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We put the Adler-Gelfand-Dickey approach to classical W-algebras in the framework of Poisson vertex algebras. We

show how to recover the bi-Poisson structure of the KP hierarchy, together with its generalizations and reduction to the

N-th KdV hierarchy, using the formal distribution calculus and the λ-bracket formalism. We apply the Lenard-Magri

scheme to prove integrability of the corresponding hierarchies. We also give a simple proof of a theorem of Kupershmidt

and Wilson in this framework. Based on this approach, we generalize all these results to the matrix case. In particular,

we find (non-local) bi-Poisson structures of the matrix KP and the matrix N-th KdV hierarchies, and we prove

integrability of the N-th matrix KdV hierarchy.
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0 Introduction

It is well known that classical W-algebras play an important role in the theory of integrable bi-Hamiltonian

equations. One of the most powerful approaches to classicalW-algebras is via the Drinfeld-Sokolov Hamiltonian

reduction, Drinfeld and Sokolov [1985], associated to any simple Lie algebra and its principal nilpotent element.

Later on this theory was extended to more general nilpotent elements, and it was put by De Sole et al. [2013-a]

in the framework of Poisson vertex algebras (PVA).

However the most important classical W-algebras, those associated to slN and its principal nilpotent

element, have appeared prior to Drinfeld and Sokolov [1985] together with their deep connection to integrable

systems. They were identified with the so-called second Poisson structure of the N -th (or generalized) KdV

equations, the KdV equation corresponding to the case of N = 2. The first Poisson structure of the KdV

equation was found by Gardner [1971] and Zakharov and Faddeev [1971]. Later, it was shown by Magri [1978],

that there exists not only a Poisson structure but a one-parameter family of compatible Poisson structures for

the KdV equation. In this case we say that we have a bi-Poisson structure. The fact that the same equation

could be written in two different Hamiltonian forms has become fundamental in proving integrability of such

equations using a recurrence procedure, nowadays called the Lenard-Magri scheme of integrability.

The generalization to the N -th KdV hierarchy was suggested by Gelfand and Dickey [1976] who found a

Poisson structure for these hierarchies, obtained as a Poisson algebra on a suitable space of scalar differential

operators (N being the order of the operators). A candidate for a second Poisson structure (whence a bi-Poisson

structure) was conjectured by Adler [1979] and proved by Gelfand and Dickey [1978]. These Poisson structures

are usually known as the first and second Adler-Gelfand-Dickey (AGD) Poisson structures and the second one

is a special case of general classical W-algebras.

Later on, all the N -th KdV hierarchies were “embedded” into one big hierarchy called the KP hierarchy, Sato

[1981]. A Poisson structure for this hierarchy (which was a slight modification of the AGD Poisson structure)

was suggested by Watanabe [1983], and Dickey [1987] proved that there exists a second Poisson structure. In

fact, it was shown by Radul [1987] that, for any N ≥ 1, there is a bi-Poisson structure for the KP hierarchy

which induces the bi-Poisson structure for the N -th KdV hierarchy. We refer to the book of Dickey [2003] for a

detailed exposition of these topics and a large list of references.

The main goal of the present paper is to give a Poisson vertex algebra interpretation of the AGD approach

to classical W-algebras. This point of view greatly simplifies the theory and also allows to study its matrix

generalization.

Let V be a differential algebra with derivation ∂. Following Adler [1979], given a pseudodifferential

operator L ∈ V((∂−1)), we define the corresponding Adler map A(L) : V((∂−1))→ V((∂−1)) given by (2.1),

and the associated skewadjoint matrix differential operator H(L) with coefficients in V , given by (2.8). In

Theorem 2.7 we consider the algebra V∞
N of differential polynomials on the differential variables {ui}i≥−N

and the pseudodifferential operator L = ∂N + u−N∂N−1 + u−N+1∂
N−2 + . . . , and we prove that, in this case,
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the corresponding 1-parameter family of matrices H(L−c) gives a bi-Poisson structure on V∞
N . Theorem 2.10

is the analogous result for the algebra VN of differential polynomials in finitely many variables {ui}
−1
i=−N and

L = ∂N + u−N∂N−1 + · · ·+ u−1. Also in this case we get a bi-Poisson structure on VN . This is the classical

W-algebra associated to the Lie algebra glN and its principal nilpotent element. Furthermore, performing

Dirac’s reduction by the constraint u−N = 0, we obtain bi-Poisson structures on W∞
N = V

∞
N

/
〈u−N〉 and on

WN = VN
/
〈u−N 〉 (the latter is the classical W-algebra for slN ).

In Section 3 we associate to each of these bi-Poisson structures the corresponding integrable hierarchy of

bi-Hamiltonian equations, using the Lenard-Magri scheme: on W∞
N we obtain the KP hierarchy, while on WN

we obtain the N -th KdV hierarchy.

Furthermore, in Section 2.7 we use the Adler map to define natural PVA homomorphisms V∞
M+N →

V∞
M ⊗ V

∞
N and VM+N → VM ⊗ VN , which are a generalization of the usual “Miura map”, Miura [1968]. This

allows us to give another proof of the Theorem of Kupershmidt and Wilson [1981].

A major advantage of our approach is that all the above constructions and proofs extend in a straightforward

way to the case when the variables ui are replaced by m×m matrices Ui. This is done in Section 4, where, as

a result, we construct the matrix KP and N -th KdV bi-Hamiltonian equations. The main difference with the

scalar case is that, in the matrix case, Dirac reduction (developed by De Sole et al. [2013-c]) by the constraint

U−N = 0 leads to a non-local bi-Poisson structure. These non-local Poisson structures have been discovered

by Bilal [1995] and Olver and Sokolov [1998]. We then need to use the theory of non-local Poisson structures

introduced by De Sole and Kac [2013-a], and the machinery of rational matrix pseudodifferential operators

developed by Carpentier et al. [2013-b], to prove integrability of the matrix N -th KdV hierarchy.

1 Preliminaries

1.1 Some simple facts on formal distribution calculus

We briefly review here some basic facts on formal distribution calculus which will be used throughout the paper,

cf. Kac [1996].

Given a vector space A, an A-valued formal distribution in z is a series of the form a(z) =
∑

n∈Z
anz

n,

where an ∈ A. They form a vector space denoted by A[[z, z−1]]. An A-valued formal distribution in two variables

z and w is a series of the form a(z, w) =
∑

m,n∈Z
amnz

mwn, where amm ∈ A. They form a vector space denoted

by A[[z, z−1, w, w−1]].

The δ-function is, by definition, the F-valued formal distribution

δ(z − w) =
∑

n∈Z

z−n−1wn ∈ F[[z, z−1, w, w−1]] .

For every a(z) ∈ A[[z, z−1]] we have

a(z)δ(z − w) = a(w)δ(z − w) . (1.1)



4 A. De Sole, V. Kac and D. Valeri

In particular, Resz a(z)δ(z − w) = a(w), where Resz denotes the coefficient of z−1.

We denote by iz the power series expansion for large |z|. For example,

iz(z − w)−1 =
∑

k∈Z+

z−k−1wk .

Using this notation, the δ-function can be rewritten as follows

δ(z − w) = iz(z − w)−1 − iw(z − w)−1 . (1.2)

For a(z) =
∑

n∈Z
anz

n ∈ A[[z, z−1]], we denote a(z)+ =
∑

n∈Z+
anz

n and a(z)− =
∑

n<0 anz
n. It is easy to

check that

Resz a(z)iz(z − w)−1 = a(w)+ . (1.3)

1.2 The algebra of matrix pseudodifferential operators

By a differential algebra we mean a unital commutative associative algebra A over a field F of characteristic 0,

with a derivation ∂.

The algebra Matm×mA of matrices with coefficients in A is a unital associative algebra, with the obvious

action of ∂ as a derivation. We consider the algebra Matm×mA((∂
−1)) of m×m matrix pseudodifferential

operators with coefficients in A. Its product is determined by the following formula (n ∈ Z, A ∈ Matm×mA):

∂n ◦A =
∑

k∈Z+

(
n

k

)
A(k)∂n−k .

We say that a non-zero A(∂) =
∑

n≤N An∂
n ∈Matm×mA((∂

−1)) has order ord(A(∂)) = N if AN 6= 0. We

denote by Matm×mA((∂
−1))N the space of all matrix pseudodifferential operators of order less than or equal

to N . We say that A(∂) is monic if AN = 1m.

The residue of A(∂) ∈Matm×mA((∂
−1)) is, by definition,

Res∂ A(∂) = A−1 (= coefficient of ∂−1) . (1.4)

The adjoint of A(∂) ∈Matm×mA((∂
−1)) is, by definition,

A(∂)∗ =
∑

n≤N

(−∂)n ◦At
n ,

where At
n denotes the transpose matrix of An.
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We have the subalgebras Matm×mA[∂] of matrix differential operators, and Matm×mA[[∂
−1]]∂−1 of

matrix integral operators. Every matrix pseudodifferential operator A(∂) can be decomposed uniquely as

A(∂) = A(∂)+ +A(∂)−, where A(∂)+ ∈Matm×mA[∂] and A(∂)− ∈ Matm×mA[[∂
−1]]∂−1.

We let F[∂, ∂−1] ◦Matm×mA ⊂Matm×mA((∂
−1)) be the space of all pseudodifferential operators of

the form
∑

n∈Z
∂n ◦An, where all but finitely many elements An ∈Matm×mA are zero. We also let

Matm×mA[[∂, ∂
−1]] ⊃Matm×mA((∂

−1)) be the space of all formal series in ∂, ∂−1 with coefficients in

Matm×mA (it is not an algebra).

Recall the following simple facts about matrix pseudodifferential operators.

Proposition 1.1. Let A(∂) be a monic matrix pseudodifferential operator of order N ≥ 1.

(a) There exists exactly one monic matrix pseudodifferential operator of order one, which we denote A
1
N (∂),

such that (A
1
N (∂))N = A(∂).

(b) There exists exactly one monic matrix pseudodifferential operator of order −N , which we denote A−1(∂),

such that A(∂) ◦A−1(∂) = A−1(∂) ◦A(∂) = 1m.

The symbol of a matrix pseudodifferential operator A(∂) =
∑

n≤N
An∂

n ∈ Matm×mA((∂
−1)) is the Laurent

series A(z) =
∑

n≤N Anz
n ∈Matm×mA((z

−1)), where z is an indeterminate commuting with A. This gives

us a bijective map Matm×mA((∂
−1)) −→ Matm×mA((z

−1)) which is not an algebra homomorphism. For

A(∂), B(∂) ∈Matm×mA((∂
−1)), we have

(A ◦B)(z) = A(z + ∂)B(z) . (1.5)

Here and further, for any n ∈ Z, we expand (z + ∂)n in non-negative powers of ∂ (and we let the powers of ∂

act to the right, on the coefficients of B(z)), i.e. by (z + ∂)n we mean iz(z + ∂)n.

The following lemma will be used in Section 3.

Lemma 1.2. (a) If a(z), b(z) ∈ A((z−1)) are formal Laurent series with coefficients in an algebra A, then

Resz a(z)b(z − x) = Resz a(z + x)b(z) (where we expand (z ± x)n in non-negative powers of x).

(b) If A(∂), B(∂) ∈ A((∂−1)) are pseudodifferential operators over the differential algebra A, then

Resz A(z)B
∗(−z + λ) = Resz A(z + λ+ ∂)B(z).

Proof . Part (a) follows from the formula of integration by parts, Resz A(z)∂zB(z) = −Resz B(z)∂zA(z), and

the Taylor expansion a(z + x) = ex∂za(z). Part (b) is a special case of (a), when x = λ+ ∂, acting on the

coefficients of B.
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1.3 Poisson vertex algebras

Definition 1.3. A λ-bracket on a differential algebra V is an F-linear map {· λ ·} : V ⊗ V → V [λ] satisfying

(f, g, h ∈ V)

(i) sesquilinearity: {∂fλg} = −λ{fλg}, {fλ∂g} = (λ+ ∂){fλg},

(ii) Leibniz rules: {fλgh} = {fλg}h+ {fλh}g, {fhλg} = {fλ+∂g}→h+ {hλ+∂g}→f .

Here and further we use the following notation: if {fλg} =
∑

n∈Z+
λncn, then {fλ+∂g}→h =

∑
n∈Z+

cn(λ+

∂)nh.

Definition 1.4. A Poisson vertex algebra (PVA) is a differential algebra V endowed with a λ-bracket {· λ ·}

satisfying (f, g, h ∈ V)

(iii) skew-symmetry: {gλf} = −{f−λ−∂g},

(iv) Jacobi identity: {fλ{gµh}} − {gµ{fλh}} = {{fλg}λ+µh}.

In the skew-symmetry we use the following notation: if {fλg} =
∑

n∈Z+
λncn, then {f−λ−∂g} =

∑
n∈Z+

(−λ− ∂)ncn.

Definition 1.5. Let V be a PVA. A Virasoro element T ∈ V with central charge c ∈ F is such that {TλT } =

(2λ+ ∂)T + cλ3, a T -eigenvector a ∈ V of conformal weight ∆a ∈ F is such that {Tλa} = (∆aλ+ ∂)a+O(λ2),

and a primary element a ∈ V of conformal weight ∆a is such that {Tλa} = (∆aλ+ ∂)a. By definition, a PVA

of CFT (conformal field theory) type is generated, as a differential algebra, by a Virasoro element and a finite

number of primary elements.

Let I ⊂ V be a differential ideal. We say that I is a PVA ideal if {IλV} ⊂ I[λ] (by skew-symmetry and the

fact that I is a differential ideal we also have {VλI} ⊂ I[λ]). Given a PVA ideal I, we can consider the induced

Poisson vertex algebra structure over the differential algebra V
/
I, which is called the quotient PVA.

In this paper we consider PVA structures on the algebra RI = F[u
(n)
i | i ∈ I, n ∈ Z+] of differential

polynomials in the variables {ui}i∈I , where I is an index set (possibly infinite). The derivation ∂ is defined

by ∂(u
(n)
i ) = u

(n+1)
i , i ∈ I, n ∈ Z+. Note that on RI we have the following commutation relations:

[
∂

∂u
(n)
i

, ∂

]
=

∂

∂u
(n−1)
i

, where the RHS is considered to be zero if n = 0.

Theorem 1.6 ([Barakat et al., 2009, Theorem 1.15]). Let V = RI and H =
(
Hij(λ)

)
i,j∈I

∈ MatI×I V [λ].

(a) There is a unique λ-bracket {· λ ·}H on V , such that {uiλuj}H = Hji(λ) for every i, j ∈ I, and it is given by

the following Master Formula

{fλg}H =
∑

i,j∈I
m,n∈Z+

∂g

∂u
(n)
j

(λ + ∂)nHji(λ+ ∂)(−λ− ∂)m
∂f

∂u
(m)
i

. (1.6)
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(b) The λ-bracket (1.6) on V is skew-symmetric if and only if skew-symmetry holds on generators (i, j ∈ I):

{uiλuj}H = −{uj−λ−∂ui}H , (1.7)

and this is equivalent to skewadjointness of H .

(c) Assuming that the skew-symmetry condition (1.7) holds, the λ-bracket (1.6) satisfies the Jacobi identity,

thus making V a PVA, provided that the Jacobi identity holds on any triple of generators (i, j, k ∈ I):

{uiλ{ujµuk}H}H − {ujµ{uiλuk}H}H = {{uiλuj}Hλ+µ
uk}H . (1.8)

Remark 1.7. Theorem 1.6 holds in the more general situation when V is any algebra of differential functions

in the variables {ui}i∈I (see Barakat et al. [2009] for a definition), but in the present paper we will only consider

the case when V = RI .

Definition 1.8. A Poisson structure on V is a matrix differential operator H(∂) ∈ Matℓ×ℓ V [∂] such that the

corresponding λ-bracket {· λ ·}H defines a PVA structure on V .

Example 1.9. On R1 = F[v, v′, v′′, . . . ], we have the so-called Gardner-Faddeev-Zakharov (GFZ) PVA , given

by

{vλv} = λ , (1.9)

and the corresponding Poisson structure is H(∂) = ∂. In general, for N ≥ 1, we consider the algebra of differential

polynomials in N variables RN = F[v
(n)
i | i ∈ {1, . . . , N}, n ∈ Z+] with the generalized GFZ λ-bracket

{vjλvi} = sijλ , i, j ∈ {1, . . . , N} ,

where S = (sij)
N
i,j=1 is a symmetric matrix over F. The corresponding Poisson structure is H(∂) = S∂.

Example 1.10. On R1 = F[u, u′, u′′, . . . ] we have the Virasoro-Magri PVA, given by (c ∈ F)

{uλu} = (∂ + 2λ)u + cλ3 , (1.10)

with Poisson structure H(∂) = u′ + 2u∂ + c∂3.

1.4 Hamiltonian equations

The following proposition is immediate to check:
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Proposition 1.11. Let V be a PVA. Then we have a well defined Lie algebra bracket on the quotient space

V
/
∂V :

{
∫
f,
∫
g} =

∫
{fλg}|λ=0 . (1.11)

Here and further,
∫
: V → V

/
∂V is the canonical quotient map. Moreover, we have a well defined Lie algebra

action of V
/
∂V on V by derivations of the commutative associative product on V , commuting with ∂, given by

{
∫
f, g} = {fλg}|λ=0 .

Definition 1.12. Let V be a PVA. The Hamiltonian equation with Hamiltonian functional
∫
h ∈ V

/
∂V is

du

dt
= {

∫
h, u} (1.12)

An integral of motion for the Hamiltonian equation (1.12) is an element
∫
f ∈ V

/
∂V such that {

∫
h,
∫
f} = 0

(or, equivalently, d
dt

∫
f = 0). Equation (1.12) is called integrable if there exists an infinite sequence

∫
h0 =

∫
h,

∫
h1,

∫
h2, . . . , of linearly independent integrals of motion in involution: {

∫
hm,

∫
hn} = 0 for all m,n ∈ Z+.

The corresponding integrable hierarchy of Hamiltonian equations is

du

dtn
= {

∫
hn, u} , n ∈ Z+ . (1.13)

In the special case when V = Rℓ and H ∈ Matℓ×ℓ V [∂] is a Poisson structure, the Lie bracket (1.11) on V
/
∂V

takes the usual form (see (1.6)):

{
∫
f,
∫
g}H =

∑

i,j∈I

∫
δg

δuj

Hji(∂)
δf

δui

,

where δf
δui

denotes the variational derivative of f ∈ V with respect to ui,

δf

δui

=
∑

n∈Z+

(−∂)n
∂f

∂u
(n)
i

, (1.14)

(it is well defined on V
/
∂V since δ

δui
◦ ∂ = 0), and the Hamiltonian equation associated to the Hamiltonian

functional
∫
h ∈ V

/
∂V is, as usual,

dui

dt
=

∑

j∈I

Hij(∂)
δh

δuj

, i ∈ I .
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1.5 Bi-PVA and the Lenard-Magri scheme of integrability

Definition 1.13. Two PVA λ-brackets {· λ ·}0 and {· λ ·}1 on a differential algebra V are compatible if any their

linear combination (or, equivalently, their sum) is a PVA λ-bracket. We say in this case that V is a bi-PVA.

For example, the GFZ λ-bracket (1.9) and the Virasoro-Magri λ-bracket (1.10) are compatible.

According to the Lenard-Magri scheme of integrability, Magri [1978], in order to obtain an integrable

hierarchy of Hamiltonian equations, one needs to find a sequence {
∫
hn}n∈Z+

⊂ V
/
∂V spanning an infinite

dimensional space, such that

{
∫
hn, u}1 = {

∫
hn+1, u}0 for n ∈ Z+, u ∈ V . (1.15)

If this is the case, then {
∫
hm,

∫
hn}δ = 0, for all m,n ∈ Z+, δ = 0, 1. Hence, we get the corresponding integrable

hierarchy of Hamiltonian equations (1.13). Moreover, if {
∫
h0, u}0 = 0, and {

∫
gn}n∈Z+

⊂ V
/
∂V is another

sequence satisfying the Lenard-Magri recursion {
∫
gn, u}1 = {

∫
gn+1, u}0, for all n ∈ Z+ and u ∈ V , then the two

sequences of integrals of motion are compatible: {
∫
hm,

∫
gn}δ = 0, for all m,n ∈ Z+, δ = 0, 1, [Barakat et al.,

2009, Sec.2.1].

1.6 Non-local Poisson vertex algebras

For a vector space V , we shall use the following notation:

Vλ,µ := V [[λ−1, µ−1, (λ+ µ)−1]][λ, µ] ,

namely, the quotient of the F[λ, µ, ν]-module V [[λ−1, µ−1, ν−1]][λ, µ, ν] by the submodule (ν − λ−

µ)V [[λ−1, µ−1, ν−1]][λ, µ, ν]. We have the natural embedding ιµ,λ : Vλ,µ →֒ V ((λ−1))((µ−1)) defined by expand-

ing the negative powers of ν = λ+ µ by geometric series in the domain |µ| > |λ|.

Let V be a differential algebra. A non-local λ-bracket on V is an F-linear map {· λ ·} : V ⊗ V → V((λ
−1))

satisfying the sesquilinearity conditions and the Leibniz rules, as in Definition 1.3. It is called skew-symmetric if

the skew-symmetry condition in Definition 1.4 holds as well. The term {g−λ−∂f} in the RHS of the skewsymmetry

condition should be interpreted as follows: we move −λ− ∂ to the left and we expand it in non-negative powers

of ∂, acting on the coefficients of the λ-bracket. Clearly, from skew-symmetry and the left Leibniz rule, we also

have the right Leibniz rule, which should be interpreted in a similar way.

The non-local skew-symmetric λ-bracket {· λ ·} is called admissible if

{fλ{gµh}} ∈ Vλ,µ for all f, g, h ∈ V .
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Here we are identifying the space Vλ,µ with its image in V((λ−1))((µ−1)) via the embedding ιµ,λ. Note that, from

skew-symmetry, we also have that {gµ{fλh}} ∈ Vλ,µ and {{fλg}λ+µh} ∈ Vλ,µ. Therefore, the Jacobi identity

can be understood as an equality in the space Vλ,µ.

Definition 1.14 (De Sole and Kac [2013-a]). A non-local Poisson vertex algebra (PVA) is a differential algebra

V endowed with an admissible non-local skew-symmetric λ-bracket {· λ ·} : V ⊗ V → V((λ
−1)) satisfying the

Jacobi identity.

1.7 Dirac reduction

Let V be a (non-local) Poisson vertex algebra with λ-bracket {· λ ·}. Let θ1, . . . , θm be elements of V , and let

I = 〈θ1, . . . , θm〉V be the differential ideal generated by them. Consider the matrix pseudodifferential operator

C(∂) = (Cαβ(∂))
m
α,β=1 ∈Matm×m V((∂

−1)), whose symbol is

Cαβ(λ) = {θβλθα} . (1.16)

By the skew-symmetry condition, the pseudodifferential operator C(∂) is skewadjoint. We shall assume that the

matrix pseudodifferential operator C(∂) is invertible, and we denote its inverse by C−1(∂) =
(
(C−1)αβ(∂)

)m
α,β=1

.

Definition 1.15. The Dirac modification of the PVA λ-bracket {· λ ·}, associated to the elements θ1, . . . , θm, is

the map {· λ ·}
D : V × V → V((λ−1)) given by (a, b ∈ V):

{aλb}
D = {aλb} −

m∑

α,β=1

{θβλ+∂
b}→(C−1)βα(λ+ ∂){aλθα} . (1.17)

Theorem 1.16 ([De Sole et al., 2013-c, Theorem 2.2]). (a) The Dirac modification {· λ ·}
D is a PVA λ-bracket

on V .

(b) All the elements θi, i = 1, . . . ,m, are central with respect to the Dirac modified λ-bracket: {aλθi}
D =

{θiλa}
D = 0 for all i = 1, . . . ,m and a ∈ V .

(c) The differential ideal I = 〈θ1, . . . , θm〉V ⊂ V , generated by θ1, . . . , θm, is such that {I λ V}
D, {V λ I}

D ⊂

I((λ−1)).

The quotient space V
/
I is a (non-local) PVA, with λ-bracket induced by {· λ ·}

D, which we call the Dirac

reduction of V by the constraints θ1, . . . , θm.

Example 1.17. Let N ≥ 1 and let us consider the generalized GFZ PVA RN defined in Example 1.9

(associated to the symmetric matrix S =
(
sij

)N
i,j=1

). Let θ = v1 + · · ·+ vN ∈ RN . We have {θλθ} = λs, where

s =
∑N

h,k=1 shk ∈ F. Provided that s 6= 0, we can consider the Dirac reduction of RN by θ, and we can identify it
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with RN−1 = F[v
(n)
i | i ∈ {1, . . . , N − 1}, n ∈ Z+]. The corresponding Dirac modified λ-bracket (1.17) on RN−1

is given by

{viλvj}
D =

(
sij −

sisj

s

)
λ , (1.18)

for all i, j = 1, . . . , N − 1, where si =
∑N

k=1 sik ∈ F.

Lemma 1.18. Let V1 and V2 be PVAs and let ϕ : V1 → V2 be a PVA homomorphism. Let θ1, . . . θm ∈ V1 be such

that the matrix C(∂) ∈Matm×m V1((∂
−1)) defined in (1.16) is invertible. Then, ϕ induces a PVA homomorphism

of the corresponding Dirac reduced PVAs

ϕ : V1
/
〈θ1, . . . , θm〉V1

→ V2
/
〈ϕ(θ1), . . . , ϕ(θm)〉V2

.

Proof . Let Dαβ(λ) = {ϕ(θβ)λϕ(θα)}2 = ϕ(Cαβ(λ)), α, β = 1, . . . ,m. Since ϕ is a differential algebra homo-

morphism, the matrix D(∂) ∈ Matm×m V2((∂
−1)) is invertible, and D−1(∂) = ϕ

(
C−1(∂)

)
. Hence, by (1.17) we

have

ϕ
(
{aλb}

D
1

)
= {ϕ(a)λϕ(b)}

D
2 ,

for all a, b ∈ V1, as required.

In general, if we have two compatible PVA λ-brackets {· λ ·}0 and {· λ ·}1 on V (recall Definition 1.13), and

we take their Dirac reductions by a finite number of constraints θ1, . . . , θm, we do NOT get compatible PVA

λ-brackets on V
/
I, where I = 〈θ1, . . . , θm〉V . However, in the special case when the constraints θ1, . . . , θm are

central with respect to the first λ-bracket {· λ ·}0 we have the following result.

Theorem 1.19 ([De Sole et al., 2013-c, Theorem 2.3]). Let V be a differential algebra, endowed with two

compatible PVA λ-brackets {· λ ·}0, {· λ ·}1. Let θ1, . . . , θm ∈ V be central elements with respect to the first λ-

bracket: {aλθi}0 = 0 for all i = 1, . . . ,m, a ∈ V . Let C(∂) =
(
Cα,β(∂)

)m
α,β=1

be the matrix pseudodifferential

operator given by (1.16) for the second λ-bracket: Cα,β(λ) = {θβλ
θα}1. Suppose that the matrix C(∂) is

invertible, and consider the Dirac modified PVA λ-bracket {· λ ·}
D
1 given by (1.17). Then, {· λ ·}0 and {· λ ·}

D
1

are compatible PVA λ-brackets on V . Moreover, the differential algebra ideal I = 〈θ1, . . . , θm〉V is a PVA ideal

for both the λ-brackets {· λ ·}0 and {· λ ·}
D
1 , and we have the induced compatible PVA λ-brackets on V

/
I.
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2 Adler type pseudodifferential operators, classical W-algebras, and the Miura map

2.1 The Adler map for a scalar pseudodifferential operator

Let L be a scalar pseudodifferential operator of order ord(L) = N ∈ Z, with coefficients in a differential algebra

A. The corresponding Adler map A(L) : A((∂−1)) −→ A((∂−1)) is given by (cf. Adler [1979])

A(L)(F ) = (LF )+L− L(FL)+ = L(FL)− − (LF )−L , (2.1)

for any F ∈ A((∂−1)). By the last expression in (2.1), we have that A(L)(F ) ∈ A((∂−1))N−1 for every F ∈

A((∂−1)). Moreover, if F ∈ A((∂−1))−N−1, then (FL)+ = (LF )+ = 0, and therefore A(L)(F ) = 0. In conclusion,

A(L) induces a map A(L) : A((∂
−1))

/
A((∂−1))−N−1 −→ A((∂

−1))N−1. Note that A((∂−1)) = F[∂, ∂−1] ◦ A+

A((∂−1))−N−1, and (F[∂, ∂−1] ◦ A) ∩A((∂−1))−N−1 = ∂−N−1
F[∂−1] ◦ A. Hence, we can canonically identify

A((∂−1))
/
A((∂−1))−N−1 ≃

(
F[∂, ∂−1] ◦ A

)/(
∂−N−1

F[∂−1] ◦ A
)
,

and we get the induced map

A(L) :
(
F[∂, ∂−1] ◦ A

)/(
∂−N−1F[∂−1] ◦ A

)
−→ A((∂−1))N−1 . (2.2)

Let I = {−N,−N + 1,−N + 2, . . . } ⊂ Z. We have the identifications

(
F[∂, ∂−1] ◦ A

)/(
∂−N−1F[∂−1] ◦ A

) ∼
−→ A⊕I ,

M∑

n=−N

∂n ◦ Fn 7→ (Fn)n∈I , (2.3)

and

A((∂−1))N−1
∼
−→ AI ,

∞∑

n=−N

Pn∂
−n−1 7→ (Pn)n∈I . (2.4)

Therefore the map A(L) in (2.2) induces a map

H(L) : A⊕I −→ AI . (2.5)

This map is given by an I × I matrix differential operator H(L) =
(
H

(L)
ij (∂)

)
i,j∈I

, which we compute explicitly

in terms of the generating series of its entries:

H(L)(∂)(z, w) =
∑

i,j∈I

H
(L)
ij (∂)z−i−1w−j−1 . (2.6)
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Lemma 2.1. We have

H(L)(∂)(z, w) = L(w)iw(w − z − ∂)−1 ◦ L(z)− L(z + ∂)iw(w − z − ∂)−1 ◦ L∗(−w + ∂) , (2.7)

where, as usual, we expand L(z + ∂) and L∗(−w + ∂) in non-negative powers of ∂.

Proof . By definition, the matrix element H
(L)
ij (∂) is given by

H
(L)
ij (∂)(f) = Res∂

(
A(L)

(
∂j ◦ f

)
∂i
)
, (2.8)

for all f ∈ A and i, j ∈ I. Note that, by the above observations on the Adler map A(L), the RHS of (2.8) is zero

for i or j less than −N . Therefore, recalling the definition (1.2) of the δ-function,

H(L)(∂)(z, w)f =
∑

i,j∈Z

Res∂

(
A(L)

(
∂j ◦ f

)
∂i
)
z−i−1w−j−1 =

= Res∂

((
L(∂)δ(w − ∂) ◦ f

)
+
L(∂)δ(z − ∂)− L(∂)

(
δ(w − ∂) ◦ fL(∂)

)
+
δ(z − ∂)

)
.

(2.9)

By equation (1.1), we have

(L(∂)δ(w − ∂) ◦ f)+ = L(w)δ(w − ∂)+ ◦ f = L(w)iw(w − ∂)−1 ◦ f . (2.10)

Similarly,

(δ(w − ∂) ◦ fL(∂))+ = δ(w − ∂)+ ◦ (L
∗(−w + ∂)f) = iw(w − ∂)−1 ◦ (L∗(−w + ∂)f) , (2.11)

where (L∗(−w + ∂)f) ∈ A((w−1)) is obtained by applying the (non-negative) powers of ∂ to f (we put

parentheses to denote this). Combining equations (2.9), (2.10) and (2.11), we get

H(L)(∂)(z, w)f = Res∂

(
L(w)iw(w − ∂)−1 ◦ fL(∂)δ(z − ∂)

−L(∂)iw(w − ∂)−1 ◦ (L∗(−w + ∂)f) δ(z − ∂)
)
.

(2.12)

By equation (1.1), inside the residue we can replace ∂, written on the right, by z (and therefore ∂, written

anywhere, by z + ∂, written in the same place). Hence, equation (2.12) gives (2.7).

In the last term of equation (2.7) L∗(∂) denotes the adjoint of the pseudodifferential operator L(∂), and

L∗(−w + ∂) ∈ A[∂]((w−1)) is obtained by replacing ∂ by −w + ∂ and expanding in non-negative powers of ∂.

This is not the same as the adjoint of the differential operator L(−w + ∂). In fact, we have the identity

L(z + ∂)∗ = L∗(−z + ∂) . (2.13)
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Note that, while H(L)(∂)(z, w) lies in A[∂]((z−1, w−1)), i.e. it has powers of z and w simultaneously bounded

above (by construction), the two terms in the RHS of (2.7) do not: they lie in A[∂]((z−1))((w−1)) (and the powers

of z are not bounded above).

2.2 Preliminary properties of the Adler map

Let V be a differential algebra, let L(∂) ∈ V((∂−1)) be a pseudodifferential operator of order N , and let

H(L)(∂)(z, w) be as in (2.7).

Lemma 2.2. (a) H(L)(∂)(z, w) = −H(L)(∂)∗(w, z).

(b) The following identity holds:

H(L)(λ)(z2, z1)iz2(z2 − z3 − µ− ∂)−1L(z3)

−H(L)(λ)(z3 + µ+ ∂, z1)iz2(z2 − z3 − µ− ∂)−1L∗(−z2 + µ)

−L(z1)iz1(z1 − z3 − λ− µ− ∂)−1H(L)(µ)(z3, z2)

+L(z3 + λ+ µ+ ∂)iz1(z1 − z3 − λ− µ− ∂)−1
(∣∣∣

x=λ+µ+∂
H(L)(µ)(z1 − x, z2)

)

= H(L)(λ+ µ+ ∂)(z3, z1)iz1(z1 − z2 − λ− ∂)−1L(z2)

−H(L)(λ+ µ+ ∂)(z3, z2 + λ+ ∂)iz1(z1 − z2 − λ− ∂)−1L∗(−z1 + λ) .

(2.14)

In the fourth term of the RHS of equation (2.14) we used the following notation: for a Laurent series

P (z) =
∑N

n=−∞ cnz
n ∈ A((z−1)) and elements a, b ∈ A, we let

a
(∣∣∣

x=ν+∂
P (z + x)b

)
=

N∑

n=−∞

aiz(z + ν + ∂)n(cnb) . (2.15)

Proof . Taking the adjoint of (2.7) and using equation (2.13), we get

H(L)(∂)∗(z, w) = L(z)iw(w − z + ∂)−1L(w)− L(w + ∂)iw(w − z + ∂)−1L∗(−z + ∂) . (2.16)

Combining equations (2.7) and (2.16), and using equation (1.2), we get,

H(L)(∂)(z, w) +H(L)(∂)∗(w, z)

= L(w)δ(w − z − ∂)L(z)− L(z + ∂)δ(w − z − ∂)L∗(−w + ∂) .
(2.17)

By equation (1.1), the first term in the RHS of (2.17) is equal to L(z + ∂)δ(w − z − ∂)L(z). Moreover,

if L(z) =
∑

n anz
n, then L∗(−w + ∂) =

∑
n(w − ∂)nan. Therefore, by equation (1.1), δ(w − z − ∂)L∗(−w +

∂) = δ(w − z − ∂)
∑

n z
nan = δ(w − z − ∂)L(z). Hence, the second term in the RHS of (2.17) is equal to

L(z + ∂)δ(w − z − ∂)L(z) as well, proving part (a).



AGD approach to classical W-algebras 15

Using (2.7), we can rewrite each of the six terms of equation (2.14). The first term is

H(L)(λ)(z2, z1)iz2(z2 − z3 − µ− ∂)−1L(z3)

= iz1(z1 − z2 − x)−1iz2(z2 − z3 − y)−1
(
L(z1)

(∣∣
x=λ+∂

L(z2)
)(∣∣

y=µ+∂
L(z3)

)

−L(z2 + x)
(∣∣

x=λ+∂
L∗(−z1 + λ)

)(∣∣
y=µ+∂

L(z3)
))

,

(2.18)

the second term is

H(L)(λ)(z3 + µ+ ∂, z1)iz2(z2 − z3 − µ− ∂)−1L∗(−z2 + µ)

= iz1(z1 − z3 − x− y)−1iz2(z2 − z3 − y)−1×

×
(
L(z1)

(∣∣
x=λ+∂

L(z3 + y)
)(∣∣

y=µ+∂
L∗(−z2 + µ)

)

−L(z3 + x+ y)
(∣∣

x=λ+∂
L∗(−z1 + λ)

)(∣∣
y=µ+∂

L∗(−z2 + µ)
))

,

(2.19)

the third term is

L(z1)iz1(z1 − z3 − λ− µ− ∂)−1H(L)(µ)(z3, z2)

= iz1(z1− z3−x−y)
−1iz2(z2 − z3 − y)−1

(
L(z1)

(∣∣
x=λ+∂

L(z2)
)(∣∣

y=µ+∂
L(z3)

)

−L(z1)
(∣∣

x=λ+∂
L(z3 + y)

)(∣∣
y=µ+∂

L∗(−z2 + µ)
))

,

(2.20)

the fourth term is

L(z3 + λ+ µ+ ∂)iz1(z1 − z3 − λ− µ− ∂)−1
(∣∣∣

x=λ+µ+∂
H(L)(µ)(z1 − x, z2)

)

= iz1(z1 − z3 − x− y)−1iz2(z1 − z2 − x)−1L(z3 + x+ y)
(
−
(∣∣

x=λ+∂
L(z2)

)(∣∣
y=µ+∂

iz1L(z1 − x− y)
)

+
(∣∣

x=λ+∂
L∗(−z1 + λ)

)(∣∣
y=µ+∂

L∗(−z2 + µ)
))

,

(2.21)

the fifth term is

H(L)(λ+ µ+ ∂)(z3, z1)iz1(z1 − z2 − λ− ∂)−1L(z2)

= iz1(z1 − z3 − x− y)−1iz1(z1 − z2 − x)−1
(
L(z1)

(∣∣
x=λ+∂

L(z2)
)(∣∣

y=µ+∂
L(z3)

)

−L(z3 + x+ y)
(∣∣

x=λ+∂
L(z2)

)(∣∣
y=µ+∂

iz1L(z1 − x− y)
))

,

(2.22)

and the last term is

H(L)(λ + µ+ ∂)(z3, z2 + λ+ ∂)iz1(z1 − z2 − λ− ∂)−1L∗(−z1 + λ)

= iz1(z1 − z2 − x)−1iz2(z2 − z3 − y)−1
(
L(z2 + x)

(∣∣
x=λ+∂

L∗(−z1 + λ)
)
×

×
(∣∣

y=µ+∂
L(z3)

)
− L(z3 + x+ y)

(∣∣
x=λ+∂

L∗(−z1 + λ)
)(∣∣

y=µ+∂
L∗(−z2 + µ)

))
.

(2.23)

Combining the second term in the RHS of (2.18) and the first term in the RHS of (2.23) we get 0, and combining

the first term in the RHS of (2.19) and the second term in the RHS of (2.20) we also get 0. Next, combining
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the first terms in the RHS of (2.18), (2.20) and (2.22), we get

(
iz1(z1 − z2 − x)−1iz2(z2 − z3 − y)−1 − iz1(z1 − z3 − x− y)−1iz2(z2 − z3 − y)−1

−iz1(z1 − z3 − x− y)−1iz1(z1 − z2 − x)−1
)
L(z1)

(∣∣
x=λ+∂

L(z2)
)(∣∣

y=µ+∂
L(z3)

)
,

and this is zero by the obvious identity

a−1b−1 − ia(a+ b)−1b−1 − ia(a+ b)−1a−1 = 0 . (2.24)

Next, combining the second terms in the RHS of (2.19), (2.21) and (2.23), we get

(
iz1(z1 − z3 − x− y)−1iz2(z2 − z3 − y)−1 + iz1(z1 − z3 − x− y)−1×

×iz2(z1 − z2 − x)−1 − iz1(z1 − z2 − x)−1iz2(z2 − z3 − y)−1
)
×

×L(z3 + x+ y)
(∣∣

x=λ+∂
L∗(−z1 + λ)

)(∣∣
y=µ+∂

L∗(−z2 + µ)
)
,

which, by the identity iz2(z1 − z2 − x)−1 = iz1(z1 − z2 − x)−1 − δ(z1 − z2 − x) and equation (2.24), can be

rewritten as follow:

−iz1(z1 − z3 − x− y)−1δ(z1 − z2 − x)L(z3 + x+ y)×

×
(∣∣

x=λ+∂
L∗(−z1 + λ)

)(∣∣
y=µ+∂

L∗(−z2 + µ)
)
,

(2.25)

Next, combining the first term in the RHS of (2.21) and the second term in the RHS of (2.22), we get the

opposite of (2.25), proving the claim.

Lemma 2.3. If L(∂) ∈ V [∂], then H(L)(∂)(z, w) ∈ V [∂][z, w].

Proof . By equation (2.7) H(L)(∂)(z, w) has no negative powers of z, and by Lemma 2.2(a) it has no negative

powers of w.

2.3 Adler type scalar pseudodifferential operators

Definition 2.4. Let V be a differential algebra endowed with a λ-bracket {· λ ·}. We call a pseudodifferential op-

erator L(∂) ∈ V((∂−1)) of Adler type (for the λ-bracket {· λ ·}) if the following identity holds in V [λ]((z−1, w−1)):

{L(z)λL(w)} = H(L)(λ)(w, z) . (2.26)

Lemma 2.5. Let V be a differential algebra, let {· λ ·} be a λ-bracket on V , and let L(∂) ∈ V((∂−1)) be an

Adler type pseudodifferential operator. Then:
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(a) The following identity holds in V [λ]((z−1, w−1)):

{L(z)λL(w)} = −{L(w)−λ−∂L(z)} . (2.27)

(b) The following identity holds in V [λ, µ]((z−1
1 , z−1

2 , z−1
3 )):

{L(z1)λ{L(z2)µL(z3)}} − {L(z2)µ{L(z1)λL(z3)}} = {{L(z1)λL(z2)}λ+µL(z3)} . (2.28)

Proof . In view of equation (2.26), part (a) follows from Lemma 2.2(a). Let us prove part (b). Using

sesquilinearity, the left and right Leibniz rules and equation (2.7) we can rewrite each term of the equation

(2.28) as follows. The first one is

{L(z1)λ{L(z2)µL(z3)}}

= H(L)(λ)(z2, z1)iz2(z2 − z3 − µ− ∂)−1L(z3) (2.29)

+ L(z2)iz2(z2 − z3 − λ− µ− ∂)−1H(L)(λ)(z3, z1) (2.30)

−H(L)(λ)(z3 + µ+ ∂, z1)iz2(z2 − z3 − µ− ∂)−1L∗(−z2 + µ) (2.31)

− L(z3 + λ+ µ+ ∂)iz2(z2 − z3 − λ− µ− ∂)−1
(∣∣∣

x=λ+µ+∂
H(L)(λ)(z2 − x, z1)

)
; (2.32)

the second term is

{L(z2)µ{L(z1)λL(z3)}H}H

= H(L)(µ)(z1, z2)iz1(z1 − z3 − λ− ∂)−1L(z3) (2.33)

+ L(z1)iz1(z1 − z3 − λ− µ− ∂)−1H(L)(µ)(z3, z2) (2.34)

−H(L)(µ)(z3 + λ+ ∂, z2)iz1(z1 − z3 − λ− ∂)−1L∗(−z1 + λ) (2.35)

− L(z3 + λ+ µ+ ∂)iz1(z1 − z3 − λ− µ− ∂)−1
(∣∣∣

x=λ+µ+∂
H(L)(µ)(z1 − x, z2)

)
; (2.36)
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the third term is

{{L(z1)λL(z2)}Hλ+µL(z3)}H

= H(L)(λ+ µ+ ∂)(z3, z1)iz1(z1 − z2 − λ− ∂)−1L(z2) (2.37)

−H(L)(λ+ µ+ ∂)(z3, z2)iz1(z2 − z1 − µ− ∂)−1L(z1) (2.38)

−H(L)(λ+ µ+ ∂)(z3, z2 + λ+ ∂)iz1(z1 − z2 − λ− ∂)−1L∗(−z1 + λ) (2.39)

+H(L)(λ+ µ+ ∂)(z3, z1 + µ+ ∂)iz1(z2 − z1 − µ− ∂)−1L∗(−z2 + µ) . (2.40)

By Lemma 2.2(b) we have the following identity

(2.29) + (2.31)− (2.34)− (2.36) = (2.37) + (2.39) .

Hence, equation (2.28) is proved once we show that

(2.30) + (2.32)− (2.33)− (2.35) = (2.38) + (2.40) . (2.41)

Using equation (2.14) with λ and µ exchanged, and with z1 and z2 exchanged, we get that equation (2.41) is

equivalent to the following equation

H(L)(λ+ µ+ ∂)(z3, z2)δ(z2 − z1 − µ− ∂)L(z1)

−H(L)(λ + µ+ ∂)(z3, z1 + µ+ ∂)δ(z2 − z1 − µ− ∂)L∗(−z2 + µ) = 0 ,

which holds by the properties of the δ-function.

Remark 2.6. Let V be a differential algebra, endowed with a λ-bracket {· λ ·}. Let L(∂) ∈ V((∂−1)) be a

pseudodifferential operator, and let U ⊂ V be the differential subalgebra generated by the coefficients of L(∂).

Clearly, if L(∂) is of Adler type, then {· λ ·} restricts to a λ-bracket of U . Lemma 2.5, together with Theorem

1.6, is saying that U , with this λ-bracket, is a PVA.

2.4 The generic pseudodifferential operator of order N and the corresponding AGD bi-PVA V∞
N

Let N be a positive integer. Consider the algebra of differential polynomials V∞
N = F[u

(n)
i | i ∈ I, n ∈ Z+], where,

as before, I = {−N,−N + 1,−N + 2, . . . }. The generic pseudodifferential operator on V∞
N is, by definition,

L(∂) = ∂N + u−N∂N−1 + u−N+1∂
−N−2 + . . . =

∑

n≤N

u−n−1∂
n ∈ V∞

N ((∂−1)), (2.42)

where u−N−1 = 1. For c ∈ F, let H(L−c)(∂)(z, w) ∈ V∞
N [∂]((z−1, w−1)) be the corresponding series, as in equation

(2.7).
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Recall by Theorem 1.6(a) that a λ-bracket on V∞
N is uniquely determined by assigning the λ-brackets on

generators, {uiλuj}, for all i, j ∈ I, or, equivalently, their generating series {L(z)λL(w)}. In particular, there

exists a unique λ-bracket on V∞
N such that L(∂)− c is of Adler type:

{L(z)λL(w)}c = H(L−c)(λ)(w, z) . (2.43)

It is clear from the definition (2.1) of the Adler map A(L) that A(L−c) is linear in c, and therefore

H(L−c)(∂) = H(∂)− cK(∂) , (2.44)

where H = H(L) is given by (2.6) and (2.7), and K ∈ MatI×I V
∞
N [∂].

Theorem 2.7. The 1-parameter family of λ-brackets {· λ ·}c = {· λ ·}H − c{· λ ·}K , c ∈ F, defines a structure of

bi-PVA on V∞
N .

Proof . The statement is a special case of Remark 2.6. By Definition 1.8, we have to prove that the λ-bracket

on V defined by equation (2.43) defines a PVA structure on V . By Theorem 1.6, this is the same as proving

skew-symmetry (1.7) and Jacobi identity (1.8) on generators, which are the same as equations (2.27) and (2.28)

respectively.

Definition 2.8. The AGD bi-PVA V∞
N is given by the 1-parameter family of λ-brackets {· λ ·}c, c ∈ F. The

operators K and H are usually called, respectively, the first and the second Adler-Gelfand-Dickey Poisson

structures.

Using equation (2.7) we get the following explicit formulas for {L(z)λL(w)}c = {L(z)λL(w)}H −

c{L(z)λL(w)}K :

{L(z)λL(w)}H = L(z)iz(z − w − λ− ∂)−1L(w)

− L(w + λ+ ∂)iz(z − w − λ− ∂)−1L∗(−z + λ)
(2.45)

and

{L(z)λL(w)}K = iz(z − w − λ)−1 (L(z)− L(w + λ))

+ iz(z − w − λ− ∂)−1 (L(w)− L∗(−z + λ)) .
(2.46)

Expanding equations (2.45) and (2.46) in powers of z and w, we get the symbols of the Poisson structures H

and K (i, j ∈ I):

Hji(λ) =
∑

k,α∈Z+

(
k

α

)
ui−k−1(λ + ∂)αuj+k−α

−
∑

k,α,β∈Z+

(−1)α
(
j

α

)(
i− k − 1

β

)
uj+k−α(λ + ∂)α+βui−β−k−1 ,

Kji(λ) = ǫij
∑

k∈Z+

((
i

k

)
(λ+ ∂)k −

(
j

k

)
(−λ)k

)
ui+j−k ,

(2.47)
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where ǫij = +1 if i, j ∈ Z+, ǫij = −1 if i, j < 0, and ǫij = 0 otherwise. Note that the sums are all finite since

uk = 0 for k < −N − 1.

Remark 2.9. Let R+ = ⊕i∈Z+
F[∂]ui ⊂ V

∞
N and R− =

(
⊕i∈I

−

F[∂]ui

)
⊕ F ⊂ V∞

N . By the second equation in

(2.47), R+ and R− are commuting Lie conformal subalgebras of V∞
N for the λ-bracket {· λ ·}K : {R±λR±}K ⊂

R±[λ], and {R±λR∓}K = 0. In fact, the Lie conformal algebra R+ is isomorphic to the general Lie conformal

algebra gc1, via the map ui 7→ J i (see [Kac, 1996, Sec.2.10]). Recall from De Sole and Kac [2002] that we can

identify R+ ≃ gc1 ≃ F[∂, x] (the space of polynomials in two commuting variables ∂ and x) via the isomorphism

u
(n)
i 7→ ∂nxi. With this identification, the λ-bracket on gc1 becomes:

{A(∂, x)λB(∂, x)}K = A(−λ, x+ λ+ ∂)B(λ+ ∂, x)−B(λ+ ∂, x− λ)A(−λ, x) .

In the same spirit, we can identify

R− ≃
(
F[∂, x−1]⊕ F

)/
Span

F
{∂mx−N−1−n − δm,0δn,0}m,n∈Z+

,

via the isomorphism u
(n)
i 7→ ∂nxi, for all i ∈ I− and n ∈ Z+. Under this identification, the K-λ-bracket (2.47)

on R− becomes:

{A(∂, x)λB(∂, x)}K = −ixA(−λ, x+ λ+ ∂)B(λ+ ∂, x) + ixB(λ+ ∂, x− λ)A(−λ, x) .

In the same spirit, we can also rewrite the H-λ-bracket (2.47). We let R = R+ ⊕R− =
(
⊕i∈I F[∂]ui

)
⊕ F ⊂ V∞

N .

Note that R ⊂ V∞
N is not a Lie conformal subalgebra for the H-λ-bracket, since the expression of the λ-bracket

of two generators is quadratic. On the other hand, we can represent homogeneous polynomials of degree 2 in

the variables u
(n)
i with polynomials in ∂1, x

±1
1 , ∂2, x

±1
2 , via the identification ∂m

1 ∂n
2 x

i
1x

j
2 7→ u

(m)
i u

(n)
j . With this

notation, the H-λ-bracket (2.47) becomes

{A(∂, x)λB(∂, x)}K = A(−λ, x1)B(λ + ∂1 + ∂2, x2)ix1(x1 − x2 − ∂2 − λ)−1

−ix2B(λ + ∂1 + ∂2, x2 − ∂1 − λ)ix1A(−λ, x1 + ∂1 + λ)ix1(x1 − x2 + ∂1 + λ)−1 .

2.5 The generic differential operator of order N and the corresponding AGD bi-PVA VN

Let I− = {−N, . . . ,−1} (⊂ I). Consider the subalgebra of differential polynomials VN = F[u
(n)
i | i ∈ I−, n ∈ Z+]

of V∞
N , and the differential operator

L(∂) = ∂N + u−N∂N−1 + · · ·+ u−2∂ + u−1 ∈ VN [∂] , (2.48)
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which we call generic. By Lemma 2.3, for all c ∈ F the corresponding operator H(L−c)(∂)(z, w), given by equation

(2.7), lies in V [∂][z, w], i.e. H
(L−c)
ij (∂) = 0 unless i, j ∈ I−. Assign the (unique) λ-bracket on VN such that

L(∂)− c is of Adler type:

{L(z)λL(w)}c = H(L−c)(λ)(w, z) . (2.49)

Theorem 2.10. The 1-parameter family of λ-brackets {· λ ·}c = {· λ ·}H − c{· λ ·}K , c ∈ F, defines a structure

of bi-PVA on VN .

Proof . The same as the proof of Theorem 2.7.

Definition 2.11. The AGD bi-PVA VN is given by the 1-parameter family of λ-brackets {· λ ·}c, c ∈ F.

The PVA VN coincides with the classicalW-algebra associated to the Lie algebra glN and its principal nilpo-

tent element, Drinfeld and Sokolov [1985]. The explicit formula for the λ-brackets of generators corresponding

to H and K are the same as (2.45) and (2.46). The corresponding matrix elements Hji(λ) and Kji(λ) are the

same as in (2.47), letting ui = 0 for i ≥ 0. Note that VN is a PVA subalgebra of V∞
N for the Poisson structure

K, but not for the Poisson structure H .

Example 2.12. For N = 1, we have V1 = F[u(n) | n ∈ Z+], and L(∂) = ∂ + u ∈ V [∂]. In this case, {uλu}H = −λ

and K = 0.

2.6 The PVA homomorphism ϕA

Proposition 2.13. Let V be a PVA, with λ-bracket {· λ ·}. Let

A(∂) = ∂N +
∑

i∈I

ai∂
−i−1 ∈ V((∂−1))

(
resp. A(∂) = ∂N +

∑

i∈I
−

ai∂
−i−1 ∈ V [∂]

)

be an Adler type pseudodifferential (resp. differential) operator with respect to the λ-bracket {· λ ·}. Then we

have a PVA homomorphism

ϕA : V∞
N = F[u

(n)
i | i ∈ I, n ∈ Z+]→ V

(
resp. ϕA : VN = F[u

(n)
i | i ∈ I−, n ∈ Z+]→ V

)
,

from the AGD PVA V∞
N (resp. VN ) for c = 0 to V , given by ϕA(ui) = ai, for all i.

Proof . The map ϕA is defined, in terms of generating series, by ϕA(L(z)) = A(z). Hence, we only need to check

that ϕA({L(z)λL(w)}H) = {A(z)λA(w)}, or, equivalently, ϕA(H
(L)(λ)(w, z)) = H(A)(λ)(w, z). This is clear by

the definitions of H(L), H(A) and ϕA.



22 A. De Sole, V. Kac and D. Valeri

2.7 Product of Adler type pseudodifferential operators and the generalized Miura map

Proposition 2.14. Let V be a PVA and let A(∂), B(∂) ∈ V((∂−1)) be Adler type pseudodifferential operators

such that {A(z)λB(w)} = 0. Then A(∂) ◦B(∂) is an Adler type pseudodifferential operator.

Proof . By (1.5) we need to show that

{A(z + ∂)B(z)λA(w + ∂)B(w)} = H(A◦B)(λ)(w, z) .

By the sesquilinearity and Leibniz rules, and by the assumption that A and B are of Adler type, and that

{A(z)λB(w)} = 0, we have

{A(z + ∂)B(z)λA(w + ∂)B(w)}

= {A(z + x)λ+xA(w + y)}
(∣∣∣

x=∂
B(z)

)(∣∣∣
y=∂

B(w)
)

+A(w + λ+ ∂){B(z)λ+∂B(w)}→A∗(−z + λ)

= (A(z + ∂)B(z)) iz(z − w − λ− ∂)−1A(w + ∂)B(w)

−A(w + λ+ ∂)B(w + λ+ ∂)iz(z − w − λ− ∂)−1B∗(−z + λ+ ∂)A∗(−z + λ) ,

which is the same as H(A◦B)(λ)(w, z).

Let M and N be positive integers. Consider the AGD PVAs (for c = 0) V∞
M = F[a

(m)
i | i ≥ −M,m ∈

Z+] (resp. VM = F[a
(m)
i | −M ≤ i ≤ −1,m ∈ Z+]), V

∞
N = F[b

(n)
j | j ≥ −N,n ∈ Z+] (resp. VN = F[b

(n)
j | −N ≤

j ≤ −1, n ∈ Z+]), and V∞
M+N = F[u

(n)
i | i ≥ −M −N,n ∈ Z+] (resp. VM+N = F[u

(n)
i | −M −N ≤ j ≤ −1, n ∈

Z+]), and the corresponding generic Adler type pseudodifferential (resp. differential) operators

A(∂) = ∂M +

∞∑

i=−M

ai∂
−i−1

(
resp. A(∂) = ∂M +

−1∑

i=−M

ai∂
−i−1

)
,

B(∂) = ∂N +

∞∑

j=−N

bj∂
−j−1

(
resp. B(∂) = ∂N +

−1∑

j=−N

bj∂
−j−1

)
,

L(∂) = ∂M+N +

∞∑

i=−M−N

ui∂
−i−1

(
resp. L(∂) = ∂M+N +

−1∑

i=−M−N

ui∂
−i−1

)
.

Proposition 2.15. We have a PVA structure on the algebra of differential polynomials

V∞
M ⊗ V

∞
N = F[a

(n)
i , b

(n)
j | i ≥ −M, j ≥ −N,n ∈ Z+]

(
resp. VM ⊗ VN = F[a

(n)
i , b

(n)
j | −M ≤ i ≤ −1,−N ≤ j ≤ −1, n ∈ Z+]

)
,
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given on generators by

{A(z)λA(w)} = H(A)(λ)(w, z) , {B(z)λB(w)} = H(B)(λ)(w, z) ,

{A(z)λB(w)} = {B(z)λA(w)} = 0 ,
(2.50)

and a PVA homomorphism

µA,B : V∞
M+N → V

∞
M ⊗ V

∞
N

(
resp. µA,B : VM+N → VM ⊗ VN

)
,

such that µA,B(ui) is the coefficient of ∂−i−1 in A(∂) ◦B(∂). In terms of generating series,

µA,B(L(z)) = A(z + ∂)B(z) .

Proof . It is immediate to check that formulas (2.50) define a structure of PVA on V∞
M ⊗ V

∞
N (it is the tensor

product of the PVAs V∞
M and V∞

N ). By construction, A(∂) and B(∂) are of Adler type in this PVA. Hence, by

Proposition 2.14 A(∂) ◦B(∂) is of Adler type as well. Therefore, by Proposition 2.13 we get the corresponding

PVA homomorphism, which is exactly ϕA◦B = µA,B.

Definition 2.16. We call µA,B the generalized Miura map of type (M,N). The same argument as in the proof

of Proposition 2.15 can be applied to any number of factors, so we can talk about the generalized Miura map

µA1,...,As
of type (N1, . . . , Ns).

2.8 The classical W-algebra WN

Lemma 2.17. In the AGD bi-PVA V∞
N (resp. VN ) we have:

(a) {u−NλL(w)}H = L(w)− L(w + λ);

(b) {L(z)λu−N}H = L∗(−z + λ)− L(z);

(c) {u−Nλu−N}H = −Nλ;

(d) {u−NλL(w)}K = {L(z)λu−N}K = 0.

Proof . By equation (2.45), we have

{u−NλL(w)}H = Resz L(z)iz(z − w − λ− ∂)−1z−NL(w)

− L(w + λ+ ∂)Resz iz(z − w − λ− ∂)−1L∗(−z + λ)z−N .
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Note that L(z)iz(z − w − λ− ∂)−1 and iz(z − w − λ− ∂)−1L∗(−z + λ) have order N − 1 in z and their leading

coefficient is u−N−1 = 1. Hence,

Resz L(z)iz(z − w − λ− ∂)−1z−N = Resz iz(z − w − λ− ∂)−1L∗(−z + λ)z−N = 1 .

This proves part (a). Part (b) follows by the skew-symmetry (Lemma 2.5(a)). Part (c) follows from (a). Finally,

for part (d), we have by (2.46)

{u−NλL(w)}K = Resz iz(z − w − λ)−1 (L(z)− L(w + λ)) z−N

+Resz iz(z − w − λ− ∂)−1 (L(w)− L∗(−z + λ)) z−N

= Resz iz(z − w − λ)−1L(z)z−N − Resz iz(z − w − λ− ∂)−1L∗(−z + λ)z−N ,

which is zero by the same argument as before.

Since, by Lemma 2.17(c) and (d), {u−Nλu−N}H is not zero and u−N is central with respect to the

Poisson structure K, by Theorems 1.16 and 1.19 we can perform the Dirac reduction to get a bi-Poisson

structure (HD,K) on V
∞
N

/
〈u−N〉 ≃ F[u

(n)
i | −N 6= i ∈ I, n ∈ Z+] =:W∞

N (resp. VN
/
〈u−N〉 ≃ F[u

(n)
i | −N 6= i ∈

I−, n ∈ Z+] =:WN ).

Proposition 2.18. We have a local bi-Poisson structure (HD,K) on W∞
N (resp. WN ), where HD is defined,

in terms of the generating series of the λ-brackets on generators, by

{L(z)λL(w)}HD = L(z)iz(z − w − λ− ∂)−1L(w)

− L(w + λ+ ∂)iz(z − w − λ− ∂)−1L∗(−z + λ)

− 1
N
(L(w + λ+ ∂)− L(w)) (λ+ ∂)−1 (L∗(−z + λ)− L(z)) ,

(2.51)

and K is given by (2.46).

Proof . Formula (2.51) follows from (1.17) using Lemma 2.17. Since L∗(−z + λ) =
(∣∣

x=λ+∂
L(z − x)

)
, the term

(λ+ ∂)−1(L∗(−z + λ)− L(z)) does not contain negative powers of λ+ ∂, thus proving that the λ-bracket given

in (2.51) is local.

Expanding the equation (2.51) in powers of z and w the matrix elements of HD are (cf. equation (2.47)):

HD
ji (λ) = Hji(λ) −

1

N

∑

α,β≥1

(−1)α
(
j

α

)(
i

β

)
uj−α(λ+ ∂)α+β−1ui−β , (2.52)

and Kji(λ) is the same as in equation (2.47). Letting T = u−N+1, we have

{T λT }HD = HD
−N+1,−N+1(λ) = (2λ+ ∂)T +

N3 −N

12
λ3 , (2.53)
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namely, T is a Virasoro element with central charge N3−N
12 (cf. Definition 1.5). Furthermore, we have

{T λuj}HD =
(
∂ + (N + j + 1)λ

)
uj +O(λ2) , (2.54)

namely, uj is a T -eigenvector of conformal weight N + j + 1, for every j 6= −N .

Definition 2.19. The classical W-algebra WN is given by the bi-Poisson structure (HD,K).

Remark 2.20. The classical W-algebras WN can be obtained by performing Drinfeld-Sokolov Hamiltonian

reduction for the Lie algebra slN and its principal nilpotent element, Drinfeld and Sokolov [1985].

Example 2.21. For N = 2 we have W2 = F[u(n) | n ∈ Z+], where u = u−1, and the PVA structure {u λ u}c =

HD(λ) − cK(λ), c ∈ F, given by (2.51) and (2.46), becomes, in this case,

{uλu}c = (2λ+ ∂)u+
1

2
λ3 − 2cλ . (2.55)

This is the Virasoro-Magri PVA, which is the classical W-algebra for the Lie algebra sl2 and its principal

nilpotent element.

Example 2.22. For N = 3 we have W3 = F[u(n), v(n) | n ∈ Z+], where u = u−2 and v = u−1, and the PVA

structure is

{uλu}c = (2λ+ ∂)u+ 2λ3 ,

{uλv}c = (3λ+ ∂)v + uλ2 + λ4 − 3cλ

{vλv}c = (2λ+ ∂)

(
∂v −

1

2
∂2u−

1

3
u2

)
−

1

6
(2λ+ ∂)3u−

2

3
λ5 .

(2.56)

This is known as the Zamolodchikov PVA, Zamolodchikov [1985], which is the classical W-algebra for sl3 and

its principal nilpotent element. Note that T = u is a Virasoro element with central charge 2, and it is not hard

to check that w3 = v − 1
2∂u is a primary element of conformal weight 3. In particular, W3 is a PVA of CFT

type (cf. Definition 1.5).

For arbitrary N ≥ 1, we let T = u−N+1, and we have

{TλT }HD = (2λ+ ∂)T +
N3 −N

12
λ3 ,

{Tλuk}HD = ((N + 1 + k)λ+ ∂)uk +O(λ2) , k = −N + 2, . . . ,−1 .

Hence, T is a Virasoro element, and uk, k = −N + 2, . . . ,−1, are T -eigenvectors. It was proved by Balog et al.

[1990] and Di Francesco et al. [1991] that, in fact, WN is a PVA of CFT type.

2.9 The Kupershmidt-Wilson theorem and the Miura map

Consider the generalized GFZ PVA RN = F[v
(n)
i | i = 1, . . . , N, n ∈ Z+] from Example 1.9, with λ-bracket

{viλvj} = −δijλ (we are taking S = −1N), and its Dirac reduction RN
/
〈v1 + · · ·+ vN 〉 as in Example 1.17.
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In this case, the Dirac reduced λ-bracket among generators (1.18) reads (i, j = 1, . . . , N − 1):

{viλvj}
D =

( 1

N
− δij

)
λ . (2.57)

Recall from Sections 2.5 and 2.8 the definitions of the AGD PVA VN , and of the classicalW-algebraWN , respec-

tively. In this section we want to give another proof of the following theorem due to Kupershmidt and Wilson

[1981], that we restate according to our formalism.

Theorem 2.23 (Kupershmidt-Wilson Theorem). (a) We have an injective PVA homomorphism µ : VN →֒

RN , given by

µ(L(∂)) = (∂ + vN )(∂ + vN−1) · · · (∂ + v1) ∈ RN [∂] , (2.58)

where L(∂) ∈ VN [∂] is as in (2.48).

(b) The map µ in part (a) induces an injective PVA homomorphism

µ : WN →֒ RN
/
〈v1 + · · ·+ vN 〉 .

The map µ is called the Miura map (Miura [1968]). It allows us to express each differential variable ui as a

differential polynomial in RN . The original proof was given by Kupershmidt and Wilson [1981]. A shorter proof

can be found in the work of Dickey [1982].

Proof . Recall from Example 2.12 that V1 ≃ R1 = F[v(n) | n ∈ Z+], with {vλv} = −λ. Hence, RN = V1 ⊗ · · · ⊗

V1 (N times). By Proposition 2.15 and Definition 2.16 we then have the corresponding generalized Miura map

of type (1, 1, . . . , 1), defined by (2.58). For the injectiveness of this map (and the induced map on the Dirac

reductions) we refer to Kupershmidt and Wilson [1981]. Part (b) follows immediately from Lemma 1.18.

Remark 2.24. The aim of the Kupershmidt-Wilson Theorem was to prove that the matrix differential operator

H(L)(∂), attached to a generic differential operator L, is a Poisson structure. Indeed, it was well known that the

operator −1N∂ is a Poisson structure (cf. Example 1.9) on RN . The Kupershmidt-Wilson Theorem shows that

(VN , H(L)) ⊂ (RN ,−∂1N) is a PVA subalgebra. In particular, H(L) must be a Poisson structure. However, one

cannot apply the same argument in the case of a generic pseudodifferential operator, since one does not have a

factorization analogue to (2.58).

Example 2.25. Recall from Example 2.21 that W2 = F[u(n) | n ∈ Z+], with λ-bracket (2.55) (with c = 0).

By Theorem 2.23(b) we have a PVA inclusion W2 →֒ R2
/
〈v1 + v2〉R2

≃ F[v(n) | n ∈ Z+] (where v = v1), with

λ-bracket {vλv} = −
1
2λ. The Miura map is given by u = v′ − v2, Miura [1968].
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3 Gelfand-Dickey integrable hierarchies

In this section we want to show how to apply the Lenard-Magri scheme of integrability (see Section 1.5) in order

to obtain integrable hierarchies for the the bi-PVAs we constructed in Section 2.

3.1 Integrable hierarchies for the AGD bi-PVAs V∞
N and VN

Recall from Section 2.4 the definition of the AGD bi-PVA V∞
N = F[u

(n)
i | i ∈ I, n ∈ Z+] (as before, I =

{−N,−N + 1,−N + 2, . . . }), associated to the generic pseudodifferential operator L(∂) as in (2.42), and

recall from Section 2.5 the AGD bi-PVA VN = F[u
(n)
i | i ∈ I−, n ∈ Z+] (where I− = {−N,−N + 1, . . . ,−1}),

associated to the generic differential operator L(∂) as in (2.48). Unless otherwise specified, throughout this

section we let V = V∞
N or VN , with its bi-Poisson structure (H,K), and we let L(∂) as in (2.42) or (2.48). Let,

for k ≥ 1,

hk =
N

k
Resz L

k
N (z) ∈ V , (3.1)

where L
1
N (∂) ∈ V((∂−1)) is uniquely defined by Proposition 1.1.

Theorem 3.1. We have an integrable hierarchy of bi-Hamiltonian equations in V :

du

dtk
= {

∫
hk, u}H = {

∫
hk+N , u}K , k ≥ 1 .

The remainder of this section will be the proof of Theorem 3.1.

Lemma 3.2. Let V be an arbitrary differential algebra endowed with a λ-bracket {· λ ·}. Let L(∂) ∈ V((∂−1)) be

a monic pseudodifferential operator of order N > 0. Then, for all k ≥ 1, the following identity holds in V((w−1)):

Resz {L
k
N (z)λL(w)}

∣∣∣
λ=0

=
k

N
Resz{L(z + x)xL(w)}

(∣∣
x=∂

L
k
N

−1(z)
)
. (3.2)

Proof . Since, by (1.5), L
k
N (z) = L

1
N (z + ∂)L

1
N (z + ∂) . . . L

1
N (z) (k times), we have, by sesquilinearity and the

right Leibniz rule,

{L
k
N (z)λL(w)} =

k∑

l=1

{L
1
N (z + x)λ+x+yL(w)}

(∣∣
x=∂

L
k−l
N (z)

)(∣∣
y=∂

(L∗)
l−1
N (−z + λ)

)
. (3.3)

Taking the residue of both sides of equation (3.3) and using Lemma 1.2(b), we get

Resz{L
k
N (z)λL(w)}

= Resz

k∑

l=1

{L
1
N (z + λ+ x+ y)λ+x+yL(w)}

(∣∣
x=∂

L
k−l
N (z + λ+ y)

)(∣∣
y=∂

L
l−1
N (z)

)
,
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and setting λ = 0 we get

Resz{L
k
N (z)λL(w)}

∣∣∣
λ=0

= kResz{L
1
N (z + x)xL(w)}

(∣∣
x=∂

L
k−1
N (z)) . (3.4)

On the other hand, letting k = N in (3.3), we have

{L(z)λL(w)} =

N∑

l=1

{L
1
N (z + x)λ+x+yL(w)}

(∣∣
x=∂

L
N−l
N (z)

)(∣∣
y=∂

(L∗)
l−1
N (−z + λ)

)
. (3.5)

If we replace, in equation (3.5), z by z + ∂ and λ by λ+ ∂ acting on L
k
N

−1(z), we get

{L(z + x)λ+xL(w)}
(∣∣

x=∂
L

k
N

−1(z)
)

=

N∑

l=1

{L
1
N (z + x)λ+x+yL(w)}

(∣∣
x=∂

L
k−l
N (z)

)(∣∣
y=∂

(L∗)
l−1
N (−z + λ)

)
.

(3.6)

Taking residues of both sides of equation (3.6) and using Lemma 1.2(b), we get

Resz{L(z + x)λ+xL(w)}
(∣∣

x=∂
L

k
N

−1(z)
)

= Resz

N∑

l=1

{L
1
N (z + λ+ x+ y)λ+x+yL(w)}

(∣∣
x=∂

L
k−l
N (z + λ+ y)

)(∣∣
y=∂

L
l−1
N (z)

)
.

(3.7)

In the second equality we used Lemma 1.2(b). Setting λ = 0 in both sides of equation (3.7), we get

Resz{L(z + x)xL(w)}
(∣∣

x=∂
L

k
N

−1(z)
)
= N Resz{L

1
N (z + x)xL(w)}

(∣∣
x=∂

L
k−1
N (z)

)
. (3.8)

Equation (3.2) follows from equations (3.4) and (3.8).

Lemma 3.3. For every i ∈ I (resp. I−) and k ≥ 1, we have in V = V∞
N (resp. VN ),

δhk

δui

= Resz(z + ∂)−i−1L
k
N

−1(z) . (3.9)

Proof . Let {· λ ·} be any λ-bracket on V , and let Aij(∂) = {ujλ
ui}, i, j ∈ I or I−, be the associated matrix

differential operator. Taking the coefficient of w−j−1 in both sides of equation (3.2) we have, by the definition

(3.1) of hk,

{hkλuj}
∣∣
λ=0

= Resz{L(z + x)xuj}
(∣∣

x=∂
L

k
N

−1(z)
)

=
∑

i

Resz{uixuj}(z + x)−i−1
(∣∣

x=∂
L

k
N

−1(z)
)

=
∑

i

Aji(∂)Resz(z + ∂)−i−1L
k
N

−1(z) .

(3.10)
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On the other hand, by the Master Formula (1.6) and the definition (1.14) of the variational derivative, we have

{hkλuj}
∣∣
λ=0

=
∑

i

Aji(∂)
δhk

δui

. (3.11)

Equation (3.9) follows from (3.10) and (3.11), since the matrix differential operator A(∂) is arbitrary.

Lemma 3.4. The local functionals
∫
hk ∈ V

/
∂V , k ∈ Z+\NZ+, are all linearly independent.

Proof . By definition, V is a polynomial algebra in the infinitely many variables u
(n)
i , for i ∈ I or I− and

n ∈ Z+. Let V ։ F[u−N ], f 7→ f̄ , be the evaluation homomorphism at u
(n)
i = 0, where (i, n) 6= (−N, 0). We

have L(z) = zN + u−NzN−1, and

L
k
N

−1(z) =
∑

h∈Z+

(
k
N
− 1

h

)
(u−N )hzk−N−h .

Hence, by equation (3.9), we get

δhk

δu−N

=

(
k
N
− 1

k

)
(u−N )k ,

for all k ≥ 1. The claim follows.

Remark 3.5. In fact, for V = V∞
N , it is not difficult to prove, using equation (3.9), that δhk

δui
= 0 for all

i ≥ k −N + 1, and δhk

δuk−N
= 1. Therefore the elements δhk

δu
∈ V∞

N
⊕I , k ≥ 1, and so the elements

∫
hk ∈ V

∞
N

/
∂V∞

N
,

are all linearly independent. On the other hand, for V = VN , L(∂) is a differential operator, and so L
k
N (z) has

non negative powers of z for all k ∈ NZ+. Hence,
∫
hk = 0 for all k ∈ NZ+.

Lemma 3.6. For the AGD bi-PVA V = V∞
N or VN with bi-Poisson structure (H,K), we have

(a) {hkλL(w)}H |λ=0 = L
k
N (w + ∂)+L(w)− L(w + ∂)L

k
N (w)+;

(b) {hkλL(w)}K |λ=0 = L
k
N

−1(w + ∂)+L(w) − L(w + ∂)L
k
N

−1(w)+.

Proof . By Lemma 3.2 and equation (2.45) we have

{hkλL(w)}H |λ=0 = Resz L
k
N (z)iz(z − w − ∂)−1L(w)

−L(w + ∂)Resz L
k
N

−1(z)iz(z − w − ∂)−1L∗(−z) .
(3.12)

By equation (1.3), we have

Resz L
k
N (z)iz(z − w − ∂)−1 = L

k
N (w + ∂)+ , (3.13)
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while, by Lemma 1.2(b) and equation (1.3), we have

Resz L
k
N

−1(z)iz(z − w − ∂)−1L∗(−z) = Resz L
k
N

−1(z + ∂)iz(z − w)−1L(z)

= Resz L
k
N (z)iz(z − w)−1 = L

k
N (w)+ .

(3.14)

Combining equations (3.12), (3.13) and (3.14), we get part (a). Similarly, for part (b), we use Lemma 3.2 and

equation (2.46) to get

{hkλL(w)}K |λ=0 = Resz iz(z − w)−1
(
L(z + ∂)− L(w + ∂)

)
L

k
N

−1(z)

+Resz L
k
N

−1(z)iz(z − w − ∂)−1
(
L(w)− L∗(−z)

)
.

(3.15)

By equation (1.3) and Lemma 1.2(b) we have

Resz iz(z − w)−1L(z + ∂)L
k
N

−1(z) = L
k
N (w)+

= Resz L
k
N

−1(z)iz(z − w − ∂)−1L∗(−z) .
(3.16)

Moreover, by equation (1.3) we also have

Resz iz(z − w)−1L(w + ∂)L
k
N

−1(z) = L(w + ∂)L
k
N

−1(w)+ , (3.17)

and

Resz L
k
N

−1(z)iz(z − w − ∂)−1L(w) = L
k
N

−1(w + ∂)+L(w) . (3.18)

Combining equations (3.15), (3.16), (3.17), and (3.18), we get the claim.

Lemma 3.7. For every k ≥ 1, we have the Lenard-Magri recursion

{hkλu)}H
∣∣
λ=0

= {hk+Nλu}K |λ=0 , for all u ∈ V . (3.19)

Proof . By Lemma 3.6, the recursion (3.19) holds for u = L(w), the generating series of the generators of V .

Hence, (3.19) holds for all u ∈ V by the Leibniz rule.

Lemma 3.8. For every ε ∈ {1, . . . , N}, we have

{hελu}K
∣∣
λ=0

= 0 , for all u ∈ V . (3.20)
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Proof . For 1 ≤ ε < N , we have L
ε
N

−1(w)+ = 0, and therefore equation (3.20) holds by Lemma Lemma 3.6(b).

Moreover, {hNλL(w)}K
∣∣
λ=0

= L(w)− L(w + ∂) · 1 = 0.

Proof of Theorem 3.1. According to the Lenard-Magri scheme of integrability (see Section 1.5), by Lemmas 3.7

and 3.8 we have that
∫
hk, k ≥ 1, are integrals of motion in involution: {

∫
hm,

∫
hn}H,K = 0 for all m,n ≥ 1. By

Lemma 3.4 they span an infinite dimensional space, as required.

Remark 3.9. It follows from Lemma 3.6 and equation (1.5) that the Hamiltonian equation corresponding to

the Hamiltonian functional
∫
hk, k ≥ 1, can be written as (in terms of generating series)

dL(w)

dtk
= [(L

k
N )+, L](w) , (3.21)

where on the RHS we have to take the symbol of the usual commutator of pseudodifferential operators. This

equation is the symbol of the usual Lax pair representation of the AGD hierarchies of Hamiltonian equations.

3.2 Integrable hierarchies for the W-algebra W∞
N and WN .

As in the previous section, let V = V∞
N or VN . Let also (H,K) be the AGD bi-Poisson structure on V , and let

HD be the Dirac modification of H by the constraint θ = u−N . The corresponding λ-bracket is given, in terms

of generating series, by equation (2.51). Recall by Theorem 1.19 that (HD,K) is also a bi-Poisson structure on

V .

Lemma 3.10. For any k ≥ 1, we have, in V ,

{hkλL(w)}H
∣∣
λ=0

= {hkλL(w)}HD

∣∣
λ=0

.

Proof . By Lemma 3.2 and equation (2.51) we have

{hkλL(w)}HD

∣∣
λ=0
− {hkλL(w)}H

∣∣
λ=0

= −
1

N
(L(w + ∂)− L(w)) ∂−1 Resz (L

∗(−z)− L(z + ∂))L
k
N

−1(z) .

This is zero since, by Lemma 1.2(b), we have

Resz L
∗(−z)L

k
N

−1(z) = Resz L
k
N (z) = Resz L(z + ∂)L

k
N

−1(z) .
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Recall from Section 2.8 the definition of the classical W-algebras W∞
N = F[u

(n)
i i ∈ I \ {−N}, n ∈ Z+] =

V∞
N

/
〈u−N〉 and WN = F[u

(n)
i | i ∈ I− \ {−N}, n ∈ Z+] = VN

/
〈u−N 〉, obtained from the AGD bi-PVAs V∞

N and

VN respectively, via Dirac reduction. We shall denote W =W∞
N or WN , with its bi-Poisson structure (HD,K).

With an abuse of notation, we denote hk ∈ W , for k ≥ 1, the image of (3.1) in the quotient space

W = V
/
〈u−N 〉. By Lemmas 3.7, 3.8, and 3.10, we have the Lenard-Magri recursions (u ∈ W):

{hkλu}K
∣∣
λ=0

= 0 for all k = 1, . . . , N ,

{hkλu}HD

∣∣
λ=0

= {hk+Nλu}K
∣∣
λ=0

for all k ≥ 1 .

Furthermore, with the same argument as in the proof of Lemma 3.4, we get

δhk

δu−N+1
=

( k
N
− 1

k−1
2

)
(u−N+1)

k−1
2 if k is odd, and 0 otherwise ,

δhk

δu−N+2
=

( k
N
− 1

k
2 − 1

)
(u−N+1)

k
2−1 if k is even, and 0 otherwise ,

where this time f 7→ f̄ denotes the evaluation mapW ։ F[u−N+1] at u
(n)
i = 0 for (i, n) 6= (−N + 1, 0). It follows,

in particular, that the local functionals
∫
hk ∈ W

/
∂W, for k ∈ Z+\NZ+ are linearly independent. In conclusion,

according to the Lenard-Magri scheme of integrability, we get the following

Theorem 3.11. We have an integrable hierarchy of Hamiltonian equations in W :

du

dtk
= {

∫
hk, u}HD = {

∫
hk+N , u}K , k ≥ 1 .

Example 3.12 (W∞
1 : the KP hierarchy). On W∞

1 = F[u
(n)
i | i, n ∈ Z+], we have L(∂) = ∂ +

∑
i∈Z+

ui∂
−i−1.

It is not difficult to compute the first few integrals of motion
∫
hk, k ≥ 1, directly from the definition (3.1):

∫
h1 =

∫
u0 ,

∫
h2 =

∫
u1 ,

∫
h3 =

∫
u2 + u2

0 ,
∫
h4 =

∫
u3 + 3u0u1 , . . .

To find the corresponding bi-Hamiltonian equations, we use Lemma 3.6. We have L(w)+ = w, L2(w)+ =

w2 + 2u0, L
3(w)+ = w3 + 3u0w + 3(u1 + u′

0). Hence,

dL(w)

dt1
= ∂L(w) ,

dL(w)

dt2
= ∂2L(w) + 2w∂L(w) + 2(L(w)− L(w + ∂))u0 ,

dL(w)

dt3
= ∂3L(w) + 3w∂2L(w) + 3w2∂L(w) + 3u0∂L(w) ,

+3(L(w)− L(w + ∂))((w + ∂)u0 + u1) . . .

(3.22)

Remark 3.13. Consider the first two equations in the second system of the hierarchy (3.22), and the first

equation in the third system of (3.22). After eliminating the variables u1 and u2 and relabeling t1 = y, t2 = t
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and u = 2u0, we get

3uyy = (4ut − u′′′ − 6uu′)′ , (3.23)

which is known as the Kadomtsev-Petviashvili (KP) equation.

Remark 3.14. In fact, we have infinitely many bi-Poisson structures for the KP equation, corresponding

to the biPVA’s W∞
N = F[u

(n)
i | i ≥ −N + 1, n ∈ Z+], for N ≥ 1, Radul [1987]. An explicit differential algebra

isomorphism ϕN : W∞
1 →W

∞
N is defined by the equation

ϕN (L(z)) = L
1
N

N (z) ,

where L(∂) is as in Example 3.12, and LN (∂) = ∂N +
∑

i≥−N+1 ui∂
−i−1. This is not a PVA isomorohism (since

L
1
N

N (∂) is not of Adler type). On the other hand, one can check that the integrable hierarchy in W∞
N , given by

Theorem 3.11, is the same for every choice of the positive integer N . Namely, we have, for every N ≥ 1,

ϕN

(
dLN (w)

dtk

)
=

dLN (w)

dtN,k

= [(L
k
N

N )+, LN ](w) .

Example 3.15 (W2: the KdV hierarchy). Recall from Example 2.21 that W2 = F[u(n) | n ∈ Z+], with the

bi-PVA structure as in (2.55). The first few fractional powers of L(∂) = ∂2 + u ∈ W2[∂] are

L
1
2 (∂) = ∂ +

1

2
u∂−1 −

1

4
u′∂−2 +

1

8
(u′′ − u2)∂−3 −

1

16
(u′′′ − 6uu′)∂−4 + . . . ,

L
3
2 (∂) = ∂3 +

3

2
u∂ +

3

4
u′ +

1

8
(3u2 − u′′)∂−1 + . . . ,

from which we get L
1
2 (w)+ = w, L

3
2 (w)+ = w3 + 3

4 (2w + ∂)u, and
∫
h1 =

∫
u,

∫
h3 =

∫
1
4u

2. By Lemma 3.6 we

get the corresponding Hamiltonian equations (1.13): du
dt1

= u′ and the Korteweg-de Vries equation

du

dt3
=

1

4
(u′′′ + 6uu′) .

Example 3.16 (W3: the Boussinesq hierarchy). Recall from Example 2.22 that W3 = F[u(n), v(n) | n ∈ Z+],

with the bi-PVA structure as in (2.56). The first few fractional powers of L(∂) = ∂3 + u∂ + v ∈ W3[∂] are

L
1
3 (∂) = ∂ +

1

3
u∂−1 −

1

3
(u′ − v)∂−2 +

1

9
(2u′′ − 3v′ − u2)∂−3 + . . . ,

L
2
3 (∂) = ∂2 +

2

3
u∂ +

1

3
(2v − u′)∂−1 + . . . .
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Hence, L
1
3 (w)+ = w, L

2
3 (w)+ = w2 + 2

3u, and
∫
h1 =

∫
u,

∫
h2 =

∫
v. The corresponding Hamiltonian equations

are du
dt1

= u′, dv
dt1

= v′, and

du

dt2
= −u′′ + 2v′ ,

dv

dt2
= v′′ −

2

3
u′′′ −

2

3
uu′ .

After eliminating v from this system, we get the Boussinesq equation:

utt = −
1

3

(
u(4) − 4(uu′)′

)
.

4 Generalization to the matrix case

4.1 Adler type matrix pseudodifferential operators

Let V be a differential algebra, and let M = Matm×m V . Let L = (Lab(∂))
m
a,b=1 ∈M((∂−1)) be a matrix

pseudodifferential operator of order ord(L) = N ∈ Z. As in the scalar case, we can define the corresponding

Adler map A(L) : M((∂−1))→M((∂−1)) given by (2.1), and with identifications analogous to (2.3) and

(2.4), we get the corresponding map H(L) : M⊕I →MI (cf. (2.5)), where, as before, I = {−N,−N + 1, . . . }.

This map is represented by a tensor H(L) =
(
H

(L)
ij;abcd(∂)

)
i,j∈I; a,b,c,d∈{1,...,m}

, where H
(L)
ij;abcd(∂) ∈ V [∂]. As in

Lemma 2.1, we can write an explicit formula for H(L), in terms of the generating series H
(L)
abcd(∂)(z, w) =

∑
i,j∈I H

(L)
ij;abcd(∂)z

−i−1w−j−1. We have (cf. equation (2.7)):

H
(L)
abcd(∂)(z, w) = Lad(w)iw(w − z − ∂)−1 ◦ Lcb(z)

−Lad(z + ∂)iw(w − z − ∂)−1 ◦ L∗
cb(−w + ∂) .

(4.1)

Let V be a differential algebra endowed with a λ-bracket {· λ ·}. As in the scalar case, we say that a matrix

pseudodifferential operator L(∂) ∈M((∂−1)) is of Adler type (for the λ-bracket {· λ ·}) if the following identity

holds in V [λ]((z−1, w−1)):

{Lab(z)λLcd(w)} = H
(L)
cdab(λ)(w, z) , (4.2)

for all a, b, c, d = 1, . . . ,m. The analogue of Lemma 2.2 still holds in the matrix case. As a consequence, we get

(cf. Lemma 2.5):

Lemma 4.1. Let V be a differential algebra, let {· λ ·} be a λ-bracket on V , and let L(∂) ∈ M((∂−1)) be an

Adler type matrix pseudodifferential operator. Then:

(a) The following identity holds in V [λ]((z−1, w−1)):

{Lab(z)λLcd(w)} = −{Lcd(w)−λ−∂Lab(z)} , (4.3)
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for all a, b, c, d = 1, . . . ,m.

(b) The following identity holds in V [λ, µ]((z−1
1 , z−1

2 , z−1
3 )):

{Lab(z1)λ{Lcd(z2)µLef (z3)}} − {Lcd(z2)µ{Lab(z1)λLef (z3)}}

= {{Lab(z1)λLcd(z2)}λ+µLef (z3)} .
(4.4)

for all a, b, c, d, e, f = 1, . . . ,m.

4.2 The generic matrix pseudodifferential operator of order N and the corresponding AGD bi-

PVA

For N,m ≥ 1, let V∞
N,m = F[u

(n)
i,ab | i ∈ I, a, b = 1, . . . ,m, n ∈ Z+], and M∞

N,m = Matm×m V
∞
N,m, and let VN,m =

F[u
(n)
i,ab | i ∈ I−, a, b = 1, . . . ,m, n ∈ Z+], and MN,m = Matm×m VN,m. The generic matrix pseudodifferential

operator on V∞
N,m (resp. VN,m) is

L(∂) = ∂N
1m + U−N∂N−1 + U−N+1∂

−N−2 + . . . ∈M∞
N,m((∂−1)) ,

(
resp. L(∂) = ∂N

1m + U−N∂N−1 + . . .+ U−1 ∈ MN,m[∂]
)
.

(4.5)

where Ui = (ui,ab)
m
a,b=1 ∈M

∞
N,m for all i ∈ I (resp. Ui ∈ MN,m for all i ∈ I−). There is a unique λ-bracket

{· λ ·}c on V∞
N,m (resp. VN,m) such that L(∂)− c1m is of Adler type:

{Lab(z)λLcd(w)}c = H
(L−c1m)
cdab (λ)(w, z) , (4.6)

for all a, b, c, d = 1, . . . ,m. Letting, as in Section 2.4, H(L−c1m)(∂) = H(∂)− cK(∂), we have, as a consequence

of Lemma 4.1, two compatible Poisson structures K and H on V∞
N,m (resp. VN,m), which we call, respectively,

the first and the second matrix AGD Poisson structures (cf. Definition 2.8). Using equation (4.1) we get the

following explicit formulas for the λ-brackets associated to H and K (a, b, c, d = 1, . . . ,m):

{Lab(z)λLcd(w)}H = Lcb(z)iz(z − w − λ− ∂)−1Lad(w)

− Lcb(w + λ+ ∂)iz(z − w − λ− ∂)−1L∗
ad(−z + λ)

(4.7)

and

{Lab(z)λLcd(w)}K = δadiz(z − w − λ)−1 (Lcb(z)− Lcb(w + λ))

+δcbiz(z − w − λ− ∂)−1 (Lad(w)− L∗
ad(λ − z)) .

(4.8)
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Expanding equations (2.45) and (2.46) in powers of z and w, we get (i, j ∈ I):

Hji;cdab(λ) =
∑

k,α∈Z+

(
k

α

)
ui−k−1,cb(λ + ∂)αuj+k−α,ad

−
∑

k,α,β∈Z+

(−1)α
(
j

α

)(
i − k − 1

β

)
uj+k−α,cb(λ+ ∂)α+βui−β−k−1,ad ,

Kji;cdab(λ) = ǫij
∑

k∈Z+

((
i

k

)
δcb(λ+ ∂)kui+j−k,ad −

(
j

k

)
δad(−λ)

kui+j−k,cb

)
,

(4.9)

where, as in (2.47), ǫij = +1 if i, j ∈ Z+, ǫij = −1 if i, j < 0, and ǫij = 0 otherwise.

Remark 4.2. As in Remark 2.9, the F[∂]-submodule R+ ⊂ V
∞
N,m generated by ui,ab, i ∈ I, a, b ∈ {1, . . . ,m} is

closed with respect to the K-λ-bracket, and it is a Lie conformal algebra isomorphic to gcN (see Kac [1996]).

Example 4.3. For N = 1, we have V1,m = F[u
(n)
ab | a, b = 1, . . . ,m, n ∈ Z+] and L(∂) = ∂1m + U ∈M1,m[∂].

In this case we have

{uabλucd}H = δbcuad − δdaucb − δadδcbλ ,

for any a, b, c, d = 1, . . . ,m and K = 0. This is the affine PVA S(F[∂]glm) associated to the Lie algebra glm and

its trace form.

4.3 The classical matrix W-algebras WN,m

Lemma 4.4. In the AGD bi-PVA V∞
N,m (resp. VN,m) we have, for all a, b, c, d = 1, . . . ,m:

(a) {u−N,abλLcd(w)}H = δcbLad(w)− δadLcb(w + λ);

(b) {Lab(z)λu−N,cd}H = δcbL
∗
ad(−z + λ)− δadLcb(z);

(c) {u−N,abλu−N,cd}H = δcbu−N,ad − δadu−N,cb − δadδcbNλ;

(d) {u−N,abλLcd(w)}K = {Lab(z)λu−N,cd}K = 0.

Proof . Same as the proof of Lemma 2.17.

Let Cabcd(λ) = {u−N,cdλu−N,ab}H , a, b, c, d ∈ {1, . . . ,m}. By Lemma 4.4(c) and Proposition 1.1(b), the

corresponding matrix differential operator

C(∂) = (Cabcd(∂))
m
abcd=1 ∈Matm2×m2 VN,m , (4.10)

is invertible. Furthermore, by 4.4(d), the elements u−N,ab are central with respect to the Poisson structure K, for

all a, b = 1, . . . ,m. Therefore, by Theorems 1.16 and 1.19 we can perform the Dirac reduction to get a bi-Poisson
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structure (HD,K) on

V∞
N,m

/
〈u−N,ab〉

m
a,b=1

≃ F

[
u
(n)
i,ab

∣∣∣−N 6=i∈I,n∈Z+

a,b∈{1,...,m}

]
=:W∞

N,m(
resp. VN,m

/
〈u−N,ab〉

m
a,b=1

≃ F

[
u
(n)
i,ab

∣∣∣−N 6=i∈I
−
,n∈Z+

a,b∈{1,...,m}

]
=:WN,m

)
.

We can compute the non-local λ-brackets corresponding to HD using Lemma 4.4. In terms of the generating

series, we have (a, b, c, d = 1, . . . ,m)

{Lab(z)λLcd(w)}HD = Lcb(z)iz(z − w − λ− ∂)−1Lad(w)

−Lcb(w + λ+ ∂)iz(z − w − λ− ∂)−1L∗
ad(−z + λ)

−
1

N
Lcb(w + λ+ ∂)(λ+ ∂)−1L∗

ad(−z + λ)−
1

N
Lad(w)(λ + ∂)−1Lcb(z)

+
1

N

m∑

k=1

δadLck(w + λ+ ∂)(λ+ ∂)−1Lkb(z)

+
1

N

m∑

k=1

δcbLkd(w)(λ + ∂)−1L∗
ak(−z + λ) .

(4.11)

It is not hard to show that T = TrResz L(z)z
−N+1 is a Virasoro element with central charge m(N3−N)

12 (cf.

Definition 1.5). Moreover, we have, for all a, b = 1, . . . ,m

{Tλuj,ab(w)}HD =
(
∂ + (N + j + 1)λ

)
uj,ab +O(λ2) ,

i.e. uj,ab is a T -eigenvector of conformal weight N + j + 1. It was proved by Bilal [1995] that WN,m has a

differential basis given by T and primary elements, i.e. it is a non-local PVA of CFT type.

Example 4.5. For N = 2 we have W2,m = F[u
(n)
ab | a, b ∈ {1, . . . ,m}, n ∈ Z+]. The formula of the λ-brackets

(4.11) and (4.8) is (a, b, c, d = 1, . . . ,m):

{uabλucd}HD = δadδcb
λ3

2
+ δcb(λ+

∂

2
)uad + δad(λ+

∂

2
)ucb −

1

2
uad(λ+ ∂)−1ucb

−
1

2
ucb(λ+ ∂)−1uad +

1

2

m∑

k=1

(
δaduck(λ + ∂)−1ukb + δcbukd(λ+ ∂)−1uak

)
,

{uabλucd}K = 2δadδbcλ .

(4.12)

This is the same bi-Poisson structure considered by Olver and Sokolov [1998] when studying the non-

commutative KdV equation. For m = 2, let T = u11 + u22, v = u11 − u22, v+ = u12 and v− = u21. Then (cf.
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Bilal [1995])

{TλT }c = (2λ+ ∂)T + λ3 − 4cλ , {Tλv}c = (2λ+ ∂)v , {Tλv±}c = (2λ+ ∂)v± ,

{vλv}c = 2v+(λ+ ∂)−1v− + 2v−(λ+ ∂)−1v+ + (2λ+ ∂)T + λ3 − 4cλ ,

{vλv±}c = −v(λ+ ∂)−1v± , {v±λv±}c = −v±(λ + ∂)−1v± ,

{v+λv−}c =
1

2
v(λ+ ∂)−1v + v−(λ+ ∂)−1v+ +

1

2
(2λ+ ∂)T +

1

2
λ3 − 2cλ .

Note that T is a Virasoro element with central charge 1 and v, v± are primary elements of conformal weight 2.

Hence W2,2 is a non-local PVA of CFT type.

Remark 4.6. The following matrix analogue of the Kupershmidt-Wilson Theorem 2.23 holds. Let RN,m be the

tensor product of N -copies of the affine Poisson vertex algebra for glm: RN,m = F[v
(n)
i,ab | i ∈ {1, . . . , N}, a, b ∈

{1, . . . ,m}, n ∈ Z+], with the λ-bracket (i, j ∈ {1, . . . , N}, a, b, c, d ∈ {1, . . . ,m})

{vi,abλvj,cd} = δij
(
δbcvad − δadvcb + δadδcbλ

)
.

We have a PVA homomorphism µ : VN,m → RN,m, given by

µ(L(∂)) = (∂ + VN )(∂ + VN−1) · · · (∂ + V1) ∈ Matm×mRN,m[∂] , (4.13)

where L(∂) ∈MN,m[∂] is as in (4.5), and Vi =
(
vi,ab

)m
a,b=1

. Moreover, we can consider the Dirac reduction

of RN,m by the constraints θab =
∑N

k=1 vk,ab, for a, b ∈ {1, . . . ,m}. Then the map (4.13) induces a PVA

homomorphism on the Dirac reductions, called the matrix Miura map:

µ : WN,m → RN,m
/
〈θab | a, b = 1, . . . ,m〉 .

4.4 Gelfand-Dickey Integrable hierarchies in the matrix case

Throughout this section we let V = V∞
N,m or VN,m, endowed with its AGD bi-Poisson structure (H,K), and we

let M = Matm×m V . Let L(∂) as in (4.5). In analogy with Theorem 3.1, we shall prove that the sequence of

local functionals {
∫
hk}k≥1, where

hk =
N

k
TrResz L

k
N (z) ∈ V ,

satisfies the Lenard-Magri recursive condition (1.15), and it spans an infinite dimensional subspace of V
/
∂V.

Hence, we get the corresponding integrable hierarchy of bi-Hamiltonian equations

dui,ab

dtk
= {

∫
hk, ui,ab}H = {

∫
hk+N , ui,ab}K .
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This is a consequence of the following results, which are proved in the same way as in Section 3.1, for the scalar

case.

Lemma 4.7. Let V be a differential algebra endowed with a λ-bracket {· λ ·}, and let M = Matm×m V . Let

L(∂) ∈M((∂−1)) be a monic matrix pseudodifferential operator of order N > 0. Then, for all k ≥ 1 and

a, b ∈ {1, . . . ,m}, the following identity holds in V((w−1)):

Resz{TrL
k
N (z)λLab(w)}

∣∣
λ=0

=
k

N

m∑

c,d=1

Resz{Lcd(z + x)xLab(w)}
(∣∣

x=∂
(L

k
N

−1)dc(z)
)
.

(4.14)

Lemma 4.8. For every i ∈ I (resp. I−), a, b = 1, . . . ,m, and k ≥ 1, we have, in V = V∞
N,m (resp. VN,m),

δhk

δui,ab

= Resz(z + ∂)−i−1(L
k
N

−1)ba(z) . (4.15)

Lemma 4.9. The local functionals
∫
hk ∈ V

/
∂V , k ∈ Z+\NZ+, are all linearly independent.

Lemma 4.10. For the AGD bi-PVA V = V∞
N,m or VN,m, with bi-Poisson structure (H,K), we have (a, b =

1, . . . ,m, k ≥ 1)

(a) {hkλLab(w)}H
∣∣
λ=0

=

m∑

c=1

(
(L

k
N )ac(w + ∂)+Lcb(w) − Lac(w + ∂)(L

k
N )cb(w)+

)
;

(b) {hkλLab(w)}K
∣∣
λ=0

=

m∑

c=1

(
(L

k
N

−1)ac(w + ∂)+Lcb(w) − Lac(w + ∂)(L
k
N

−1)cb(w)+

)
.

Lemma 4.11. For every k ≥ 1, we have the Lenard-Magri recursion

{hkλu}H
∣∣
λ=0

= {hk+Nλu}K |λ=0 , for all u ∈ V . (4.16)

Lemma 4.12. For every ε ∈ {1, . . . , N}, we have

{hελu}K
∣∣
λ=0

= 0 , for all u ∈ V . (4.17)
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Remark 4.13. As already noted in Remark 3.9 in the scalar case, it follows from Lemma 4.10 and (1.5) that

the Hamiltonian equation corresponding to the Hamiltonian functional
∫
hk, k ≥ 1, can be written as

dL(w)

dtk
= [(L

k
N )+, L](w) , (4.18)

in the spaceM((w−1)).

4.5 Integrable hierarchies for the reduction to the case U−N = 0

Let, as before, V = VN,m and let K be the (differential) field of fractions of V . We shall identify the space

Matm×m V of m×m matrices with coefficients in V with the space Vm2

in the obvious way. Let, as in (4.5),

L(∂) = ∂N
1m + U−N∂N−1 + . . .+ U−1 ∈Matm×m V [∂] , (4.19)

where Ui =
(
ui,ab

)m
a,b=1

and the ui,ab’s are the generators of the algebra of differential polynomials V .

Recall from Section 4.2 that we have a bi-Poisson structure H,K ∈MatNm2×Nm2 V [∂] on V , given by

(4.9) with indices running in I− and ui,ab = 0 for i ≥ 0. Consider the the Dirac modification HD of H by the

constraints u−N,ab, a, b = 1, . . . ,m, given by (4.11). Note that HD is a non-local Poisson structure, hence the

analogue of the Lenard-Magri recursion condition (4.16) has to be expressed in terms of association relations:

δhk

δu

HD

←→ Pk
K
←→

δhk+N

δu
, (4.20)

for some Pk ∈ V
Nm2

. Recall from De Sole and Kac [2013-a] that, for X ∈ MatNm2×Nm2 V((∂−1)) and F, P ∈

VNm2

, the association relation F
X
←→ P means that X admits a fractional decomposition of the form X = AB−1,

where A and B are matrix differential operators with coefficients in V and B is nondegenerate, and there exists

F1 ∈ K
Nm2

such that F = BF1 and P = AF1. In this section we shall prove the following (cf. [De Sole et al.,

2013-c, Ansatz 7.3]):

Theorem 4.14. The Lenard-Magri recursive conditions (4.20) hold. As a consequence, we get the induced

integrable hierarchy of bi-Hamiltonian equations on WN,m:
dui,ab

dtk
= (Pk)i,ab, i ∈ {−N + 1, . . . ,−1}, a, b ∈

{1, . . . ,m}, k ≥ 1.

In order to prove Theorem 4.14 we apply the theory of singular degree of rational matrix pseudodifferential

operators, developed in Carpentier et al. [2013-b]. Recall that we can write (see De Sole et al. [2013-c])

HD = H +BC−1B∗ , (4.21)

where B ∈MatNm2×m2 V [∂] has entries Bi,ab;cd(∂) = Resw{u−N,cd∂
Lab(w)}Hwi, and C ∈ Matm2×m2 V [∂] has

entries Cab;cd(∂) = {u−N,cd∂
u−N,ab}H . Let B(λ; ∂)ab,cd =

∑−1
i=−N Bi,ab;cd(∂)λ

−i−1. By Lemma 4.4(a) and (c),
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we get explicit formulas for the matrices B(λ; ∂) and C(∂), considered as differential operators on Vm2

:

B(λ; ∂)F = [F t, L](λ) , C(∂)F = [F t, U−N ]−N∂F t , (4.22)

where [F t, L](λ) is the symbol of the differential operator [F t, L(∂)] = F tL(∂)− L(∂) ◦ F t.

The proof of Theorem 4.14 will be based on the following 7 Lemmas.

Lemma 4.15. Let N > 1. The only solutions X ∈ Matm×m K̃, where K̃ is any differential field extension of K,

of the system of differential equations [L(∂), X ] = 0 are constant scalar multiples of the identity matrix.

Proof . Equating to zero the coefficients of ∂N−1 and ∂N−2 of [L(∂), X ], we get the following system of

differential equations:

X ′ =
1

N
[X,U−N ] ,

N(N − 1)

2
X ′′ + (N − 1)U−NX ′ + [U−N+1, X ] = 0 .

(4.23)

Using the first equation, the second equation of (4.23) becomes

[
X,

N − 1

2
U ′
−N +

N − 1

2N
U2
−N − U−N+1

]
= 0 . (4.24)

In some differential field extension K̃ of K, there exists a non-degenerate matrix E ∈ Matm×m K̃ such that

E′ =
1

N
EU−N . (4.25)

(The rows of E form a basis of the space of solutions of the linear system Y ′ = 1
N
Y U−N , for Y ∈ K̃m.) It is

immediate to see that, in this case,

(E−1)′ = −
1

N
U−NE−1 . (4.26)

Then, all solutions X ∈ Matm×m K̃ of the first equation in (4.23) are of the form

X = E−1CE , (4.27)

where C is an arbitrary matrix with constant entries: ∂C = 0. (It is immediate to check, using (4.25) and (4.26),

that all the matrices X as in (4.27) solve the first equation in (4.23). On the other hand, the space of solutions

of the first equation in (4.23) is a vector space over the field of constants of dimension less than or equal to m2,

De Sole and Kac [2013-b].) Let then V−N = EU−NE−1, and V−N+1 = EU−N+1E
−1. We immediately have by

(4.25) and (4.26) that (V−N )′ = EU ′
−NE−1. Hence, after conjugating by E, equation (4.24) becomes

[
C,

N − 1

2
V ′
−N +

N − 1

2N
V 2
−N − V−N+1

]
= 0 . (4.28)
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Let C̃ ⊂ K̃ be the subfield of constants in K̃. Consider the map C̃[V−N,ab, V
′
−N,ab, V−N+1,ab | a, b ∈ {1, . . . ,m}]→

K̃ given by conjugation by E. It is obviously injective. Hence, we can view (4.28) as a system of equations in

the polynomial algebra C̃[V−N,ab, V
′
−N,ab, V−N+1,ab | a, b ∈ {1, . . . ,m}]. The coefficient of V−N+1,ab in the LHS of

(4.28) is [Eab, C]. Therefore, equation (4.28) implies that C = c1, for some c ∈ C̃. The claim follows.

Lemma 4.16. The kernel of the operator B(λ; ∂) on K̃m2

consists of constant scalar multiples of the identity

matrix, and it is contained in the kernel of C(∂).

Proof . The first claim is obvious by the definition (4.29) of B(λ; ∂) and Lemma 4.15. For the second claim we

just need to observe that C(∂) is the coefficient of λN−1 in B(λ; ∂).

Lemma 4.17. Let Q(∂) : Vm2

→ Vm2

be the following differential operator

Q(∂)F = F − Fmm1+ ∂FmmEmm . (4.29)

Then B(λ; ∂) and C(∂) are both divisible on the right by Q(∂), i.e. B(λ; ∂) = B1(λ; ∂) ◦Q(∂), C(∂) =

C1(∂) ◦Q(∂). Moreover, the kernels of B1(λ; ∂) and C1(∂) have zero intersection in K̃m2

for any differential

field extension K̃ of K.

Proof . The operator Q(∂) is a non-degenerate matrix differential operator of degree 1, and its kernel is F1.

The claim follows by [Carpentier et al., 2013-a, Thm.4.4].

Lemma 4.18. We have C∗
1 (∂)1 6= 0, where C1(∂) : V

m2

→ Vm2

is as in Lemma 4.17, and C∗
1 (∂) is its formal

adjoint.

Proof . It is straightforward to check that C(∂) = C1(∂) ◦Q(∂), where C1(∂) is the following matrix differential

operator

C1(∂)F = [F t, U−N ]−N∂F t − Fmm(N1+ [Emm, U−N ]) +NF ′
mmEmm .

Its formal adjoint is

C∗
1 (∂)F = [U−N , F t] +N∂F t − Tr

(
F t(N1+ [Emm, U−N ])

)
Emm −NF ′

mmEmm .

Hence, C∗
1 (∂)1 = −NmEmm 6= 0.

Lemma 4.19. The kernels of the operators B(λ, ∂) and C∗
1 (∂) have zero intersection in K̃m2

, for any differential

field extension K̃ of K.

Proof . It follows from Lemmas 4.16 and 4.18.

Lemma 4.20. HD = H +B1C
−1
1 B∗ is a minimal rational expression for HD.
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Proof . It follows from [Carpentier et al., 2013-b, Cor.4.11]. Indeed, the space E defined in [Carpentier et al.,

2013-b, Eq.(4.30)] is, in this case, E = ker(B1) ∩ ker(C1) ⊂ K̃
m2

, which is zero by Lemma 4.17, and the space

E∗ defined in [Carpentier et al., 2013-b, Eq.(4.31)] is, in this case, E∗ = ker(B) ∩ ker(C∗
1 ) ⊂ K̃

m2

, which is zero

by Lemma 4.19.

Lemma 4.21. B∗(∂) δhk

δu
= 0 for every k ≥ 1.

Proof . The symbols of the matrix elements of B∗ are (i ∈ {−N, . . . ,−1}, a, b, c, d ∈ {1, . . . ,m})

B∗
ab;i,cd(λ) = Resz

(
δadL

∗
cb(−z + λ)− δcbLad(z)

)
wi .

Using Lemma 4.8 we have

(
B∗(∂)

δhk

δui

)ab =

m∑

c=1

Resz Resw L∗
cb(−z + ∂)δ(z − w − ∂)(L

k
N

−1)ac(w)

−

m∑

d=1

Resz Resw Lad(z)δ(z − w − ∂)(L
k
N

−1)db(w) .

Using equation (1.1) and Lemma 1.2(b) we can rewrite

m∑

c=1

Resz Resw L∗
cb(−z + ∂)δ(z − w − ∂)(L

k
N

−1)ac(w)

=

m∑

c=1

Resw L∗
cb(−w)(L

k
N

−1)ac(w) = Resw(L
k
N )ab(w)

and
m∑

d=1

Resz Resw Lad(z)δ(z − w − ∂)(L
k
N

−1)db(w)

=

m∑

d=1

Resw Lad(w + ∂)(L
k
N

−1)db(w) = Resw(L
k
N )ab(w) .

This shows that
(
B∗(∂) δhk

δui
)ab = 0 for all a, b = 1, . . . ,m and k ≥ 1. Note that, in fact, this Lemma follows from

a general result on Dirac reduction, see [De Sole et al., 2013-c, Lem.5.2(b)].

Proof of Theorem 4.14. Condition
δhk

δu

K
←→ Pk holds by assumption. By Lemma 4.20 and [Carpentier et al.,

2013-b, Theorem 4.12], condition
δhk

δu

HD

←→ Pk is equivalent to B∗(∂) δhk

δu
= 0, which holds by Lemma 4.21. As

in the scalar case, it is not dificult to show that the elements δhk

δu
, k ∈ Z+, are linearly independent. The claim

follows.

Example 4.22 (W2,m: the Korteweg-de Vries hierarchy). Recall from Example 4.5 that W2,m = F[u
(n)
ab | a, b ∈

{1, . . . ,m}, n ∈ Z+], with the bi-PVA structure as in (4.12). The first few fractional powers of L(∂) = ∂2 + U ,
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where U = (uab)
m
a,b=1, are

L
1
2 (∂) = ∂ +

1

2
U∂−1 −

1

4
U ′∂−2 +

1

8
(U ′′ − U2)∂−3 + . . . ,

L
3
2 (∂) = ∂3 +

3

2
U∂ +

3

4
U ′ +

1

8
(3U2 − U ′′)∂−1 + . . . ,

from which we get L
1
2 (w)+ = w, L

3
2 (w)+ = w3 + 3

4 (2w + ∂)U , and
∫
h1 =

∫
TrU ,

∫
h3 =

∫
1
4 TrU

2. The

corresponding Hamiltonian equations (1.13) are dU
dt1

= U ′ and the matrix Korteweg-de Vries equation

dU

dt3
=

1

4
(U ′′′ + 3UU ′ + 3U ′U) . (4.30)

Thus we proved, in particular, that this equation is integrable, as was conjectured by Olver and Sokolov [1998].

For m = 2 (see Example 4.5 for notation), the Hamiltonian functionals, expressed in terms of the matrix elements

of U , become
∫
h0 =

∫
T and

∫
h1 = 1

2

∫
(T 2 + 2v+v− + v2), and the matrix equation (4.30) becomes the system





dT

dt3
=

1

4
(T ′′′ + 3(T 2 + v+v− + v2)′) ,

dv

dt3
=

1

4
(v′′′ + 6(vT )′) ,

dv±

dt3
=

1

4
(v′′′± + 6(v±T )

′) .

Remark 4.23. The results of Carpentier et al. [2013-b] only apply to the case of matrices of finite size. Hence,

the proof of Theorem 4.14 does not work for the bi-Poisson structure (HD,K) on W∞
N,m. However, we expect

that the claim of Theorem 4.14 holds also in this case.

Example 4.24 (W∞
1,m: the matrix KP hierarchy). On W∞

1,m = F[u
(n)
i,ab | i, n ∈ Z+, a, b ∈ {1, . . . ,m}], we have

L(∂) = ∂ +
∑

i∈Z+
Ui∂

−i−1, where Ui = (ui,ab)
m
a,b=1. The first few integrals of motion

∫
hk, k ≥ 1, are

∫
h1 =

∫
TrU0 =

∫ m∑

a=1

uaa;0 ,
∫
h2 =

∫
TrU1 =

∫ m∑

a=1

uaa;1 ,

∫
h3 =

∫
Tr(U2 + U2

0 ) =

∫ m∑

a=1

uaa;2 +

m∑

a,b=1

uab;0uba;0 , . . .

To find the corresponding bi-Hamiltonian equations, we use Lemma 4.10. We have L(w)+ = w, L2(w)+ =

w2 + 2U0 and L3(w)+ = w3 + 3U0w + 3(U1 + U ′
0). Hence,

dL(w)

dt1
= ∂L(w) ,

dL(w)

dt2
= ∂2L(w) + 2w∂L(w) + 2U0L(w)− 2L(w + ∂)U0 ,

dL(w)

dt3
= ∂3L(w) + 3w∂2L(w) + 3w2∂L(w) + 3U0∂L(w)

+3w (U0L(w)− L(w + ∂)U0) + 3 ((U1 + U ′
0)L(w)− L(w + ∂)(U1 + U ′

0)) .

(4.31)



AGD approach to classical W-algebras 45

As done in Remark 3.13, we can eliminate the variable U2 from the first two equations in the second system of

the hierarchy (4.31), and the first equation in the third system of (4.31). After relabeling t1 = y, t2 = t, U = U0

and W = 2U1 + U ′
0, we get the system





W ′ = Uy ,

3Wy = 4Ut − U ′′′ − 6(U2)′ + 6[U,W ] ,
(4.32)

which we call the matrix Kadomtsev-Petviashvili equation (when m = 1 it reduces to the usual Kadomtsev-

Petviashvili equation (3.23)). According to Remark 4.23, we expect that equation (4.32) belongs to an infinite

hierarchy of integrable bi-Hamiltonian equations.
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