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Abstract: Traditional anti-icing/de-icing systems, i.e., thermal and pneumatic, in most cases require a
power consumption not always allowable in small aircraft. Therefore, the use of passive systems,
able to delay the ice formation, or reduce the ice adhesion strength once formed, with no additional
energy consumption, can be considered as the most promising solution to solve the problem of the
ice formation, most of all, for small aircraft. In some cases, the combination of a traditional icing
protection system (electrical, pneumatic, and thermal) and the passive coatings can be considered
as a strategic instrument to reduce the energy consumption. The effort of the present work was to
develop a superhydrophobic coating, able to reduce the surface free energy (SFE) and the work of
adhesion (WA) of substrates, by a simplified and non-expensive method. The developed coating,
applied as a common paint with an aerograph, is able to reduce the SFE of substrates by 99% and the
WA by 94%. The effects of both chemistry and surface morphology on the wettability of surfaces
were also studied. In the reference samples, the higher the roughness, the lower the SFE and the WA.
In coated samples with roughness ranging from 0.4 and 3 µm no relevant variations in water contact
angle, nor in SFE and WA were observed.
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1. Introduction

Typically, the presence of tiny pieces of ice or supercooled liquid water in the clouds, which remain
liquid below zero and suddenly turn to ice after the impact with the aircraft surfaces, are the main
sources of ice deposition during a flight. The presence of ice on surfaces alters the airflow over the
wing and tail, and then reduces the lift force that keeps the plane in the air. This potentially causes
aerodynamic stall, a condition that can lead to a temporary loss of control of the aircraft. In order to
prevent or reduce the ice formation or alternatively to remove the ice once it was formed, anti-icing and
de-icing systems are usually adopted. Currently the thermal and pneumatic types represent the most
largely employed systems. In details, the thermal system melts the ice accretion or prevents the ice
from forming by the application of heat on the protected surface of the wing. The heat is generated by
the hot air “bled” off the jet engine into piccolo tubes routed through wings, tail surfaces, and engine
inlets. The spent bleed air is then exhausted through holes in the lower surface of the wing. Similarly,
the electro-thermal systems use resistive circuits buried in the airframe structure to generate heat
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when a current is applied. The heat can be generated continuously to protect the aircraft from icing
(anti-ice mode), or intermittently to shed ice as it accretes on key surfaces (de-ice), the latter being
generally preferred due to the lower power consumption. Instead, the pneumatic de-ice boot consists
of a rubber sheet bonded to the leading edge of the airfoil: when the ice builds up on the leading edge,
an engine-driven pneumatic pump inflates the rubber boots, and then the ice is cracked and should
fall off the leading edge of the wing. Additionally, some innovative systems are being developed,
e.g., the electro-mechanical de-icing systems which use a mechanical force, generated for instance
by actuators, to knock the ice off the flight surface, or the weeping wing system, which releases a
glycol-based chemical onto the wing surface through small orifices which causes the detachment of
ice. However, these methods can be inefficient, environmentally unfavorable, expensive and time
consuming [1]. Thus, it would be advantageous if surfaces could passively prevent the ice formation
and facilitate ice removal. In this contest, the superhydrophobic coatings, applied as usual paint,
owing to their extraordinary water repellency, and not requiring additional energy consumption,
can be viewed as excellent candidates for icephobicity in this area [2,3]. This is because, ultrahigh
θrec, typical of nanostructured superhydrophobic surfaces, means low ice adhesion strength [4,5].
Subsequently, if supercooled liquid water freezes when it impacts the solid surface of an aircraft,
the resulting ice can be shed, taking advantage of external forces, such as aerodynamic forces, to
overcome ice-surface adhesion forces [6]. Evidently, the efficiency of these coatings as an anti-icing
passive method largely depends on the different scenarios in which the ice may form [1]. In some
cases, therefore, a combination of a traditional icing protection system and the superhydrophobic
coatings could be seen as a strategic instrument able to assure a high efficiency in a wide range of
environmental conditions.

In the last decade, a huge body of literature concerning the development of superhydrophobic
and icephobic coatings able to delay the ice formation [7], or reduce the ice adhesion strength once
formed, has been produced [8–15]. A shared strategy is to create surfaces with low surface free
energy and, contemporary, micro-nanoscopic rough structures. In this regard, it was found that
the icing probability was reduced to zero with particle diameters ranging between about 30 and 70
nm [16]. Some authors achieved this goal by using etching and/or high temperatures [9,11], or complex
fabrication techniques [12–17], which are often limited by the substrate type and geometry that can be
successfully coated [18].

The effort of the present work was to develop a superhydrophobic coating for metallic
substrates with a simplified and non-expensive method, which could be employed as a usual
paint able to prevent/reduce the formation of ice, especially on small aircraft [19]. The newly
formulated superhydrophobic coating consists of nanostructured layers able to generate hierarchical
micro/nano-structured roughness, and reduce the surface free energy, which as previously declared,
are the two main factors useful to making a superhydrophobic surface. The effect of the substrates’
roughness on the surface properties of coated and uncoated samples was also studied, and then
correlated to the wettability of samples, in order to identify and separate the morphological and the
chemical contributions.

This work is being developed in the framework of the Clean Sky 2 ongoing SAT-AM
(More Affordable Small Aircraft Manufacturing) project, whose main goal is the investigation of
new technologies for a future small aircraft able to fly with low fuel consumption, low noise levels and
needing low quantities of raw material in its life cycle. The reference vehicle for this project is the M28
designed and manufactured by Consortium Partner Polskie Zakłady Lotnicze (PZL), Mielec (PL). It is
a commuter category 19 passenger, twin-engine high-wing cantilever monoplane of all-metal structure,
with twin vertical tails and a robust tricycle non-retractable landing gear, featuring a steerable nose
wheel to provide for operation from short, unprepared runways where hot or high-altitude conditions
may exist. The M28 is best suited for passenger and/or cargo transportation and is certified under EU
CS-23 and USA FAR 23 requirements.
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2. Materials and Methods

The developed superhydrophobic coating was prepared starting from the formulation described
in a previous work [19] and slightly modified in order to improve its durability. In this regard, other
details about the performed changes cannot be disseminated in this manuscript. Once prepared,
several layers of the developed coating were applied with an aerograph on substrates representative of
the M28 air intake. The dehumidified air was pressured at three bar; whereas the other application
parameters, such as the layers’ number, the curing temperature and the distance between the aerograph
and samples were optimized in order to guarantee uniformity in the coating’s thickness and weight.

The substrate samples, 5 × 5 cm2 in dimensions, made of stainless steel 12H18N10T
(same composition of the M28 air intake), and having roughness ranging from 0.7 to 4.6 µm,
were provided by METROL (a partner of the Clean Sky project). The effect of the substrate roughness
on the final properties of the coating in terms of wettability and adhesion of the coating on the substrate
were studied.

Roughness of substrates before and after the application of the coating was measured by employing
a SAMA SA6260 surface roughness meter. Roughness measures, performed according to the ISO
4288 [20], were reported as Ra, which represents the arithmetic average of the absolute values of
the profile height deviations from the mean line. ID samples was correlated to the correspondent
roughness values in Table 1.

Table 1. ID samples with roughness ranging between 0.7 and 4.6 µm.

Sample ID Roughness of Uncoated Samples [µm]

1 0.752
2 0.83
3 0.91
4 1.241
5 1.341
6 1.541
7 4.032
8 4.360
9 4.623

Contact angles (CA) were calculated according to Young’s equation [21] (see Figure 1):

γLV cosθ = γSV − γSL (1)

where θ is the contact angle, γLV and γSV are the liquid and solid surface free energy, respectively,
whereas γSL is the solid/liquid interfacial free energy. The schematic illustration of the equilibrium
among involved forces according to the Young equation is shown in Figure 1.
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The contact angle measurements were performed at room temperature in compliance with the
ASTM D7490–13 [22] standard, using water (H2O) and diiodomethane (CH2I2). The Surface Free
Energy (SFE) was calculated according to the Owens Wendt (OW) method [23,24], for which the
surface energy of a solid is the sum of two components, a dispersive and a polar one. The dispersive
component theoretically accounts for the Van der Waals and other non-site specific interactions between
the surface and the applied liquid, whereas the polar component accounts for the dipole-dipole,
dipole-induced dipole, hydrogen bonding, and other site-specific interactions [25]. The polar and
dispersive components of the reference liquids are listed in Table 2. Tests were carried out by depositing
ten drops of 3 µL of each liquid on the sample surface.

Table 2. Surface tension components of the reference liquids [26].

Liquid Formula Room T Surface
Tension [mN/m]

Dispersive
Component [mN/m]

Polar Component
[mN/m]

Water H2O 72.8 26.4 46.4
Diiodomethane CH2I2 50.8 50.8 0

Formamide HCONH2 57.0 22.4 34.6

According to the OW method [23], the interfacial solid/liquid energy can be evaluated as:

γsl = γs + γl − 2
(
γd

l γ
d
s

)1/2
− 2

(
γ

p
l γ

p
s

)1/2
(2)

which, combined with the Young equations, gives the following:

γl(1 + cosθ) = 2
(
γd

l1
γd

s

)1/2
+ 2

(
γ

p
l1
γ

p
s

)1/2
(3)

Therefore, the polar (γp
s ) and dispersive (γd

s ) components of the solid SFE are given as solution of
the following non-linear system:
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where γd
l1

, γp
l1

, γd
l2

, γp
l2

and θ1, θ2 are the SFE components of the two reference liquids and the
corresponding contact angles between the solid and the liquids, respectively.

Although the SFE’s components can be known through the literature (Table 2), the contact angles
have to be experimentally evaluated through several measures. That determines a stochastic nature of
the contact angles and therefore of the solutions of the equation system (4).

So, to assess the SFE problem, a third reference liquid, i.e., the Formamide (HCONH2),
was introduced in order to reformulate the initial problem in terms of the following nonlinear
programming problem:

min
γd

S,γp
S
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s

)1/2
+
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(5)

s.t.
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−
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+

(
γ

p
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p
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−
γl2
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2 = 0

E[θ1] − σθ1 ≤ θ1 ≤ E[θ1] + σθ1

E[θ2] − σθ2 ≤ θ2 ≤ E[θ2] + σθ2

E[θ3] − σθ3 ≤ θ3 ≤ E[θ3] + σθ3

(5a)
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where a Gaussian distribution of the contact angles was assumed in order to statistically characterize
them through the mean value (E[θ1], E[θ2], E[θ3]) and the standard deviation (σθ1 , σθ2 , σθ3 ).

The stated optimization problem allowed determining the θ1,θ2,θ3 contact angles that identify
the SFE components, which minimize the third Equation (5), taking into account the measure variability
and the constitutive Equations (4) of the considered liquids.

Applying the described method to the reference liquids reported in Table 2, the constraints (5a)
were linearized simplifying the complexity of the problem that has been solved in Matlab/Simulink
environment. The developed Matlab tool provides (as output) the values of the three best contact
angles θ1,θ2,θ3, along with the values of the polar and dispersive components of the solid’s SFE.

As an additional crosscheck, the determined optimal contact angles, namely, θ1,θ2, instead of the
mean values of the experimentally measured angles measured with Water and Diiodomethane, were
introduced in the widespread linearized equations [19–26]:

γl1(1+cosθ1)

2
√
γd

l1

=

√
γ

p
l1√
γd

l1

·

√
γ

p
s +
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s
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2
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l2
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√
γ
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·

√
γ

p
s +

√
γd

s

(6)

and the required polar and dispersive components of the solid SFE, were obtained as the graphic
solution of the equations system (6) through the intercept point between the two straight line (r1 and
r2) identified by the following angular coefficients and points:

r1 : m1 =

√
γ

p
l1√
γd

l1

; P1 =

0 ;
γl1

(
1 + cosθ1

)
2
√
γd

l1

 (7a)

r2 : m2 =

√
γ

p
l2√
γd

l2

; P2 =

0 ;
γl2

(
1 + cosθ2

)
2
√
γd

l2

 (7b)

Once calculated the polar and dispersive components, the required solid SFE was assessed, as:

γs = γ
p
s + γd

s (8)

whereas the Work of Adhesion (WA) can be calculated as:

WA = γl(1 + cosθ) (9)

or equally as:

WA = 2
(
γ

p
s γ

p
l

)1/2
+ 2

(
γd

s γ
d
l

)1/2
(10)

Finally, the Surface Polarity (SP) was calculated as:

SP =
γp

γp + γd
(11)

The Young Equation (1) is valid for smooth surfaces or substrate having very low roughness, but
when the roughness is too high to be neglected, the equation should be corrected taking into account
the actual surface morphology. Two different models can be useful to describe the wetting of textured
surfaces, i.e., the Wenzel and Cassie–Baxter (Figure 2a,b respectively) models. In details, the Wenzel
model [27,28] proposed a correction factor “r” for contact angle on rough surfaces, which is equal to the
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ratio of rough interfacial area over flat interfacial area under the droplet. Substituting the roughness
ratio factor ”r” in the Young’s Equation (1), one can obtain the Wenzel’s equation [28], i.e.,

cosθ∗ = r cosθ (12)

where θ* and θ are the contact angles of a droplet on a rough surface and on the corresponding smooth
surface, respectively. Wenzel’s model assumes no air-trapping under droplet, which may not necessary
be true.Aerospace 2020, 7, x FOR PEER REVIEW 6 of 17 
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On the contrary, the Cassie–Baxter model [29] allows to estimating the contact angle on rough
surface with air-trapping, through the following equation:

cosθ∗ = −1 + ϕS(1 + cosθ) (13)

where ϕS is the area ratio of liquid-air interface to the whole interface; θ* and θ are the contact angles
with and without considering air-trapping.

Cutting and tape test were carried out, according to the ASTM D 3359-09 standard [30], by making
a grid incision with a specific cutter on the coated samples and then by applying an adhesive tape to
cover the cut area. The test adhesive was vigorously removed and the involved area was inspected.
According to the ASTM D 3359-09 [29], the test passes if the area involved in detached flakes of coating
at intersections is less than 15%.

Sample morphology, measurements of nanoparticle size and of coating thickness, were carried
out using a field emission SEM Tescan Mira3 (Tescan Orsay Holding, Brno-Kohoutovice, Czech).
Samples were observed in as-realized conditions, without metallization on the observed surface.

Surface 3D morphology and the corresponding roughness were assessed by using the laser
profilometer Ametek Talyscan 150. The scanning area for 3D surface reconstruction was 40 × 40 mm2

(800 profiles with 5 microns resolution), acquired with a scanning velocity of 10,500 microns/s.

3. Results and Discussion

3.1. Substrates’ Roughness of Substrates

Roughness of substrates measured with the SAMA SA6260 surface roughness meter, before
and after the application of the coating, were compared in Figure 3. It highlights that, in general,
the application of the coating reduces the original roughness. This especially for samples 1–6, for which
the values of the coated samples’ roughness vary in the range 0.4–0.6 µm, in spite of the substrates’
roughness ranging from 0.7 to 1.5 µm, whereas, for samples 7–9, the application of the coating reduces
the original roughness from 4–4.5 to about 3 µm.
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3.2. Application of Coating

The aerograph setting parameters were varied and optimized in order to guarantee uniformity
in terms of thickness and weight of the applied coating. Here, as an example, two different setting
parameters, labelled as Procedure 1 and Procedure 2, are described; the corresponding schematics are
shown in Figure 4. They differ mostly in the samples orientation with respect to the aerograph spray
and in the drying temperature, whereas the layers’ number, the coating formulation, and the substrates
were the same. After the application, measures of contact angle with water at room temperature were
carried out. It was found that Procedure 1 is able to produce samples with contact angle of 124◦,
whereas Procedure 2 gives surfaces with a water contact angle of 155◦ (Figure 5). This difference is
probably due to the different morphologies because of the diverse application procedures.
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Procedure 1

• Vertical samples
• Drying at room temperature
• Distance between samples and aerograph = 10 cm
• P = 3 bar; hole size = 1.5 mm

Procedure 2

• Horizontal Samples
• Aerograph at 45◦ wrt the samples
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• Drying at 75 ◦C of each layer of coating for 10 min
• Distance between samples and aerograph = 15 cm
• P = 3 bar; hole size = 1.5 mm;

Hence, Procedure 2 was adopted to apply three layers of the developed coating on sample 1–9 with
dimensions of 5 × 5 cm2. The Samples were weighed before and after the application of the coating, in
order to assess a rough estimation of the coating’s specific weight, which was plotted as a function of the
sample roughness in Figure 6. It was found that the coating’s specific weight was about 11 ± 1 g/m2.
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Figure 6. The coating’s specific weight as a function of the substrates’ roughness.

SEM cross-section images of sample 2 (Ra = 0.8 µm) and sample 7 (Ra = 4 µm), employed to
measure the coating’s thickness, are shown in Figure 7a,b, respectively. It seems that the two samples
display some differences in both coating thickness and morphology. Sample 7 in Figure 7b, in fact,
has a coating thickness higher than sample 2 shown in Figure 7b (see values in Table 3), with a
mean value of 190 µm vs. 127 µm. Moreover, sample 7 coating appears to be more uniform in
thickness and morphology than the sample 2 coating, and with less amount of large and localized
voids. Hence, it seems that the roughness is able to improve the coating’s uniformity.
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Figure 7. SEM images acquired in cross-section mode of samples 2 (a) and 7 (b). Some measured
thicknesses are reported.

Table 3. Coating’s thickness measured by the SEM acquired in cross section mode.

Sample
ID Coating’s Thickness [µm] Mean Value

[µm]

2 112.80 115.80 123.80 125.42 129.59 130.34 136.17 142.65 127 ± 10
7 199.08 191.92 194.11 190.96 182.01 183.45 190 ± 6

3.3. Contact Angle Measurements

The measures of the contact angles acquired with H2O and CH2I2 were reported as function of
the substrate roughness in Figures 8 and 9, respectively. Some representative drop pictures caught
during the measures were overlapped. It should be noted that, for the reference samples, the water
contact angle is almost constant with a substrate roughness up to 1.8 µm beyond that, as expected [31],
it increases as the roughness increases, reaching a value of about 100–115◦ for the highest value of
measured roughness, i.e., 4.6 µm. The increasing of the contact angles with the roughness of metallic
substrates can be ascribed to the changes in morphology. Other authors [31,32] also observed this
behavior with maximum values of the achieved contact angles at about 120 ◦C [31]. Indeed, it was
found that in order to achieve higher values of contact angles without modifying the surface chemistry,
it is necessary to scale down the surface roughness into the sub-micron range, by creating specific and
regular pillar-like structures having circular, square, triangle, crossed or fractal-like shapes [33]. On the
contrary, the combination of substrate roughness and low SFE can be seen as a synergic approach able
to achieve contact angle mean value of 158◦ (Figure 8). Additionally, it was also found that both the
original and the actual sample roughness (Figures 3 and 8) do not affect the achieved contact angle,
since, in spite of the roughness value, the contact angle value does not change.

The same uniformity in the achieved values of the contact angles was observed for measurements
performed with CH2I2 in coated samples (Figure 9). Here, the mean value of the contact angles in
coated samples is 148◦, regardless of the substrates (0.7–4.6 µm) and the actual roughness (0.3–3.2 µm)
of the samples.
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3.4. Surface Free Energy and Work of Adhesion

The solid SFE and the WA of both uncoated and coated samples were plotted in Figure 10a,b,
respectively, as a function of the substrates’ roughness.
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Figure 10. SFE and WA of the uncoated (a) and coated (b) samples as a function of the roughness.

It was found that the solid SFE of the reference samples varies between 44 and 54 mN/m,
for roughness values ranging from 0.7 to 2 µm, whereas for roughness of 4 µm the SFE becomes 38
mN/m (Figure 10a). Similarly, the WA varies between 108 and 122 mN/m, assuming a value of 69
mN/m for the sample at 4 µm in roughness. For samples having roughness higher than 4 µm, results
cannot be achieved without taking into account the actual surface roughness, e.g., through Equations
(12) and (13), or more complex relationship, i.e., those described in ref. [33]. Indeed, it was found that
roughness higher than 4 µm the Equations’ system (4) did not give a solution, so no intersection of the
two curves can be observed in graphs of Figure 11b. On the contrary, for lower values of the contact
angles, the Equation system (4) reached solutions, as shown in Figure 11a as an example.Aerospace 2020, 7, x FOR PEER REVIEW 11 of 17 
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Figure 11. Graphical solution of the SFE equations’ system with (a) and without (b) solution.

The authors decided not to further investigate samples at high values of roughness, since values
higher than 4 µm are out of interest for aeronautical applications.

On the other hand, the flat trend for SFE and WA was seen for coated samples (Figure 10b), since all
values scatter around 0.38 mN/m for the SFE and around 6.1 mN/m for the WA. This result reflects the
uniformity of the water contact angle values measured in spite of the original and actual roughness
values: the latter changing between 0.3 and 3 m (Figure 3). These trends can be better highlighted if
results are reported as a function of the solid SFE (Figure 12). For the reference samples (Figure 12a), it
was found that, as expected, the higher the contact angle, the lower the SFE and the WA. Since this result
was achieved by varying the roughness of substrates alone, it can be concluded that it can be ascribed
to the surface morphology (MORPHOLOGICAL EFFECT). On the contrary, for coated samples, no
changes in terms of water contact angle and WA, along with almost no variations in the solid SFE
(Figure 12b) can be observed, in spite of the actual roughness of substrates. Therefore, it should be
concluded that, for the analyzed samples, the chemical modification of the surfaces prevails on the
morphological aspect (CHEMICAL EFFECT).
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Figure 12. Water contact angle and WA as a function of (a) the surface free energy for the reference and
(b) the coated samples.

The geometrical and chemical effects on the wettability of surfaces were also observed by
Kam et al. [31]. They found that the maximum contact angle achieved with nano-microstructured
metallic surfaces was 110◦, whereas the combination of the surface geometry and its chemical
modification with silanes allowed to additionally modify the wettability of surfaces, since the contact
angles reached values higher than 140◦.

Finally, in Figure 13 the polar and dispersive components of the surface free energy, and the WA
assessed for the reference and the coated samples were compared. It highlights that the WA was
reduced by 94%, the solid SFE by 99%, and the SP by 100%, since after the application of the coating,
it changes from 34 to 0%.Aerospace 2020, 7, x FOR PEER REVIEW 12 of 17 
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3.5. 3D samples’ Morphology

The SEM images of coated samples 2 and 7 (Table 1), acquired at different magnifications
(125–500,000×) are displayed in Figures 14 and 15, respectively. It highlights that at the lowest
magnification (125×), both samples exhibit characteristic sponge-like structures [15,19,32,34–36],
with the formation of air pockets, which enhance the superhydrophobicity. Samples differ in the
density of the sponge-like structures. In fact, it appears that sample 7, having higher roughness
(i.e., 2.8 µm) generates air pockets that are more densely packed than the less rough sample 2 (Ra = 0.4
µm). In spite of this difference, both samples exhibit contact angles of 158◦ (see Figure 8). At the highest
magnification (500,000×) (Figures 14 and 15), the hierarchical micro- and nano-structures appears,
highlighting for both samples the dimension of the nanoparticles employed to formulate the coating,
namely, about 30 nm in diameter. Therefore, in spite of the intrinsic roughness and the macroscopic
density of the sponge-like structure, the generated air pockets made of multiscale roughness (micro-
and nano-meter in dimension) guarantee the superhydrophobicity, i.e., contact angles of 158◦.Aerospace 2020, 7, x FOR PEER REVIEW 13 of 17 
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Figure 14. SEM images at different magnifications of a sample having an original roughness of sample
2 (a) 125×, (b) 750×, (c) 2500×, (d) 500,000×.

The surface 3D profilometry of coated samples 2 and 7, having actual roughness of 0.4 and
2.8 µm, respectively, were reported in Figure 16a,b; whereas Figure 16c,d show the corresponding
references, having roughness of 0.8 and 4.0 µm, respectively. In the insert, the pictures representative
of the water contact angles were also shown. It highlights that all samples exhibit a macroscopic
needle-like morphology deriving from the specific textured roughness, and there are no differences
in the needle-like morphology [36] for each series of samples (compare Figure 16a with Figure 16c,
and Figure 16b with Figure 16d). The reference with low roughness (see Figure 16c) does not exhibit
the Cassie state, the surface area in contact with the water droplet is high, and consequently the water
contact angle is low (50◦). When the reference roughness increases to about 4 µm (see Figure 16d),
the relative distance between the surface irregularities and the related height allow the contact angle to
increase to 115◦. The increase of the water contact angle due to the increased roughness alone can be
ascribed to the MORPHOLOGICAL EFFECT. By comparing coated samples with the corresponding
references, it highlights that, although the needle-like morphology and the corresponding roughness do
not change, the water contact angle increases from 50◦ and 115◦, respectively, to 158◦, as a consequence
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of the chemical modification of the surface (CHEMICAL EFFECT). Finally, by comparing the two coated
samples (see Figure 16a,b), it must be noticed that, in spite of the different actual roughness, i.e., 0.4 and
2.8 µm, for the samples 2 and 7, respectively, both of them exhibit the same water contact angle, namely,
158◦. Hence, in conclusion, it seems that the chemical effect prevails on the morphological effect.
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Figure 16. Surface 3D profilometry obtained with the laser for coated sample 2 (a) and sample 7 (b); in
(c) and (d) the corresponding references were also reported. In the insert, the pictures representative of
the related water contact angles are shown.
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3.6. Cutting and Tape Test

Figure 17 shows images related to the cutting and tape test performed on coated sample 7. In detail,
Figure 17a shows the picture after the cut and Figure 17b shows magnification of the surface after
the test. The shape of the water droplet in Figure 17c highlights that the superhydrophobicity was
preserved after the test too. It must be noted that, according to the ASTM D 3359-09 [30], the test
was passed, since quite no detached flakes of coating could be observed. This result was classified as
5B [30].
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Figure 17. Cutting and tape test results on coated sample 7, (a) surface cut, (b) surface magnification,
(c) surface wettability after test.

3.7. Low Temperature Wettability

A preliminary test about the wettability at low temperature of the developed coating was
performed by freezing (at −27 ◦C) a few water droplets placed on both reference and coated sample 2
(pictures in Figure 18). It is interesting to note that the shape of the water droplets, and then of the
wettability, does not change with freezing, and consequently, the coated samples display a reduced
surface area in contact with the substrate if compared with the reference.
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4. Conclusions

In the present work, the authors studied the wettability of a new developed superhydrophobic
coating applied with a layer-by-layer approach as a common aeronautical livery, that can be potentially
employed as a passive anti-icing system for aeronautical applications.

It was found that the wettability of the uncoated samples decreases as the roughness increases
achieving a value of about 115◦ for Ra = 4 µm. The increase of the water contact angle due to the
increased roughness alone can be ascribed to the morphology changes (MORPHOLOGICAL EFFECT).
Instead, high values of contact angle, i.e., about 158◦, were achieved only after the application of
the coating, regardless of the substrate roughness, ranging from 0.4 to 3 µm (CHEMICAL EFFECT),
so highlighting that the chemical modifications prevail on the substrate morphology.

The coating’s application reduced the SFE and WA by 99% and 94%, respectively, with respect
to the reference. Finally, a preliminary test about the wettability of the developed coating at low
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temperatures showed that the reduced wettability of coated samples was preserved also at −27 ◦C.
In this regard, future research will be addressed to characterize the developed coating in severe
environmental conditions simulating real flights.
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