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Abstract. A modification of the parabolic Allen–Cahn equation, de-
termined by the substitution of Fick’s diffusion law with a relaxation
relation of Cattaneo-Maxwell type, is considered. The analysis con-
centrates on traveling fronts connecting the two stable states of the
model, investigating both the aspects of existence and stability. The
main contribution is the proof of the nonlinear stability of the wave, as
a consequence of detailed spectral and linearized analyses. In addition,
numerical studies are performed in order to determine the propagation
speed, to compare it to the speed for the parabolic case, and to explore
the dynamics of large perturbations of the front.
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1. Introduction

The main topic of this paper is to investigate the dynamical behavior
of a scalar variable u subject to a transport mechanism of hyperbolic type
coupled with a reaction process, driving the unknown u toward one among
two different competing stable states. Restricting the attention to a one-
dimensional environment and denoting by v the flux of u, standard balance
of mass provides the relation

ut − vx = f(u), (1.1)

dictating that the quantity u diffuses with flux v and grows/decays according
to the choice of the function f . The simplest structure for the reaction term
f giving raise to two competing stable states is referred to as a bistable form,
meaning that f is smooth and such that for some α ∈ (0, 1),

f(0) = f(α) = f(1) = 0, f ′(0), f ′(1) < 0, f ′(α) > 0,

f(u) > 0 in (−∞, 0) ∪ (α, 1), f(u) < 0 in (0, α) ∪ (1,+∞).
(1.2)

Equivalently, the function f can be considered as the derivative of a double-
well potential with wells centered at u = 0 and u = 1. A typical reaction
function satisfying (1.2) which is often found in the literature is the cubic
polynomial

f(u) = κu(1− u)(u− α), κ > 0, α ∈ (0, 1). (1.3)

Reaction functions of bistable type arise in many models of natural phenom-
ena, such as kinetics of biomolecular reactions [40, 38], nerve conduction
[32, 35], and electrothermal instability [25], among others.

To complete the model, an additional relation has to be coupled with
(1.1). The standard approach is based on the use of Fick’s diffusion law,
which consists in the equality v = ux, so that one ends up with the semilinear
parabolic equation

ut = uxx + f(u). (1.4)

Equation (1.4) has appeared in many different contexts and the nomencla-
ture is not uniform. It is known as the bistable reaction-diffusion equation
[13], the Nagumo equation in neurophysiological modeling [35, 41], the real
Ginzburg–Landau for the variational description of phase transitions [36],
and the Chafee-Infante equation [6], among others. In tribute to S. M.
Allen and J. W. Cahn, who proposed it in connection with the motion of
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boundaries between phases in alloys [3], we call it the (parabolic) Allen–Cahn
equation.

Equation (1.4) undergoes the same criticisms received by the standard
linear diffusion equation, mainly concerning the unphysical infinite speed
of propagation of disturbances (see discussion in [24]). Thus, following the
modification proposed by Cattaneo [5] (see also Maxwell [34]) for the heat
equation, it is meaningful to couple (1.1) with an equation stating that the
flux v relaxes toward ux in a time-scale τ > 0, namely

τvt + v = ux,

usually named Maxwell–Cattaneo transfer law (for a complete discussion on
its role and significance in the modeling of heat conduction, see [26, 27]).
With this choice, the couple density/flux (u, v) solves the hyperbolic system

ut = vx + f(u), τvt = ux − v. (1.5)

We are interested in studying the dynamics of solutions to system (1.5),
which we refer to as the Allen–Cahn model with relaxation. The corre-
sponding Cauchy problem is determined by initial conditions

u(x, 0) = u0(x), v(x, 0) = v0(x), x ∈ R. (1.6)

It is to be observed that we can eliminate the variable v by a procedure
known in some references as Kac’s trick (cf. [23, 21, 28]): differentiate the
first equation in (1.5) with respect to t, and the second with respect to x,
to obtain the following scalar second-order equation for the variable u,

τutt + (1− τf ′(u))ut = uxx + f(u), (1.7)

which we call the one-field equation determined by (1.5). The initial condi-
tions corresponding to (1.6) read

u(x, 0) = u0(x), ut(x, 0) = f(u0(x)) + v′0(x), x ∈ R.
Notice that equation (1.7) formally reduces to (1.4) in the singular limit
τ → 0+.

We also observe that if we include a diffusion coefficient ν > 0,

ut = vx + f(u), τvt = νux − v,
then last system can be reduced to the form of (1.5) under the rescaling
x 7→ x/

√
ν and v 7→ v/

√
ν. Thus, we can consider the case ν = 1 without

loss of generality.
System (1.5) can be interpreted as a hyperbolic reaction-diffusion sys-

tem. An intriguing issue is to compare the properties of the usual parabolic
reaction-diffusion equation (1.4) with the ones of its hyperbolic counterpart
(1.5). This paper pertains to one of the main hallmarks of the Allen–Cahn
equation: the presence of stable heterogeneous structures, describing the
interaction between the two stable states. Specifically, we examine traveling
wave solutions to (1.5), i.e. special solutions of the form

(u, v)(x, t) = (U, V )(ξ), ξ = x− ct, c ∈ R, (1.8)
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with asymptotic conditions

(U, V )(±∞) = (U±, 0), where U− := 0, U+ := 1, (1.9)

with the aim of investigating their existence and stability from both an
analytical and numerical point of view.

Existence of traveling waves for systems of the form (1.5) with monos-
table/logistic reaction terms has been widely investigated [18, 19, 17]. The
situation for the bistable case is less explored, even if it is more or less
known that, under reasonable assumptions, there exist traveling fronts with
a uniquely determined propagation speed. For the sake of completeness,
in §2 we give a self-contained proof of the following existence result, which
provides also some properties crucial to the stability analysis.

Theorem 1.1. Let f be such that (1.2) holds and let τ satisfy

0 < τ < τm := 1/ sup
u∈[0,1]

|f ′(u)|. (1.10)

Then, there exists a unique value c∗ ∈ (−1/
√
τ , 1/
√
τ) for which system (1.5)

possesses a traveling wave connecting the state (0, 0) to (1, 0). Moreover,
(a) the function U is monotone increasing;
(b) both components U and V are positive and converge to their asymptotic

states exponentially fast; and,
(c) the speed c∗ depends continuously with respect to τ ∈ (0, τm) and

converges to the speed of the (parabolic) Allen–Cahn equation as τ → 0+.

The smallness assumption (1.10) on the relaxation parameter τ is not
sharp and arises as a consequence of the specific choices of the natural vari-
ables u and v, which generates some obstruction in the course of the proof.
A different choice of unknowns could provide a more general result allowing
a weaker requirement on τ , and, specifically, τ < 1/supu f

′(u).
We observe, however, that condition (1.10) is tantamount to the positiv-

ity of the damping coefficient in equation (1.7), a condition which is usually
imposed in order to ensure that the solution is positive (hyperbolic equa-
tions may have negative solutions even with positive initial conditions; cf.
[20]). The latter is an important feature for a density solution, for example.
Furthermore, although condition (1.10) may seem as a pure mathemati-
cal assumption, it relates the relaxation time τ with the typical time scale
τreac = inf |u/f(u)| ∼ 1/ sup |f ′(u)| associated to the reaction.

Passing to the stability issue, as for evolution problems on the whole
real line defined by autonomous partial differential equations, invariance
with respect to translations determines that any traveling wave belongs to
a manifold of solutions of the same type with dimension at least equal to
one. Thus, small perturbations of a given front are not expected to decay to
the front itself, but to the manifold generated by the traveling wave and, at
best, to a specific element of such set. Such property, called orbital stability,
holds for the present case. More precisely, we establish the following
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Theorem 1.2. Let f ∈ C3 be such that (1.2) holds and τ ∈ [0, τm). Let
(U, V ) be a traveling wave of (1.5) satisfying (1.9) with speed c∗. Then,
there exists ε > 0 such that, for any initial data satisfying (u0, v0)−(U, V ) ∈
H1(R;R2) with |(u0, v0) − (U, V )|

H1 < ε, the solution (u, v) to the Cauchy

problem (1.5)–(1.6) satisfies for any t > 0

|(u, v)(·, t)− (U, V )(· − c∗t+ δ)|
H1 ≤ C|(u0, v0)− (U, V )|

H1 e
−θ t

for some shift δ ∈ R and constants C, θ > 0.

This statement is the final outcome of some intermediate fundamental
steps which are not detailed at this stage for the sake of simplicity of pre-
sentation. Actually, Theorem 1.2 is proved by following a well-estabilished
approach based on linearization, spectral analysis, linear and nonlinear sta-
bility. All of these steps are developed in a complete way, altogether pro-
viding a sound rigorous basis to the stability of propagation fronts for the
Allen–Cahn model with relaxation. At this point, we find it suitable to
mention recent work by Rottmann-Matthes [48, 49], who proves that spec-
tral stability implies orbital stability of traveling waves for a large class of
hyperbolic systems (which includes the Allen-Cahn model with relaxation
(1.5)), and provides numerical evidence of spectral stability with spectral
gap for the particular case of system (1.5). These numerical observations,
however, do not constitute a proof of stability. Our contribution is a self-
contained study of the dynamics of traveling fronts for the particular model
(1.5) (which warrants note because of its importance in the theory of hyper-
bolic diffusion), as well as a complete analysis of their stability.

Both the existence and the stability analyses are complemented with a
numerical study confirming the theoretical results and providing additional
relevant information on what should be expected beyond the boundaries
of the proved statements. In the first part, we numerically determine the
values of the propagation speeds and discuss their relation with the corre-
sponding value in the case of the standard Allen–Cahn equation. Interest-
ingly enough, the model with relaxation exhibits in some regimes fronts that
are faster with respect to their corresponding parabolic ones. At the end of
the paper, we consider some numerical simulations relative to perturbations
of the traveling front, restricting the attention to the case of standard and
perturbed Riemann problems. The outcome is a strong numerical evidence
that the domain of attractivity of the wave is wider than what described
by the stability result of Theorem 1.2 (see Figure 1, detailed description in
Section 5). The algorithm used in this part is based on a reformulation of
(1.5), discretized by using a standard finite-difference method with upwind-
ing of the space derivatives.

Plan of the paper. This work is divided into four more sections. Section
2 deals with the existence of the propagation fronts together with the esta-
bilishment of their main properties, which are essential for completing the
stability arguments. It contains the detailed proof of Theorem 1.1, and it
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Figure 1. Random initial datum in (−`, `), ` = 25
(squares). Solution profiles for the Allen–Cahn equation with
relaxation at time t = 0.5 (dot), t = 7.5 (dash), t = 15 (con-
tinuous). For comparison, in the small window, the solution
to the parabolic Allen–Cahn equation. For details, see Sec-
tion 5.

is based on a phase-plane analysis that takes advantage of a specific mono-
tonicity property of the system under consideration. The content of Section
3 is the spectral analysis of the linearized operator around the front. The
main result is Theorem 3.2, estabilishing the spectral stability of the wave.
The proof is based on a perturbation argument at τ = 0, combined with a
continuation procedure to show that the same spectral structure holds all
along the interval (0, τm). The first part of Section 4 deals with the linear
stability property. This is consequence of spectral stability because of the
hyperbolic nature of system (1.5) together with an additional resolvent esti-
mate controling the behavior at large frequencies. With such tools at hand,
it is possible to prove the nonlinear stability theorem, taking advantage of
the presence of a spectral gap separating the zero eigenvalue from the rest
of the spectrum. That is the content of the final part of the Section. Fi-
nally, Section 5 is entirely devoted to the numerical approximation of (1.5).
The principal part of the system is diagonalized and a finite-difference up-
wind approximation is considered. First, we analyze the Riemann problem
connecting the two asymptotic states of the front. Such choice is used to
compare the asymptotic speed of propagation with the values determined in
Section 2 and to show the numerical evidence of convergence to the front.
Then, as large perturbations of the front, we consider initial data which are
randomly chosen with some bias on the values at the left and at the right,
mimicking an initial configuration which vaguely resembles the transition
from u = 0 to u = 1. The large-time convergence to the propagation front
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is evident from the numerical output.

Notations. We use lowercase boldface roman font to indicate column vec-
tors (e.g., w), and with the exception of the identity matrix I we use upper
case boldface roman font to indicate square matrices (e.g., A). Elements of
a matrix A (or vector w) are denoted Aij (or wj , respectively). Linear op-
erators acting on infinite-dimensional spaces are indicated with calligraphic
letters (e.g., L and T ). For a complex number λ, we denote complex con-
jugation by λ and denote its real and imaginary parts by Reλ and Imλ,
respectively. Complex transposition of vectors or matrices are indicated by
the symbol ∗ (e.g., w∗ and A∗), whereas simple transposition is denoted by
the symbol A>. For a linear operator L, its formal adjoint is denoted by L∗.
Given m ∈ N, the space Hm(R;Cn) is composed of vector functions from R
to Cn, where each component belongs to the Sobolev space Hm(R;C). It is
endowed with the standard scalar product. Finally, we denote derivatives
with respect to the indicated argument by ‘′’ (e.g., f ′(u), a′(x)). Partial or
total derivatives with respect to spatial and time variables (e.g. x and t) are
indicated by lower subscript. For the sake of simplicity, we sometimes use
the symbol ∂ to indicate the latter when appropriate.

2. Propagating fronts

Parabolic Allen–Cahn equation (1.4) supports traveling waves connecting
the stable states u = 0 and u = 1. Also, the propagating speed and, up to
translations, the wave profile, are unique. For special forms of the reaction
function f , existence of the wave can be proved by determining explicit
formulae for speed and profile. For a general bistable f , the proof is based on
a phase-plane analysis for the corresponding nonlinear ordinary differential
system. Uniqueness arises as consequence of the fact that the heteroclinic
orbit linking the asymptotic states is a saddle/saddle connection.

For system (1.5), it is not anymore possible to find explicit traveling wave
solutions even for f of polynomial type. Phase-plane analysis, instead, is a
more flexible approach and it can be applied also in the case of the Allen–
Cahn equation with relaxation, as it is shown in the sequel. In Subsection
2.2, we also tackle the problem of the numerical evaluation of the propaga-
tion speed in the case of a third-order polynomial function f , analyzing the
relation between the velocities of the hyperbolic and the parabolic Allen–
Cahn equations for different choices of the parameters α and τ .

2.1. Existence of the traveling wave. Traveling waves of (1.5) are spe-
cial solutions of the form (u, v)(x, t) = (U, V )(ξ) where ξ = x− ct and c is a
real parameter. The couple (U, V ) is referred to as the profile of the wave and
the value c as its propagation speed. Here, we are concerned with traveling
waves satisfying the asymptotic conditions (1.9), so that the corresponding
solution describes how the relaxation system resolves the transition from
one stable state to the other. In this respect, the value of the speed c is very
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significant, since it describes how fast and in which direction the switch from
value u = 0 to value u = 1 is performed.

Existence of a traveling wave for (1.5) satisfying (1.9) can be deduced by
the fact that the ordinary differential equation for the profile, obtained by
inserting the ansatz u(x, t) = U(x − ct) in the one-field equation (1.7), is
convertible into the corresponding equation arising in the case of reaction-
diffusion models with density-dependent diffusion. Then, one applies a gen-
eral result proven by Engler [11], that relates the existence of traveling wave
solutions of reaction-diffusion equations with constant diffusion coefficients
to the ones of the density-dependent diffusion coefficient case. Considering
such path too tangled, we prefer to give an explicit proof of the existence
by dealing directly with the system in the original form (1.5).

Substituting the form of the traveling wave solutions, we obtain the sys-
tem of ordinary differential equations

cUξ + Vξ + f(U) = 0, Uξ + cτVξ − V = 0, (2.1)

to be complemented with the asymptotic boundary conditions (1.9). The
value c in (2.1) is an unknown and its determination is part of the problem.

Proposition 2.1. Assume hypothesis (1.2) and let τ ∈ [0, τm). If (U, V ) is
a solution to (2.1) satisfying the asymptotic conditions (1.9), then

(i) the velocity c has the same sign of −
´ 1
0 f(u) du;

(ii) there holds

c2τ < 1. (2.2)

Proof. (i) Multiplying the first equation in (2.1) by Uξ and using the second,
we obtain

0 = c |Uξ|2 + VξUξ + f(U)Uξ

= c |Uξ|2 + (Uξ + cτVξ)ξUξ + f(U)Uξ

= c |Uξ|2 + UξUξξ − cτ(cUξ + f(U))ξUξ + f(U)Uξ

= c(1− τf ′(U)) |Uξ|2 + (1− c2τ)UξUξξ + f(U)Uξ.

Thus, denoting by F a primitive of f , there holds(
1
2(1− c2τ) |Uξ|2 + F (U)

)
ξ

+ c(1− τf ′(U)) |Uξ|2 = 0. (2.3)

Integrating in R, we infer the relation

c

ˆ
R

(1− τf ′(U)) |Uξ|2 dξ = F (0)− F (1) = −
ˆ 1

0
f(u) du.

Since τ < τm, then τf ′(u) < 1 for any u and part (i) follows.
(ii) The case c = 0 is obvious. Let us assume c < 0 (the opposite case

being similar). Integrating the equality (2.3) in (−∞, ξ), we get

1
2(1− c2τ) |Uξ|2 = F (0)− F (U(ξ))− c

ˆ ξ

−∞
(1− τf ′(U)) |Uξ|2 dξ.
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Choosing ξ such that U(ξ) ∈ (0, α), since F is strictly decreasing in (0, α),
the right-hand side is strictly positive and thus (2.2) holds. �

Condition (2.2) should be regarded as a subcharacteristic condition. In-
deed, it has a similar interpretation as the corresponding relation for hyper-
bolic systems with relaxation: the equilibrium wave velocity cannot exceed
the characteristic speed of the perturbed wave equation (1.7).

Thanks to (2.2), we are allowed to introduce the independent variable
η = (1− c2τ)−1ξ, so that system (2.1) becomes

Uη = φ(U, V ) := cτf(U) + V, Vη = ψ(U, V ) := −f(U)− cV. (2.4)

Departing from a detailed description of the unstable and stable manifold
of the singular points (0, 0) and (1, 0), respectively, it is possible to show
the existence of a saddle/saddle connection between the asymptotic states
required by (1.9). The existence result is based on the analysis of the limiting
regimes c→ ±1/

√
τ of the system (2.4) and on their (monotone) variations

for the values in between, using the notion of a rotated vector field (cf. [45]).

Theorem 1.1. 1. The linearization of (2.4) at (Ū , 0) with f(Ū) = 0 is de-
scribed by the jacobian matrix calculated at (Ū , 0)

∂(φ, ψ)

∂(u, v)
=

(
cτf ′(Ū) 1
−f ′(Ū) −c

)
whose determinant is (1−c2τ)f ′(Ū). In particular, if f ′(Ū) < 0, the singular
point (Ū , 0) is a saddle. The eigenvalues are the roots of the polynomial

p(µ) = µ2 + c(1− τf ′(Ū))µ+ (1− c2τ)f ′(Ū)

and they are given by

µ±(Ū) = −1
2c(1− τf

′(Ū))± 1
2

√
c2(1− τf ′(Ū))2 − 4f ′(Ū)

with corresponding eigenvectors r±(Ū) = (1, µ±(Ū)− cτf ′(Ū))>.
For later use, let us note that, as a consequence of (1.10),

µ+(0)− cτf ′(0) > −
√
τ f ′(0) and µ−(1)− cτf ′(1) <

√
τ f ′(1), (2.5)

for c ∈ (−1/
√
τ , 1/
√
τ). Indeed, for f ′(Ū) < 0, there holds

p
(
(cτ ±

√
τ)f ′(Ū)

)
=
√
τ

(
1√
τ
± c
)

(1− τf ′(Ū))f ′(Ū) < 0,

so that the values (cτ ±
√
τ)f ′(Ū) belong to the interval (µ−(Ū), µ+(Ū)).

2. Given c ∈ (−1/
√
τ , 1/
√
τ), let us denote by U0(c) the unstable manifold

of the singular point (0, 0) and by S1(c) the stable manifold of (1, 0). Also,
let U+

0 (c) be the intersection of U0(c) with the strip [0, α]×R and let S−1 (c)
the intersection of S1(c) with the strip [α, 1] × R. Such sets are graphs of
appropriate solutions to the first order equation

dV

dU
= − f(U) + cV

cτf(U) + V
. (2.6)
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Thanks to (2.5), U+
0 (c) lies above the graph of the function v = −

√
τf(u)

in a neighborhood of (0, 0). In addition, for u ∈ (0, α), there holds

(φ, ψ) · (
√
τ f ′(u), 1)

∣∣
v=−

√
τf(u)

= −
(
1− c

√
τ
)

(1− τf ′(u))f(u) > 0

showing that no trajectories may trespass the graph of the function v =
−
√
τf(u) for u ∈ (0, α). In particular, the set U+

0 (c) lies above the graph
v = −

√
τf(u) and hits the line u = α for a given value v0(c) ∈ (0,+∞).

Similar considerations show that S−1 (c) stays above the graph v =
√
τf(u)

and touches the straight line u = α for a given value v1(c) ∈ (0,+∞).
3. To determine how the unstable/stable manifolds change with the pa-

rameter c, let us observe that

(φ, ψ, 0)> ∧ (∂cφ, ∂cψ, 0)> = det

 i j k
cτf(U) + V −f(U)− cV 0
τf(U) −V 0


=
(
τf(U)2 − V 2

)
k.

Thus, the vector field (φ, ψ) defining (2.4) rotates clockwise in the region
{(u, v) : v ≥

√
τ |f(u)|} as the parameter c increases. As a consequence, the

curves describing U+
0 (c) and S−1 (c) rotate clockwise when c increases and

the functions c 7→ v0(c) and c 7→ v1(c) are, respectively, strictly monotone
decreasing and strictly monotone increasing.

4. To conclude the existence of the orbit, we analyze the behavior of (2.4)
in the limiting regimes c→ ±1/

√
τ . For c = −1/

√
τ , the system reduces to

Uη = V −
√
τf(U), Vη =

1√
τ

(
V −

√
τf(U)

)
.

In particular, all the trajectories lie along straight lines of the form

v =
u√
τ

+ C, C ∈ R,

and converge, as t→ −∞, to the unique intersection between the invariant
straight line and the graph of the function

√
τf (see Fig. 2, depicting the

(U, V ) plane for the particular case of the cubic reaction function f). The
unstable manifold U0(c) of the singular point (0, 0) is the straight line v =
u/
√
τ , while the center-stable manifold S1(c) of (1, 0) is the graph of the

function
√
τf . In particular, there holds

U0(−1/
√
τ)
∣∣
U=α

= α(1, 1/
√
τ ), S1(−1/

√
τ)
∣∣
U=α

= α(1, 0),

that gives

v0(−1/
√
τ) = α/

√
τ , v1(−1/

√
τ) = 0.

The situation for c = 1/
√
τ is similar, yielding

v0(1/
√
τ) = 0, v1(1/

√
τ) = (1− α)/

√
τ .

The conclusion is at hand, since

(v1 − v0)(−1/
√
τ) = −α/

√
τ < 0 < (1− α)/

√
τ = (v1 − v0)(1/

√
τ),
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Figure 2. Plane (U, V ) in the case f(u) = u(1 − u)(u −
α)(0.5 + u), α = 0.4, τ = 1. The manifolds U+

0 and S−1
are represented for different choices of c ∈ (−1, 1). Note the
monotonicity with respect to the parameter c. For the choice
c = 0.229 the two curves intersect at u = α = 0.4. The thin
(red; online version) lines on the bottom are the graphs of
the functions ±

√
τ f .

implying, together with the monotonicity of v0 and v1, that there exists a
unique value c∗ such that v1(c∗) = v0(c∗), and then system (2.4) possesses
a heteroclinic orbit.

5. To verify the monotonicity of the component U , we note that from sys-
tem (2.4) one has Uη = cτf(U) +V . Let us suppose that c > 0. Assume, by
contradiction, that Uη(η∗) = 0 for some η∗ ∈ R. Therefore V∗ = −cτf(U∗),
where V∗ = V (η∗), U∗ = U(η∗). Since V is positive for all η ∈ R, this im-
plies that f(U∗) < 0 and, necessarily, that U∗ ∈ (0, α). The subcharacteristic
condition (2.2), however, yields

0 < −cτf(U∗) < −
√
τf(U∗),

which is a contradiction with the fact that the trajectory (U, V ) lies above
the graph of the function v = −

√
τf(u) for u ∈ (0, α). The case c < 0 is

analogous and a similar argument for U∗ ∈ (α, 1) applies. Therefore, Uη
never changes sign along the trajectory. Since U connects U(−∞) = 0 with
U(+∞) = 1, the function is strictly increasing and Uη > 0 for all η ∈ R.
The subcharacteristic condition guarantees that the same statement holds
for the original profile in the ξ variable, that is, Uξ > 0.

6. Exponential decay of the profile is a consequence of the hyperbolicity
of the non-degenerate end-points (0, 0) and (1, 0). Indeed, rewriting system
(2.1) (in the original moving variable ξ) as

Uξ = (1− c2τ)−1(cτf(U) + V ), Vξ = −(1− c2τ)−1(τf(U) + cV ),
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and linearizing the right hand side around (Ū , 0), one readily notes that its
eigenvalues are the same as the eigenvalues of the linearization of (2.4) at
the same point multiplied by a factor (1 − c2τ)−1. The positive (unstable)
eigenvalue at (0, 0) is

µu = 1
2(1− c2τ)−1

(
− c(1− τf ′(0)) +

√
c2(1− τf ′(0))2 − 4f ′(0)

)
> 0,

and the orbit decays to (0, 0) as ξ → −∞ with exponential rate

|(U, V )(ξ)| ≤ C exp(µuξ).

Likewise, the negative (stable) eigenvalue at (1, 0) is

µs = 1
2(1− c2τ)−1

(
− c(1− τf ′(1))−

√
c2(1− τf ′(1))2 − 4f ′(1)

)
< 0,

and the orbit decays to (1, 0) as ξ → +∞ with rate

|(U, V )(ξ)| ≤ C exp(−|µs|ξ).

Setting ν = ν(τ) := min{µu, |µs|} > 0, we find that∣∣∣∣ djdξj (U − U±, V )(ξ)

∣∣∣∣ ≤ C exp(−ν|ξ|), ξ ∈ R,

for some constant C > 0 and with j = 0, 1, 2.
7. Finally, we have to show continuity of the speed c∗ with respect to τ ,

as stated in (c). To this aim, denoting explicitly the dependence on τ , let
us consider the function

δv(c, τ) := v0(c, τ)− v1(c, τ)

with v0 and v1 defined at Step 2. For any τ , the value c∗ is determined
implicitly by the equality δv(c, τ) = 0. Also, smooth dependence with re-
spect to parameters c and τ of the system (2.4) implies that the function δv
is continuous with respect to its variables. Moreover, since v0 is monotone
decreasing and v1 monotone increasing as functions of c (see the end of Step
3.), the function δv is monotone decreasing with respect to c.

Fix τ0 ∈ (0, τm) and η > 0. Then, there holds

δv(c∗(τ0) + η, τ0) < δv(c∗(τ0), τ0) = 0 < δv(c∗(τ0)− η, τ0)

Since δv is continuous, for any τ in a neighborhood of τ0, there holds

δv(c∗(τ0) + η, τ) < 0 < δv(c∗(τ0)− η, τ),

which gives, for δv(τ, c∗(τ)) = 0 and the monotonicity of δv,

c∗(τ0)− η < c∗(τ) < c∗(τ0) + η.

The property relative to the limiting behavior as τ → 0 can be proved in
the same way, observing that the dependence of the differential system with
respect to τ is smooth and that the heteroclinic orbit relative to the classical
Allen–Cahn case can be obtained by the same procedure. �
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Figure 3. Graph of the map α 7→ cτ∗ for τ = 2 (dashed
line), τ = 4 (dotted line), τ = 8 (continuous line). The thin
straight line corresponds to c0∗ (parabolic Allen–Cahn equa-
tion).

2.2. Numerics of the propagating speed. In the case of the Allen–Cahn
equation (1.4) with f given by (1.3), it is possible to determine an explicit
form for the speed of the propagation front, namely

c0∗ :=

√
2

κ

(
α− 1

2

)
, (2.7)

and for the corresponding profile, which is given by a hyperbolic tangent. For
the Allen–Cahn system with relaxation, however, finding analogous explicit
formulas is awkward if not impossible. Some attempts to derive approxi-
mated expressions applying a series expansion method have been performed
in [1, 12, 52] with very restricted success.

Here, fixed the reaction strength κ = 1, we address the problem of com-
puting numerically the value of cτ∗ , the speed of propagation corresponding
to the relaxation parameter τ > 0, and we discuss its dependency with
respect to the parameters α, τ and its relation with the limiting value c0∗.

To determine reliable approximations of the value cτ∗ , we first evaluate
numerically the functions v0 = v0(c) and v1 = v1(c), defined in the proof of
Theorem 1.1. In view of that, we compute the solutions V0 = V0(U) and
V1 = V1(U) to (2.6) with initial conditions

V0(δ) = δ
(
µ+(0)− cτf ′(0)

)
, V1(1− δ) = −δ

(
µ−(1)− cτf ′(1)

)
,

for δ > 0 small (in the following computations, we actually choose δ = 10−8)
and we set

v0(c) := V0(α), v1(c) := V1(α).
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Table 1. Numerically computed speeds cτ∗ = cτ∗(α) for dif-
ferent values of α and τ . The column τ = 0 gives the values
of the speed for the parabolic Allen–Cahn equation. The
presence of parenthesis indicates that condition (1.10) is not
satisfied.

α τ =0 1 2 3 4 5 6 7 8
0.6 0.14 0.16 0.17 (0.20) (0.22) (0.25) (0.27) (0.30) (0.31)
0.7 0.28 0.31 0.33 0.35 (0.37) (0.38) (0.38) (0.37) (0.35)
0.8 0.42 0.44 0.46 0.46 0.45 (0.43) (0.41) (0.38) (0.35)
0.9 0.57 0.56 0.55 0.52 0.49 0.45 0.41 0.38 0.35

As explained in the proof of Theorem 1.1, the function c 7→ v0(c) − v1(c)
is monotone decreasing and it has a single zero, so that, by following a
standard bisection procedure, we find an approximated value for the unique
zero cτ∗ of the difference v0 − v1. Some of the numerically computed speeds
for different values of α and τ can be found in Table 1.

Applying a variational approach, explicit estimates from below and from
above for the value of the speed cτ∗ have been determined by Méndez et al.
[37]. As already noted by these authors, the estimate from below

cτ∗(α) ≥ cτlow(α) :=

√
2(α− 1/2)√

(1− 1
5(1− 2α+ 2α2)τ)2 + 1

2τ(1− 2α)2
(2.8)

manifests an excellent agreement with the numerically computed values of
the speed.

The value cτ∗ depends on both τ and α. For fixed τ , as a function of α
alone, cτ∗ is oddly symmetric with respect to α = 1/2. Moreover, numerical
simulations show that cτ∗ is monotone increasing and S-shaped (see Fig. 3).

In some regimes of the parameter α (depending on the size of τ), the speed
for the hyperbolic model is larger than the one for the parabolic Allen–Cahn
equation. Such behavior is different with respect to the damped Allen–Cahn
equation, obtained by solely adding the inertial term τutt to equation (1.4)

τutt + ut = uxx + f(u),

(see [14] and the references therein). Indeed, for such equation, the traveling
wave equation can be directly reduced to the one of the parabolic case by
a simple rescaling of the independent variable. Such procedure furnishes an
explicit relation between the speed of propagation of the fronts with and
without the inertial term, that is

cτdamped =
c0∗√

1 + τ(c0∗)
2
.

From this relation, it is evident that such hyperbolic front is always slower
with respect to the corresponding parabolic one.
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Figure 4. Graph of the map α 7→ (cτ∗ − c0∗)/|c0∗| for α ∈
(0.5, 1) measuring the relative variation of the speed passing
from the parabolic Allen–Cahn equation to its hyperbolic
counterpart: τ = 2 (dashed), τ = 4 (dotted), τ = 6 (contin-
uous).

Coming back to the case of the Allen–Cahn equation with relaxation, the
discrepancy between cτ∗ and c0∗ is described by the function of the relative
variation α 7→ (cτ∗−c0∗)/|c0∗|, whose behavior is depicted in Fig. 4 for different
values of τ . For large values of τ , the relative increase of the front can be
particularly relevant (as an example, about 150% for τ = 6 and values of α
close to 0.5). The limiting value of the relative variation as α→ 1/2 can be
approximated by using the estimate (2.8), that gives

lim
α→1/2+

cτ∗ − c0∗
|c0∗|

≈ lim
α→1/2+

cτlow − c0∗
|c0∗|

=
τ

10− τ

in good agreement with the numerical values expressed in Fig. 4. It is worth
noting the presence of a singularity for τ → 10− that is outside the range of
smallness on the parameter τ that we are considering. We do consider the
behavior for large relaxation times τ a very interesting issue to be analyzed
in detail in the future.

Complementary information is provided by the analysis of the value of cτ∗
as a function of τ for fixed α (see Fig. 5). The numerical evidence shows
that the speed function has different monotonicity properties depending on
the chosen value α, passing through the monotone increasing case (α = 0.6),
increasing-decreasing (α = 0.7 and 0.8), monotone decreasing (α = 0.9).

It also worthwhile to observe the relation between the propagation speed
cτ∗ and the characteristic speed 1/

√
τ . As stated in Proposition 2.1, |cτ∗ |

is always strictly smaller than 1/
√
τ , as it is observed in Fig. 5, where

the graph of the characteristic speed is depicted by a thick (gray, in the
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Figure 5. Graph of the map τ 7→ cτ∗(α) for different values
of α: continuous line α = 0.6, dashed line α = 0.7, dash-
dotted line α = 0.8, dotted line α = 0.9. The thick (gray;
online version) band corresponds to the graph of the char-
acteristic speed τ 7→ 1/

√
τ ; as τ increases, the speed cτ∗(α)

tends to 1/
√
τ from below as a consequence of the emergent

rôle of the principal part of the system (1.5).

online version) band, lying above the speed curves for all of the values α.
For large values of τ , the hyperbolic structure of the principal part of (1.5)
becomes crucial and the propagation speed of the front tends to one of the
characteristic values ±1/

√
τ (except for the case of zero speed).

3. Linearization and spectral stability

This section is devoted to establishing both the equations for the perturba-
tion of the traveling wave and the corresponding spectral stability problem.
For stability purposes, it is often convenient to recast the system of equa-
tions (1.5) in a moving coordinate frame. For fixed τ ∈ [0, τm), let c := c∗(τ)
be the unique wave speed of Theorem 1.1. Rescaling the spatial variables
as x 7→ x− ct, we obtain the nonlinear system

ut = cux + vx + f(u),

τvt = ux + cτvx − v.
(3.1)

From this point on and for the rest of the paper the variable x will denote
the moving (galilean) variable x− ct. With a slight abuse of notation, trav-
eling wave solutions to the original system (1.5) transform into stationary
solutions (U, V )(x) of the new system (3.1) and satisfy the “profile” equa-
tions

cUx + Vx + f(U) = 0, Ux + cτVx − V = 0, (3.2)
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together with the asymptotic limits (1.9). Furthermore, the convergence is
exponential, ∣∣∂jx(U − U±, V )(x)

∣∣ ≤ C exp(−ν|x|), x ∈ R (3.3)

for some C, ν > 0 and j = 0, 1, 2. It is to be noted that Ux, Vx ∈ H1(R;R).
Moreover, by a bootstrapping argument and the second equation in (3.2),
it is easy to verify that Uxx, Vxx ∈ H1(R;R).

3.1. Perturbation equations and the spectral problem. Consider a
solution to the nonlinear system (3.1) of the form (u, v)(x, t) + (U, V )(x),
being u and v perturbation variables. Upon substitution (and using the
profile equations (3.2)) we arrive at the following nonlinear system for the
perturbation:

ut = cux + vx + f(u+ U)− f(u),

τvt = ux + cτvx − v.
(3.4)

The standard strategy to prove stability of the traveling wave is based on
linearizing system (3.4) around the wave. The subsequent analysis can be
divided into three steps: the spectral analysis of the resulting linearized
operator, the establishment of linear stability estimates for the associated
semigroup, and the nonlinear stability under small perturbations to solutions
to (3.4). Thus, we first linearize last system around the profile solutions
(U, V ). The result is

ut = cux + vx + f ′(U)u,

τvt = ux + cτvx − v.

Specializing these equations to perturbations of the form eλt(û, v̂), where
λ ∈ C is the spectral parameter and (û, v̂)(x) belongs to an appropriate
Banach space X, we obtain a naturally associated spectral problem

λû = cûx + v̂x + f ′(U)û,

λτ v̂ = ûx + cτ v̂x − v̂.

With a slight abuse of notation we denote again (û, v̂)> = (u, v)> ∈ X.
Henceforth, for each τ ∈ (0, τm) we are interested in studying the spectral
problem

Lτ
(
u
v

)
= λ

(
u
v

)
,

(
u
v

)
∈ D ⊂ X, (3.5)

where Lτ denotes the first order differential operator determined by

Lτ = −B−1 (A ∂x + C(x)) , (3.6)

with domain D in X, and where

A =

(
−c −1
−1 −cτ

)
, B =

(
1 0
0 τ

)
, C(x) =

(
−a(x) 0

0 1

)
, (3.7)

and

a(x) := f ′(U).
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In this analysis we choose the perturbation space as X = L2(R;C2), with
dense domain D = H2(R;C2), which corresponds to the study of stabil-
ity under localized perturbations. In this fashion, we obtain a family of
closed, densely defined first order operators in L2(R;C2), parametrized by
τ ∈ (0, τm).

It is to be observed that Lτ is not defined for τ = 0, where B becomes
singular. Formally, in the limit τ → 0+ system (3.4) can be written (after
substitution) as the scalar perturbation equation for the parabolic Allen-
Cahn (or Nagumo) front:

ut = uxx + c0ux + f(U0 + u)− f(U0),

where U0 denotes the unique (up to translations) traveling wave solution to
the parabolic Allen-Cahn equation (1.4), traveling with speed c0 = c|τ=0.
Its linearization leads to the well-studied spectral problem for the operator
L0 : H2(R;C)→ L2(R;C), defined by

L0u := uxx + c0ux + a(x)u = λu, u ∈ H2(R;C),

where a(x) = f(U0). The stability of the parabolic traveling front is a well-
known fact: it was first established by Fife and McLeod [13] using maximum
principles. The spectral analysis of the operator L0 can be found in [22,
pp.128–131], and in [29, Chapter 2]. The following proposition summarizes
the spectral stability properties of the parabolic front.

Proposition 3.1 (cf. [22, 29]). There exists ω0 > 0 such that the spectrum
σ(L0) of the operator L0 can be decomposed as

σ(L0) = {0} ∪ σ(0)− ,

where λ = 0 is an (isolated) eigenvalue with algebraic multiplicity equal to

one and eigenspace generated by U0
x ∈ L2(R;C), and σ

(0)
− is contained in the

half-space {λ ∈ C : Re λ ≤ −ω0}.

Since the operators Lτ have been defined on the appropriate spaces, the
standard definitions for the resolvent ρ(Lτ ) and spectrum σ(Lτ ) follow (see
[9, 30] and Section 3.2 below). Our goal is to establish the spectral stability
for the family of operators (3.6), for parameter values τ ∈ (0, τm), by proving
a result analogous to Proposition 3.1:

Theorem 3.2 (Spectral stability). For each τ ∈ (0, τm), there exists ω0(τ) >
0 such that the spectrum σ(Lτ ) of the operator Lτ can be decomposed as

σ(Lτ ) = {0} ∪ σ(τ)− ,

where λ = 0 is an (isolated) eigenvalue with algebraic multiplicity equal to

one and eigenspace generated by (Ux, Vx) ∈ D(Lτ ), and σ
(0)
− is contained in

the half-space {λ ∈ C : Reλ ≤ −ω0(τ)}.

The approach to prove Theorem 3.2 is based on rewriting the spectral
problem as a first order system with the eigenvalue as a parameter. Then,
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applying a general theorem for convergence of approximate flows (cf. [46]),
we show that the spectral stability for τ = 0 persists for τ ∼ 0+. By a
continuation argument, we extend the result to the whole parameter domain
τ ∈ (0, τm).

3.2. Reformulation of the spectral problem. Set τ ∈ (0, τm). Component-
wise the spectral problem (3.5) can be written as

cux + vx + (a(x)− λ)u = 0,

ux + cτvx − (1 + τλ)v = 0.
(3.8)

Just like for the original nonlinear Allen-Cahn model with relaxation (1.5),
the v variable can be eliminated to obtain a second order equation for u (a
spectral version of Kac’s trick): multiply the first equation by cτ , substract
it from the second and differentiate with respect to x. The result is the
following second order spectral equation,

(1−c2τ)uxx+c
(
1+τ(2λ−a)

)
ux+

(
(1+τλ)(a(x)−λ)−cτa′(x)

)
u = 0. (3.9)

Following Alexander, Gardner and Jones [2], we recast the scalar spectral
equation (3.9) as a first order system of the form

wx = Aτ (x, λ)w, (3.10)

where w = (u, ux)> and, for a = a(x) and a′ = a′(x),

Aτ (x, λ) :=
1

1− c2τ

(
0 1− c2τ

cτa′ + (1 + τλ)(λ− a) c(τa− 1− 2τλ)

)
.

(3.11)
Observe that the coefficient matrices (3.11) can be written as

Aτ (x, λ) = Aτ
0(x) + λAτ

1(x) + λ2Aτ
2(x),

where

Aτ
0(x) := Aτ (x, 0) =

1

1− c2τ

(
0 1− c2τ

cτa′(x)− a(x) c(τa(x)− 1)

)
,

Aτ
1(x) :=

1

1− c2τ

(
0 0

1− τa(x) −2cτ

)
,

Aτ
2(x) :=

τ

1− c2τ

(
0 0
1 0

)
.

Since c = c(τ) is a continuous function of τ ∈ [0, τm), we reckon that Aτ (·, λ)
is a function from (τ, λ) ∈ [0, τm)× C to L∞(R;R2×2), continuous in τ and
analytic (second order polynomial) in λ.

It is a well-known fact (see [50, 2] and the references therein) that an
alternate but equivalent definition of the spectra and the resolvent sets as-
sociated to the spectral problem (3.5) can be expressed in terms of the first
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order systems (3.10). Consider the following family of linear, closed, densely
defined operators

T τ (λ) : D = H1(R;C2)→ L2(R;C2),

T τw := wx −Aτ (x, λ)w, w ∈ H1(R;C2),
(3.12)

indexed by τ ∈ (0, τm), parametrized by λ ∈ C and with domain D =
H1(R;C2), which is independent of λ and τ . With a slight abuse of notation
we call w ∈ H1(R;C2) an eigenfunction associated to the eigenvalue λ ∈ C
provided w is a bounded solution to the equation

T τ (λ)w = 0.

More precisely, for each τ ∈ [0, τm) we define the resolvent ρ, the point
spectrum σpt and the essential spectrum σess of problem (3.8) as

ρ = {λ ∈ C : T τ (λ) is inyective and onto, and T τ (λ)−1 is bounded },
σpt = {λ ∈ C : T τ (λ) is Fredholm with index zero and non-trivial kernel},
σess = {λ ∈ C : T τ (λ) is either not Fredholm or with non-zero index},
respectively. The whole spectrum is σ = σess ∪ σpt. Since each operator
T τ (λ) is closed, then ρ = C\σ (cf. [30]). When λ ∈ σpt we call it an
eigenvalue, and any element in ker T τ (λ) is an eigenvector.

We call the reader’s attention to the fact that, unlike equation (3.5), the
spectral problem formulated in terms of the first order systems (3.10) is well
defined for τ = 0, with

A0(x, λ) =

(
0 1

λ− a(x) −c0

)
,

and where c0 = c(τ)
∣∣
τ=0

is the velocity of the parabolic front.

Remark 3.3. Suppose τ ∈ (0, τm). If we substitute λ = −1/τ into (3.8) we
arrive at the equation

(1− c2τ)ux − c(1 + τa(x))u = 0.

Taking the real part of the L2 product of last equation with u we obtain

0 =

ˆ
R

(1 + τa(x))︸ ︷︷ ︸
>0

)|u|2 dx ≥ 0,

inasmuch as Re 〈u, ux〉L2 = 0, and τ < τm = 1/ sup |f ′|. This implies that
u = 0, and hence v = 0, showing that λ = −1/τ does not belong to the
point spectrum.

3.2.1. On algebraic and geometric multiplicities. In the stability of traveling
waves literature, it is customary to analyze the spectrum of a differential
operator L of second (or higher) order, for which there is a natural invertible
transformation from the kernel of L−λ to the kernel of a first order operator
of the form (3.12). In such cases, the matrices (3.11) are linear in λ and
there is a natural correspondence between the Jordan block structures of
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L − λ and those of the corresponding operators T (λ) (see [50]). Since we
arrived at systems (3.10) through a different transformation (Kac’s trick),
we must show that such property remains in our case. For each τ ∈ (0, τm)
and λ ∈ σpt, we call the mapping,

K : ker(Lτ − λ) → ker T τ (λ),

K
(
u
v

)
:=

(
u
ux

)
= w,

(
u
v

)
∈ ker(Lτ − λ),

(3.13)

as the spectral Kac’s transformation. It is a one-to-one and onto map. In-
deed, if w1 = w2 ∈ ker T τ (λ) then u1 = u2 and ∂xu1 = ∂xu2 a.e., and
the first equation in (3.8) yields ∂xv1 = ∂xv2, whereas the second equation
implies v1 = v2 a.e. Thus, (u1, v1)

> = (u2, v2)
> ∈ ker(Lτ − λ). It is onto

because for each w = (u, ux)> ∈ ker T τ (λ) clearly there exists(
u
v

)
=

(
u

(1 + τλ)−1
(
(1− c2τ)ux + cτ(λ− a(x))u

)) ∈ ker(Lτ − λ),

such that w = K(u, v)>. (Provided, of course, that λ 6= −1/τ . But −1/τ /∈
σpt by Remark 3.3.) Since v satisfies the first equation of (3.8) we conclude
that v ∈ H2(R;C) as well.

Proposition 3.4. Spectral Kac’s transformation (3.13) induces a one-to-
one correspondence between Jordan chains.

Proof. Suppose (ϕ,ψ)> ∈ ker(Lτ − λ). This is equivalent to the system

cϕx + ψx + (a(x)− λ)ϕ = 0, ϕx + cτψx − (1 + τλ)ψ = 0. (3.14)

If we take the next element in a Jordan chain, say (u, v)> ∈ H2(R;C2),
solution to

(Lτ − λ)

(
u
v

)
=

(
ϕ
ψ

)
,

then we obtain the system

cux + vx + (a(x)− λ)u = ϕ, ux + cτvx − (1 + τλ)v = τψ. (3.15)

Multiply the first equation by cτ , substract from the second one, differentiate
it, and substitute vx from the first equation and ψx from the second in (3.14).
The result is the following scalar equation

(1− c2τ)uxx + c
(
1 + τ(2λ− a(x))

)
ux

+
{

(1 + τλ)(a(x)− λ)− cτa′(x)
}
u = (1 + 2τλ− τa(x))ϕ− 2cτϕx.

(3.16)
Written as a system for w1 := (u, ux)>, equation (3.16) is equivalent to

∂xw1 −Aτ (x, λ)w1 =
(
Aτ

1(x) + 2λAτ
2(x)

)( ϕ
ϕx

)
.

Generalizing this procedure, we observe that solutions to

(Lτ − λ)

(
uj
vj

)
=

(
uj−1
vj−1

)
,
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are in one-to-one correspondence with solutions to the equation T τ (λ)wj =

(∂λA
τ (x, λ))wj−1, where wj and (uj , vj)

> are related to each other through
Kac’s transformation. Hence, a Jordan chain for Lτ − λ induces a Jordan
chain for T τ (λ) with same block structure and length. �

Consequently, we have the following definition.

Definition 3.5. Assume λ ∈ σpt. Its geometric multiplicity (g.m.) is the
maximal number of linearly independent elements in ker T τ (λ). Suppose
λ ∈ σpt has g.m. = 1, so that ker T τ (λ) = span {w0}. We say λ has algebraic
multiplicity (a.m.) equal to m if we can solve T τ (λ)wj = (∂λA

τ (x, λ))wj−1,
for each j = 1, . . . ,m − 1, with wj ∈ H1, but there is no bounded H1

solution w to T τ (λ)w = (∂λA
τ (x, λ))wm−1. For an arbitrary eigenvalue

λ ∈ σpt with g.m. = l, the algebraic multiplicity is defined as the sum of the

multiplicities
∑l

kmk of a maximal set of linearly independent elements in
ker T τ (λ) = span {w1, . . . ,wl}.

Thanks to Proposition 3.4 and Definition 3.5 we readily obtain the fol-
lowing

Corollary 3.6. For each τ ∈ [0, τm), the sets σpt and σpt(Lτ ) (the latter
defined as the set of complex λ such that Lτ −λ is Fredholm with index zero
and has a non-trivial kernel) coincide, with same algebraic and geometric
multiplicities.

3.3. The (translation invariance) eigenvalue λ = 0. Here, we prove
that λ = 0 is an eigenvalue of Lτ for each τ ∈ (0, τm) (the eigenvalue asso-
ciated to translation invariance of the wave, with eigenfunction (Ux, Vx)>),
and, moreover, that it is simple.

Lemma 3.7. For each τ ∈ (0, τm), λ = 0 is an eigenvalue of Lτ with geomet-
ric multiplicity equal to one, and with eigenspace generated by (Ux, Vx)> ∈
H2(R;C2).

Proof. Differentiate system (3.2) with respect to x to verify that (Ux, Vx) is
a solution to the spectral system (3.8) with λ = 0, that is,

cUxx + Vx + a(x)Vx = 0, Ux + cτVxx − Vx = 0. (3.17)

Due to exponential decay (3.3) of the wave, and solving for Uxx and Vxx
in equations (3.17), we observe that (Ux, Vx)> ∈ H2(R;C2) = D(Lτ ).
This shows that (Ux, Vx)> belongs to kerLτ for each τ ∈ (0, τm). Thus,
λ = 0 ∈ σpt(Lτ ). In view of the equivalence established by Kac’s spectral
transformation (Proposition 3.4), this implies that

w0 =

(
Ux
Uxx

)
∈ ker T τ .

To analyze its multiplicity we observe that system (3.8) with λ = 0 is equiv-
alent to the following scalar equation (substitute λ = 0 in (3.9)):

Au := a0uxx + a1(x)ux + a2(x)u = 0, (3.18)



TRAVELING WAVES FOR THE ALLEN-CAHN RELAXATION MODEL 23

where we have introduced the closed, densely defined auxiliary operator
A : D(A) = H2(R;C) → L2(R;C), where a(x) = f ′(U(x)) as before, and
with

a0 = 1− c2τ > 0, a1(x) = c(1− τa(x)), a2(x) = a(x)− cτa′(x).

Let us denote

φ := Ux ∈ H2(R;C).

Clearly, φ is a bounded solution to (3.18), and λ = 0 is an eigenvalue of A
associated to the eigenfunction φ.

We shall rewrite (3.18) in self-adjoint form by eliminating the first deriv-
ative. To this aim, we introduce the new variable w as follows:

u(x) = z(x)w(x), z(x) = exp
(ˆ x

b(y) dy
)
. (3.19)

A direct calculation shows that

ux = (wx + wb)z, uxx = (wxx + 2bwx + (bx + b2)w)z.

Upon substitution,

Au =
(
a0wxx + (a1(x) + 2a0b)wx + (a0(bx + b2) + a1(x)b+ a2(x))w

)
z.

Choose b = −a1(x)/2a0. This yields

zx = −a1(x)

2a0
z, z(x) = exp

(
−
ˆ x

a1(y)/2a0 dy
)
,

and

Au =
(
Ãw
)
z = 0,

where the self-adjoint operator Ã : H2(R;C)→ L2(R;C) is defined as

Ãw := a0wxx + h(x)w, h(x) = a2(x)− 1
2a
′
1(x)− 1

4a
−1
0 a1(x)2.

Since z(x) > 0 for all x, this readily implies that Au = 0 if and only if

w = uz−1 ∈ ker Ã.
Upon inspection, we observe that any decaying solution (at x = ±∞) to

Ãw = 0 converges to zero exponentially with rate

∓ 1

2a0

√
(a±1 )2 − 4a0f ′(U±) . (3.20)

This is true, in particular, for ϕ = φ/z, because of the behavior at ±∞
of the weight function z. In view of these observations, we reckon that

there is a one-to-one correspondence between L2 eigenfunctions of A and Ã,
determined by the change of variables (3.19).

Now suppose that u ∈ H2 is a solution to Au = 0. Therefore, it decays
at x = ±∞ with rate

−−a
±
1

2a0
∓ 1

2a0

√
(a±1 )2 − 4a0f ′(U±) .
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This implies that w = uz−1 is an L2 solution to Ãw = 0 which decays with
rate (3.20). Hence, the Wronskian determinant of these two solutions, viz.
wϕx − ϕwx goes to zero when x→ ±∞ and, moreover,

a0(wϕx − ϕwx)x = a0(wϕxx − ϕwxx) = h(x)wϕ− h(x)ϕw = 0,

implying that wϕx−ϕwx = 0 for all x ∈ R. Therefore, w and ϕ (and hence,
u and φ) are linearly dependent.

By the equivalence between solutions to the scalar equation (3.9) and
solutions to the first order system (3.10), we have shown that any bounded
solution w to wx = Aτ (x, 0)w is a multiple of w0, and consequently T τ (0) is
Fredholm with index zero, with non-trivial kernel spanned by w0. Whence,
λ = 0 ∈ σpt with geometric multiplicity equal to one. By Proposition 3.4,
this implies, in turn, that λ = 0 ∈ σpt(Lτ ) with geometric multiplicity equal

to one, and with associated eigenfunction (Ux, Vx)>. �

Corollary 3.8. The adjoint equation

yx = −Aτ (x, 0)∗y, (3.21)

has a unique (up to constant multiples) bounded solution y0 = (ζ, η)> ∈
H1(R;C2) where η ∈ H2(R;C) is the unique bounded solution to

A∗η = a0ηxx − a1(x)ηx + (a2(x)− a′1(x))η = 0, (3.22)

and A∗ : H2(R;C) → L2(R;C) denotes the formal adjoint of the auxiliary
operator A.

Proof. Since T τ (0) is Fredholm with index zero and ker T τ (0) = span{w0},
by an exponential dichotomies argument (see Remark 3.4 in [50]), the adjoint
equation (3.21) has a unique bounded solution y0 ∈ H1(R;C2). Observing
that

−Aτ (x, 0)∗ = −Aτ
0(x)> = (1− c2τ)−1

(
0 −(1− c2τ)

a(x)− cτa′(x) c(1− τa(x))

)>
= a−10

(
0 a2(x)
−a0 a1(x)

)
,

we arrive at the following system of equations for the components of y0:

ζx = a−10 a2(x)η, ηx = −ζ + a−10 a1(x)η.

Since the coefficients are bounded, by bootsrapping it is easy to verify that
η ∈ H2(R;C). Thus, differentiate the second equation and substitute the
first to arrive at

a0ηxx − a1(x)ηx + (a2(x)− a′1(x))η = 0.

That the left hand side of last equation is A∗η follows from a direct calcu-
lation of the formal adjoint. �

Lemma 3.9. For each τ ∈ (0, τm) the algebraic multiplicity of λ = 0 ∈
σpt(Lτ ) is equal to one.
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Proof. We define the quantity

Γ := 〈y0,A
τ
1(x)w0〉L2 =

ˆ +∞

−∞

(
ζ
η

)∗
Aτ

1(x)

(
φ
φx

)
dx. (3.23)

Substituting the expression for Aτ
1 we obtain

Γ = a−10

ˆ +∞

−∞
η
(
(1− τa(x))φ− 2cτφx

)
dx.

Let us suppose that (u1, v1)
> ∈ H1(R;C), (u1, v1) 6= 0, is a non-trivial first

element of a Jordan chain for Lτ associated to λ = 0, that is, a solution to

Lτ
(
u1
v1

)
=

(
Ux
Vx

)
∈ kerLτ .

Hence, (u1, v1)
> is a solution to system (3.15) with λ = 0. By substitution,

this is equivalent to equation (3.16) for u1 and with λ = 0, namely to

Au1 = (1− τa(x))Ux − 2cτUxx = (1− τa(x))φ− 2cτφx.

Apply the change of variables (3.19) to last equation to obtain

Au1 = z(Ãw1) = (1− τa(x))φ− 2cτφx,

where w1 = u1z
−1. Now, since z is real and Ã is self-adjoint, we obtain

Γ = a−10

ˆ +∞

−∞
zηÃw1 dx = a−10 〈zη, Ãw1〉L2 = a−10 〈Ã(zη), w1〉L2 .

Use equation (3.22) to compute

(zη)xx = −a−10 h(x)zη,

yielding Ã(zη) = a0(zη)xx + h(x)zη = 0. We conclude that Γ = 0.
Therefore, the contraposition holds true: if Γ 6= 0 then there exists no

non-trivial first element of the Jordan chain. In other words, if we show that
Γ 6= 0 then the algebraic multiplicity of λ = 0 is equal to one. To compute
Γ we make the observation that the unique bounded solution to A∗η = 0 is
precisely η = z−2φ. Indeed, by a direct calculation we get

ηx =
1

z2
(φx + a−10 a1(x)φ), and,

ηxx =
a−10 a1(x)

z2
(φx + a−10 a1(x)φ) +

1

z2
(φxx + a−10 a′1(x)φ+ a−10 a1(x)φx).

This yields

A∗η =
1

z2
(a0φxx + a1(x)φx + a2(x)φ) =

1

z2
Aφ = 0.
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Substituting in the expression for Γ, and since φ is real, after integration by
parts one gets

Γ = a−10

ˆ +∞

−∞
z−2φ((1− τa(x))φ− 2cτφx) dx

= a−10

ˆ +∞

−∞
z−2|φ|2(1− τa(x)) dx− 2cτa−10

ˆ +∞

−∞
z−3zx|φ|2 dx

= a−10 (1 + c2τa−10 )

ˆ +∞

−∞
|1− τa(x)|z−2|φ|2 dx,

because 1− τa(x) > 0 for all x if τ ∈ (0, τm). Since φ 6≡ 0 a.e. we conclude
that Γ > 0 and the proof is complete. �

Remark 3.10. It is well known that the integral

Γ = 〈y0, ((d/dλ)Aτ (x, λ))|λ=0w0〉L2 ,

known as a Melnikov integral, decides whether λ = 0 has higher algebraic
multiplicity: Γ is proportional, modulo a non-vanishing orientation factor,
to the derivative of the Evans function D′(0) at λ = 0 (see Definition (3.42)
below); thus, if Γ 6= 0 then the algebraic multiplicity is equal to one. See
[50], Section 4.2.1 for further information.

3.4. Further properties of the point spectrum. Next, we use energy
estimates to show that there are no purely imaginary eigenvalues different
from zero.

Lemma 3.11. If λ is an eigenvalue for (3.8) and λ ∈ iR, then λ = 0.

Proof. Let λ ∈ iR be such that equation (3.9) is satisfied for some function
u. Applying the transformation (3.19) of the proof of Lemma 3.7, i.e. u(x) =
w(x) z(x) with z(x) = exp(−

´ x
b) and b = −a1/2a0, equation is transformed

into
wxx + αλwx − β(x, λ)w = 0,

with

α =
2cτ

1− c2τ
,

β(x, λ) =
1

4a20

(
a1(x)2 − 4a0a2(x)− 2a0a

′
1(x)

)
+

(1− τ a(x))

a20
λ+

τ

a0
λ2.

Multiplying by w̄, we infer the relation

|wx|2 − (w̄wx)x + αλw̄wx + β(x, λ)|w|2 = 0.

Thus, integrating in R and taking the imaginary part one obtainsˆ
R

Imλ
{

2cτ(1− c2τ)Re (wxw̄) +
(
1− τ a(x)

)
|w|2

}
dx = 0.

since, by assumption, λ ∈ iR. For λ 6= 0, thanks to the relation

Re (w̄wx) = 1
2

(
|w|2

)
x
,
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the previous equality implies w = 0 a.e. since 1− τa(x) > 0. �

3.5. Consistent splitting and essential spectrum. Let us look at the
asymptotic (constant coefficient) systems derived from (3.11) when we take
the limit as x→ ±∞. If we define the positive parameters

0 < δ± := − lim
x→±∞

a(x) = − lim
x→±∞

f ′(U) = −f ′(U±)

0 < b± := lim
x→±∞

(
1− τf ′(U)

)
= 1 + τδ±,

for each τ ∈ (0, τm), then systems (3.10) tend to the constant coefficient
asymptotic systems

wx = Aτ
±(λ)w, (3.24)

where

Aτ
±(λ) := lim

x→±∞
Aτ (x, λ)

= (1− c2τ)−1
(

0 1− c2τ
τλ2 + λb± + δ± −c(b± + 2τλ)

)
.

(3.25)

The localization of the essential spectrum of problem (3.8) is determined by
systems (3.24). Let us denote the characteristic polynomial of Aτ

±(λ) as

π
(τ,λ)
± (κ) := det(Aτ

±(λ)− κI). (3.26)

Thus, we compute

det(κI − (1− c2τ)Aτ
±(λ)) = det

(
κ −(1− c2τ)

−(τλ2 + λb± + δ±) κ− c(b± + 2τλ)

)
= κ2 + κc(b± + 2τλ)− (1− c2τ)(τλ2 + λb± + δ±).

Hence, if we assume κ = iξ, ξ ∈ R, is a purely imaginary root of (3.26), then

ξ2 − icξ(b± + 2τλ) + (1− c2τ)(τλ2 + b±λ+ δ±) = 0. (3.27)

Equation (3.27) is the dispersion relation of wave solutions to the constant
coefficient equations (3.24). Its λ-roots, functions of ξ ∈ R, define algebraic
curves in the complex plane. They bound the essential spectrum on the
right as we shall verify. We denote these curves as

λ = λ±1,2(ξ), ξ ∈ R. (3.28)

It is to be noticed that λ = 0 does not belong to any of the algebraic curves
(3.28) inasmuch as

Re (ξ2 − icξb± + (1− c2τ)δ±) = ξ2 + (1− c2τ)δ± > 0,

for all ξ ∈ R.
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3.5.1. Analysis of the dispersion relation. Fix 0 < τ < τm. Suppose that
λ(ξ) belongs to one of the algebraic curves (3.28) and denote η := Reλ(ξ)
and β := Imλ(ξ). Taking the real and imaginary parts of (3.27) yields

ξ2 + 2cτξβ + (1− c2τ)
(
τ(η2 − β2) + ηb± + δ±

)
= 0. (3.29)(

(1− c2τ)β − cξ
)(
b± + 2τη

)
= 0. (3.30)

We readily notice that if η = 0 for some ξ ∈ R then from equation (3.30) we
get β = cξ/(1− c2τ), as b± > 0. Upon substitution in (3.29) we obtain

ξ2 +
c2τξ2

1− c2τ
+ (1− c2τ)δ± = 0,

which yields a contradiction with δ± > 0, τ > 0 and the subcharacteristic
condition (2.2). We conclude that the algebraic curves never cross the imag-
inary axis: they remain in either the stable or in the unstable complex half
plane. Now, from equation (3.30) we distinguish two cases:

either η = −b±
2τ
, (3.31)

or β =
cξ

1− c2τ
. (3.32)

Let us first assume (3.31). Substituting into (3.29) we obtain the equation

τβ2 − 2cτξ

1− c2τ
β − δ± +

b2±
4τ
− ξ2

1− c2τ
= 0. (3.33)

This equation has real solutions β provided that

∆1(ξ) :=
4c2τ2ξ2

(1− c2τ)2
− 4τ

(
− δ± +

b2±
4τ
− ξ2

1− c2τ

)
≥ 0,

⇐⇒ ξ2(1− c2τ)−2 + δ± ≥
b2±
4τ
. (3.34)

Secondly, substitute (3.32) into (3.29). The result is

τη2 + b±η + δ± +
ξ2

(1− c2τ)2
= 0. (3.35)

Last equation has real solutions η if and only if

∆2(ξ) := b2± − 4τ
(
δ± +

ξ2

(1− c2τ)2

)
≥ 0,

⇐⇒ ξ2(1− c2τ)−2 + δ± ≤
b2±
4τ
. (3.36)

Then, clearly, from (3.34) and (3.36) we have sgn ∆2 = −sgn ∆1. Observe,
however, that by definition,

b2±
4τ

=
(1 + τδ±)2

4τ
> δ±,
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because (1− δ±τ)2 > 0 for all 0 < τ < τm = 1/ sup |f ′|, δ± = |f ′(1)|, |f ′(0)|.
Therefore, for small values of |ξ|, (3.36) holds, sgn ∆2 = +1, and the only
algebraic curve solutions λ = λ(ξ) are

Imλ(ξ) = β(ξ) =
cξ

1− c2τ
, Reλ(ξ) = η(ξ) =

1

2τ

(
− b± ±

√
∆2(ξ)

)
.

(3.37)

Let ξ
(0)
± be the positive solution to

(ξ
(0)
± )2 = (1− c2τ)2

(b2±
4τ
− δ±

)
> 0.

Hence, for each ξ ∈ (−ξ(0)± , ξ
(0)
± ), condition (3.36) holds and the algebraic

curves are determined by (3.37). Observe that:

• ∆1(ξ),∆2(ξ)→ 0,

• η(ξ)→ −b±/2τ , β(ξ)→ ±cξ(0)± /(1− c2τ),

as |ξ| ↑ ξ(0)± . This behavior guarantees the continuity of the algebraic curves

at |ξ| = ξ
(0)
± , as β tends to the roots of (3.33) and η tends to (3.31). There-

fore, for |ξ| ≥ ξ(0)± , ∆1(ξ) ≥ 0 and the solutions λ(ξ) are determined uniquely
by

Imλ(ξ) = β(ξ) =
cξ

1− c2τ
±
√

∆1(ξ)

2τ
, Reλ(ξ) = η(ξ) = −b±

2τ
. (3.38)

The algebraic curves (3.28) in the case of a cubic reaction (1.3), with κ = 1
and for the parameter value α = 3/4 can be found in Figure 6. To compute
them, we approximated the value of the speed c by its lower bound (2.8).

Finally, notice that, for |ξ| ≤ ξ
(0)
± , from equation (3.37) we obtain the

following bound for the real part of λ:

Reλ = η =
1

2τ

(
− b± ±

√
∆2(ξ)

)
≤ 1

2τ

(
− b± +

√
b2± − 4τδ±

)
=

1

2τ
(−(1 + τδ±) + (1− δ±τ)) = −δ± < −

δ±
2
.

Likewise, when |ξ| ≥ ξ(0)± , we have the uniform bound

Reλ = η = −b±
2τ

= −1 + τδ±
2τ

< −δ±
2
,

for all 0 < τ < τm. We have proved the following

Lemma 3.12. For all τ ∈ (0, τm), there exists a uniform

χ0 := 1
2 min{δ+, δ−} > 0, (3.39)

such that the algebraic curves λ = λ±1,2(ξ), ξ ∈ R, solutions to the dispersion

relations (3.27), satisfy

Reλ±1,2(ξ) < −χ0 < 0, (3.40)

for all ξ ∈ R.
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Figure 6. Algebraic Fredholm curves (3.28) for systems
(3.24) in the case of a cubic nonlinearity (1.3) with κ = 1,
τ = 1/2, and unstable state u = α = 3/4. The value of
the speed c = c(τ) is approximated by its lower bound (2.8).
The curves at +∞, λ+1,2(ξ) are depicted by the solid continu-

ous (blue; online version) curves, whereas the curves at −∞,
λ−1,2(ξ), are represented by the dashed (red; online version)
curves.

3.5.2. Stability of the essential spectrum. We define the following open, con-
nected region of the complex plane,

Ω := {λ ∈ C : Reλ > −χ0}. (3.41)

It properly contains the unstable complex half plane C+ = {Reλ > 0}.
Denote Sτ±(λ) and Uτ±(λ) as the stable and unstable eigenspaces of Aτ

±(λ),
respectively.

Lemma 3.13. For all τ ∈ (0, τm), and all λ ∈ Ω, the coefficient matrices
Aτ
±(λ) have no center eigenspace and, moreover,

dimSτ±(λ) = dimUτ±(λ) = 1.

Proof. Take λ ∈ Ω and suppose κ = iξ, with ξ ∈ R, is an eigenvalue of
Aτ
±(λ). Then λ belongs to one of the algebraic curves (3.28). But (3.40)

yields a contradiction with λ ∈ Ω. Therefore, the matrices Aτ
±(λ) have no

center eigenspace.
Since Ω is a connected region of the complex plane, it suffices to compute

the dimensions of Sτ±(λ) and Uτ±(λ) when λ = η ∈ R+, sufficiently large.
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The characteristic polynomial (3.26) of Aτ
±(λ) is

κ2 + κc(b± + 2τλ)− (1− c2τ)(τλ2 + λb± + δ±) = 0.

Assuming λ = η ∈ R+, the roots are

κ = − c
2

(b± + 2τη)± 1

2

√
c2(b± + 2τη)2 + 4(1− c2τ)(τη2 + ηb± + δ±).

Clearly, for each η > 0, one of the roots is positive and the other is negative.
This proves the lemma. �

In view of last result, the region Ω is often called the region of consistent
splitting [50].

Corollary 3.14 (Stability of the essential spectrum). For each τ ∈ (0, τm),
the essential spectrum is contained in the stable half-plane. More precisely,

σess ⊂ {λ ∈ C : Re λ ≤ −χ0 < 0}.

Proof. Fix λ ∈ Ω. By exponential dichotomies theory (see [7, 50]), since
Aτ
±(λ) are hyperbolic, the asymptotic systems (3.10) have exponential di-

chotomies in x ∈ R+ = (0,+∞) and in x ∈ R− = (−∞, 0) with respective
Morse indices

i+(λ) = dimUτ+(λ) = 1, i−(λ) = dimUτ−(λ) = 1.

This implies (see [42, 43] and also [50]) that the variable coefficient operators
T τ (λ) are Fredholm as well, with index

ind T τ (λ) = i+(λ)− i−(λ) = 0,

showing that Ω ⊂ C\σess, or equivalently, σess ⊂ C\Ω = {Reλ ≤ −χ0 <
0}. �

The significance of Corollary 3.14 is that there is no accumulation of
essential spectrum at the eigenvalue λ = 0, which is an isolated eigenvalue
with finite multiplicity. In other words, there is a spectral gap.

3.6. Evans function analysis. The Evans function (cf. [2, 29, 50]) is a
powerful tool to locate the point spectrum. Thanks to Lemma 3.13, Ω is
the open, connected component of C\σess containing the (unstable) right
half-plane in which the asymptotic matrices Aτ

±(·) are hyperbolic and the
dimensions of their stable Sτ± (respectively, unstable Uτ±) spaces agree. By
spectral separation of Uτ±, Sτ±, the associated eigenprojections are analytic
in λ and there exists analytic representations for the bases of subspaces Sτ±
and Uτ± (by a Kato construction, cf. [30, pp.99–102]). In our special (low
dimensional) case,

Sτ+ = span{w+(λ)}, Uτ− = span{w−(λ)},

where w±(λ) can be chosen analytic in λ ∈ Ω. The associated Evans function

Dτ (λ) := det(w−(λ), w+(λ)), (3.42)
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is defined to locate non-trivial intersections of the initial conditions w+

which produce solutions to the variable coefficient systems (3.10) that decay
when x → +∞, with the initial conditions w− which produce solutions
to (3.10) that decay at x → −∞. The Evans function is not unique, but
they all differ by a non-vanishing factor. It is endowed with the following
properties:

• Dτ is analytic in λ ∈ Ω;
• Dτ (λ) = 0 if and only if λ ∈ σpt ∩ Ω; and,
• the order of λ as a zero of Dτ is equal to its algebraic multiplicity

In our case, we end up with a family of Evans functions Dτ (·) indexed by
τ ∈ [0, τm) and defined on Ω. It is to be observed that the region Ω is
independent of τ , and that the case when τ = 0 is included in the family.
In view of Proposition 3.1, which guarantees the spectral stability of the
parabolic Allen-Cahn front, we have the following

Corollary 3.15. D0(λ) 6= 0 for all Reλ ≥ 0, λ 6= 0. Moreover, λ = 0 is a
simple zero of D0(·).

In order to establish spectral stability in the regime τ ∈ (0, τm), we shall
apply a result from Evans function theory (see [46]) which assures that,
under suitable structural but rather general conditions, the Evans functions
for τ > 0 converge uniformly to the Evans function with τ = 0 in bounded
regions of λ ∈ Ω. By analiticity and uniform convergence, the non-vanishing
property of D0 persists for Dτ for each 0 < τ � 1 sufficiently small. Next,
by continuity in τ of eigenvalues and by Lemma 3.9 and Lemma 3.11, we
rule out possible crossing of eigenvalues across the imaginary axis as τ varies
within the full set (0, τm), establishing point spectral stability for all values
of τ under consideration.

Therefore, let us consider the family of first order systems (3.10) for λ ∈ Ω
and with τ varying in a compact set V := [0, τ1], with τ1 < τm. First, we
observe that the coefficients Aτ (·, λ) are functions of (λ, τ) ∈ Ω × V into
L∞(R;R2×2) (the coefficients are bounded), they are analytic in λ ∈ Ω
(second order polynomial in λ), and continuous in τ ∈ V (this follows from
the continuity of the coefficients and of the velocity c in τ). Moreover, in
view of Theorem 1.1(c),

c(τ) = c0 + ζ(τ), ζ(τ) = o(1) as τ → 0+.

Here c0 is, of course, the speed of the traveling wave for the parabolic Allen-
Cahn equation (or Nagumo front). Also, notice that from the expressions
of the coefficients (3.25) we may write

Aτ
±(λ) = A0

±(λ) + (1− c2τ)−1Qτ
±(λ),

where the residual is

Qτ
±(λ) =

(
0 0

τλ2 + τ(c2 − a(x))λ+ cτa′(x) cτ(cc0 − a(x)− 2λ)− (c− c0)

)
= (λ2 + λ+ 1)O(τ) +O(|ζ(τ)|),
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so that
|Qτ
±(λ)| ≤ O(τ + |ζ(τ)|)(1 + |λ|+ |λ|2).

Thanks to exponential decay of the wave (3.3) we reckon that the coefficients
Aτ (·, λ) approach exponentially to its limit coefficients Aτ

±(λ) as x→ ±∞:

|Aτ (x, λ)−Aτ
±(λ)| ≤ Ce−ν|x|, for |x| → +∞,

uniformly on compact subsets of (λ, τ) ∈ Ω×V. In addition, by Lemma 3.13
the limiting coefficient matrices are hyperbolic with agreeing dimensions of
their unstable eigenspaces.

Finally, the geometric separation assumption of Gardner and Zumbrun
[15] (namely, that the limits of the spaces Sτ± and Uτ± along λ-rays, λ = rλ0
as r → 0+, λ0 ∈ Ω, are continuous) holds trivially in our case as the matrices
Aτ
±(0) are hyperbolic and the eigenspaces are one-dimensional with uniform

spectral separation.
To sum up, we have verified that assumptions (A0)-(A1)-(A2) in [46,

p.894] are satisfied, and the systems (3.10) belong to the generic class of
equations for which there is convergence of approximate flows [46, Section
2]. We need to verify one final hypothesis to apply [46, Proposition 2.4].

Lemma 3.16. Let (λ, τ) ∈ Ω × V. Then the stable eigenvector w+(λ) of
Aτ

+(λ) and the unstable eigenvector w−(λ) of Aτ
−(λ) converge as τ → 0+

with rate η(τ) := O(τ + |ζ(τ)|) to the stable and unstable eigenvectors of
A0

+(λ) and A0
−(λ), respectively. Moreover, for all τ ∈ V,

|(Aτ −Aτ
±)− (A0 −A0

±)| ≤ C1η(τ)e−ν̃|x|,

as x→ ±∞ for some constants C1, ν̃ > 0, uniformly in compact sets of Ω.

Proof. Let γ be a closed rectifiable contour enclosing the stable eigenvalue
of Aτ

±. By continuity on τ , we may as well select γ such that it encloses the
stable eigenvalue of Aτ

± for each τ > 0 sufficiently small. By compactness
of γ̄ we have a uniform resolvent bound of the form

|(A0
+ − z)−1| ≤ C, z ∈ γ.

Thus, expanding,

(Aτ
+ − z)−1 = (A0

+ − z + (1− c2τ)−1Qτ
+)−1

= ((A0
+ − z)(I + (A0

+ − z)−1(1− c2τ)−1Qτ
+))−1

= (I + (A0
+ − z)−1(1− c2τ)−1Qτ

+)−1(A0
+ − z)−1

= (I +O(|η(τ)|))(A0
+ − z)−1.

Here η(τ) depends on |A0
+|. Therefore, the (one-dimensional) projection Pτ

+

onto Sτ+ satisfies the bound

|Pτ
+(λ)−P0

+(λ)| =
∣∣∣∣ 1

2πi

˛
γ
(z −Aτ

+(λ))−1 dz − 1

2πi

˛
γ
(z −A0

+(λ))−1 dz

∣∣∣∣
≤ 1

2πi

˛
γ
O(|η(τ)|)|(A0

+ − z)−1| dz ≤ C|η(τ)|,
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that is, Pτ
+(λ) = P0

+(λ) + O(|η(τ)|), showing that w+(λ) → w0
+(λ) as

τ → 0+ with rate |η(τ)| in Ω-neighborhoods of λ. The same applies to the
unstable eigenvectors. The second assertion is an immediate consequence of
the exponential decay (3.3) of the coefficients. �

3.7. Resolvent estimates and proof of Theorem 3.2. In order to give
a complete proof of Theorem 3.2, we establish a general resolvent estimates,
based on an approximate diagonalization technique introduced by Mascia
and Zumbrun [33].

3.7.1. Resolvent estimates. Given two real symmetrix matrices A,B ∈ Rn×n,
a real matrix valued function x 7→ C(x) defined for any x ∈ R, and λ ∈ C,
let us consider the resolvent equation

Awx + (λB + C(x))w = f , f ∈ Hm(R;Cn), (3.43)

for the unknown w ∈ Hm(R;Cn). Here, the concern is to show that, for

appropriate choices of sets Ω̃ ⊂ C, there exists some constant M such that
for any solution w = w(·, λ) to (3.43) with λ ∈ Ω̃, there holds

|w(·, λ)|Hm ≤M |f |Hm . (3.44)

The first classical result, consequence of the underlying hyperbolic prob-
lem from which (3.43) arises, provides an estimate for sets Ω̃ composed by
numbers with large positive real part.

Proposition 3.17. Given m ∈ N, let B be positive definite and C = C(x)
uniformly bounded in R together with its derivatives of order j = 1, . . . ,m.
Then there exist L > 0 and M = M(m,L) such that for any λ with Reλ ≥ L
there holds

|w(·, λ)|Hm ≤ M

Reλ
|f |Hm . (3.45)

Proof. As a first step, let us consider the case of L2, i.e. m = 0. We recall
that if A is a constant real symmetrix matrix then

w∗Awx = 1
2 (w∗Aw)x .

Taking the scalar product of (3.43) against w∗ and integrating in R, we get

λ〈w,Bw〉L2 + 〈w,C(x)w〉L2 = 〈w, f〉L2 .

Since B is symmetric, the term 〈w,Bw〉L2 is real; thus, taking the real part,
we infer that there exists some constant C > 0 such that

(Reλ)〈w,Bw〉L2 ≤ C
(
|w|2L2 + |f |2L2

)
having used the standard Young inequality. As a final step, under the hy-
pothesis that B is positive definite, it is possible to absorb the term with w
at the right-hand side into the corresponding term in the left-hand side and
deduce (3.45) with m = 0.
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Next, we may proceed inductively, assuming estimate (3.45) for any j =
0, 1, . . . ,m − 1. By differentiation of (3.43), we deduce that the function
z := dmw/dxm solves

Azx + (λB + C(x))z =
dmf

dxm
−
m−1∑
j=0

(
m

j

)
dm−jC

dxm−j
djw

dxj
. (3.46)

Since the coefficients of the derivatives of C are assumed to be bounded, as
a consequence of (3.45) with m = 0, we infer the estimate

|z(·, λ)|L2 ≤
C

Re λ

∣∣∣∣ dmf

dxm

∣∣∣∣
L2

+
m−1∑
j=0

∣∣∣∣djwdxj
∣∣∣∣
L2


for some C > 0. Then, the inductive assumption provides the conclusion.

�

Next, we turn to the problem of proving (3.44) for sets Ω̃ contained in
the half plane {Reλ ≥ 0} and with sufficiently large modulus. Of course,
additional restrictions on the matrices A,B,C are needed. Our approach is
based on the approximate diagonalization procedure presented in [33, p.817
and following]. Specifically, let us consider a change of variable w = T(x, λ)v
with T(x, λ) in the form

T(x, λ) = T0(I + λ−1T1(x))

with T0 and T1 = T1(x) to be determined. Plugging into (3.43) and as-
suming A invertible, we deduce the equation solved by the new unknown
v

vx + Ã(x, λ)v = f̃

where

Ã(x, λ) = (I + λ−1T1)
−1
{
λT0

−1A−1BT0 + T0
−1A−1

(
BT0T1 + CT0

)
+ λ−1

(
T0
−1A−1CT0T1 + T1

′)}
f̃ = (I + λ−1T1(x))−1T0

−1A−1f

The matrix Ã can be represented as

Ã(x, λ) = λD0 + D1 + o(1) λ→∞
where the matrices D0 and D1 are given by

D0 := T0
−1A−1BT0, D1 := [D0,T1(x)] + T0

−1A−1C(x)T0, (3.47)

and [A,B] = AB −BA. If the matrix A−1B is diagonalizable, T0 can be
chosen so that D0 is diagonal and T1 = T1(x) is such that the matrix D1

is diagonal (see [33, Lemma 4.6]). Moreover, since [D0,T] is equal to zero
for any diagonal matrix, the term T1 can be chosen with zero entries in
the principal diagonal. With these choices, the special form of the system
satisfied by v can be used to obtain a different form of estimate (3.44).
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Proposition 3.18. Given m ∈ N, let the matrices A B and C be such that
A is invertible, A−1B is diagonalizable in R, and C = C(x) is uniformly
bounded in R together with all its derivatives of order j = 1, . . . ,m. Let
the elements of D0 and D1, defined in (3.47), be denoted by µk0 and µk1,
k = 1, . . . , n. If µk0 and Reµk1 have the same sign for any k and

min
k=1,...,n

inf
x∈R
|Reµk1| > 0, (3.48)

then there exist R > 0 and M such that the estimate (3.44) holds for any

λ ∈ Ω̃R := {|λ| ≥ R, Reλ ≥ 0}.

Proof. As in the proof of Proposition 3.17, we initially consider the L2-case,
i.e. m = 0. With the change of variable v = T(x, λ)w where T has been
chosen following the above procedure, we end up with a system for the
unknown v, whose k−th component solves

dvk
dx

+
(
λµk0 + µk1(x)

)
vk = o(1)vk + f̃k.

Taking the scalar product against v̄k, integrating in R, and taking its real
part, we deduceˆ

R

(
Reλµk0 + Re µk1(x)

)
|vk|2 dx = Re

ˆ
R

(o(1)vk + f̃k)v̄k dx.

For any λ with positive real part, since µk0 and Re µk1(x) have the same sign,
we obtainˆ

R

(
Reλ |µk0|+ |Re µk1(x)|

)
|vk|2 dx ≤ o(1)|v|2L2 + C|f̃ |2L2

for some C > 0 and then, as a consequence of (3.48),

C0|v|2L2 ≤ o(1)|v|2
L2

+ C|f̃ |2L2

for some C0 > 0. For |λ| sufficiently large, the term o(1) can be controlled
by C0, so that we end up with

|v|2L2 ≤ C|f̃ |2L2 .

Finally, since C is uniformly bounded, also T and T1 are, and the estimate
can be brought back to the original variable w.

The case of m ≥ 1 follows by differentiating (3.43) and proceeding as in
the proof of Proposition 3.17. �

In the case at hand, system (3.43) is two-dimensional and defined by the
matrices A, B and C of (3.7). Then, the matrix

A−1B =
1

1− c2τ

(
−cτ τ

1 −cτ

)
has real eigenvalues µ±0 = ±

√
τ(1∓ c

√
τ) and

T0
−1A−1BT0 = D0 = diag (µ−0 , µ

+
0 ), where T0 =

(
−
√
τ
√
τ

1 1

)
.
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Then, straightforward computations give

T0
−1A−1C(x)T0 =

1

2
√
τ

(
−(1− τa)/(1− c

√
τ) −(1 + τa)/(1− c

√
τ)

(1 + τa)/(1 + c
√
τ) (1− τa)/(1 + c

√
τ)

)
,

(where a = a(x)) so that

D1 = diag (µ−1 , µ
+
1 ) =

1

2
√
τ

diag

(
− 1− τa

1− c
√
τ
,

1− τa
1 + c

√
τ

)
.

Thus, if the function a = a(x) is such that sup a < 1/τ , then assumption

of Proposition 3.18 holds and the resolvent estimate (3.44) holds in Ω̃R :=
{|λ| ≥ R, Re λ ≥ 0} for R sufficiently large.

3.7.2. Proof of Theorem 3.2. In view of Proposition 3.18, take R > 0 suffi-
ciently large so that σpt∩Ω ⊂ {|λ| ≤ R}, and consider the following compact
subset of Ω:

ΩR := {λ ∈ C : |λ| ≤ R, Re λ ≥ −1
2χ0}.

By Lemma 3.16, systems (3.10) satisfy the hypotheses of [46, Proposition
2.4]. Hence, for each τ ∈ V and in a ΩR-neighborhood of λ, the local
Evans functions Dτ (λ) converge uniformly to D0(λ) in a (possible smaller)
neighborhood of λ as τ → 0+ with rate |Dτ (·)−D0(·)| = O(η(τ)) = O(τ +
|ζ(τ)|)→ 0.

By point spectral stability for τ = 0 (Corollary 3.15), and by analiticity
and uniform convergence, we conclude that Dτ (λ) 6= 0 for λ ∈ ΩR, Re λ ≥ 0,
except only at λ = 0, and for each 0 ≤ τ � 1 sufficiently small. Hence
there exists τ0 ∈ (0, τm) such that point spectral stability holds for each
τ ∈ (0, τ0). Finally, noticing that ΩR contains only isolated eigenvalues with
finite multiplicity, and by continuous dependence of eigenvalues of Fredholm
operators in Banach spaces with respect to its coefficients (cf. [39]), the
eigenvalues λ = λ(τ) ∈ σpt ∩ ΩR are continuous functions of τ ∈ (0, τm). In
view of Lemma 3.11, such eigenvalues may cross the imaginary axis towards
the unstable half plane only through the origin. But λ = 0 ∈ σpt is a simple
eigenvalue for each τ ∈ (0, τm) as proved in Lemma 3.9. Hence all point
spectrum remains in the stable half plane Re λ < 0 for all τ ∈ (0, τm). This
proves the Theorem.

4. Decaying semigroup and nonlinear stability

In this Section, we establish the conditions for the generation of a C0-
semigroup of solutions operators for the linearization around the wave, as
well as for its asymptotic decaying properties. We also present the proof of
nonlinear (orbital) stability, which uses such information in a key way.

4.1. Generation of the semigroup. We are now ready to establish that
each operator Lτ generates a C0 semigroup in L2(R;C2).
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Lemma 4.1. For each τ ∈ (0, τm), the operator Lτ : D = H2(R;C2) →
L2(R;C2) is the infinitesimal generator of a C0-semigroup of quasi-contractions
{S(t)}t≥0, satisfying

‖S(t)‖ ≤ eωt, (4.1)

for some ω = ω(τ) ∈ R, all t ≥ 0.

Here ‖ · ‖ denotes the operator norm.

Proof. First, we note that the domain D = H2(R;C2) is dense in L2(R;C2).
Now, for each u = (u, v)> ∈ D:

Re 〈u,Lτu〉L2 = −Re 〈u,B−1(Aux + C(x)u)〉L2

= −Re 〈u,B−1Aux〉L2 − Re 〈u,B−1C(x)u〉L2

= −
ˆ
R
a(x)|u|2 dx+ τ−1|v|2L2

≤ sup
R
|a(x)||u|2L2 + τ−1|v|2L2 ≤ ω|u|2L2 ,

with ω = max{sup |a(x)|, τ−1} > 0.
Now, thanks to the resolvent estimate (3.44) for any |λ| ≥ R, Re λ ≥ 0

with R sufficiently large, there are no L2 solutions to Lτu = λ0u for λ0 ∈ R,
λ0 > ω and sufficiently large. Thus, for each λ0 > ω sufficiently large L−λ0
is onto. A direct application of the classical Hille-Yosida theorem [10, 44]
yields the result together with the estimate (4.1). �

As a consequence of the semigroup properties we have that

d

dt
(S(t)u) = S(t)Lτu = LτS(t)u,

for all u = (u, v)> ∈ D = H2(R;C2).
Naturally, the growth rate ω of estimate (4.1) is not optimal. Actually,

ω → +∞ as τ → 0+, due to the fact that, in the limit, the operator Lτ is not
defined and becomes singular. The optimal growth rate in the appropriate
subspace will be provided by spectral stability. The significance of Lemma
4.1 is simply that, for each fixed τ ∈ (0, τm), the operator Lτ is the generator
of a C0-semigroup. Let us recall the growth bound for a semigroup S(t):

ω0 = inf{ω ∈ R : lim
t→+∞

e−ωt‖S(t)‖ exists}.

We say a semigroup is uniformly (exponentially) stable whenever ω0 < 0.
Let L be the infinitesimal generator of the semigroup S(t). Its spectral
bound is defined as

s(L) = sup{Re λ : λ ∈ σ(L)}.

Since the spectral mapping theorem — namely, that, σ(S(t))\{0} = etσ(L) —
is not true in general for C0-semigroups (cf. [10]), for stability purposes we
rely on the Gearhart-Prüss theorem [16, 47], which restricts our attention
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to semigroups on Hilbert spaces (see also [8, 10]). It states that any C0-
semigroup {S(t)}t≥0 on a Hilbert space H is uniformly exponentially stable
if and only if its generator satisfies s(L) < 0, and the following resolvent
estimate holds:

sup
Re λ>0

‖(L − λ)−1‖ < +∞.

This task is already substantially completed thanks to the general resolvent
estimates of the previous Section.

It is known (see Kato [30, Remark 6.23, p.184]) that if λ ∈ C is an
eigenvalue of a closed operator L : D ⊂ H → H then λ is an eigenvalue
of L∗ (formal adjoint) with the same geometric and algebraic multiplicities.
Also, since H2 and L2 are reflexive Hilbert spaces, L : D = H2 → L2 has a
formal adjoint which is also densely defined and closed. Moreover, L∗∗ = L
(cf. [30, Theorem 5.29, p.168]). Upon these observations we immediately
have the following

Lemma 4.2. λ = 0 is an isolated, simple eigenvalue of the formal adjoint

(Lτ )∗ : D(Lτ ) = H2(R;C2)→ L2(R;C2),

and there exists an eigenfunction (Ψ,Φ)> ∈ D(Lτ ) such that (Lτ )∗(Ψ,Φ)> =
0.

Let us denote the inner product:

Θ := 〈(Ux, Vx), (Ψ,Φ)〉L2 =

ˆ +∞

−∞

(
Ux
Vx

)∗(
Ψ
Φ

)
dx.

It is not hard to see that Θ 6= 0. Indeed, suppose by contradiction that
Θ = 0. Then (Ψ,Φ)> ∈ (kerLτ )⊥ = range(Lτ ∗). Hence, there exists
0 6= (u, v)> ∈ D(Lτ ) = H2 such that (Lτ )∗(u, v)> = (Ψ,Φ)>. Thus,
((Lτ )∗)2(u, v)> = 0, which is a contradiction with λ = 0 being a simple

eigenvalue of (Lτ )∗. Thus, we may define the Hilbert space X̃ ⊂ L2(R;C2)
as the range of the spectral projection,

P
(
u
v

)
:=

(
u
v

)
−Θ−1〈(u, v), (Ψ,Φ)〉L2

(
Ux
Vx

)
.

In this fashion we project out the eigenspace spanned by the single eigenfunc-
tion (Ux, Vx)>. Outside this eigenspace, the semigroup decays exponentially.

4.2. Linear decay rates. We now observe that on a reflexive Banach space,
weak and weak∗ topologies coincide, and therefore the family of dual opera-
tors {S(t)∗}t≥0, consisting of all the formal adjoints in L2 is a C0-semigroup
as well (cf. [10, p.44]). Moreover, the infinitesimal generator of this semi-
group is simply (Lτ )∗ (see [44, Corollary 10.6]). By semigroup properties
we readily have

S(t)

(
Ux
Vx

)
=

(
Ux
Vx

)
, S(t)∗

(
Ψ
Φ

)
=

(
Ψ
Φ

)
.
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As a result of these properties and the definition of the projector it is easy
to verify that

S(t)P = PS(t).

Hence X̃ is an S(t)-invariant closed (Hilbert) subspace of H2(R;C2). So we
define the domain

D̃ := {u ∈ D ∩ X̃ : Lτu ∈ X̃}
and the operator

L̃τ : D̃ ⊂ X̃ → X̃,

L̃τu := Lτu, u ∈ D̃,
as the restriction of Lτ on X̃. Therefore, L̃τ is a closed, densely defined
operator on the Hilbert space X̃. Moreover, we observe that 0 6= (Ux, Vx)> ∈
kerP. Hence, λ = 0 /∈ σpt(L̃τ ). As a consequence of point spectral stability
of Lτ we readily obtain

σ(L̃τ ) ⊂ {λ ∈ C : Re λ < 0},

and hence the spectral bound of L̃τ is strictly negative, s(L̃τ ) < 0. By the
above observations, we reckon the following

Lemma 4.3. The family of operators {S̃(t)}t≥0, S̃(t) : X̃ → X̃, defined as

S̃(t)u := S(t)Pu, u ∈ X̃, t ≥ 0,

is a C0-semigroup in the Hilbert space X̃ with infinitesimal generator L̃τ .

Proof. The semigroup properties are inherited from those of S(t) in L2(R;C2).

That L̃τ is the infinitesimal generator follows from Corollary in Section 2.2
of [10], p.61. �

Finally, we apply Gearhart-Prüss theorem.

Proposition 4.4 (Uniform exponential stability). For each τ ∈ (0, τm)
there exist uniform constants C ≥ 1 and θ > 0 such that

|S̃(t)u|L2 ≤ Ce−θt|u|L2 , u ∈ X̃, t ≥ 0. (4.2)

Proof. In view of the resolvent estimates (3.44), we can find a radius suffi-
ciently large such that, if |λ| ≥ R and Re λ ≥ 0, then

‖(Lτ − λ)−1‖L2→L2 ≤ C

for some uniform C > 0. Since L̃τ = Lτ on the subspace X̃ ⊂ L2(R;C2),

the same estimate applies to L̃τ outside that half circle. Inside, however,
thanks to (strict) point spectral stability of the operator restricted to X̃,

the resolvent of L̃τ is uniformly bounded inside the intersection of any ball
of finite radius and Re λ ≥ 0. We conclude that

sup
Re λ>0

‖(L̃τ − λ)−1‖X̃→X̃ ≤ C,
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for some uniform C > 0. In addition, s(L̃τ ) < 0. Thus, a direct application

of Gearhart-Prüss theorem to the operator L̃τ on the Hilbert space X̃ implies

that the semigroup S̃(t) is uniformly exponentially stable, and that estimate
(4.2) holds for some C ≥ 1 and some θ > 0. �

This result establishes the decaying properties of the linearized operator
around the wave, that is, linear stability. The latter can be summarized in
the following

Theorem 4.5 (Linear stability). There exists a projection operator Q =
I − P with one-dimensional range span{(Ux, Vx)>} ⊂ L2(R;C2) such that
for any t > 0

S(t)Q = QS(t) = Q and ‖S(t)(I −Q)‖ ≤ C e−θt

for some C, θ > 0.

4.3. Nonlinear stability. The proof of Theorem 1.2 on nonlinear orbital
stability of the traveling fronts for (1.5) is a consequence of the linear de-
cay estimates combined in a smart way with the standard Duhamel rep-
resentation formula. The main difficulty stems in the fact that a single
traveling front is not isolated as a stationary solution and it belongs to a
one-dimensional manifold generated by applying an arbitrary translation in
space. This is a common feature of many autonomous evolutive PDEs when
considered in the whole space as a consequence of the underlying translation
invariance of the corresponding initial value problem.

At the linear level, such feature of the problem is expressed by the mem-
bership of λ = 0 to the spectrum of the linearized operator and by the
presence of a time-independent projection term into the representation of
the solution semigroup. Converting such structure at the nonlinear level
amounts in identifying a nonlinear projection operator describing the con-
vergence of a given perturbed initial datum to a translate of the original
front. A possible approach is based on the application of the Implicit Func-
tion Theorem in Banach spaces and it has been used by Sattinger in the
classical paper [51]. For the sake of clarity, we first present here a restyled
version of this approach in the framework of Hilbert spaces, as needed in
our case, and then apply it to prove Theorem 1.2.

Let W be a Hilbert space with norm | · |W and let Br(W ) be the open
ball with center W and radius r. Let F be a smooth function from D ⊂ W
into W such that F (W ) = 0 for some W ∈ D. Additionally, let us assume
that, for some r > 0, there holds

{W ∈ W : F (W ) = 0} ∩ {|W −W |W < r} = φ(I)

for some smooth function φ : I → W, I ⊂ R an open interval. Without
loss of generality, we may assume 0 ∈ I and φ(0) = W .

Let W = W (t;W0) be the solution to the abstract Cauchy problem

dW

dt
= F (W ), W (0) = W0 ∈ D. (4.3)
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By assumption, there holds W (t;φ(δ)) = φ(δ) for any t.
The linearized problem at φ(δ) is

dZ

dt
= dF (φ(δ))Z, Z(0) = Z0 ∈ D. (4.4)

Differentiating with respect to δ the relation F (φ(δ)) = 0 for δ ∈ I, we infer

dF (φ(δ))φ′(δ) = 0,

showing that 0 ∈ σ
(
dF (φ(δ))

)
and that r(δ) := φ′(δ) is a right eigenvector of

dF (φ(δ)). Let us denote by `(δ) the unique left eigenvector of dF (φ(δ)) such
that `(δ) · r(δ) = 1. Equivalently, `(δ) can be defined as the unique element
in the kernel of the adjoint operator dF (φ(δ))∗ satisfying the normalization
condition `(δ) · r(δ) = 1. We also set for δ ∈ I

P (δ) := r(δ)⊗ `(δ), Q(δ) := I − P (δ).

In particular, there hold

dF (φ)P = P dF (φ) = 0, and dF (φ)Q = QdF (φ) = dF (φ),

where the dependency on δ has been omitted for shortness.

We assume the following hypotheses.

H1. There exist C, θ > 0 such that the solution Z = Z(t;Z0, δ) to (4.4)
is such that

|Q(δ)Z(t;Z0, δ)| ≤ Ce−θt|Q(δ)Z0| (4.5)

for any Z0 ∈ D.

H2. The function φ is differentiable at δ = 0 and there exist C, δ0, γ > 0
such that

|φ(δ)− φ(0)− φ′(0)δ|W ≤ Cδ
1+γ , (4.6)

for |δ| < δ0.

H3. There exist C,M, δ0, γ > 0 such that the function F is differentiable
at φ(δ) for any δ ∈ (−δ0, δ0) and

|F (φ(δ) +W )− F (φ(δ))− dF (φ(δ))W |W ≤ C|W |
1+γ
W , (4.7)

for |δ| < δ0 and |W |W ≤M .

Theorem 4.6. Assume that hypotheses H1, H2 and H3 hold. Then there
exists ε > 0 such that for any W0 ∈ Bε(W̄ ) there exists δ ∈ I for which the
solution W (t;W0) to (4.3) satisfies

|W (t;W0)− φ(δ)|W ≤ C|W0 −W |W e−θ t (4.8)

for some C, θ > 0

Proof. Given W0 ∈ W, let w0 ∈ W be such that W0 = W + εw0 where
ε := |W0 −W |W and let the solution W to (4.3) be decomposed as

W = φ(εη) + εw
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with η = η(ε) to be determined later, where the function w solves

dw

dt
= dF (φ(εη))w + εγR(η, w; ε), w(0) = w0 − φ′(0)η − εγψ(η; ε) (4.9)

where

R(η, w; ε) := ε−1−γ {F (φ(εη) + rw)− F (φ(εη))− dF (φ(εη))rw} ,
ψ(η; ε) := ε−1−γ

{
φ(εη)− φ(0)− φ′(0)εη

}
.

Decomposing w as

w = αφ′(εη) + ω, where α := `(εη) · w, ω := Q(εη)w,

and setting

S(η, α, ω; ε) := R(η, α φ′(εη) + ω; ε),

the unknowns α and ω solve
dα

dt
= εγ `(εη) · S(η, α, ω; ε),

dω

dt
= dF (φ(εη))ω + εγQ(εη)S(η, α, ω; ε),

(4.10)

with initial conditions{
α(0) = `(εη) ·

(
w0 − φ′(0)η − εγψ(η; ε)

)
,

ω(0) = Q(εη)
(
w0 − φ′(0)η − εγψ(η; ε)

)
.

(4.11)

Therefore, the following relations hold

α(t) = ` ·
(
w0 − φ′(0)η

)
− εγ

{
` · ψ −

ˆ t

0
` · S dτ

}
,

ω(t) = edF (φ)tQ
(
w0 − φ′(0)η

)
− εγ

{
edF (φ)tQψ −

ˆ t

0
edF (φ)(t−τ)QS dτ

}
.

(4.12)

where ` = `(εη), Q = Q(εη), φ = φ(εη), ψ = ψ(η; ε) and S = S(η, α, ω; ε).
Next, we require the value η = η(ε) to be such that α(+∞) = 0 that is

` ·
(
−w0 + φ′(0)η

)
+ εγ

{
` · ψ −

ˆ +∞

0
` · S dτ

}
= 0.

Thus, the triple (η, α, ω) has to be such that

F(η, α, ω; ε) + εγG(η, α, ω; ε) = 0 (4.13)

where

F =
(
` ·
(
−w0 + φ′(0)η

)
, α, ω − edF (φ)tQ

(
w0 − φ′(0)η

))
G =

(
` · ψ −

ˆ +∞

0
` · S dτ,

ˆ +∞

t
` · S dτ, edF (φ)tQψ −

ˆ t

0
edF (φ)(t−τ)QS dτ

)
.

We want to show that, for small ε, the implicit relation (4.13) defines a
function ε 7→ (η, α, ω). Prospecting the application the Implicit function
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theorem in Banach spaces (among others, see [4]), let us introduce an ap-
propriate functional setting. Given θ > 0 and a Banach space Y with norm
| · |Y , set

C0
θ (R+;Y) :=

{
f ∈ C0(R+;Y) : sup

t>0
eθ t|f(t)|Y < +∞

}
.

Then, let us consider the Banach space X = R × C0
θ (R+;R) × C0

θ (R+;W)
with norm

‖(η, α, ω)‖
X

:= |η|+ sup
t>0

eθ t
(
|α(t)|+ |ω(t)|W

)
.

Choosing θ as in (4.5), for any M > 0, the function F maps the set X ×
(−ε, ε) into X ∩ {|η| ≤M} for ε sufficiently small, since

eθ t|edF (φ)tQ
(
w0 − φ′(0)η

)
|W ≤ C

∣∣Q(w0 − φ′(0)η
)∣∣

W
< +∞.

Moreover, as a consequence of the estimate

eθ t
ˆ +∞

t
|S(η, α(τ), ω(τ); r)|W dτ ≤ C eθ t

ˆ +∞

t
|α(τ)φ′(εη) + ω(τ)|1+γW dτ

≤ C eθ t
ˆ +∞

t
e−(1+γ)θτ

{
eθτ (|α(τ)|+ |ω(τ)|n)

}1+γ
dτ

≤ C e−γθ t ‖(0, α, ω)‖2
X
,

also the function εγG maps X × (−ε, ε) into X ∩ {|η| ≤ M} for any M > 0
and for ε sufficiently small. Moreover, the smoothness of the functions
`,Q, ψ, S with respect to their arguments guarantees that the map F + εγG
is differentiable.

For r = 0, there holds F(η, α, ω; 0) =
(
`(0) · w0 − η, α, ω −Q(0)w0

)
, thus

(4.13) is satisfied if and only if

η = `(0) · w0, α = 0, ω = Q(0)w0.

In order to apply Implicit Function Theorem, it is sufficient to observe that

∂ (F + εγG)

∂(η, α, ω)

∣∣∣
ε=0

=
∂F

∂(η, α, ω)

∣∣∣
ε=0

=

1 0 0
0 I 0
0 0 I


since

∂

∂η
`(εη)

∣∣∣
ε=0

=
∂

∂η
Q(εη)

∣∣∣
ε=0

= 0.

Thus, in a neighborhood of ε = 0, there exist a smooth function Ξ with
values in a neighborhood of (`(0) · w0, 0, Q(0)w0) ∈ X such that

F + εG = 0 if and only if (η, α, ω) = Ξ(r). (4.14)

The function Ξ is locally bounded, ‖Ξ(r)‖X ≤ C for ε small, and thus

|w(t)| = |α(t)φ′(εη) + ω(t)| ≤ C e−θ t.
Recalling that W = φ(εη) + εw, the decay estimate (4.8) follows. �
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With Theorem 4.6 at hand, we are able to provide the proof of Theorem
1.2. For the reader’s convenience, let us briefly retrace the path toward
nonlinear stability. The traveling wave (U, V ) propagates with a specific
speed c. Thus, considering a reference frame moving with such speed, we
obtain the nonlinear system (3.4) for the perturbation variables, for which
the Cauchy problem can be written as

∂t

(
u
v

)
= −B−1

(
A ∂x

(
u
v

)
+

(
f(U)− f(u+ U)

v

))
,(

u
v

)
(0) =

(
u0 − U
v0 − V

) (4.15)

where A and B are defined in (3.7), and (u0, v0) is the (unperturbed) initial
data of Theorem 1.2. Problem (4.15) corresponds to (4.3) in the general
framework previously considered in Theorem 4.6. Therefore, we are able to
make the following identifications:

1. the Hilbert space W is H1(R;R2); the steady state W is W = 0, and
the function φ is defined by φ(δ) := (U, V )(· + δ) − (U, V )(·) with δ ∈ R;
observe that for each δ ∈ R fixed,

|φ(δ)|2H1 =

ˆ
R
|(U, V )(ζ + δ)− (U, V )(ζ)|2 dζ +

ˆ
R
|(Ux, Vx)(ζ + δ)− (Ux, Vx)(ζ)|2 dζ

=

ˆ
R
|(Ux, Vx)(θ̂ζ)|2δ2 dζ +

ˆ
R
|(Uxx, Vxx)(θ̂ζ)|2δ2 dζ

≤ Cδ|(Ux, Vx)|2H1 ,

for some θ̂ ∈ (0, δ), showing that φ(δ) ∈ W.
2. the linearized equation (corresponding to the one in (4.4)) is

∂t

(
u
v

)
= −B−1

(
A ∂x + C(x)

)(
u
v

)
;

3. the remainder, for which the estimate (4.7) has to be proved, is

(
u
v

)
7→

(
R(U ;u)

0

)
:=

(
f(U + u)− f(U)− f ′(U)u

0

)
.

Assuming f ∈ C3, we next show that hypotheses H2 and H3 are verified
for the function space W = H1(R;R2).
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First we verify (4.6). Denoting by Φ the couple (U, V ), there holds

|φ(δ)− φ(0)− φ′(0)δ|2L2 =

ˆ
R
|Φ(x+ δ)− Φ(x)− Φx(x)δ|2 dx

= δ2
ˆ
R

∣∣∣∣ˆ 1

0
(Φx(x+ θδ)− Φx(x)) dθ

∣∣∣∣2 dx
≤ δ2

ˆ
R

ˆ 1

0
|Φx(x+ θδ)− Φx(x)|2 dθ dx

≤ δ4
ˆ
R

ˆ 1

0

ˆ 1

0
|Φxx|2dη dθ dx,

and thus
|φ(δ)− φ(0)− φ′(0)δ|L2 ≤ δ2|Φxx|L2 .

A similar estimate can be obtained by differentiating with respect to x, so
that

|φ(δ)− φ(0)− φ′(0)δ|H1 ≤ δ2|Φxx|H1 .

To prove estimate (4.7), we first observe that

R(U ;u) =

{ˆ 1

0
f ′′(U + θu)(1− θ) dθ

}
u2;

∂xR(U ;u) =

{ˆ 1

0
f ′′′(U + θu)θ(1− θ) dθ

}
u2 ∂xu

+ 2

{ˆ 1

0
f ′′(U + θu)(1− θ) dθ

}
u ∂xu.

Thus, for u ∈ H1(R), taking into account the embedding H1(R) ⊂ L∞(R),
there holds

|R(U ;u)|
L2 ≤ C |u|2L2

, |∂xR(U ;u)|
L2 ≤ C |u|2H1

,

where the constant C depends on f, U and the L∞−norm of u, so that, in
particular, estimate (4.7) holds with γ = 1.

Finally, thanks to Theorem 4.5, also hypothesis H1 is verified, so that
Theorem 4.6 applies and Theorem 1.2 follows.

5. Numerical experiments

In this Section, we present some numerical experiment on system (1.5),
based on the observation that it can be rewritten as the weakly coupled
semilinear hyperbolic system (a reactive version of the Goldstein–Kac model
for correlated random walk):{

∂tu− − λ∂xu− = 1
2 τ
−1(−u− + u+) + 1

2f(u+ + u−),

∂tu+ + λ∂xu+ = 1
2τ
−1(u− − u+) + 1

2f(u+ + u−),
(5.1)

where the coefficient λ and the unknowns u± are given by

λ := 1/
√
τ , u− := 1

2

(
u+ λ−1v

)
, u+ := 1

2

(
u− λ−1v

)
.
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Inverting the equality, we infer the relations u = u++u− and v = λ(u−−u+).
Fixed the mesh size dx > 0, we discretize the space by approximating

the first order space derivatives in an upwind fashion. Thus, setting rj ≈
u−(j dx, t) and sj ≈ u+(j dx, t), we obtain

drj
dt

=
λ

dx
(rj+1 − rj) +

1

2τ
(−rj + sj) +

1

2
f(rj + sj),

dsj
dt

= − λ

dx
(sj − sj−1) +

1

2τ
(rj − sj) +

1

2
f(rj + sj).

(5.2)

Let us stress that, setting uj := rj + sj and vj := λ(rj − sj), we infer a
semi-discrete version of (1.5)

duj
dt

=
1

2
λ dx

uj+1 − 2uj + uj−1

dx2 +
vj+1 − vj−1

2dx
+ f(uj),

dvj
dt

=
1

2
λ dx

vj+1 − 2vj + vj−1

dx2 +
1

τ

(
uj+1 − uj−1

2dx
− vj

)
,

which formally corresponds to{
ut − vx = ν uxxu+ f(u),

τvt − ux = τν vxx − v,
where ν := 1

2λ dx,

so that we expect the appearance of a numerical viscosity with strength
measured by the parameter λ.

Next, fixed the time step dt > 0, we discretize the time derivative in (5.2)
by means of an implicit-explicit approach, leaded by a simplicity criterion
suggesting to discretize implicitly only the linear terms

rn+1
j − rnj

dt
=

λ

dx

(
rn+1
j+1 − r

n+1
j

)
+

1

2τ

(
−rn+1

j + sn+1
j

)
+

1

2
f(rnj + snj ),

sn+1
j − snj

dt
= − λ

dx

(
sn+1
j − sn+1

j−1
)

+
1

2τ

(
rn+1
j − sn+1

j

)
+

1

2
f(rnj + snj ).

Fully implicit schemes have been tested with no significant advantage in the
approximation, but with a significant increase of the computational time.

Setting

α = λ
dt

dx
, β =

dt

2τ
, fnj = f(rnj + snj ),

and with an upwind discretization of the space derivatives, we end up with(
(1 + β) I− αD+ −β I

−β I (1 + β) I + αD−

)(
rn+1

sn+1

)
=

(
rn + fndt/2
sn + fndt/2

)
(5.3)

where the matrices I,D± are given by

I = (δi,j), D+ = (δi+1,j − δi,j), D− = (δi,j − δi,j+1)

(here δi,j is the standard Kronecker symbol). The block-matrix in (5.3) is
invertible, since its spectrum is contained in the complex half plane {λ ∈
C : Reλ ≥ 1} as a consequence of the Geršgorin criterion.
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A direct manipulation of (5.3) gives

rn+1 = (S− α2D−D+)−1
{

[(1 + β)I + αD−]rn + βsn

+ 1
2 [(1 + 2β)I + αD−]fndt

}
sn+1 = (S− α2D+D−)−1

{
βrn + [(1 + β)I− αD+]sn

+ 1
2 [(1 + 2β)I− αD+]fndt

}
(5.4)

where S is the symmetric matrix

S := (1 + 2β)I + α(1 + β)(D− − D+)

To start with, we test the algorithm by analyzing its capability to recover
the correct wave speeds c∗ of the front connecting the stable states 0 and 1.
Following [31], we introduce an average speed of the numerical solution at
time tn defined by

cn =
1

dt
1 · (un − un+1) =

1

dt

∑
j

(unj − un+1
j ) (5.5)

where 1 = (1, . . . , 1). Indeed, for any differentiable function φ with asymp-
totic states φ± and derivative integrable in R, and for h ∈ R, there holdsˆ

R
(φ(x+ h)− φ(x)) dx = h

ˆ
R

ˆ 1

0

dφ

dx
(x+ θh)dh dx

= h

ˆ 1

0

ˆ
R

dφ

dx
(x+ θh)dx dh = h[φ]

where [φ] := φ(+∞)− φ(−∞), so that for h = −cdt, we infer

c =
1

[φ] dt

ˆ
R

(φ(x)− φ(x− cdt)) dx.

As a test case, we consider the usual cubic function f(u) = u(u− α)(1− u)
with α ∈ (0, 1). Our aim is to compare the values for the propagation speed
c∗ as obtained by means of the shooting argument (see Section 2) and the
one given by calculating (5.5) for the solution to the initial-value problem
with an increasing datum connecting 0 and 1 and computing cn at a time
t so large that stabilization of the speed of propagation of the numerical
solution is reached.

To start with, we test three different choices for the couple (τ, α) for
different values of dx and dt, where the range of variation of τ has been
chosen so that the condition τ f ′(u) < 1 is satisfied for all the values of the
unstable zero α.

From Table 2, we note that the smallness of the space mesh dx is more
relevant than the corresponding time-step value dt.

Requiring to detect the correct speed value with an error that is always less
than 5% of the effective value, we heuristically determine the choice dx = 2−3

and dt = 10−2, that will be used for subsequent numerical experiments. For



TRAVELING WAVES FOR THE ALLEN-CAHN RELAXATION MODEL 49

Table 2. Riemann problem with jump at `/2, ` = 25. Rel-
ative error for three different cases (T final time): A. τ = 1,
α = 0.9, c∗ = 0.5646, T = 40; B. τ = 2, α = 0.6, c∗ = 0.1737,
T = 30; C. τ = 4, α = 0.7, c∗ = 0.3682, T = 35.

dx 20 2−1 2−2 2−3 2−4

A 0.1664 0.0787 0.0325 0.0091 0.0018
dt = 10−1 B 0.0383 0.0306 0.0241 0.0198 0.0175

C 0.1527 0.1144 0.0818 0.0581 0.0442
A 0.1751 0.0876 0.0417 0.0186 0.0079

dt = 10−2 B 0.0275 0.0196 0.0128 0.0084 0.0061
C 0.1420 0.1018 0.0684 0.0457 0.0339
A 0.1760 0.0885 0.0427 0.0196 0.0089

dt = 10−3 B 0.0265 0.0184 0.0117 0.0072 0.0049
C 0.1411 0.1006 0.0670 0.0441 0.0321

Table 3. Final average speed (5.5) and relative error with
respect to c∗ given in Sect.2 (N = 400, dx = 0.125, dt = 0.01,
` = 25, T = 40).

α = 0.6 α = 0.7 α = 0.8 α = 0.9
τ = 1 0.1580 0.3096 0.4497 0.5751

0.0101 0.0118 0.0145 0.0186

τ = 4 0.2102 0.3533 0.4337 0.4825
0.0396 0.0404 0.0365 0.0118

Table 4. Second order in space. Final average speed (5.5)
and relative error with respect to c∗ given in Sect.2 (N = 400,
dx = 0.125, dt = 0.01, ` = 25, T = 40).

α = 0.6 α = 0.7 α = 0.8 α = 0.9
τ = 1 0.1560 0.3052 0.4421 0.5630

0.0025 0.0025 0.0026 0.0029

τ = 4 0.2184 0.3672 0.4485 0.4885
0.0022 0.0025 0.0034 0.0004

such a choice, we record the results in Table 3 for different choices of α and
τ = 1 and τ = 4 together with the corresponding relative error.

Considering different form for matrices D± giving a second order approx-
imation of the derivatives, such as

D+ =
(
−1

2δi+2,j + 2δi+1,j − 3
2δi,j

)
, D− =

(
3
2δi,j − 2δi,j+1 + 1

2δi,j+2

)
,

the speed approximation gain in accuracy, as reported in Table 4, that shows
an increase of one order.



50 C. LATTANZIO, C. MASCIA, R.G. PLAZA, AND C. SIMEONI

In what follows, we keep considering the previously discussed first order
discretization, since we are interested in considering initial data with sharp
transitions (as in the case of Riemann problems). In such a case, higher
order approximations of the derivatives introduce spurious oscillations that,
even being transient, may leads to catastrophic consequences because of the
bistable nature of the reaction term.

As a consequence of its capability of correct computations of propagation
speeds, we consider the scheme (5.4) to be a reliable tools for determining
numerically the behavior of the solutions to (1.5) and we use it to show that
the actual domain of attraction of the front is much larger than guaranteed
by the nonlinear stability in Theorem 1.2.

5.1. Riemann problem. The rigorous result proved in the previous sec-
tions guarantees that small perturbations to the propagating front are dis-
sipated, with exponential rate, by the equation. Inspired by the many avail-
able results for the parabolic Allen–Cahn equation (starting from the land-
mark article [13]), we expect that the front possesses a very large domain of
attraction and, specifically, that any bounded initial data u0 such that

lim sup
x→−∞

u0(x) < α < lim inf
x→+∞

u0(x) (5.6)

gives raise to a solution that is asymptotically convergent to a member of
the traveling fronts connecting u = 0 with u = 1.

Figure 7. Riemann problem with initial datum χ
(0,`)

in

(−`, `), ` = 25. Left: solution profiles zoomed in the interval
(−5, 5) at time t = 1 (dash-dot), t = 5 (dash), t = 15 (contin-
uous), for comparison, solution to the parabolic Allen–Cahn
equation at time t = 1 (dot). Right: Decay of the L2 dis-
tance to the exact equilibrium solution for the hyperbolic
(continuous) and parabolic (dot) Allen–Cahn equations.

To support such conjecture, we perform some numerical experiments
choosing the parameters values

τ = 4, ` = 25, dx = 0.125, dt = 0.01.
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Moreover, we consider the case α = 1/2 motivated by the fact that, in such a
special case, the profile of the traveling front for the hyperbolic Allen–Cahn
equation is stationary and it coincides with the one of the corrresponding
original parabolic equation, explicitly given by

U(x) =
1

1 + e−x/
√
2
, V (x) =

dU

dx
=

1√
2

1

ex/
√
2 + 2 + e−x/

√
2

when normalized by the condition U(0) = 1/2.
Numerical simulations confirm the decay of the solution to the equilibrium

profile (see Figure 7, left). When compared with the standard Allen–Cahn
equation, it appears evident that the dissipation mechanism of the hyper-
bolic equation is weaker with respect to the parabolic case (see Figure 7,
right).

5.2. Randomly perturbed initial data. Next, keeping all of the previous
parameters fixed, we consider initial data that resemble very roughly the
transition from 0 to 1. Namely, we divide the interval (−`, `) into three parts
and we choose a random value in each of these sub-intervals coherently with
the requirement (5.6). Precisely, we choose u0(x) to be a different random
value in (0, 0.5) for each x ∈ (−`,−`/3), in (0, 1) for each x ∈ (−`/3, `/3)
and in (0.5, 1) for each x ∈ (`/3, `).

Figure 8. Random initial datum in (−`, `), ` = 25
(squares). Solution profiles for the hyperbolic Allen–Cahn
equation with relaxation at time t = 0.5 (dot), t = 7.5 (dash),
t = 15 (continuous). For comparison, in the small window,
the solution to the parabolic Allen–Cahn equation.

The results for both hyperbolic and parabolic Allen–Cahn equation with
the same initial datum are illustrated in Fig.8. Convergence to the equilib-
rium configuration is manifest. It is also worthwhile to note that different
level of smoothing produced by the presence/absence of the relaxation pa-
rameter τ , measuring the “hyperbolicity” of the model.
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The transition is even much more robust than what the previous com-
putation shows. With an initial datum u0(x) given by a random value in
(0, 0.9) for each x ∈ (−`,−`/3), in (0, 1) for each x ∈ (−`/3, `/3) and in
(0.1, 1) for each x ∈ (`/3, `), we still observe the appearance and formation
of the front, as shown in Figure 1.

References

[1] H. A. Abdusalam, Analytic and approximate solutions for Nagumo telegraph reaction
diffusion equation. Appl. Math. Comput. 157 (2004) no. 2, 515–522.

[2] J. Alexander, R. A. Gardner and C. K. R. T. Jones, A topological invariant arising in
the stability analysis of travelling waves, J. Reine Angew. Math. 410 (1990), 167–212.

[3] S. M. Allen and J. W. Cahn, A microscopic theory for antiphase boundary motion
and its application to antiphase domain coarsening. Acta Metallurgica 27 (1979) no.
6, 1085–1095.

[4] A. Ambrosetti and G. Prodi, A primer of nonlinear analysis. Corrected reprint of the
1993 original. Cambridge Studies in Advanced Mathematics, 34. Cambridge Univer-
sity Press, Cambridge, 1995.

[5] C. Cattaneo, Sulla conduzione del calore. Atti Sem. Mat. Fis. Univ. Modena 3 (1949)
83–101.

[6] N. Chafee and E. F. Infante, A bifurcation problem for a nonlinear partial differential
equation of parabolic type. Applicable Analysis 4 (1974) no. 1, 17–37.

[7] W. A. Coppel, Dichotomies in Stability Theory, vol. 629 of Lecture Notes in Mathe-
matics, Springer-Verlag, New York, 1978.

[8] D. Cramer and Y. Latushkin, Gearhart-Prüss theorem in stability for wave equations:
a survey, in G. Goldstein, R. Nagel, and S. Romanelli (eds.), Evolution equations, vol.
234 of Lecture Notes in Pure and Appl. Math., Dekker, New York, 2003, 105–119.

[9] D. E. Edmunds and W. D. Evans, Spectral Theory and Differential Operators, Oxford
Mathematical Monographs, Clarendon Press, Oxford, 1987.

[10] K. J. Engel and R. Nagel, One-parameter semigroups for linear evolution equations,
vol. 194 of Graduate Texts in Mathematics, Springer-Verlag, New York, 2000.

[11] H. Engler, Relations between travelling wave solutions of quasilinear parabolic equa-
tions. Proc. Amer. Math. Soc. 93 (1985) no. 2, 297–302.

[12] E. S. Fahmy, An analytical study of telegraph reaction diffusion equation. Int. J.
Comput. Appl. Math. 2 (2007) no. 2, 149–162.

[13] P. C. Fife and J. B. McLeod, The approach of solutions of nonlinear diffusion equa-
tions to travelling front solutions. Arch. Ration. Mech. Anal. 65 (1977) no. 4, 335–361.

[14] T. Gallay and R. Joly, Global stability of travelling fronts for a damped wave equation
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