content of OMW represents the most limiting
factor for spreading on soils due to their antimicrobial and phytotoxic effects. Nevertheless,
OMW polyphenols are rapidly degraded depending on environmental conditions [100]. In regards
to the soil microflora, OMW exercises the following two contrasting actions: It stimulates
the development of the microflora by temporarily enriching the soil in carbon and inhibits
some microorganisms and phytopathogenic agents due to the presence of antimicrobial
substances. Studies report that microbial counts increase with OMW quantities and frequency of
spreading [119,131]. In particular, aerobic bacteria and fungi increase in proportion with OMW
spreading rates. Furthermore, soil respiration [96,99] and soil enzyme activities (dehydrogenase,
β-glucosidase, and urease) seem to be enhanced in OMW-amended soils [122,123].

A study on short and long-term effects of repeated OMWW applications [101] showed a temporary
negative effect on microbial biomass carbon but also the ability of soil to restore normal values in
the long term. Moreover, on treated soils, despite a reduction of arbuscular mycorrhiza fungal root
colonization, an increased presence of arbuscules and vesicles was observed.

- Growth and yield of crops: Almost always positive responses on plant growth and yield
performances are reported when treated OMW (by composting or co-composting) are used as a
consequence of polyphenols biodegradation. However, fertilizations or irrigations with untreated
OMW at high doses can harm seeds germination and have negative effects on plant growth due
to the phytotoxic effects of the elevated load of polyphenols and high salinity. Recent articles
concerning the effect of OMW on plant growth and yield performances are listed in Table 2.

Table 2. Recent studies on the effects of OMWs on plants growth and yield. * indicates the type of
OMW and the plant growth performance

Plant
Organism

OMW Plant Growth
Performance

Notes References
OMWW OP

Positive Negative
Raw Treated Raw Treated

Italian
ryegrass * * Germination

index [132]

Olive
trees

*
POC
from
MPD

*
POC
from
MPD

* Long-term
field study [110]
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Table 2. Cont.

Plant
Organism

OMW Plant Growth
Performance

Notes References
OMWW OP

Positive Negative
Raw Treated Raw Treated

Maize * * Field trials
calcareous soil [120]

Durum
wheat
Barley

* * Field trials [103,105]

Olive
trees * * Long-term

field study [119]

Olive
trees * * * Long-term

field study [133]

Faba
bean *

*
dose

25 m3/ha

Pot trials with
different doses [97]

Olive
trees *

*
Olive
grove
yield

Long-term
field study [122]

Grapevine * * Long-term field
study (11 years) [99]

Olive
plantlets * * pot trials in

greenhouse [134]

Winter
Weath * *

*
(OMWW
treated)

*
(OMWW

raw)
Field trials [123]

5.3. Effects of OMW as Biopesticides in Plant Protection

In the agronomic industry, a huge problem is represented by fungal and bacterial pathogens that
cause significant crops losses and produce mycotoxins potentially harmful for human health.

Plant diseases are largely addressed using synthetic pesticides that have a negative impact on
environment contamination, are harmful to health, and can also generate pest-resistance. Bio-pesticides
have been recently described as the best candidates for the control of phytopathogens for a
sustainable agriculture.

The application of OMWs by-products in crop protection against pests takes advantage of their
antifungal and antimicrobial properties without negative effects on plant growth [135,136].

Several experimental evidences reported the fungicidal activity of OMWW against
dangerous phytopathogens.

The inhibitory activity of OMWW on in vitro mycelium growth of Fusarium oxysporum, Pythium spp.,
Sclerotinia sclerotiorum, Verticillium dahlia, and Botrytis cinerea was reported [137,138]. The strong
fungicidal activity of water extracts of WPO, diluted 1:10, was demonstrated against Phytophthora
capsica [139]. The filter sterilized OMWW also inhibited the in vitro mycelium growth of B. tulipae,
F. oxysporum, Aspergillus niger, and Penicillium spp [140].

Furthermore, the OMWW fruit application strongly reduced B. cinerea mold formation in
strawberries and red peppers, indicating a possible application of this by-product in fruit protection
against post-harvest diseases [138].

The OMW sterilization abolished all these biological effects suggesting that the antifungal
and protective effect on fruits and vegetables from post-harvest diseases were possibly due to
thermolabile phenolic compounds, although a synergistic effect of phenols with other molecules could
not be excluded.
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Increased accumulation of phenolic phytoalexins in plants can promote host defense against
pathogens and the activity of phenols in plant defense against phytopathogens have been explored for
their application as biopesticides in agriculture [141].

Due to their low solubility in the oil phase, only 2% of phenols are contained in olive oil.
Phenols mainly occur in OP (~45%) and in OMWW (~53%) [135] by-products making these wastes an
important source of these molecules [136].

Caffeic acid, protocatechuic acid, para-coumaric acid, ferulic acid, cinnamic acid, and oleuropein
isolated from OP, at a concentration of 1000 ppm, exhibited fungicidal activity against numerous
phytopathogens with a higher effect on F. oxysporum and Verticillium sp [142]. A powerful fungicidal
effect of phenols extracted from DOP at a concentration of 0.1 and 0.2% (w/v) was also demonstrated
against Alternaria solani, F. culmorum, Phytophthora capsica, and B. cinerea [143].

Evidences indicated that the antifungal effect of OMWW is related to low molecular weight phenols
and in particular to hydroxytyrosol (HT) and tyrosol. OMWW and HT-rich extracts inhibited the
growth of Pseudomonas syringae pv tomato and Xanthomonas campestris at concentrations of 72 and 40 g/L,
respectively [144]. Interestingly, OMWW at a minimum quantity of 10 µL/mL added to the medium
inhibited the in vitro growth of the devastating bacterium Xylella fastidiosa. Moreover, a bacteriostatic
effect was exerted by specific mono and polyphenols associated with OWS such as cathecol and methyl
cathecol (1 mM), caffeic acid (1 mM), oleuropein (10 mM), and verbascoside (1 mM) [145]. However,
the mechanism for X. fastidiosa growth inhibition by phenols is still unknown [146,147].

To understand the molecular basis of HT antifungal activity, different chemically synthetized HT
analogues were used against A. flavus, A. fumigatus, F. oxysporum, and mycelial growth. HT analogues
altered the plasma membrane structure within some minutes after their addition to fungal cultures.
The HT analogues effect was associated with the inhibition of transporter mediated xanthine uptake,
indicating that the direct effect of HT analogues was the disruption of the fungal plasma membrane
integrity and function [148].

The plant cell wall (CW) is a source of bioactive molecules [149]. Cell wall fragments, so called
damage-associated molecular patterns (DAMPs), released after enzymatic degradation of CW
polysaccharides can improve plant protection, as well as crop yield [150].

OMWW is a good source of polysaccharides. Cellulose, hemicellulose, and pectins are the main
carbohydrates identified in olive mill by-products [5]. While insoluble cellulose and hemicelluloses
were mainly found in OP, soluble pectic components were observed in OMWW at significant
concentrations [58,67,151,152]. Long (polymerization degree DP:10–15) and short pectin fragments
(DP:1–8) (oligogalacturonides; OGs) are the best characterized DAMPs and are effective as protectors
against phytopathogens [153–155]. These danger signals have been shown to trigger the CW-mediated
immunity system leading to the elicitation of defense responses and disease resistance, as well as
improve crop yield. Peculiar OGs with prebiotic and antioxidant activity have been fractionated from
OMWs [5,61,156,157].

Acidic xylooligosaccharides are antimicrobial active agents [158,159], neutral xyloglucans act as
endogenous elicitors [159], and arabinoxylan oligosaccharides can trigger plant immune responses
in crops [65]. OGs neutral and acidic xyloglucan oligosaccharides have been detected in olive
fruits [58,151,152] and have been isolated and chemically characterized from WOP [79]. Although the
role of these olive oligosaccharides in plant defense has not yet been explored, future research could
reveal their potential properties as new DAMPs to be used in plant protection.

Recent articles concerning the effect of OMWs and derived bioactive molecules on phytopathogens
are listed in Table 3.

It is known that microbial communities have the ability to colonize OMWs and OMW microbiota
depends on different physico-chemical conditions of OMWs as well by the cultivation systems, the olive
tree cultivar, and olive fruit harvesting practices [160]. The potential biotechnological and industrial
applications of indigenous microbiota, isolated from OMWs, in suppressive properties against plant
pathogens and OMW bioremediation and valorization are beyond the aims of this review. However,
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it is important to highlight that OWM microbiota could modify the pH of the olive waste substrates
and the composition of bioactive molecules during the OMW conservation period, thus affecting their
efficiency as biopesticide in plant protection. Consequently, in the analyses of the biological effects of
the OMW-derived bioactive molecules, the effect of a possible microbial colonization, by indigenous
microorganisms, needs to be considered and a strict control of the storage and working conditions is
highly required, to correctly manage these wastes.

Table 3. Recent studies on the effects of OMWs and derived molecules on microbial phytopathogens.

Microbial Organism Tested Sample Notes References

Botrytis tulipae, Fusarium
oxysporum, Aspergillus

niger and Penicillium spp.
OMWW

Reduction of in vitro
mycelium growth

Reduction of Scab-like lesions
B. tulipae on infected tulip bulbs

[140]

Xylella fastidiosa
OMWW and

OMWs-derived
MF, UF, and NF fractions

Inhibition of in vitro bacterium
growth at minimum quantity of

10 µL/mL
[145]

Aspergillus flavus,
Aspergillus. fumigatus,
Fusarium oxysporum

Hydroxtyrosol analogues Severe inhibition of myceliar growth
at 100 µM [148]

Xylella fastidiosa

Cathecol, Methyl
cathecol, Caffeic acid,

Verbascoside, and
Oleuperin

Inhibition activity due to a
bacteriostatic effect of tested

phenols at 1 and 10 mM
[145]

6. Conclusions and Future Perspectives

While OMWs have been for a long time an environmental issue, nowadays they are a source of
bioactive molecules to be used in agriculture as natural pesticides, biostimulants, or plant protectants
in alternative to harmful agrochemicals. New types of wastes, in particular POC, must be thoroughly
studied to identify all potentially useful components, such as oligosaccharides to be employed as plant
protectanta, as well as phenols and secoiridoids with potential antimicrobial properties. The definition
of molecular mechanisms of action, coupling and complementing the protection activity of phenol and
carbohydrate fractions could represent an attractive scientific challenge. In particular, basic research in
plant biology may benefit from the isolation and characterization of new biomolecules to be potentially
applied in crop growth and protection against diseases.

Researches on OMW as fertilizers have demonstrated two different potential uses: As biostimulants
or as soil amendments. The phenolic contents in OMW composition, at adequate concentrations,
is able to determine positive metabolic and physiological responses in plants. In addition to phenols,
attention should be devoted to olive oligosaccharides for their potential role as elicitors of defense
responses. Their characterization and effects as plant elicitors of defense responses have not yet
been investigated.

There are few studies aimed to investigate the specific and/or synergistic actions of phenols and
oligosaccharides in the complexity of the soil-plant system. Further and more focused researches in
these topics are needed as a challenge in the valorization of Olive Mill by-products in formulations
complying to the new EU biostimulants regulations and towards a sustainable agriculture.

The OMW effectiveness against phytopathogens has already been investigated and confirmed
in many scientific experiences although their recovery with green approaches and their possible
use in field applications still need to be further explored. A step in this direction is the ABASA
project (Agricultural By-products into valuable Assets for Sustainable Agriculture) recently founded
by LazioInnova, Regione Lazio 2017–2020, which has the aim to characterize the phytochemical
composition of POC and OMWW fractionated by membrane filtration technologies, as well as to isolate
and assess the physiological role of bioactive molecules.
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