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Abstract. The aim article is to contribute to the definition of a versatile language

for metastability in the context of partial differential equations of evolutive type. A
general framework suited for parabolic equations in one dimensional bounded domains

is proposed, based on choosing a family of approximate steady states {Uε(·; ξ)}ξ∈J and
on the spectral properties of the linearized operators at such states. The slow motion

for solutions belonging to a cylindrical neighborhood of the family {Uε} is analyzed by

means of a system of an ODE for the parameter ξ = ξ(t), coupled with a PDE describing
the evolution of the perturbation v := u− Uε(·; ξ).

We state and prove a general result concerning the reduced system for the couple

(ξ, v), called quasi-linearized system, obtained by disregarding the nonlinear term in v,
and we show how such approach suits to the prototypical example of scalar viscous con-

servation laws with Dirichlet boundary condition in a bounded one-dimensional interval

with convex flux.
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1. Introduction

Metastability is a broad term describing the existence of a very sensitive equilibrium,
possessing a weak form of stability/instability. Usually, such behavior is related to the
presence of a small first eigenvalue for the linearized operator at the given equilibrium
state, revealed at dynamical level by the appearance of slowly moving structures. Such
circumstance comes into view in the analysis of different classes of evolutive PDEs, and it
has been object of a wide amount of studies, covering many different areas. Among others,
we emphasize the explorations on the Allen–Cahn equation, started in [5, 10], and the
investigations on the Cahn–Hilliard equation, with the fundamental contributions [25, 1].
The analysis has been continued by many other scholars by means of a broad spectrum of
techniques, and extended to a number of different models such as the Gierer–Meinhardt and
Gray–Scott systems (see [29]), Keller–Segel chemotaxis system (see [9, 26]), general gradient
flows (see [24]) and many others. The number of references is so vast that it would be
impossible to mention all the contributions given in the area.

A pionereeing article in the analysis of slow dynamics for parabolic equations has been
authored by G. Kreiss and H.-O. Kreiss [14] and concerns with the scalar viscous conservation
law

(1.1) ∂tu+ ∂xf(u) = ε ∂2
xu, u(x, 0) = u0(x)
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2 C. Mascia and M. Strani

with the space variable x belonging to a one-dimensional interval I = (−`, `), ` > 0. The
primary prototype for the flux function f is given by the classical quadratic formula f(u) =
1
2 u

2, so that partial differential equation in (1.1) becomes the so-called (viscous) Burgers
equation. The parameter ε > 0 is small. Problem (1.1) is complemented with Dirichlet
boundary conditions

(1.2) u(−`, t) = u− and u(`, t) = u+

for given data u± to be discussed in details.
Burgers equation is considered as a (simplified) archetype of more complicate systems of

partial differential equations arising in different fields of applied mathematics. Inspired by
the equations of fluid-dynamics, the parameter ε is interpreted as a viscosity coefficient and
the main problem is to identify and quantify its rôle in the emergence and/or disappearance
of structures.

Formally, in the limit ε → 0+, the initial value problem (1.1) reduces to a first-order
quasi-linear equation of hyperbolic type

(1.3) ∂tu+ ∂xf(u) = 0, u(x, 0) = u0(x)

whose standard setting is given by the entropy formulation. Hence solutions may have
discontinuities, which propagate with speed s such that

s[[u]] = [[f(u)]] (Rankine–Hugoniot relation)

and satisfy appropriate entropy conditions (here [[·]] denotes the jump). In addition, the
treatment of the boundary conditions (1.2) is more delicate than the parabolic case, because
of the eventual appearance of boundary layers, [2].

Concerning the flux function f , let us assume that, for some c0 > 0,

(1.4) f ′′(u) ≥ c0 > 0, f ′(u+) < 0 < f ′(u−), f(u+) = f(u−),

where u± are the boundary data prescribed in (1.2). The last two assumptions guarantee
that a jump with left value u− and right value u+ satisfy the entropy condition and has speed
of propagation equal to zero, as dictated by the Rankine–Hugoniot relation. Therefore, the
one-parameter family of functions {U

hyp
(·; ξ)} defined by

U
hyp

(x; ξ) := u−χ(−`,ξ)(x) + u+χ(ξ,`)
(x)

(where χ
I

denotes the characteristic function of the set I) is composed by stationary solutions
of the equation in (1.3) satisfying the boundary conditions (1.2). The dynamics determined
by boundary-initial value problem (1.3)-(1.2) is simple: for any datum u0 with bounded
variation, the solution converges in finite time to an element of {U

hyp
(·; ξ)} (see Section

3). Hence, at the level ε = 0, there are infinitely many stationary solutions, generating a
“finite-time” attracting manifold for the dynamics.

For ε > 0, the situation is different. Apart from the well-known smoothing effect, the
presence of the Laplace operator in (1.1) has the effect of a drastic reduction of the number
of stationary solutions satisfying (1.2): from infinitely many to a single stationary state (see
Section 3). Such solution, denoted here by Ūε

par
= Ūε

par
(x), converges in the limit ε→ 0+ to

a specific element U
hyp

(·; ξ̄) of the family {U
hyp

(·; ξ)}.
The dynamical properties of (1.1)–(1.2) for initial data close to the equilibrium configu-

ration Ūε
par

can be analyzed linearizing at the state Ūε
par

∂tu = Lε u := ε ∂2
xu+ ∂x

(
a(x)u

)
with a(x) := −f ′(Ūε

par
(x)).

In [14] it shown that, in the case of Burgers flux f(u) = 1
2 u

2, the eigenvalues of Lε with ho-
mogeneous Dirichlet boundary conditions, are real and negative. Moreover, as a consequence
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of the requiremente f(u+) = f(u−), there holds as ε→ 0

λε1 = O(e−1/ε) and λεk < −
c0
ε
< 0 ∀ k ≥ 2

for some c0 > 0 independent on ε. Negativity of the eigenvalues implies that the steady state
Ūε

par
is asymptotically stable with exponential rate; the precise description of the eigenvalue

distribution shows that the large time behavior is described by term of the order eλ
ε
1 t and

thus the convergence is very slow when ε is small To quantify the reduction order of the
mapping ε → e−1/ε, note that e−1/ε has order 10−5 for ε = 10−1 and order 10−44 for
ε = 10−2.

Such is the picture relative to the behavior determined by an initial data close to the
equilibrium solution Ūε

par
. The next question concerns with the dynamics generated by

initial data presenting a sharp transition from u− to u+ localized far from the position of
the steady state Ūε

par
. Figure 1 represents a numerical simulation of the solution to the
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Figure 1. The solution to (1.1)–(1.2) with ε = 0.07, u± = ∓1 and u0(x) = (x2 − 2x− 1)/2.

initial value problem (1.1) with boundary conditions (1.2), relative to the initial condition
u0(x) = (x2 − 2x − 1)/2. Starting with a decreasing initial datum, a shock layer is formed
in a short time scale, so that the solution is approximately given by a translation of the
(unique) stationary solution of the problem. Once such a layer is formed, on a longer time
scale, it moves towards the location corresponding to the equilibrium solution.

This article deals with the dynamics after the shock layer formation for ε small. In
order to provide a detailed description of such regime, with special attention to the relation
between the unviscous and the low-viscosity behavior, it is rational:

– to build up a one-parameter family of functions {Uε
par

(·; ξ)} such that Uε
par

(·; ξ) →
Uε

hyp
(·; ξ) as ε→ 0, in an appropriate sense;

– to describe the dynamics of the solution to the initial-boundary value problem (1.1)–
(1.2) in a tubular neighborhood of the family {Uε

par
(·; ξ)}.

A specific element Uε
par

(·; ξ̄) of the manifold {Uε
par
} corresponds to the steady state Ūε

par

of (1.1)–(1.2) and the dynamics will asymptotically lead to such configuration.
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Before describing in details the contribution of the paper, let us recast the state of the art
on the topic. Among others, the problem of slow dynamics for the Burgers equation has been
examined in [27] and in [16], where different approaches have been considered. The former
is based either on projection method or on WKB expansions; the latter stands on an adapted
version of the method of matched asymptotics expansion. The common aim is to determine
an expression and/or an equation for the parameter ξ, considered as a function of time,
describing the movement of the transition from a generic point of the interval (−`, `) toward
the equilibrium location ξ̄. In both the contributions, the analysis is conducted at a formal
level and validated numerically by means of comparision with significant computations. A
rigorous analysis has been performed in [7] (and generalized to the case of nonconvex flux in
[8]), where one-parameter family of reference functions is chosen as a family of traveling wave
solutions to the viscous equation satisfying the boundary conditions and with non-zero (but
small) velocity. The approach is based on the use of such traveling waves to obtain upper
and lower estimates by the maximum principle, from which rigorous asymptotic formulae
for the slow velocity are obtained.

Slow motion for the viscous Burgers equation in unbounded domains has been also con-
sidered in literature. In [28], it is analyzed the case of the half-line (0,+∞) for the space
variable x, with constant initial and boundary data chosen so that speed of the shock gener-
ated at x = 0 is stationary for the corresponding hyperbolic equation. The presence of the
viscosity generates a motion of the transition layer, which is precisely identified by means of
the Lambert’s W function. Later, the (slow) motion of a shock wave, with zero hyperbolic
speed, for the Burgers equation in the quarter plane has been considered in [19], where it
is shown that the location of the wave front is of order ln(1 + t); the same result has been
generalized in [23] in the case of general fluxes (for other contributions to the same problem,
we refer also to [17, 30]).

The case of the whole real line has been examined in [13] with emphasis on the generation
of N−wave like structures and their evolution towards nonlinear diffusion waves. The anal-
ysis is based on the use of self-similar variables, suggested by the invariance of the Burgers
equation under the group of transformations (x, t, u) 7→ (cx, c2 t, u/c) (for subsequent con-
tributions in the same direction, see [12]). More recently, it has been shown in [4] that the
slow motion is determined by the presence of a one-dimensional center manifold of steady
states for the equation in the self-similar variables (corresponding to the diffusion waves)
and a relative family of one-dimensional global attractive invariant manifold. In a short-time
scale, the solution approaches one of the attractive manifolds and remains close to it in a
long-time scale.

At the present day, results relative to metastability in the case of systems appear to
be rare. Slow dynamics analysis for systems of conservation laws have been considered
in [11], basic model examples being the Navier-Stokes equations of compressible viscous
heat conductive fluid and the Keyfitz-Kranzer system, arising in elasticity. The approach
is based on asymptotic expansions and consists in deriving appropriate limiting equations
for the leading order terms, in the case of periodic data. In [15], the problem of proving
convergence to a stationary solution for a system of conservation laws with viscosity is
addressed, with an approach based on a detailed analysis of the linearized operator at the
steady state. A recent contribution is the reference [3], where the authors consider the
Saint-Venant equations for shallow water and, precisely, the phenomenon of formation of
roll-waves. The approach merges together analytical techniques and numerical results to
present some intriguing properties relative to the dynamics of solitary wave pulses.

Summing up, apart for the formal expansions methods, the rigorous approaches used
in the literature are largely based on typical scalar equations features. The first of these
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properties is the direct link between the scalar Burgers equation and the heat equation given
by the Hopf–Cole transformation: u = −2ε φ−1∂xφ, and the consequent invariance of the
Burgers equation under the group of scaling transformations (x, t, u) 7→ (cx, c2 t, u/c). On
the one hand, the presence of such a connection is an evident advantage, since it permits to
determine optimal descriptions for the behavior under study (see [13, 19, 28]); on the other
hand, to use such exceptional property makes the approach very stiff and difficult to apply
to more general cases. A different “scalar hallmark” is the base of the approach considered
in [7], where the authors make wide use of maximum principle and comparison arguments,
taking benefit from the fact that the equation is second-order parabolic.

In order to extend the results to more general settings and specifically for systems of PDEs,
it is useful to determine strategies and techniques that are more flexible, paying, if necessary,
the price of a less accurate description of the dynamics. A contribution in this direction
has been given in [23], where the location of the shock transition for a scalar conservation
law in the quarter plane has been proved by means of weighted energy estimates, extending
the result proved in [19], that used an explicit formula –determined by means of the Hopf–
Cole transformation– for the Green function of the linearization at the shock profile of the
Burgers equation.

The present article intends to contribute to the definition of a versatile language for
metastability, suitable for general class of partial differential equations of evolutive type.
With this direction in mind, we follow an approach that it is strictly related with the
projection method considered in [5, 27] and we go behind the philosophy tracked in the
analysis of stability of viscous shock waves by K.Zumbrun and co-authors (see [31, 22, 21]).
Precisely, we separate three distinct phases:

i. to choose a family of functions {Uε(·; ξ)}, considered as approximate solutions, and to
measure how far they are from being exact solutions;

ii. to investigate spectral properties of the linearized operators at such states;
iii. to show that appropriate assumptions on the approximate solutions (step i) and on

the spectrum of the linearized operators (step ii) imply the appearance of a metastable
behavior.

With respect to the framework of shock waves stability analysis, there are two main
differences. First of all, we concentrate on the case of bounded domains and, therefore,
the spectrum of the linearized operators is discrete. Additionally, since the reference states
Uε are approximate solutions, the perturbations of such states satisfy at first order a non-
homogeneous linear equation, with forcing term negligible as ε→ 0+. The defect of working
in a neighborhood of a manifold that is not invariant has the counterpart of a wider flexibility
in its construction that leads, in particular, to (more or less) explicit representations. Thus,
it should be possible in principle to obtain numerical evidence of special spectral properties
even in cases where analytical results appear to be not achievable.

The article is organized as follows. To start with, in Section 2, we consider a general
framework containing scalar viscous conservation laws as a very specific case. Given a
family of approximate solutions {Uε}, our approach consists in representing the solution
to the initial-bondary value problem as the sum of an element Uε(·; ξ(t)) moving along the
family {Uε} plus a perturbation term v. The equation for the unknown ξ = ξ(t) is chosen
in such a way that the slower decaying terms in the perturbation v are canceled out. In
order to state a general result, we consider an approximation of the complete nonlinear
equations for the couple (ξ, v), obtained by disregarding quadratic terms in v and keeping
the nonlinear dependence on ξ, in order to keep track of the nonlinear evolution along the
manifold {Uε}. Such reduced system for (v, ξ) is called quasi-linearized system and it is the
concern of Theorem 2.1, the main contribution of the paper. Under appropriate assumptions



6 C. Mascia and M. Strani

on the manifold Uε, the linearized operators at such states, and the coupling between the
two objects, such result gives an explicit representation for the solution to the evolutive
problem together with an estimate on the remainder, vanishing in the limit ε → 0. This
gives a sound justification to the reduced equation for the unknown ξ = ξ(t) obtainable by
neglecting also the linear term in v.

Dealing with the complete system for the couple (v, ξ) brings into the analysis also the
specific form of the quadratic terms. As a consequence, in case of parabolic systems of
reaction-diffusion type, we expect that a results analogous to Theorem 2.1 could be proved,
under the assumption of an a priori L∞ bound on the solution. Differently, when a nonlinear
first order space derivative term is present (as is the case for viscous conservation laws), the
quadratic term involve a dependence on the space derivative of the solution and a rigorous
result needs an additional bound, which we are not presently able to achieve.

In Section 3 we consider the application of the general framework to the case of viscous
scalar conservation laws. Firstly, we present the dynamics of the hyperbolic equation ob-
tained in the vanishing viscosity limit, proving a result on finite-time convergence to the
one-parameter manifold of steady states (Theorem 3.1). Then, we pass to consider the par-
abolic equation in (1.1) under assumption (1.4) and we build up a specific family {Uε} by
matching continuously stationary solutions at a given point ξ. To apply the general result
of Section 2, we need to measure how far are states Uε from being stationary solutions, and
this amounts in estimating the jump of the space derivative at the matching point. Such
task is completed, showing that the residual has order Ce−C/ε, hence it is exponentially
small in the limit ε→ 0+. As a by-product, we deduce a formal equation for the motion of
the shock layer, which generalizes the one known for the case of the Burgers flux f(s) = 1

2s
2.

In Section 4, we analyze spectral properties of the diffusion-transport linear operator,
arising from the linearization at the state Uε(·; ξ). We show that, under appropriate as-
sumption on the limiting behavior of Uε as ε→ 0+, the spectrum can be decomposed into
two parts: the first eigenvalue of order O(e−C/ε); all of the remaining eigenvalues are less
than −C/ε (where C denotes a generic positive constant independent on ε). Additionally,
precise asymptotics for the first eigenvalue are achieved by considering the linear opera-
tor with piecewise constant coefficient, obtained by taking the limit of functions Uε(·; ξ) as
ε→ 0+. This analysis is needed to give evidence of the validity of the coupling assumption
required in Theorem 2.1.

2. Metastable behavior for nonlinear parabolic systems

Given ` > 0, I := (−`, `) and n ∈ N, we consider the space X := [L2(I)]n endowed with

〈u, v〉 :=

∫ `

−`
u(x) · v(x) dx u, v ∈ X,

where · denotes the usual scalar product in Rn. Given T > 0, we consider the evolutive
Cauchy problem for the unknown u : [0, T )→ X

(2.1) ∂tu = Fε[u], u
∣∣
t=0

= u0

where Fε denotes a nonlinear differential operator, complemented with appropriate bound-
ary conditions. We are interested in describing the dynamical behavior of uε, solution to
(2.1), in the regime ε ∼ 0. In particular, we have in mind the case of a singular dependence
of Fε with respect to ε, in the sense that the operator F0 is of lower order with respect to Fε.
The specific example, considered in detail in the subsequent Sections, is the one-dimensional
scalar viscous conservation laws with Dirichlet boundary conditions; at the same time, also
the usual Allen–Cahn parabolic equation fits into the framework.
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Given a one-dimensional open interval J , let {Uε(·; ξ) : ξ ∈ J} be a one-parameter family
in X, whose elements can be considered as approximate stationary solutions to the problem
in the sense that Fε[Uε(·; ξ)] depends smoothly on ε and tends to 0 as ε → 0. Precisely,
we assume that the term Fε[Uε] belongs to the dual space of the continuous functions
space C(I) and there exists a family of smooth positive functions Ωε = Ωε(ξ), uniformly
convergent to zero as ε→ 0, such that, for any ξ ∈ J , there holds

(2.2) |〈ψ(·),Fε[Uε(·, ξ)]〉| ≤ Ωε(ξ) |ψ|∞ ∀ψ ∈ C(I).

The family {Uε(·; ξ)} will be referred to as an approximate invariant manifold with respect
to the flow determined by (2.1) in X. Generically, since an element Uε(·; ξ) is not a steady
state for (2.1), the dynamics walk away from the manifold with a speed dictated by Ωε.
The dependence of Ωε on ε plays a relevant rôle, since it drives the departure from the
approximate invariant manifold.

Next, we decompose the solution to the initial value problem (2.1) as

u(·, t) = Uε(·; ξ(t)) + v(·, t)
with ξ = ξ(t) ∈ J and v = v(·, t) ∈ [L2(I)]n to be determined. Substituting, we obtain

(2.3) ∂tv = Lεξv + Fε[Uε(·; ξ)]− ∂ξUε(·; ξ)
dξ

dt
+Qε[v, ξ]

where
Lεξv := dFε[Uε(·; ξ)] v

Qε[v, ξ] := Fε[Uε(·; ξ) + v]−Fε[Uε(·; ξ)]− dFε[Uε(·; ξ)] v.
Next, we assume that the linear operator Lεξ has a discrete spectrum composed by semi-

simple eigenvalues λεk = λεk(ξ) with corresponding right eigenfunctions φεk = φεk(·; ξ). De-
noting by ψεk = ψεk(·; ξ) the eigenfunctions of the adjoint operator Lε,∗ξ and setting

vk = vk(ξ; t) := 〈ψεk(·; ξ), v(·, t)〉,
we can use the degree of freedom we still have in the choice of the couple (v, ξ) in such a
way that the component v1 is identically zero, that is

d

dt
〈ψε1(·; ξ(t)), v(·, t)〉 = 0 and 〈ψε1(·; ξ0), v0(·))〉 = 0.

Using equation (2.3), we infer

〈ψε1(ξ, ·),Lεξv + F [Uε(·; ξ)]− ∂ξUε(·; ξ)
dξ

dt
+Qε[v, ξ]〉+ 〈∂ξψε1(ξ, ·)dξ

dt
, v〉 = 0

Since 〈ψε1,Lξv〉 = λ1〈ψε1, v〉, we obtain a scalar differential equation for the variable ξ,
describing the reduced dynamics along the approximate manifold, that is

(2.4) αε(ξ, v)
dξ

dt
= 〈ψε1(·; ξ),F [Uε(·; ξ)] +Qε[v, ξ]〉

where

αε0(ξ) := 〈ψε1(·; ξ), ∂ξUε(·; ξ)〉 and αε(ξ, v) := αε0(ξ)− 〈∂ξψε1(·; ξ), v〉,
together with the condition on the initial datum ξ0

〈ψε1(·; ξ0), v0(·)〉 = 0

To rewrite equation (2.4) in normal form in the regime of small v, we assume

|αε0(ξ)| = |〈ψε1(·; ξ), ∂ξUε(·; ξ)〉| ≥ c0 > 0

for some c0 > 0 independent on ξ. Such assumption gives a (weak) restriction on the choice
of the members of the family {Uε} asking for the manifold to be never transversal to the first
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eigenfunction of the corresponding linearized operator. From now on, we can renormalize
the eigenfunction ψε1 so that

αε0(ξ) = 〈ψε1(·; ξ), ∂ξUε(·; ξ)〉 = 1,

for any ε > 0 and for any ξ ∈ J . In the regime v → 0, we may expand 1/αε as

1

αε(ξ, v)
=

1

αε0(ξ)

(
1 +
〈∂ξψε1, v〉
αε0(ξ)

)
+ o(|v|) = 1 + 〈∂ξψε1, v〉+ o(|v|).

Inserting in (2.4), we mat rewrite the nonlinear equation for ξ as

(2.5)
dξ

dt
= θε(ξ)

(
1 + 〈∂ξψε1, v〉

)
+ ρε[ξ, v],

where
θε(ξ) := 〈ψε1,F [Uε]〉

ρε[ξ, v] :=
1

αε(ξ, v)

(
〈ψε1,Qε〉+ 〈∂ξψε1, v〉2

)
.

Using (2.5), equation (2.3) can be rephrased as

(2.6) ∂tv = Hε(x; ξ) + (Lεξ +Mε
ξ)v +Rε[v, ξ]

where

Hε(·; ξ) := Fε[Uε(·; ξ)]− ∂ξUε(·; ξ) θε(ξ),
Mε

ξv := −∂ξUε(·; ξ) θε(ξ) 〈∂ξψε1, v〉,
Rε[v, ξ] := Qε[v, ξ]− ∂ξUε(·; ξ) ρε[ξ, v].

Let us stress that, by definition, there holds

〈ψε1(·; ξ), Hε(·; ξ)〉 = 0,

so that Hε(·; ξ) is the projection of Fε[Uε(·; ξ)] onto the space orthogonal to φε1(·; ξ).
Summarizing, the couple (v, ξ) solves the differential system (2.5)-(2.6) where the initial

condition ξ0 for ξ is such that

〈ψε1(·; ξ0), u0 − U(·; ξ0)〉 = 0

and the initial condition v0 for v is given by u0 − U(·; ξ0).
Neglecting the o(v) order terms, we obtain the system

(2.7)


dζ

dt
= θε(ζ)

(
1 + 〈∂ζψε1, w〉

)
,

∂tw = Hε(ζ) + (Lεζ +Mε
ζ)w

with initial conditions

(2.8) ζ(0) = ζ0 ∈ (−`, `) and w(x, 0) = w0(x) ∈ X.
From now on, we will refer to this system as the quasi-linearization of (2.5)–(2.6). Our aim
is to describe the behavior of the solution to (2.7) in the regime of small ε.

Shortly, the quasi-linearized system is determined by an appropriate combination of the
term Fε[Uε], measuring how far is the function Uε from being a stationary solution, and the
linear operator Lεξ, controlling at first order how solutions to (2.1) depart from Uε when the
latter is taken as initial datum. To state our first result, we need to precise the assumption
on such terms.

H1. The family {Uε(·, ξ)} is such that Fε[Uε] belongs to the dual space of C(I)n and
there exists functions Ωε such that, denoting again with 〈·, ·〉 the duality relation,

|〈ψ(·),Fε[Uε(·, ξ)]〉| ≤ Ωε(ξ) |ψ|∞ ∀ψ ∈ C(I).
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with Ωε converging to zero as ε→ 0, uniformly with respect to ξ ∈ J .

H2. The eigenvalues {λεk(ξ)}
k∈N of Lεξ are semi-simple, λ1(ξ) is simple, real and negative,

and

Reλεk(ξ) ≤ min{λε1(ξ)− C,−C k2} for k ≥ 2.

for some constant C > 0 independent on k ∈ N, ε > 0 and ξ ∈ J .

H3. The eigenfunctions φεk(·; ξ) and ψεk(·; ξ) of Lεξ and Lε,∗ξ normalized so that

〈ψε1(·; ξ), ∂ξUε(·; ξ)〉 = 1 and 〈ψεj , φεk〉 = δjk.

where δjk is the usual Kronecker symbol, are such that

(2.9)
∑
j

〈∂ξψεk, φεj〉2 =
∑
j

〈ψεk, ∂ξφεj〉2 ≤ C ∀ k.

for some constant C independent on ε > 0 and ξ ∈ J .
The last assumption we require relate the term Ωε(ξ) to the first eigenvalue λε1(ξ) of the

linearized operator Lεξ at Uε(·; ξ). Formally, if Uε(·; ξ̄) is an exact stationary solution, then

F [Uε(·; ξ)] = F [Uε(·; ξ)]−F [Uε(·; ξ̄)] ≈ Lεξ∂ξUε(·; ξ̄)(ξ̄ − ξ).

If ∂ξU
ε is chosen to be approximately close to the first eigenfunction of Lεξ, then

〈ψ(·),F [Uε(·; ξ)]〉 = F [Uε(·; ξ)]−F [Uε(·; ξ̄)] ≈ λε1(ξ)〈ψ(·), ∂ξUε(·; ξ̄)〉(ξ̄ − ξ),

so that, heuristically, there exists a constant C > 0 such that

|〈ψ(·),F [Uε(·; ξ)]〉| ≤ C|λε1(ξ)||ψ|∞
which gives the final form of our ultimate assumption.

Theorem 2.1. Let hypotheses H1-2-3 be satisfied. Additionally, assume that

(2.10) Ωε(ξ) ≤ C|λε1(ξ)|

for some constant C > 0 independent on ε > 0 and ξ ∈ J .
Then, denoted by (ζ, w) the solution to the initial-value problem (2.7)–(2.8), for any ε

sufficiently small, there exists a time T ε such that for any t ≤ T ε the solution w is given by

w = z +R

where z is defined by

z(x, t) :=
∑
k≥2

wk(0) exp

(∫ t

0

λεk(ζ(σ)) dσ

)
φεk(x; ζ(t)),

and the remainder R satisfies the estimate

(2.11) |R|
L2 ≤ C |Ωε|∞

{
exp

(
2

∫ t

0

λε1(ζ(σ))dσ

)
|w0|2

L2
+ 1

}
for some constant C > 0 independent on ε, T > 0.

Moreover, for initial data w0 sufficiently small in L2, the final time T ε can be chosen
with order |ln |Ωε|∞ | /|Ωε|∞ .

The conclusion of the proof of Theorem 2.1 is based on the following version of a standard
nonlinear iteration argument.
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Lemma 2.2. Let f = f(t), g = g(t) and h = h(s, t) be continuous functions for t ∈ [0, T ]
for some T > 0, such that

f(t) ≥ 0, g(t) > 0, g decreasing, h(s, t) ≥ 0.

Let y = y(t) be a non-negative function satisfying the estimate

y(t) ≤
∫ t

0

{
f(s) g(t) y2(s) + h(s, t)

}
ds

for any t ≤ T . If there holds

(2.12) sup
t∈[0,T ]

∫ t

0

g2(s) f(s) ds · sup
t∈[0,T ]

1

g(t)

∫ t

0

h(s, t) ds <
1

4

for any t ∈ [0, T ], then

y(t) ≤ 2 sup
τ∈[0,t]

∫ τ

0

h(s, τ) ds

for any t ∈ [0, T ].

Proof of Lemma 2.2. The auxiliary function w(t) := g−1(t) y(t) enjoyes the estimate

w(t) ≤
∫ t

0

{
α(s)w2(s) + β(s, t)

}
ds

where α(t) := f(t) g2(t) and β(s, t) = g−1(t)h(s, t). The quantity

N(t) := sup
τ∈[0,t]

w(τ).

is such that for any t ∈ [0, T ] there holds

N(t) ≤ AN2(t) +B

where

A = A(T ) := sup
t∈[0,T ]

∫ t

0

α(s) ds, B = B(T ) := sup
t∈[0,T ]

∫ t

0

β(s, t) ds.

Since N(0) = 0, if 1− 4AB > 0, then

N <
1−
√

1− 4AB

2A
=

2B

1 +
√

1− 4AB
≤ 2B.

In term of y, if (2.12) holds, then

y(t) < 2 g(t) sup
τ∈[0,T ]

1

g(τ)

∫ τ

0

h(s, τ) ds.

The final estimate follows from the monotonicity of the function g. �

Proof of Theorem 2.1. Setting

w(x, t) =
∑
j

wj(t)φ
ε
j(x, ζ(t)),

we obtain an infinite-dimensional differential system for the coefficients wj

(2.13)
dwk
dt

= λεk(ζ)wk + 〈ψεk, F 〉

where, omitting the dependencies for shortness,

F := Hε +
∑
j

wj

{
Mε

ζ φ
ε
j − ∂ξφεj

dζ

dt

}
= Hε − θε

∑
j

(
aj +

∑
`

bj` w`

)
wj .
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and the coefficients aj , bjk are given by

aj := 〈∂ξψε1, φεj〉 ∂ξUε + ∂ξφ
ε
j , bj` := 〈∂ξψε1, φε`〉 ∂ξφεj

Convergence of the series is guaranteed by assumption (2.9).
Differentiating the normalization condition on the eigenfunction, we infer

〈∂ξψεj , φεk〉+ 〈ψεj , ∂ξφεk〉 = 0.

Thus, for the coefficients aj there hold

〈ψεk, aj〉 = 〈∂ξψε1, φεj〉
(
〈ψεk, ∂ξUε〉 − 1

)
,

so that, in particular, 〈ψε1, aj〉 = 0 for any j. Thus, equation (2.13) for k = 1 becomes

(2.14)
dw1

dt
= λε1(ζ)w1 − θε(ζ)

∑
`,j

〈ψε1, bj`〉w` wj

Now let us set

Ek(s, t) := exp

(∫ t

s

λεk(ζ(σ))dσ

)
.

As a consequence of hypothesis H2., there exists C > 0 such that Reλk(ξ) ≤ λ1(ξ) − Ck2

for any k ≥ 2. Thus, the absolute value of Ek, k ≥ 2, can be estimated by

|Ek|(s, t) ≤ exp

(∫ t

s

Reλεk(ζ(σ))dσ

)
≤ E1(s, t) e−Ck

2(t−s)

From equalities (2.14) and (2.13), choosing w1(0) = 0, there follow

w1(t) = −
∫ t

0

θε(ζ)
∑
`,j

〈ψε1, bj`〉w` wj E1(s, t) ds

wk(t) = wk(0)Ek(0, t)

+

∫ t

0

{
〈ψεk, Hε〉 − θε(ζ)

∑
j

(
〈ψεk, aj〉+

∑
`

〈ψεk, bj`〉w`
)
wj

}
Ek(s, t) ds,

for k ≥ 2. Such expressions suggest to introduce the function

z(x, t) :=
∑
k≥2

wk(0)Ek(0, t)φεk(x; ζ(t)),

From the representation formulas for the coefficients wk, since

|θε(ζ)| ≤ C Ωε(ζ) and |〈ψεk, Hε〉| ≤ C Ωε(ζ) {1 + |〈ψεk, ∂ξUε〉|}

for some constant C > 0 depending on the L∞−norm of ψεk, there holds

|w − z|2
L2
≤ C

(∫ t

0

Ωε(ζ)
∑
j

|〈ψε1, ∂ξφεj〉| |wj |
∑
`

|〈∂ξψε1, φε`〉| |w`|E1(s, t) ds
)2

+ C
∑
k≥2

(∫ t

0

Ωε(ζ)
(

1 + |〈ψεk, ∂ξUε〉|+ |〈ψεk, ∂ξUε〉|
∑
j

|〈∂ξψε1, φεj〉||wj |

+
∑
j

|〈∂ξψεk, φεj〉||wj |+
∑
j

|〈ψεk, ∂ξφεj〉| |wj |
∑
`

|〈∂ξψε1, φε`〉| |w`|
)
|Ek|(s, t)

)2

≤ C
(∫ t

0

Ωε(ζ)|w|2
L2
E1(s, t) ds

)2

+ C
∑
k≥2

(∫ t

0

Ωε(ζ)
(
1 + |w|2

L2

)
|Ek|(s, t) ds

)2
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Since
√
a+ b ≤

√
a+
√
b, we infer

|w − z|
L2 ≤ C

∫ t

0

Ωε(ζ)|w|2
L2
E1(s, t) ds+ C

∑
k≥2

∫ t

0

Ωε(ζ)
(
1 + |w|2

L2

)
|Ek|(s, t) ds

≤ C
∫ t

0

Ωε(ζ)
{
|w|2

L2
E1(s, t) +

(
1 + |w|2

L2

) ∑
k≥2

|Ek|(s, t)
}
ds.

The assumption on the asymptotic behavior of the eigenvalues λk can now be used to bound
the series. Indeed, there holds for some C > 0∑

k≥2

|Ek(s, t)| ≤
∑
k≥2

E1(s, t) e−Ck
2(t−s) ≤ C E1(s, t) (t− s)−1/2 e−C(t−s)

As a consequence, for unknown w such that |w|
L2 ≤M for some M > 0, we infer

E1(t, 0)|w − z|
L2 ≤ C

∫ t

0

Ωε(ζ)
{
|w − z|2

L2
+ |z|2

L2
+ (t− s)−1/2 e−C(t−s)

}
E1(s, 0) ds.

Let us set

N(t) := sup
s∈[0,t]

|w − z|
L2 E1(s, 0)

Then, since |z|
L2 ≤ e−2C tE1(0, t)|w0|L2 , we infer

E1(t, 0)|w − z|
L2 ≤ C

∫ t

0

Ωε(ζ)N2(s)E1(0, s) ds

+ C

∫ t

0

Ωε(ζ)
{
e−4C(t−s)E1(0, t)2|w0|2

L2
+ (t− s)−1/2 e−C(t−s)

}
E1(s, 0) ds

≤ C
∫ t

0

Ωε(ζ)N2(s)E1(0, s) ds+ C|Ωε|∞
(
E1(0, t)|w0|2

L2
+ E1(t, 0)

)
since λ1 is negative. By assumption (2.10), λε1 ≤ −CΩε for some C > 0, hence∫ t

0

Ωε(ζ)N2(s)E1(0, s) ds ≤
∫ t

0

Ωε(ζ)N2(s) exp

(
−C

∫ s

0

Ωε(ζ) dσ

)
ds

≤ N2(t)

{
1− exp

(
−C

∫ t

0

Ωε(ζ) dσ

)}
.

so that we obtain the inequality

E1(t, 0)|w − z|
L2 ≤ CN2(t)

{
1− exp

(
−C

∫ t

0

Ωε(ζ) dσ

)}
+ C|Ωε|∞

(
E1(0, t)|w0|2

L2
+ E1(t, 0)

)
Taking the supremum, we end up with the estimate

N(t) ≤ AN2(t) +B with


A := C

{
1− exp

(
−C

∫ t

0

Ωε(ζ) dσ

)}
,

B := C|Ωε|∞
(
E1(0, t)|w0|2

L2
+ E1(t, 0)

)
Hence, as soon as

(2.15) 4AB = 4C2|Ωε|∞
(
E1(0, t)|w0|2

L2
+ E1(t, 0)

)(
1− exp

(
−C

∫ t

0

Ωε(ζ) dσ

))
< 1
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there holds

N(t) ≤ 2B

1 +
√

4AB
≤ 2B = C|Ωε|∞

(
E1(0, t)|w0|2

L2
+ E1(t, 0)

)
that means, in term of the difference w − z,

|w − z|
L2 ≤ C|Ωε|∞

(
E1(0, t)2|w0|2

L2
+ 1
)

Condition (2.15) gives a constraint on the final time T ε. Since 1 − e−C
∫ t
0

Ωε(ζ) dσ ≤ 1 and
E1(0, t) ≤ 1, it is enough to require

4C2 |Ωε|∞
(
|w0|2

L2
+ E1(t, 0)

)
< 1

to assure condition (2.15) is satisfied. The latter constraint can be rewritten as

C exp

(
−
∫ t

0

Ωε(ζ) dσ

)
≤ exp

(
−
∫ t

0

λε1(ζ) dσ

)
= E1(t, 0) ≤ C

|Ωε|∞
− |w0|2

L2
,

so that we can choose T ε of the form

T ε :=
1

|Ωε|∞
ln

(
C

|Ωε|∞
− |w0|2

L2

)
∼ −C |Ωε|−1

∞
ln |Ωε|∞

for w0 sufficiently small. �

As a consequence of the estimate (2.11), for |w0|L2 < M for some M > 0, the function ζ
satisfies

(2.16)
dζ

dt
= θε(ζ)

(
1 + r

)
with |r| ≤ C

(
|w0|L2 e

−C t + |Ωε|∞
)
.

where the constant C depends also on M . In particular, if ε and |w0|L2 are small, the
function ζ = ζ(t) has similar decay properties of the function η, solution to the reduced
Cauchy problem

dη

dt
= θε(η), η(0) = ζ0.

This preludes to the following consequence of Theorem 2.1.

Corollary 2.3. Let hypotheses H1-2-3 and (2.10) be satisfied. Assume also

(2.17) s θε(s) < 0 for any s ∈ I, s 6= 0 and θε′(ζ̄) < 0.

Then, for ε and |w0|L2 sufficiently small, the estimate (2.11) holds globally in time and the

solution (ζ, w) converges exponentially fast to (ζ̄, 0) as t→ +∞.

Proof. Thanks to assumption H1, for ε and |w0|L2 sufficiently small, estimate (2.11) holds.
Hence, for any initial datum ζ0, the variable ζ = ζ(t) satisfies (2.16). and, as a consequence,
it converges exponentially fast to ζ̄ as t→ +∞, i.e. there exists βε > 0 such that |ζ − ζ̄| ≤
|ζ0|e−β

εt for any t under consideration.
Furthermore, from (2.13), we deduce

wk(t) = wk(0) exp

(∫ t

0

λεk dσ

)
+

∫ t

0

〈ψεk, F 〉(s) exp

(∫ t

s

λεk dσ

)
ds

Setting Λε1 := sup{λε1(ζ) : ζ ∈ J}, by the Jensen’s inequality, we infer the estimate

|w|2
L2

(t) ≤ C

{
|w0|2

L2
e2Λε1 t +

∑
k

(∫ t

0

〈ψεk, F 〉(s) eΛε1(t−s) ds

)2
}

≤ C
{
|w0|2

L2
e2Λε1 t + t

∫ t

0

|F |2
L2

(s) e2Λε1(t−s) ds

}



14 C. Mascia and M. Strani

Let νε > 0 be such that |F |
L2 (t) ≤ C e−νε t; then, if νε 6= |Λε1|, there holds

|w|2
L2

(t) ≤ C
{
|w0|2

L2
e2Λε1 t + t

(
e−2νε t + e2Λε1 t

)}
showing the exponential convergence to 0 of the component w. �

Let us also stress that in the regime (ζ, w) ∼ (ζ̄, 0), a linearization at the equilibrium
solution Uε(x; ζ̄) would furnish a more detailed description of the dynamics, since the source
term due to the approximation at an approximate steady state would not be present. In
fact, the description given by the quasi-linearization is meaningful in the regime far from
equilibrium and its aim is to describe the slow motion around a manifold of approximate
solutions.

3. Application to scalar viscous conservation laws

Next, our aim is to show how the general approach just presented applies to the case of
scalar conservation laws with viscosity. Specifically, given ` > 0, we consider the nonlinear
equation

(3.1) ∂tu+ ∂xf(u) = ε ∂2
xu x ∈ I := (−`, `)

with initial and boundary conditions given by

(3.2) u(x, 0) = u0(x) x ∈ I, and u(±`, t) = u± t > 0.

for some ε > 0, u± ∈ R. We assume that the flux f and the data u± satisfy the conditions

(3.3) f ′′(u) ≥ c0 > 0, f ′(u+) < 0 < f ′(u−), f(u+) = f(u−).

The single value u ∈ (u+, u−) such that f ′(u) = 0 is denoted by u∗. Without loss of
generality, we assume f(u∗) = 0.

To clarify the relevance of the requirements (3.3) and to justify the subsequent choice for
the manifold {Uε(·; ξ) : ξ ∈ J}, we propose a digression on the dynamics determined by
the problem (3.1)-(3.2) in the vanishing viscosity limit.

The hyperbolic dynamics. Setting ε = 0, equation (3.1) reduces to the first-order equa-
tion of hyperbolic type

(3.4) ∂tu+ ∂xf(u) = 0

to be considered together with (3.2). The boundary conditions are understood in the sense
of Bardos–leRoux–Nédélec [2], meaning that the trace of the solution at the boundary is
requested to take values in appropriate sets. To be precise, let u∗ ∈ (u+, u−) be such that
f ′(u∗) = 0 and set

Ru :=

{
w if ∃w 6= u s.t. f(w) = f(u),

u∗ if u = u∗,

Then, skipping the details (see [20]), the conditions u(±`, t) = u± translate into

u(−`+ 0, t) ∈ (−∞,Ru−)] ∪ {u−}, u(`− 0, t) ∈ {u+} ∪ [Ru+,+∞)

Since f(u+) = f(u−), there holds Ru± = u∓, and the conditions can be rewritten as

u(−`+ 0, t) ∈ (−∞, u+] ∪ {u−}, u(`− 0, t) ∈ {u+} ∪ [u−,+∞)

From the boundary conditions, it follows that characteristic curves entering in the domain
from the left side x = −`, respectively, from the right x = `, possess speed f ′(u−), resp.
speed f ′(u+).

For (3.4) with conditions (3.2) a finite-time stabilization phenomenon holds, similar to
the one showed for the first time in [18] in the case of the Cauchy problem.
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Theorem 3.1. Let u+ < 0 < u− and f be such that (3.3) holds. Then, for any u0 ∈
BV(−`, `), the solution u to the initial-boundary value problem (3.4)–(3.2) is such that for
some T > 0 and ξ ∈ [−`, `], there holds

u(x, T ) = U
hyp

(x; ξ) := u−χ(−`,ξ)(x) + u+χ(ξ,`)
(x)

for almost any x in I.

The proof of the statement relies on the theory of generalized characteristics, introduced in
[6]. The convexity assumption on the flux function f guarantees that for any point (x, t) ∈
(−`, `) × (0,+∞) there exist a minimal, respectively maximal, backward characteristics,
which are classical characteristic curves, hence straight lines with slope f ′(u(x− 0, t)), resp.
f ′(u(x+ 0, t)).

By means of such technique it is possible to follow the evolution of the curves

ζ−(t) := sup{x ∈ I : u(y, t) = u− ∀ y ∈ (−`, x)} ∪ {−`},
ζ+(t) := inf{x ∈ I : u(y, t) = u+ ∀ y ∈ (x, `)} ∪ {`}.

As an illustrative example, let us first consider the case of a non-increasing initial datum u0.
Then, for any t > 0, u(·, t) is non-increasing. If ζ± are classical characteristics, the difference
between their speeds of propagation satisfies

dζ+
dt
− dζ−

dt
= f ′(u+)− f ′(u−)

≤ f(u)− f(u+)

u− u+
− f(u−)− f(u)

u− − u
=

f(u±)− f(u)

(u− − u)(u− u+)
[[u]] =: −Φ(u),

for any u ∈ (u+, u−). Since A := inf{Φ(u) : u ∈ (u+, u−)} is strictly positive, the two
curves intersect at a time T that is smaller than 2`/A.

The complete rigorous proof of Theorem 3.1 requires more technicalities and it is reported
here for completeness.

Proof. Let u = u(x, t) be the solution to the initial-boundary value problem under consid-
eration with initial datum u0. For later use, we set In particular, ζ− ≤ ζ+. We are going to
show that ζ−(T ) = ζ+(T ) for some T > 0.

1. There exists T0 > 0 such that u(x, t) ∈ [u+, u−] for any x ∈ (−`, `).

Indeed, let u be the solution to the Riemann problem for (3.4) with datum

ū0(x) =

{
u− x < −`,
max{u−, supu0} x > −`,

Hence, the restriction of ū to (−`, `) × (0,∞) is a super-solution to the initial boundary
value problem under consideration and, by comparison principle for entropy solution, we
infer u(x, t) ≤ ū(x, t). Since ū(x, t) = u− for any x < f ′(u−) t− `, there holds

u(x, t) ≤ u− for x ∈ (−`, `), t ≥ 2`/f ′(u−).

A similar estimate from below can be obtained by considering as subsolution the restriction
of u to (−`, `)× (0,∞), where u is the solution to (3.4) with initial datum

ū0(x) =

{
min{u+, inf u0} x < `,

u+ x > `,

From now on, we assume that the solution u takes values in the interval [u−, u+].

2. Assume that −` < ζ−(t) ≤ ζ+(t) < ` for any t; then there exists T1 > 0 such that
u(ζ−(t) + 0, t) < u− and u+ < u(ζ+(t)− 0, t) for any t > T1.



16 C. Mascia and M. Strani

If u is continuous at (ζ−(τ), τ) for some τ > 0, then u(ζ−(τ) + 0, t) = u−. Therefore, the
maximal backward characteristic from (ζ−(τ), τ) is the straight line x = ζ−(τ)+f ′(u−)(t−τ).
For τ > 2L/f ′(u−), such curve intersects the boundary x = −` at some σ ∈ (0, τ). By
continuity, all of the maximal backward characteristics from (ξ, τ) with ξ > ζ−(t) and
sufficiently close to ζ−(τ) intersect the boundary x = −` at some time σ∗(ξ) smaller than σ
and close to it. Because of the boundary conditions, this may happen if and only if u(ξ, τ) =
u−. Hence, u(x, τ) = u− for x ∈ (ζ−(τ), ζ−(τ) + ε) for some ε > 0, in contradiction with the
definition of ζ−. Thus, continuity of u at (ζ−(τ), τ) may happen only for τ ≤ 2L/f ′(u−). A
similar assertion holds for ζ+.

3. There exist T > 0 and ξ ∈ [−`, `] such that u(x, t) = U
hyp

(·; ξ) for any t ≥ T .

Given θ > 0, let Tθ := 2`/θ be such that

uθ− := u(ζ−(Tθ) + 0, Tθ) < u− and u+ < uθ− := u(ζ+(Tθ)− 0, Tθ).

Let xθ− be the maximal backward characteristic from (ζ−(Tθ), Tθ), whose equation is x =

ζ−(Tθ) + f ′(uθ−)(t − Tθ). If xθ− hits the right boundary x = ` at some positive time, the

solution u coincides with U
hyp

(x; ζ−(Tθ)). Otherwise, there holds ζ−(Tθ) − f ′(uθ−)Tθ < `,
which gives

f ′(uθ−) >
ζ−(Tθ)− `

Tθ
≥ − 2`

Tθ
= −θ

Similarly, let xθ+ be the maximal backward characteristic from (ζ+(Tθ), Tθ), whose equation

is x = ζ+(Tθ) + f ′(uθ+)(t− Tθ). If xθ+ does not intersect the left boundary x = −` at some

positive time, there holds f ′(uθ+) < θ.

Hence, for any ε > 0, we can choose θ sufficiently large so that uθ− > u∗−ε and uθ+ < u∗+ε.
Thus, we have

dζ+
dt
− dζ−

dt
<
f(u+)− f(u∗ + ε)

u+ − u∗ − ε
− f(u−)− f(u∗ − ε)

u− − u∗ + ε

which is uniformly negative for ε sufficiently small. Hence, the curves ζ+ and ζ− intersect
at some finite positive time T > 0. �

Adding viscosity. As soon as the viscosity term is switched on, i.e. for ε > 0, the number
of steady states for (3.1)–(3.2) drastically reduces with respect to the corresponding hy-
perbolic case. Indeed, stationary solution to the problem are implicitly determined by the
relation ∫ u−

u(x)

ds

κ− f(s)
=
`+ x

ε

where κ ∈ (f(u±),+∞) is such that

Φ(κ) :=

∫ u−

u+

ds

κ− f(s)
=

2`

ε

Assumptions 3.3 on the flux f imply that Φ is strictly decreasing and such that

lim
κ→f(u±)+

Φ(κ) = +∞, lim
κ→+∞

Φ(κ) = 0.

Therefore, for any ` > 0, there exists a unique steady state for (3.1)–(3.2).

Example 3.2. In the case of Burgers equation, f(u) = u2/2, the value u+ coincides with

−u− and Φ has the explicit form
√

2 tanh−1(u−/
√

2κ)/
√
κ, so that the value σ determining

the stationary solution is uniquely determined by the relation
√

2κ tanh(
√

2κ `/ε) = u−.
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Given κ, the steady state U has the expression U(x) =
√

2κ tanh(−
√

2κx/ε).

Following the general approach introduced in the previous section, we build a one-
parameter family of functions Uε = Uε(·; ξ) with ξ ∈ J converging to U

hyp
(·; ξ) as ε→ 0. In

particular, the parameter set J coincides with the interval I

u(x, T ) = U
hyp

(x; ξ) := u−χ(−`,ξ)(x) + u+χ(ξ,`)
(x)

There are many meaningful choices for Uε (see the traveling wave approach in [7]); here, we
opt for matching at a given point ξ ∈ I the two stationary solutions of (3.1) in (−`, ξ) and
(ξ, `), denoted by Uε− and Uε+, satisfying the boundary conditions

Uε−(−`; ξ) = u−, U
ε
−(ξ; ξ) = u∗ and Uε+(ξ; ξ) = u∗, U

ε
+(`; ξ) = u+

where u∗ is such that f ′(u∗) = 0. Hence, we set

Uε(x; ξ) =

{
Uε−(x; ξ) − ` < x < ξ < `

Uε+(x; ξ) − ` < ξ < x < `,

Given κ ∈ (f(u±),+∞) and u ∈ (u+, u−), let us define

Ψ∗(κ, u) =

∫ u

u∗

ds

κ− f(s)

Similarly to the case of stationary states, the function Φ is such that

Ψ∗(κ−, ·) decreasing, Ψ∗(κ−, f(u±)) = +∞, Ψ∗(κ−,+∞) = 0,

Ψ∗(κ+, ·) increasing Ψ∗(κ+, f(u±)) = −∞, Ψ∗(κ+,+∞) = 0,

so that for any ξ ∈ (−`, `) there are (unique) κε± = κε±(ξ) ∈ (f(u±),+∞) such that

(3.5) εΨ∗(κ
ε
±, u±)± ` = ξ

Correspondingly, functions Uε± are implicitly given by

εΨ∗(κ
ε
±, U

ε
±(x; ξ)) + x = ξ.

By substitution, denoting by δx=ξ the Dirac’s delta distribution concentrated at x = ξ, there
holds in the sense of distributions

(3.6) Fε[Uε(·; ξ)] = [[∂xU
ε]]
x=ξ

δ
x=ξ

=
1

ε

(
κε−(ξ)− κε+(ξ)

)
δ
x=ξ

with κε± implicitly defined by (3.5). As a consequence of the properties of function Φ, the
difference function ξ 7→ κε−(ξ)− κε+(ξ) is monotone decreasing and such that

lim
ξ→±`∓

(
κε−(ξ)− κε+(ξ)

)
= ∓∞.

Then, there exists unique ξ∗ ∈ (−`, `) such that (κε− − κε+)(ξ∗) = 0 and such a value is such
that Uε(·; ξ∗) is the unique steady state of the problem.

From the bounds

f(u±) + f ′(u+)(u− u+) ≤ f(u) ≤ f(u±)

u∗ − u+
(u∗ − u) u ∈ [u+, u∗],

f(u±)− f ′(u−)(u− − u) ≤ f(u) ≤ f(u±)

u− − u∗
(u− u∗) u ∈ [u∗, u−],

we locate approximately the differences κε±(ξ)− f(u±)

−f ′(u+)(u∗ − u+)

exp{−f ′(u+)(`− ξ)/ε} − 1
≤ κε+(ξ)− f(u±) ≤ f(u±)

exp{f(u±)(`− ξ)/ε(u∗ − u+)} − 1

f ′(u−)(u− − u∗)
exp{f ′(u−)(`+ ξ)/ε} − 1

≤ κε−(ξ)− f(u±) ≤ f(u±)

exp{f(u±)(`+ ξ)/ε(u− − u∗)} − 1
.
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Such bounds show that |κε−−κε+| is exponentially small as ε→ 0+, uniformly in any compact
subset of (−`, `); therefore, for any δ ∈ (0, `), there exist C1, C2 > 0, indipendent on ε, such
that

(3.7)
∣∣[[∂xUε]]x=ξ ∣∣ ≤ C1 e

−C2/ε ∀ ξ ∈ (−`+ δ, `− δ).
In particular, hypothesis H1, stated in Section 2, is satisfied.

Going further, retracing the definitions previously introduced and setting aε := f ′(Uε),
we consider the operators

Lεξv := εv′′ −
(
aε(·; ξ) v

)′ Lε,∗ξ v := εv′′ + aε(·; ξ) v′

where the adjoint operator Lε,∗ξ is considered with Dirichlet boundary conditions.
For small ε and v, the dynamics of the parameter ξ is approximately given by

dξ

dt
≈ θε(ξ), where θε(ξ) := 〈ψε1,F [Uε]〉

where ψε1 is the first eigenfunction of the adjoint operator Lε,∗ξ satisfying the normalization
condition

(3.8) 〈ψε1(·; ξ), ∂ξUε(·; ξ)〉 = 1,

For ε ∼ 0, the eigenfunction ψε1 is close to the eigenfunction of L0,∗
ξ relative to the eigenvalue

λ = 0, with
a0(x; ξ) := f ′(u−)χ

(−`,ξ)(x) + f ′(u+)χ
(ξ,`)

(x)

Hence, we obtain the representation formula

(3.9) ψε1(x) ≈ C ψ0
1(x)

where

ψ0
1(x) :=

{
(1− eu+(`−ξ)/ε)(1− e−u−(`+x)/ε) x < ξ,

(1− e−u−(`+ξ)/ε)(1− eu+(`−x)/ε) x > ξ,

for some C ∈ R. In the limit ε → 0, we obtain ψε1 ≈ C, provided ξ is bounded away from
the boundaries ±`. With the approximation

Uε(x; ξ) ≈ U
hyp

(x; ξ) := u−χ(−`,ξ)(x) + u+χ(ξ,`)
(x)

we infer
Uε(x; ξ + h)− Uε(x; ξ)

h
≈ − 1

h
[[u]]χ

(ξ,ξ+h)
(x)

so that we expect ∂ξU
ε to converge to −[[u]] δξ as ε→ 0 in the sense of distributions. Hence,

the normalization condition (3.8) gives the choice C = −1/[[u]] in (3.9). Therefore, we deduce
an approximate expression for the function θε

θε(ξ) ≈ − 1

[[u]]
〈1,F [Uε]〉 =

1

ε [[u]]

(
κε+(ξ)− κε−(ξ)

)
.

Estimate (3.7) shows that the the function θ has order of magnitude e−C/ε.

Example 3.3. In the very special case f(u) = |u|, with u∗ = 0 and u+ = −u−, the earlier
estimates on κε± are exact, so that

κε+(ξ)

u−
= 1 +

e−(`−ξ)/ε

1− e−(`−ξ)/ε
κε−(ξ)

u−
= 1 +

e−(`+ξ)/ε

1− e−(`+ξ)/ε
.

In this case, the function θε is approximated by

θε(ξ) ≈ 1

2ε

(
e−(`+ξ)/ε

1− e−(`+ξ)/ε
− e−(`−ξ)/ε

1− e−(`−ξ)/ε

)
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which gives θε(ξ) ≈ −ε−1 e−`/ε sinh(ξ/ε) in the regime ε→ 0+.

Example 3.4. For the Burgers equation, f(u) = u2/2, there holds

Ψ∗(κ, u) = 2

∫ u

u∗

ds

2κ− s2
=

√
2√
κ

tanh−1

(
u√
2κ

)
Given ξ ∈ (−`, `), the values κε± can be approximated by κ̃ε± determined by

2ε

u−
tanh−1

(
−u−√

2κ̃ε+

)
+ ` = ξ,

2ε

u−
tanh−1

(
u−√
2κ̃ε−

)
− ` = ξ.

obtained by substituting the multiplicative term
√

2/
√
κε± with

√
2/
√
f(u±) = 2/u−. By

computation, we obtain the explicit expressions

κ̃ε+ =
u2
−
2

1

tanh2 {u−(`− ξ)/2ε}
, κ̃ε− =

u2
−
2

1

tanh2 {u−(`+ ξ)/2ε}
.

Since, for x, y > 0,

1

tanh2(x/ε)
− 1

tanh2(y/ε)
=

4
(
e(y−x)/ε − e(x−y)/ε

)(
e(x+y)/ε − e−(x+y)/ε

)
(ex/ε − e−x/ε)2(ey/ε − e−y/ε)2

≈ 4
(
e−2x/ε − e−2y/ε

)
as ε→ 0+, the function θε approaches

θε(ξ) ≈ 1

2ε u−

(
κ̃ε−(ξ)− κ̃ε+(ξ)

)
≈ 1

ε
u−
(
e−u−(`+ξ)/ε − e−u−(`−ξ)/ε)

which corresponds to the formula determined in [27].

4. Spectral analysis for scalar diffusion-transport operators

Our concern in the present section is to estabilish a precise description on the location
of the eigenvalues of the linearized operator, in order to show that the general procedure
developed in Section 2 is indeed applicable in the case of scalar conservation laws with convex
flux.

The problem of determining the limiting structure of the spectrum of the type of second
order differential operators we deal with has been widely considered in the literature. Among
others, let us quote the approach, based on the use of Prüfer transform, used in [5], in the
context of metastability analysis for the Allen–Cahn equation. Here, we prefer to follow
the strategy implemented in [14], for the linearization at the steady state of the Burgers
equation. In what follows, we show that the same kind of eigenvalues distribution holds in
a much more general situation, the main ingredient being the resemblance of the coefficient
aε to a step function a0, jumping from a positive to a negative value, as ε→ 0+.

Fixed ε > 0 and linearizing the scalar conservation law (3.1) at a given a reference
profile Uε = Uε(x), satisfying the boundary conditions Uε(±`) = u±, we end up with the
differential linear diffusion-transport operator

(4.1) Lεξu := u′′ − (aε(x)u)′ u(±`) = 0,

where aε = aε(x) := f ′(Uε(x)). The aim of this Section is to describe the structure of the
spectrum σ(Lεξ) of the operator Lεξ for ε sufficiently small.

Given the function aε, let us introduce the self-adjoint operator

Mε
ξv := ε2 v′′ − bεv v(±`) = 0,
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where

(4.2) bε :=

(
1

2
aε
)2

+
1

2
ε
daε

dx
.

A straightforward calculation shows that if u is an eigenfunction of (4.1) relative to the
eigenvalue λ, then the function v(x) defined by

v(x) = exp

(
− 1

2ε

∫ x

x0

aε(y) dy

)
u(x)

(with x0 arbitrarily chosen) is an eigenfunction of the operatorMε
ξ relative to the eigenvalue

µ := ελ. Since Mε
ξ is self-adjoint, we can state that the spectrum of the operator Lεξ is

composed by real eigenvalues. Moreover, if u is an eigenfunction of (4.1) relative to the first
eigenvalue λε1, integrating in (−`, `) the relation Lεξu = λu, we deduce the identity

0 =

∫ `

−`

(
Lεξ − λε1

)
u dx = ε

(
u′(`)− u′(−`)

)
− λε1

∫ `

−`
u(x) dx

Assuming, without loss of generality, u to be strictly positive in (−`, `) and normalized so
that its integral in (−`, `) is equal to 1, we get

λε1 = ε
(
u′(`)− u′(−`)

)
< 0

Hence, for any choice of the function aε, there holds

σ(Lεξ) ⊂ (−∞, 0).

Our next aim is to show that under appropriate assumption on the behavior of the family of
functions aε as ε → 0+, it is possible to furnish a detailed representation of the eigenvalue
distributions for small ε. Specifically, we are interested in coefficients aε behaving, in the
limit ε→ 0+ as a step function of the form

a0(x) :=

{
a− x ∈ (−`, ξ),
a+ x ∈ (ξ, `),

for some ξ ∈ (−`, `) and a+ < 0 < a−. We will show that, under appropriate assumptions
making precise in which sense aε “resemble” a0 for ε small, the first eigenvalue λε1 turns to
be “very close” to 0 for ε small, and all of the others eigenavalues λεk, with k ≥ 2, are such
that ελεk = O(1) as ε→ 0+.

Estimate from below for the first eigenvalue. We estimate the first eigenvalue µε1 of
the operator Mε

ξ by means of the inequality

|µε1| ≤
|Mε

ξ ψ|L2

|ψ|
L2

.

for smooth test function ψ such that ψ(±`) = 0. Let us consider as test function ψε(x) :=
ψε0(x)−Kε(x), where

ψε0(x) := exp

(
1

2ε

∫ x

ξ

aε(y) dy

)
,

Kε(x) :=
1

2`

{
ψε0(−`)(`− x) + ψε0(`)(`+ x)

}
.

A direct calculation shows that Mε
ξψ := bεK and, assuming the family bε to be uniformly

bounded, we infer

|µε1| ≤
|bεKε|

L2

|ψε0 −Kε|
L2

≤ C
|Kε|

L2

|ψε0|L2 − |Kε|
L2

=
C

|Kε|−1
L2
|ψε0|L2 − 1
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as soon as |ψε0|L2 > |Kε|
L2 .

The opposite case being similar, let us assume ψ0(−`) ≥ ψ0(`). From the definition of
Kε, it follows

|Kε|2
L2

=
2`

3

{
ψ2

0(`) + ψ0(`)ψ0(−`) + ψ2
0(−`)

}
≤ 2` ψ2

0(−`).

Therefore, we deduce

|Kε|−2

L2
|ψε0|2L2

≥ 2` ψ−2
0 (−`)

∫ `

−`
|ψε0(x)|2 dx = 2` Iε

where

Iε :=

∫ `

−`
exp

(
1

ε

∫ x

−`
aε(y) dy

)
dx

Since aε converges to the step function a0 as ε→ 0+, it is natural to approximate the latter
integral in term of the corresponding one for a0:

Iε =

∫ `

−`
exp

(
1

ε

∫ x

−`
(aε − a0)(y) dy

)
exp

(
1

ε

∫ x

−`
a0(y) dy

)
dx ≥ e−|a

ε−a0|
L1
/ε
I0.

Since, for ε small,

I0 =

∫ ξ

−`
ea−(x+`)/ε dx+ ea−(ξ+`)/ε

∫ `

ξ

ea+(x−ξ)/ε dx

= ε ea−(ξ+`)/ε
{ 1

a−

(
1− e−a−(ξ+`)/ε

)
− 1

a+

(
1− ea+(`−ξ)/ε)} ∼ [a]

a−a+
ε ea−(ξ+`)/ε.

the subsequent estimate holds

|Kε|−2

L2
|ψε0|2L2

≥ 2 ` e
−|aε−a0|

L1
/ε
I0 ≥ C1 e

C2/ε.

whenever |aε − a0|
L1 ≤ c0ε for some c0 > 0. Thus, we deduce for the first eigenvalue µε1 of

the self-adjoint operatorMε
ξ the estimate |µε1| ≤ C1 e

C2/ε for some positive constant C1, C2.

As a consequence, since the spectrum σ(Lεξ) coincides with ε−1σ(Mε
ξ), the next result holds.

Proposition 4.1. Let aε be a family of functions satisfying the assumption:
A0. there exists C > 0, indipendent on ε > 0, such that

|aε|∞ + ε

∣∣∣∣daεdx
∣∣∣∣
∞

≤ C

If there exists ξ ∈ (−`, `), a+ < 0 < a− and C > 0 for which |aε − a0|
L1 ≤ Cε, then there

exist constants C, c > 0 such that −C e−c/ε ≤ λε1 < 0.

Let us stress that the request a+ < 0 < a− is essential, even if hided in the proof. If
this is not the case, the term Kε would not be small as ε→ 0+ and its L2 norm would not
be bounded by the L2-norm of ψε0. In fact, the statement in Proposition 4.1 may not hold
when a± have the same sign, the easiest example being the case aε ≡ a+ = a− > 0.

The next Example gives an heuristic estimate for the first eigenvalue λε1.

Example 4.2. Given −α < 0 < β and a± ∈ R, let us set I = (−α, β), [a] := a+ − a− and

a(x) = a−χ(−α,0)(x) + a+χ(0,β)
(x).

Given λ > 0, let us look for functions u ∈ C(I), such that

(L − λ)u = ε u′′ − (a(x)u)
′ − λu = 0, u(−α) = u(β) = 0
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in the sense of distributions. Since a′ = [a] δ0, this amounts in finding two functions u± such
that

(L± − λ)u = ε u′′± − a± u′± + λu = 0, u−(−α) = u+(β) = 0

and the following transmission conditions are satisfied

u+(0)− u−(0) = 0 and ε
(
u′+(0)− u′−(0)

)
− [a]u±(0) = 0.

The characteristic polinomial of L± is p±(µ;λ) := ε µ2 − a± µ− λ, with roots

µ±− :=
a− ±∆−

2ε
, µ±+ :=

a+ ±∆+

2ε
, where ∆± :=

√
a2
± + 4 ε λ.

Assume λ > −(a±)2/4 ε. Choosing u± in the form

u−(x) = A−(eµ
+
−(α+x) − eµ

−
−(α+x)) and u+(x) = A+(e−µ

+
+(β−x) − e−µ

−
+(β−x)).

Setting θ±− := eµ
±
−α and θ±+ := e−µ

±
+β , there holds

u−(0) = A−(θ+
− − θ−−) u′−(0) = A−(µ+

−θ
+
− − µ−−θ−−)

u+(0) = A+(θ+
+ − θ−+) u′+(0) = A+(µ+

+θ
+
+ − µ−+θ−+).

Therefore, the transmission conditions take the form of a linear system in A±
(θ+

+ − θ−+)A+ − (θ+
− − θ−−)A− = 0,{(

2ε µ+
+ − [a]

)
θ+

+ −
(
2ε µ−+ − [a]

)
θ−+

}
A+

+
{
−
(
2ε µ+

− + [a]
)
θ+
− +

(
2ε µ−− + [a]

)
θ−−

}
A− = 0.

After some manipulations, the determinant D = D(λ, ε) of system can be written as

D = − ([a]− [∆]) θ+
−θ

+
+ + ([a] + {∆}) θ+

−θ
−
+ + ([a]− {∆}) θ−−θ+

+ − ([a] + [∆]) θ−−θ
−
+ ,

where [∆] := ∆+ −∆− and {∆} := ∆+ + ∆−.

Since
√
κ2 + 4x = |κ|+ 2|κ|−1 x+ o(x), in the case a+ < 0 < a− there hold

{∆} =
√
a2

+ + 4 ελ+
√
a2
− + 4 ελ = −[a]

(
1− 2 ελ

a+ a−

)
+ o(ελ)

[∆] =
√
a2

+ + 4 ε λ−
√
a2
− + 4 ε λ = −{a}

(
1 +

2 ελ

a+a−

)
+ o(ελ)

as ελ→ 0, together with

ε ln(θ+
−θ

+
+) =

1

2

{
(a− + ∆−)α− (a+ + ∆+)β

}
= a−α+

(
α

a−
+

β

a+

)
ελ+ o(ελ),

ε ln(θ+
−θ
−
+) =

1

2

{
(a− + ∆−)α− (a+ −∆+)β

}
= a−α− a+β +

(
α

a−
− β

a+

)
ελ+ o(ελ),

ε ln(θ−−θ
+
+) =

1

2

{
(a− −∆−)α− (a+ + ∆+)β

}
= −

(
α

a−
− β

a+

)
ελε + o(ελ),

ε ln(θ−−θ
−
+) =

1

2

{
(a− −∆−)α− (a+ −∆+)β

}
= −a+β −

(
α

a−
+

β

a+

)
ελε + o(ελ)

Hence, for λ < 0 and ελ→ 0, disregarding the exponentially small term θ−−θ
+
+ keeping only

the principal term in the expansions, we infer

1

2
D ≈ −a+e

a−α/ε +
[a] ελ

a+ a−
e(a−α−a+β)/ε + a−e

−a+β/ε.
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Therefore, D ≈ 0 for

(4.3) λε1 ≈ −
a+a−
a+ − a−

1

ε

(
−a+e

a+β/ε + a−e
−a−α/ε

)
in the regime ελ small.

Asymptotic representation (4.3) permits to verify the relation between the first eigen-
value of the linearized operator and the term Ωε, controlling the size of F [Uε] (see (2.2)).
Specifically, for the Burgers equation, (4.3) becomes

λ ≈ −1

ε
u2
−e
−u−`/ε cosh(u−ξ/ε).

The term F [Uε] given in (3.6) for the Burgers equation (Example 3.4) is such that

Ωε(ξ) ≈ 2

ε
u2
−

∣∣∣e−u−(`+ξ)/ε − e−u−(`−ξ)/ε
∣∣∣ =

4

ε
u2
−| sinh(u− ξ/ε)| e−u−`/ε.

Therefore, the estimate

0 ≤ Ωε

|λε|
≈ 4| tanh(u− ξ/ε)| ≤ 4.

holds and hypothesis (2.10) is verified.

For general scalar conservation it still possible to obtain an analogous bound. Indeed, for
a± = f ′(u±), α = `+ ξ and β = `− ξ, expression (4.3) becomes

λε1 ≈ −
(

1

f ′(u−)
− 1

f ′(u+)

)−1
1

ε

(
−f ′(u+)ef

′(u+)(`−ξ)/ε + f ′(u−)e−f
′(u−)(`+ξ)/ε

)
.

(compare with Lemma 3.2 in [7]). The bounded for Ωε can be obtained by proceeding as
in Section 2, by means of a more detailed estimate on the functions κε± starting from the
inequalities

f(u) ≤ f(u+) + f ′(u+)(u− u+) +
1

2
c0(u− u+)2 u ∈ [u+, u∗],

f(u) ≤ f(u−) + f ′(u−)(u− u−) +
1

2
c0(u− u−)2 u ∈ [u∗, u−],

A careful (and tedious) computation of the integrals in a the corresponding approximated
form for the implicit relation (3.5), leads to the bound

Ωε ≤ 1

ε

(
C+e

f ′(u+)(`−ξ)/ε + C−e
−f ′(u−)(`+ξ)/ε

)
which, together with the asymptotic representation for λε1, guarantees requirement (2.10) in
Theorem 2.1.

Estimate from above for the second eigenvalue. Controlling the location of the sec-
ond (and subsequent) eigenvalue needs much more care and, also, a number of additional
assumption on the limiting behavior of the function aε as ε → 0+. Precisely, we suppose
aε ∈ C0([−`, `]) satisfies the following hypotheses:

A1. the function aε is twice differentiable at any x 6= ξ and

daε

dx
,
d2aε

dx2
< 0 < aε in (−`, ξ), and aε,

daε

dx
< 0 <

d2aε

dx2
in (ξ, `),

A2. for any C > 0 there exists c
0
> 0 such that, for any x satisfying |x− ξ| ≥ c

0
ε, there

holds

|aε − a0| ≤ C ε and ε

∣∣∣∣daεdx
∣∣∣∣ ≤ C;
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A3. there exists the left/right first order derivatives of aε at ξ and

lim inf
ε→0+

ε

∣∣∣∣daεdx (ξ±)

∣∣∣∣ > 0

As a consequence, the function bε+ελε satisfies a number of corresponding properties, listed
in the next statement.

Lemma 4.3. Let the family aε be such that hypotheses A1-2-3 are satisfied, and let λε < 0
be such that

inf
ε>0

ελε > −1

4
α2

0
where α0 := min{|a−|, |a+|}.

Then there exist ε0 > 0 such that, for ε < ε0 , the functions bε+ελε, with bε defined in (4.2),
enjoy the following properties:

B1. the function bε + ελε is decreasing in (−`, ξ) and increasing in (ξ, `);
B2. there exist C, c > 0 such that, for any x with |x−ξ| ≥ c ε there holds bε+ελε ≥ C > 0;
B3. there exist the left/right limits of bε + ελε at ξ and

β := lim sup
ε→0+

(
bε(ξ±) + ελε

)
< 0;

Proof. Property B1. is an immediate consequence of assumption A1, since

d

dx
(bε + ελε) =

1

4
aε
daε

dx
+

1

2
ε
d2aε

dx2
.

From A2, given C > 0, for x ≤ ξ − c
0
ε, there holds

bε + ελε ≥ 1

4
(aε + a0)(aε − a0)− 1

2
ε

∣∣∣∣daεdx
∣∣∣∣+ ελε +

1

4
a2
−

≥ ελε +
1

4
α2

0
− 1

2

(
1 + |a0| ε+

1

2
C ε2

)
C

From such inequality, by choosing C > 0 sufficiently small, and combining with an analogous
estimate on (ξ + c ε, `), property B2. follows.

For what concerns B3, we observe that, since a(ξ) = 0 and λ ≤ 0, there holds

lim sup
ε→0+

(
bε(ξ±) + ελε

)
≤ lim sup

ε→0+

1

2
ε
daε

dx
(ξ) = − lim inf

ε→0+
ε

∣∣∣∣daεdx (ξ±)

∣∣∣∣ < 0,

thanks to A3. �

For later reference, we denote yε± the zeros of bε+ελε, with −` < yε− < ξ < yε+ < `. Since
property B2 holds, we deduce that |yε± − ξ| ≤ c0 ε.

Assume the assumption of Lemma 4.3 to hold, and let λε2 and µε2 = ε λε2 be the second
eigenvalue of the operators Lεξ and Mε

ξ, respectively, with corresponding eigenfunctions φε2
and ψε2. Such eigenfunctions are linked together by the relation

(4.4) ψε2(x) = A exp

(
− 1

2ε

∫ x

x∗

aε(y) dy

)
φε2(x)

for some constants A and x∗. Since λε2 is the second eigenvalue, the functions φε2 and ψε2
possess a single root located at some point xε0 ∈ (−`, `). The sign properties of bε + µε2
described in Lemma 4.3 imply that xε0 ∈ (yε−, y

ε
+). Then, φε2 and ψε2 restricted to the

intervals (−`, xε0) and (xε0, `) are eigenfunctions relative to the first eigenvalue of the same
operator considered in the corresponding intervals and with Dirichlet boundary conditions.
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From now on, we drop, for shortness, the dependence on ε of λ2, φ2, ψ2, x0, we assume,
without loss of generality, x0 ≥ ξ and we restrict our attention to the interval J = (x0, `).
Integrating on J , we deduce

λ2

∫ `

x0

φ2 dx = ε
(
φ′2(`)− φ′2(x0)

)
< −ε φ′2(x0)

having chosen φ2 positive in J . Assuming ψ2 to be given as in (4.4) with A = 1 and x∗ = x0,
and normalized so that maxψ2 = 1, from the latter inequality we infer the inequality

(4.5) |λ2| > ε I−1 ψ′2(x0),

where

I :=

∫ `

x0

exp

(
1

2ε

∫ x

x0

aε(y) dy

)
dx

Our next aim is to deduce an estimate from above on Iε and an estimate from below for
ψ′2(x0), in order to get a control on the size of the second eigenvalue λ2.

From the definition of Iε, since x0 ≥ ξ, it follows

Iε ≤ e|a
ε−a0|

L1 /2ε
∫ `

x0

ea+(x−x0)/2ε dx =
2ε

|a+|
e
|aε−a0|

L1 /2ε
(
1− ea+(`−x0)/2ε

)
≤ 2ε

|a+|
e
|aε−a0|

L1
/2ε ≤ C ε

whenever |aε − a0|
L1 ≤ C ε. Thus, estimate (4.5) provisionally becomes

(4.6) |λ2| > C ψ′2(x0)

for some positive constant C, independent on ε.
Let the value xM be such that ψ2(xM ) = 1, minimum with such property. From the

assumption on the function bε+ε λ, it follows xM ∈ (x0, y+). Then there exists xL ∈ (x0, xM )
such that

ψ′2(xL) =
1

xM − x0
≥ 1

y+ − ξ
≥ 1

c
0
ε
.

Since the function ψ is concave in the interval (x0, y+), we deduce

ψ′2(x0) ≥ ψ′2(xL) ≥ 1

c
0
ε
.

Plugging into (4.6), we end up with |λ2| ≥ C/ε, for some C independent on ε.
As a consequence, we can state a result relative to the second eigenvalue λ2.

Proposition 4.4. Let aε be a family of functions sastisfying A1-2-3 then there exists C > 0
such that λε2 ≤ −C/ε for any ε sufficiently small.

Spectral estimates. Collecting the results of Propositions 4.1 and 4.4 give a complete
description for the spectrum of operator Lε for small ε, under assumptions A0-1-2-3 on the
family aε.

Corollary 4.5. Let aε be a family of functions satisfying the assumptions A0-1-2-3 for some
ξ ∈ (−`, `), a+ < 0 < a−. Then there exist C > 0 such that

λεk ≤ −C/ε and − Ce−C/ε ≤ λε1 < 0.

for any k ≥ 2.
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Hypotheses A0-1-2-3 are satisfied in the case of a family of function aε that is a (small)
perturbation of a function āε with the form

āε(x) = A−

(
x− ξ
ε

)
χ

(−L,ξ)(x) +A+

(
x− ξ
ε

)
χ

(ξ,L)
(x).

for some decreasing smooth bounded functions A±, bounded together with their first and
second order derivatives, and such that A±(±∞) = a± and A′±(±∞) = 0.
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