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Fast escape of a quantum walker from
an integrated photonic maze

Filippo Caruso!, Andrea Crespi?3, Anna Gabriella Ciriolo3, Fabio Sciarrino® & Roberto Osellame?3

Escaping from a complex maze, by exploring different paths with several decision-making
branches in order to reach the exit, has always been a very challenging and fascinating task.
Wave field and quantum objects may explore a complex structure in parallel by interference
effects, but without necessarily leading to more efficient transport. Here, inspired by recent
observations in biological energy transport phenomena, we demonstrate how a quantum
walker can efficiently reach the output of a maze by partially suppressing the presence of
interference. In particular, we show theoretically an unprecedented improvement in transport
efficiency for increasing maze size with respect to purely quantum and classical approaches.
In addition, we investigate experimentally these hybrid transport phenomena, by mapping the
maze problem in an integrated waveguide array, probed by coherent light, hence successfully
testing our theoretical results. These achievements may lead towards future bio-inspired
photonics technologies for more efficient transport and computation.
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science, as biology, chemistry, sociology, information

science, physics and even in everyday life. One of the
most challenging transport problems is represented by efficiently
traversing a maze, that is, finding the exit in the shortest
possible time of a topologically complex network of
interconnected sites (Fig. 1). The efficiency in reaching the exit
of a maze dramatically decreases with the number of sites in the
structure, rapidly making this problem intractable!.

The problem of solving mazes has fascinated mankind since
the ancient times. One famous maze is the Cretan one, designed
by the architect Daedalus, build to hold the mythological creature
Minotaur that was eventually killed by the hero Theseus.
To find the Minotaur he used the most typical maze-solving
strategy: exploring several possible alternatives, while marking
the visited paths (by a ball of thread). Around 60 years ago,
Shannon realized the first ever experiment on maze-solving that
was based on physical means, in particular an electromagnetic
mouse Theseus’. Nowadays, the availability of new physical,
chemical and biological systems has opened up the way for
traversing a maze with a parallel exploration of all possible
transport channels at the same time. For instance, in ref. 3 a maze
is experimentally solved by filling it with a Belousov-Zhabotinsky
reaction mixture and then exploiting the superposition effect of
travelling chemical wavefronts. More recently, it was shown
that this parallel addressing can be indirectly obtained by the
chemo-attractant waves emitted by the oat flake placed at
the destination site, while a plasmodium slime walks directly to
the exit!. This demonstrates the crucial role of interference to find
the maze’s exit in a more efficient way.

In the framework of quantum mechanics, even a single particle,
represented by a wavefunction, shows interference effects.
Exploiting this property, a quantum walker is able to propagate
in the fastest way inside perfectly ordered lattices™® however,
localization phenomena may occur when disorder is present’~1°.
Quantum walks find a&plications to energy transport!! and
quantum information'?~!° with polynomial as well as exponential
speedup'®, for example, Grover search algorithm!’, universal
models for quantum computation'®, state transfer in spin and
harmonic networks!2! and recent proposals on web page

Transport problems are very popular in several fields of

ranking®2. Recently, the maze problem has been converted into a
quantum search problem to get a quadratic speedup?3.
Interestingly enough, the interplay of interference and noise
effects can further enhance quantum transport over complex

networks, as recently observed for energy transport phenomena
24-28

in light-harvesting proteins and proposed for noise-assisted

Figure 1| Maze problem. Pictorial view of a maze with single input (IN)
and output (OUT) ports. An ideal walker has to travel from IN to OUT in the
shortest possible time.

quantum communication®’, In particular, it is extremely difficult
to study quantum transport phenomena in biological systems,
as well as to change in a controlled way the problem parameters
to fully understand their role. For this reason, it is very important
to develop a perfectly controlled artificial platform that can be
used to simulate, understand and engineer these phenomena.

In the last years, several technological platforms have been
employed to investigate q3uantum transport phenomena, such as
NMR3%3L trapped ions®>3?, neutral atoms>* and several photonic
schemes as bulk optics®3®, fibre loop configurations3”38
and miniaturized integrated waveguide circuits®* 43, Among
these, a very interesting experimental platform is represented by
three-dimensional waveguide arrays, fabricated by femtosecond
laser micromachining?’#4-46,  Femtosecond laser waveguide
writing?” enables to fabricate high-quality optical waveguides,
directly buried in the bulk of a transparent substrate. Ultrashort
laser pulses are focused at the desired depth in the substrate
and nonlinear absorption processes induce localized and
permanent refractive index increase; translation of the sample at
uniform speed allows to draw guiding paths in the substrate with
unique three-dimensional design freedom. Many diverse quantum
phenomena*®#° can be observed and simulated by means of such
structures: in particular, a powerful analogy can be exploited
between the Schrodinger equation, describing the evolution of a
wavepacket in a two-dimension potential, and the equations
describing the paraxial evolution of light into a dielectric structure,
such as a waveguide array. In particular, an array of coupled
waveguides is equivalent to a two-dimensional array of quantum
wells. The temporal evolution of a single quantum particle, placed
initially in a certain well, can be mapped to the spatial evolution
along the propagation direction of a single photon, injected initially
in a certain waveguide.

Here, we investigate the role of a partial suppression of
interference effects in the transport dynamics through maze-like
graphs. In particular, we theoretically demonstrate that an optimal
mixing of classical and quantum dynamics leads to a remarkably
efficient transmission of energy/information from the input to the
exit door of a generic maze. In addition, we show that it is possible
to reproduce experimentally these dynamics in a photonic
simulator, unfolding the maze onto a femtosecond-laser-written
three-dimensional waveguide array, where noise is implemented by
modulating the propagation constants of the waveguides during
the writing process. The results provide a clear demonstration that
a controlled amount of decoherence in the walker can produce an
enhanced transport efficiency in escaping the maze and that these
phenomena can be investigated in an experimentally accessible
platform and not only in abstract models.

Results

Theory. The maze structure is created here by the so-called
random Depth-First Search algorithm applied on a square lattice
of N nodes®® (see the Methods section: Maze construction,
together with Supplementary Fig. 1). The transport model is
represented by a walker entering the maze in some initial (IN) site
or input door and moving over the structure until reaching a final
(OUT) site or exit door (maze’s solution).

Following the framework of quantum stochastic walks?®>!, the
density matrix p describing the state of the system evolves
according to the Lindblad master equation:

d 1
=~ =it +pY (o) - o)) @
ij

A purely unitary evolution, given by the hermitian Hamiltonian
H, which implements the quantum walk dynamics, is mixed with
an incoherent evolution describing a classical random walk, given
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by the operators L;;. The balance between the two parts of the
Lindblad superoperator is given by the value of the parameter p.
In particular, for p=0 a fully coherent (pure interference)
dynamics is observed, whereas p=1 corresponds to the case of
classical random walk, that is, classical random hopping with no
interference; for intermediate values, a mixing of the two types of
behaviour is obtained. An irreversible transfer process from the
exit site to an external sink is added and the walker’s probability
in getting the exit at time ¢ is quantified by transfer efficiency
function to the sink £(p, t), whose values are in the range (0, 1).
Further technical details are given in Supplementary Note 1.

As shown in the left side of Fig. 2, the transfer efficiency for
a maze of about one thousand sites, for a given time
(linearly increasing with the maze size), is more than five order
of magnitudes larger when one partially suppresses interference
effects (p~0.1, that is, ~10% of mixing), with respect to the
limiting cases of purely coherent and fully classical dynamics.
Such transport enhancement is based on an intricate interplay
between coherence and noise and shows peculiar features
that makes it a fascinating field to investigate. In fact, an
analogous optimal mixing has been very recently demonstrated
over a large family of complex networks for p~0.1 (ref. 28) and
experimentally observed in ref. 52 (for the robustness of this
mixing value see Supplementary Note 1 and Supplementary
Fig. 2). In addition, noise-enhanced transport dynamics was
observed even for totally regular and ordered graphs®* (where an
intuitive picture of this optimality can be given in terms of a
‘momentum  rejuvenation’), thus evidencing how this
phenomenon cannot be explained as just a cross-over from
disorder-induced coherent localization towards classic diffusive
regime. As in ref. 53, we can analyse the transport inefficiency in
terms of the average dwelling time in the network, which we
define as f= [, P(t)dt, with P(f) being the population remaining
on the network, that is the probability that at time ¢ the energy
quantum has failed to exit the network—see the right side
of Fig. 2. This further supports the behaviour observed above
for the transfer efficiency at long time scales (Fig. 2 left), showing
that our particular choice of the time ¢ for the plotted £(p, t) does
not affect our conclusions.

One can consider how in the noiseless case the particle
undergoes discrete diffraction in the structure: the strong
interference effects given by full coherence generate bright and
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dark zones, even if the wavefunction does not strictly localize,
and this may limit the transfer efficiency between two distant sites
of the graph. Adding an optimal quantity of noise may help in
suppressing the fine-grained interference pattern while keeping
the wavefunction spread almost as in the ballistic case, without
reaching the diffusive limit where the transport dynamics is much
slower. Although the Lindblad model introduces decoherence
only through direct classical transitions (T;-like processes), a
similar behaviour would be obtained by considering a pure
dephasing process (T,-like)—see (refs 27-29,53).

Experimental realization. Taking advantage of the unique
three-dimensional fabrication capabilities of femtosecond laser
waveguide writing, we implement a simulator of quantum
stochastic walks by engineering an integrated photonic device
probed by laser light. In fact, the probability distribution at the
output for a single photon is perfectly reproduced by the intensity
distribution of coherent light in the waveguide array. The maze
structure is mapped onto a three-dimensional waveguide array, in
which each waveguide represents a site of the maze. In particular,
our experimental study is focused on the maze configuration
shown in Fig. 3a, composed of 18 sites, taken as a significant
example for observing the dynamics predicted by our theoretical
model.

A first problem that has to be addressed is how to map in a
waveguide system the topology of the links between the sites of
our maze. Whereas in an arbitrary maze structure transfer
between adjacent sites can be inhibited by walls, in waveguide
arrays the coupling between two waveguides is solely determined
by their relative distance. Thus, the geometry of the array needs to
be engineered to keep far enough from each other waveguides
that must not couple. This might not be possible if the maze
graph is too complex. In our case, however, it was possible to
unfold the maze graph in Fig. 3a, by considering chains with side
tails, onto the partially linear and more feasible structure in
Fig. 3b. Note that this unfolded geometry is not unique, other
configurations being conceivable in principle with the same
distances between equally coupled sites.

Another experimental issue is the realization of the exit door
(that is, OUT site). In the theoretical model, this site should
behave like a sink that absorbs energy irreversibly. In our
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Figure 2 | Transport efficiency for different sizes. Left: Transfer efficiency £(p,t) as a function of the size N of the maze, for a time scale t linearly

increasing with N, that is, t =10 N. For a maze with N=900 nodes, the optimal mixing p~0.1 provides a transfer efficiency that is about five orders of
magnitude larger than the perfectly coherent (quantum, that is, p=0) and fully noisy (classical, that is, p=1) regimes. The trend of the curves with the
maze complexity N, for the different values of p, indicates that even higher speedup can be achieved for increasingly larger mazes. Right: Dwelling time t as

a function of the size N of the maze, for p=0, 0.1, 1.
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Figure 3 | Implementing the maze. (a) Maze structure that is experimentally implemented; (b) unfolding of the maze into an almost linear graph, where
each node is represented by a wave guide; (c,d) snapshots of the light diffusion for uniform (¢) and noisy structure (d). The latter pictures correspond both
to a propagation length of 60 mm. The noisy configuration is noise 3 in Fig. 4.

photonic implementation, the sink is implemented by a long
chain of waveguides (62 waveguides), which approximates well a
one-way energy transfer process, with negligible probability for
the light to be coupled back to the system.

Structures composed of uniform waveguides correspond to the
purely coherent case (QW). Fully coherent transport dynamics in
such maze can be studied straightforwardly by fabricating arrays
with different lengths and characterizing the output distribution
when coherent light is injected in the desired initial site (IN). It is
worth noting that in this realization, the evolution parameter
t, considered in the theoretical model, is mapped onto the
propagation length, which we still label as ¢.

A controlled amount of noise is introduced in the structure by
segmenting the waveguides corresponding to the sites of the
maze. This is achieved by modulating the writing speed in
the fabrication process, which induce a proportional variation of
the propagation constant, while keeping the coupling coefficient
unvaried?®. The value of the propagation constant variation in
each segment is randomly picked from a uniform distribution
with a given amplitude; the same distribution is used for every
waveguide within the same array. The random variation of
the propagation constants is equivalent to a random variation
of the site energy due to the interaction with an incoherent
environment?>, hence effectively adding also pure dephasing in
the dynamics. This approach has been extensively tested by
numerical simulations of this specific implementation as
compared with the theoretical Lindblad model discussed in the
previous section (for further details, see Supplementary Notes 2
and 3, together with Supplementary Figs 3 and 4).

The waveguide array implementing the sink is in all cases
composed by uniform, not-segmented, waveguides. To characterize
the transfer efficiency to the sink, the output facet of each
fabricated structure is imaged onto a CMOS camera (examples of
snapshots are shown in Fig. 3¢c,d), the light intensity on the maze
and sink regions of the array are numerically integrated and
the fraction of light in the sink is calculated. Technical details of the
characterization procedure are given in the Methods section
(Characterization measurements: experimental details).

4

Twenty-four structures were fabricated with the transverse layout
as in Fig. 3b, implementing six different propagation lengths for
both the noiseless, fully coherent, situation and three different noise
configurations with the same strength (that is, same amplitude of
propagation constant distribution). Waveguide arrays were insc-
ribed in EAGLE2000 (Corning) glass substrates, by femtosecond
laser writing. A Yb-based amplified laser system (FemtoREGEN,
HighQLaser) was used, providing laser pulses with 400 fs duration
and 300 nJ energy at 1 MHz repetition rate. The laser was focused
in the substrate by a 0.45 numerical aperture, X 20 microscope
objective, compensated for spherical aberrations at 170 um below
the glass surface, which is the average depth of the fabricated
structures. The waveguides yield single-mode operation at the
wavelength of 850 nm and the coupling coefficient between nearest-
neighbouring waveguides is x = 0.40 mm ~ !. The amplitude of the
random distribution of the propagation constants, adopted in the
noise implementation, is Af . = 0.40 mm — 1 The modulation of
the propagation constant is achieved by proportlonally varying the
waveguide writing speed in the 10-40mms~! range (see also
Supplementary Fig. 5 for details). In fact, varying the writing speed
means changing the amount of deposited energy in the material,
which, in the above range, causes a proportional variation of
refractive index change and thus of Af. The value of the
propagation constant is modified every 3 mm of waveguide length.

Transfer efficiency. The transfer efficiency to the sink, calculated
theoretically with the method reported in ref. 28, is shown in
Fig. 4 for a maze with the layout presented in Fig. 3. Such layout
represents the actual structure that we have experimentally
implemented and is considered both for the case of fully coherent
quantum transport and for the case of partially incoherent
transport with p=0.1. Figure 4 shows the experimentally
retrieved transfer efficiencies, each point corresponding to a
physically different structure fabricated to implement a
certain noise map and a given propagation length. The average
between the points corresponding to the three different noise
implementations is also shown (right panel).
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Figure 4 | Role of noise in the transfer efficiency time evolution. Left: Theoretical behaviour of the transfer efficiency £(p, t) as a function of the evolution

parameter t for two values of the mixing parameter p, corresponding to QW (p =

0) and QSW (p=0.1), for the maze in Fig. 3. Inset: a larger time scale is shown

in order to point out the remarkable efficiency enhancement when there is a partial suppression of interference. Centre: Experimental results for both uniform
(triangles) and three noisy realizations of the structure reported in Fig. 3. Where not shown the error bars are smaller than the mark size. Right: as in the middle
panel, but only with the uniform case (triangles) and with the average efficiency over the noise realizations (circles). In all three panels, the time t is in units of
mm because it is experimentally mapped into the propagation length of the three-dimensional waveguide array.

The physical quantity that is measured experimentally is the
fraction of light present in the sink after a certain propagation, and
not the fraction of light that is transferred to the sink. In case
propagation losses are the same both in the maze waveguides and
in the sink waveguides, the two quantities indeed correspond. As a
matter of fact, the modulation of the writing speed produces
additional losses in the waveguides of the maze with respect to the
waveguides of the sink and this causes in general an overestimation
of the transfer efficiency. However, we characterized accurately
such additional losses in our structures and simulated their impact
on the estimation of the transfer efficiency. The consequent
systematic error contribution has been directly taken into account
in Fig. 4, whereas the random error contribution is reported with
the error bars. Details on the treatment of noise and error
contributions in the efficiency estimation are given in the Methods
section (Characterization measurements: experimental details).

A very good agreement between theoretical and experimental
curves is observed both for the noiseless, fully coherent case, and
for the partially coherent transport when considering the average
of our ‘noisy’ waveguide implementations. Therefore, this
experimental evidence is consistent with our claim that the
interplay of noise and interference effects leads to higher
efficiency in finding the way out from the maze.

To further assess our experimental observation of a noise-
induced enhancement in transfer efficiency in this platform, we
fabricated other photonic structures implementing the maze of
Fig. 3 at an evolution parameter f=60mm, but employing a
different femtosecond laser writing setup for the fabrication
(see Supplementary Note 4 for details). We fabricated one uniform
structure and 16 different random ‘noisy’ implementations, 8 with
a noise strength AB,,=0.12mm ! and 8 implementing a
noise strength Af.c=0.40mm ~ L. As shown in Fig. 5, we can
experimentally observe a transfer efficiency of 12.5% for the
uniform case, to be compared with an average transfer efficiency of
14.1% and 22.2% for the Afmau=012mm ™! and Af.=
0.40mm ~ ! cases, respectively. The experimental data are in good
agreement with the simulations, which take into account small
differences in the waveguide properties with respect to those
fabricated with the previous system. It can be noticed that the
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Figure 5 | Averaging over different noise realizations. Experimentally
measured transfer efficiency in photonic maze structures with the topology
of Fig. 3 and propagation length t =60 mm. Both uniform and different
noise maps with Afnax=0.12mm ~Tand AP max=0.40 mm ~T have been
implemented. The light grey (left) bars indicate the average over several
experimental results obtained for different noise maps with the same
amplitude Afmax (single measurements are reported as open circles).
The red (right) bars represent the expected average transfer efficiency,
numerically simulated for 1,000 different noise maps with the given Af -
Error bars are smaller than the mark size.

distribution of the measurements (open circles in Fig. 5) around
the mean value spreads with increasing disorder: however, the
increase in the average transfer efficiency is clear when the amount
of noise approaches the optimum value.

Discussion
To summarize, here we have studied both theoretically and
experimentally the dynamics of a walker travelling in a maze,
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having a single path from the input door (starting point) to the exit
(solution). By considering a model that mixes the behaviour of a
classical walker and a quantum one, we have found an optimal
condition leading to extremely efficient and fast transmission. For
large enough maze size, this leads to a remarkably high
enhancement of more than five order of magnitudes in the
transfer efficiency with respect to both the classical and purely
quantum limits. This result is a clear example that decoherence is
not always a detrimental phenomenon that should be avoided in
quantum processes and it may provide some insight on the reason
why nature evolution has made the observation of purely coherent
phenomena so difficult.

By exploiting the unique capabilities of the femtosecond laser
writing technology, we have unfolded the maze and implemented
it in a three-dimensional waveguide array, where a suitable
modulation of the waveguide properties allowed us to mimic a
partial decoherence of the walker. Our measurements have
faithfully confirmed the theoretical predictions and, in particular,
the remarkable role of a partial suppression of interference in
enhancing transport dynamics in mazes. It is also worth noting
that our technological platform has enabled an experimental
simulation of a noise-assisted problem in well-controlled
conditions and over complex topologies, and can thus represent
a very powerful tool for further studies in this direction. These
results, together with future full circuit reconfigurability, will
pave the way to much more complex integrated photonics
devices exploiting interference, quantum features and noise
effects for improved problem-solving efficiency, and remarkably
fast transmission of information in ICT applications and of
energy in novel solar technologies.

Another experimental demonstration of enhanced quantum
transport by controlled decoherence has been reported during the
preparation of this manuscript54.

Methods

Maze construction. Depth-First Search algorithm is the simplest maze generation
algorithm and is based on the following iterative procedure that is applied to a
regular square grid of N nodes, where all neighbour sites are separated by a wall*.
One starts from a random node and then search for a random neighbour that has
not considered yet. If so, the wall between these two sites is knocked down;
otherwise, one backs up to the previous node. This procedure is repeated until all
sites of the grid have been visited. By doing so, the final structure is a maze where
we have only one path connecting the IN to the OUT node, that is, a so-called
two-dimensional perfect maze with no closed loops. Applying this procedure

to larger and larger square lattices, one obtains increasing large maze graphs

(see Supplementary Fig. 1 for details).

Characterization measurements: experimental details. The fabricated
structures are probed by coherent light. Laser light at 850 nm wavelength is injected
into the input waveguide. The output distribution is imaged onto a CMOS camera
by means of a 0.12 numerical aperture objective. Numerical integration on different
parts of the acquired image allows to retrieve the fraction of light present in the
sink waveguide array. The advantages of this method are, on one hand, insensitivity
to coupling losses of the input beam and, on the other hand, the possibility of a fast
acquisition of the output of many waveguides.

A careful analysis of the measurement error has been performed. A possible
source of error is the quantization of the intensity levels of the CMOS sensor, as
well as its finite spatial resolution. To analyse this error contribution, we simulated
the numerical integration of gaussian modes, with the same size as the measured
ones, but random intensity and peak position, discretized both in the (256)
intensity levels and in the pixels of the spatial profile. Supplementary Fig. 6 shows
the (normalized) difference between the numerically calculated integral and the
analytic integral of the gaussian profile, for 1,000 randomly distributed modes, as a
function of the peak intensity. Note that, given a certain peak intensity, the
numerical integral may give different values depending on the position of the peak,
because of pixel discretization. Systematic and random errors are almost
independent on the peak intensity and they have been taken into account in data
elaboration assuming that the acquired image contains n modes of random
uniformly distributed intensity. As a matter of fact, the contribution of such errors
on the experimentally measured efficiencies is relevant only for the shortest lengths,
where the light intensity in the sink is particularly low.

6

Furthermore, cascading waveguide segments with different fabrication speed
(to mimic noise) causes small additional losses, at each interface between different
waveguide segments. Importantly, these losses are present only in the waveguides
representing the maze and not in the sink waveguides. Because of those losses,
measuring the fraction of power present in the sink after a certain propagation
distance, with respect to the overall output power, as is done in our characterization
process, may not correspond precisely to the fraction of input power transferred to
the sink. In fact, the transfer efficiency is slightly overestimated.

Overall additional losses can be measured quite accurately, by simply measuring
and comparing the insertion losses of the fabricated devices (ration of the overall
output power over the input power). However, the precise contribution of these
losses on each measured transfer efficiency can be hardly retrieved. In fact, the
transfer process is not uniform during the propagation and depends on the random
noise map implemented.

Thus, to statistically quantify such overestimation, we numerically simulated the
light propagation in waveguide structures analogous to the fabricated ones, for 100
random different noise distributions (with always the same amplitude, as the one
adopted in the experiment), both in the case of waveguides with no losses
(which corresponds to the ideal situation) and in the case of waveguides yielding
uniform additional losses with respect to the waveguides of the sink, in such a way
that the overall losses of the structure correspond to the experimentally measured
ones (~2 dB additional losses for the longest arrays). We evaluated in each case the
estimation error of the transfer efficiency and calculated the error statistical
distribution. Supplementary Fig. 7 shows the average error, together with its
standard deviation, as a function of the propagation length. The effect of these
losses reveals to be small (the systematic component is <3% for 60 mm,
correspondent to our longest fabricated devices) and does not significantly
influence our experimental observation of an increase in transfer efficiency in the
cases in which noise is added.

The data that support the findings of this study are available from the
corresponding authors upon request.
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