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The Dirichlet problem for fully nonlinear degenerate elliptic

equations with a singular nonlinearity

Isabeau Birindelli and Giulio Galise

Abstract

We investigate the homogeneous Dirichlet problem in uniformly convex domains for a
large class of degenerate elliptic equations with singular zero order term. In particular we
establish sharp existence and uniqueness results of positive viscosity solutions.
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1 Introduction

In this article we investigate the existence/nonexistence of positive viscosity solutions of the
singular boundary value problem

{

F (D2u) + p(x)u−γ = 0 in Ω
u = 0 on ∂Ω,

(1)

where γ > 0 and the domain Ω ⊂ R
N is bounded and uniformly convex.

Such kind of problem when F is linear or quasilinear has been widely studied since the
seminal works [6, 13]. The survey [12] is a good reference where an extensive literature on
this subject is available. On the other hand less is known in the fully nonlinear setting. In [8]
the authors extend the existence and regularity results of solutions as in the semilinear case
to Hamilton-Jacobi-Bellman and Isaacs uniformly elliptic operators. As far as we know there
are no works dealing with pure degenerate elliptic equations of fully nonlinear type. Our aim
is to study (1) in the following quite general framework:

the mapping F : SN 7→ R is continuous in SN , the linear space of symmetric N × N real
matrices, and degenerate elliptic, i.e.

F (X + Y ) ≥ F (X) ∀X,Y ∈ SN , Y ≥ 0, (H1)

and there exists an integer k ∈ [1, N ] such

P−
k (X) ≤ F (X) ≤ P+

k (X) ∀X ∈ SN . (H2)

The operators P±
k are respectively defined by the lower and upper partial sums

P−
k (X) =

k
∑

i=1

λi(X), P+
k (X) =

k
∑

i=1

λN−k+i(X) (2)
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of the ordered eigenvalues λ1(X) ≤ · · · ≤ λN (X) of X ∈ SN . Let us mention that these
extremal operators have recently generated some interest, starting with the works of Harvey
and Lawson e.g. [10, 11]. See also [3, 4, 2, 9].

Since we are mainly interested in degenerate equations and the results we shall presents
are new when k is strictly less than the dimension N we assume from now on k < N .
The function p : Ω 7→ R is continuous and satisfies for α ≥ β the growth assumption

c1 δΩ(x)
α ≤ p(x) ≤ c2 δΩ(x)

β (H3)

where δΩ(x) = dist(x, ∂Ω) and c1, c2 are positive constants.

Here is our existence and uniqueness result.

Theorem 1.1. Assume (H1)-(H2)-(H3), β > −1 and Ω uniformly convex. Then for any
γ > 0 there exists a unique u ∈ C(Ω) positive viscosity solution of (1).

By “uniformly convex” we mean that there exists R > 0, Y ⊂ R
N such that

Ω =
⋂

y∈Y

BR(y). (3)

As usual BR(y) stands for the ball centered at y ∈ R
N with radius R. When Ω is C2 this

is equivalent to require that all principal curvatures of the boundary are uniformly bounded
from below by a positive constant, see [1, Proposition 2.7].

The restriction on β in Theorem 1.1 is sharp within the class of operator satisfying (H2).
In fact

Theorem 1.2. For any β ≤ −1 and any γ > 0 the equation

P+
k (D2u) + δB1

(x)βu−γ = 0 in B1 (4)

does not admit viscosity supersolutions.

Let us try to explain the main difficulties that arise outside the uniformly elliptic frame-
work in order to obtain existence of solutions for (1). Since the classical work of Lazer and
McKenna [13], the approach typically used consists in manipulating the principal eigenfunc-
tions of F to get barrier functions, so applying the method of sub and supersolutions. In
our case the first obstruction in following this approach concerns the minimal operator P−

k .
In [1] it has been proved that the the operator P−

k (D2·) + µ· satisfies the maximum princi-
ple independently on µ, so preventing the existence of positive eigenfunctions. However an
inspection of the proofs given in [13, 8] shows that taking advantage of the presence of u−γ

in the equation, the only property of the eigenfunction needed to construct a subsolution is
that eigenfunctions look like the distance function δΩ near the boundary. In view of this we
shall employ a regularized version of δΩ to provide a subsolution of (1) null on ∂Ω. Moreover
without requiring regularity of ∂Ω.
As far as the existence of a supersolution is concerned, let us emphasize that the zero order
term is now competitive with F and so to gain some “negativity” the principal part have
to absorb the term u−γ . When F is uniformly elliptic operators this is achieved by using
functions of principal eigenfunctions. To succeed in the case of P+

k , some extra assumption

2



on Ω are needed due to the strong degeneracy of the operator. In particular we request Ω to
be uniformly convex.

Let us emphasize that Theorem 1.1 holds for a large class of degenerate elliptic operators,
as it is shown in Section 2. Also the class of domains we consider does not require any
regularity, including for instance domains with corners. Finally we present a proof without
using the standard regularization (u+ 1

n
)−γ with n → ∞.

The result of Theorem 1.2 is different with respect to the case of the Laplacian. In fact
when k = N , i.e. P+

N ≡ ∆, the existence and uniqueness of solutions for ∆u+δB1
(x)βu−γ = 0

in Ω, u = 0 on ∂Ω, still holds for β ≤ −1. See [13, Section 4-v].
In Section 2 we collect some examples of degenerate operators satisfying (H1)-(H2) and

some preliminary results used in the rest of the article. Section 3 is devoted to the proofs of
Theorems 1.1-1.2. In Section 4 we generalize the above theorems including first order terms
showing that also in this case new nonexistence phenomena occur.

2 Examples and preliminary results

The class of operators satisfying conditions (H2) is quite large and contains important exam-
ples, we include a few of them here.

2.1 Examples

1. Linear operators with k-directions of uniformly ellipticity

Equations of the form
k
∑

i=1

∂2u

∂x2ji
+ p(x)u−γ = 0 in Ω

fits into our framework. Here 1 ≤ j1 < j2 < . . . < jk ≤ N are integer numbers. The
corresponding operators F : SN 7→ R are

F (X) =

k
∑

i=1

Xeji · eji

where {e1, . . . , eN} is the standard basis of RN . We have

F (X) ≤ sup

{

k
∑

i=1

Xvi · vi s.t. vi ∈ R
N and vi · vj = δij

}

= P+
k (X)

F (X) ≥ inf

{

k
∑

i=1

Xvi · vi s.t. vi ∈ R
N and vi · vj = δij

}

= P−
k (X).

More general we can deal with

Tr(AD2u) + p(x)u−γ = 0 in Ω

where A ∈ SN is a projection matrix on a k-dimensional subspace of RN .
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2. Functions of eigenvalues

Partial sums of eigenvalues

F (X) =
k
∑

i=1

λji(X),

including the extremal case:

1. k = N , F (D2u) = ∆u

2. k = 1, F (D2u) = λj(D
2u).

As further example of the generality we are concerning with we can also consider Bell-
mann/Isaacs type operators such as

F (X) = sup
α

inf
β

Fα,β(X)

where the parameters α, β lies in some sets on index A,B and the operators Fα,β satisfy
(H1)-(H2).

In fact the class of operators for which Theorem 1.1 holds is much larger. It includes
operators that may depends also on x, u,Du as long they are bounded from above by P+

k and
from below by P−

k and for which comparison principle holds. For example

3. Infinity Laplacian

Consider the 1-homogeneous infinity Laplacian

∆∞u =
1

|Du|2
D2uDu ·Du

=
1

|Du|2
Tr
(

D2uDu⊗Du
)

.

The nonlinearity F (q,X) = 1
|q|2

Tr (Xq ⊗ q) is degenerate elliptic on the set SN ×R
N\ {0} and

undefined at q = 0. Following [5, Section 9] we have to use the lower and upper semicontinuous
extension of F to (0,X) given by

F (q,X) =

{

F (q,X) if q 6= 0
λ1(X) if q = 0

and F (q,X) =

{

F (q,X) if q 6= 0
λN (X) if q = 0

in such a way comparison principle applies. Condition (H2) is satisfied with k = 1, in the
sense that

P−
1 (X) ≤ F (q,X) ≤ F (q,X) ≤ P+

1 (X) .

See also Remark 3.3 for further generalizations.

2.2 Preliminary results

Since the dependence in u in the equation F (D2u)+p(x)u−γ = 0 is monotone decreasing, then
the standard arguments for comparison principle of [5] applies. Hence we have the following
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Theorem 2.1 (Comparison principle). Assume (H1)-(H2) and p(x) positive in Ω. If u, v
are respectively viscosity sub and supersolution of

F (D2u) + p(x)u−γ = 0 in Ω

and lim supx→∂Ω(u− v)(x) ≤ 0, then u ≤ v in Ω.

Next Theorem is extracted from [14, Chapter VI, §2]

Theorem 2.2 (Regularized distance). Let Ω ⊂ R
N be a bounded domain. There exists a

function d(x) = d(x, ∂Ω) such that for any x ∈ Ω

a) C1δΩ(x) ≤ d(x) ≤ C2δΩ(x)

b) d ∈ C∞(Ω) and for any multiindex α
∣

∣

∣

∣

∂α

∂xα
d(x)

∣

∣

∣

∣

≤ BαδΩ(x)
1−|α|

where C1, C2, Bα are independent on ∂Ω.

3 Proofs

Proof of Theorem 1.1. Thanks to Theorem 2.1 we are in a position to use the Perron method.
For its application we are going to construct continuous sub and a supersolution of (1) van-
ishing on the boundary of Ω.

Let d(x) be the regularized distance function from ∂Ω, see Theorem 2.2. Let

u(x) = εd(x)t

where t = α+2
γ+1 and ε is a small positive number to be determined. We have

D2u(x) = εtd(x)t−2
(

(t− 1)Dd(x) ⊗Dd(x) + d(x)D2d(x)
)

and, using the properties of d, there exists C > 0 big enough such that

F (D2u(x)) + p(x)u(x)−γ ≥ P−
k (D2u(x)) + c1δ(x)

αu(x)−γ

≥ εtd(x)t−2
(

P−
k ((t− 1)Dd(x) ⊗Dd(x)) + P−

k

(

d(x)D2d(x)
))

+ c1δ(x)
αu(x)−γ

≥ −εtd(x)t−2|t− 1||Dd(x)|2 + εtd(x)t−1P−
k (D2d(x)) + c1ε

−γδ(x)αd(x)−γt

≥
εd(x)t−2

C

(

1

εγ+1
− C2t(1 + |t− 1|)

)

.

Hence taking ε small enough

F (D2u(x)) + p(x)u(x)−γ ≥ 0 in Ω

and u = 0 on ∂Ω.

Now we are going to construct a continuous supersolution u of (1) such that u = 0 on ∂Ω.
For this we first look at the auxiliary problem

{

P+
k (D2u) + c2(R− |x− y|)βu−γ = 0 in BR(y)

u = 0 on ∂BR(y)
(5)
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for β ∈ (−1, 0]. Note that R− |x− y| = δBR(y)(x).
By a straightforward computation the function

u(r) =

(

c2(1 + γ)

k

(

R

β + 1
(R − r)β+1 −

1

β + 2
(R− r)β+2

))
1

1+γ

(6)

is the solution of the ODE problem







k u′(r)
r

+ c2(R− r)βu(r)−γ = 0 for r ∈ (0, R)
u′(0) = 0
u(R) = 0.

Since β ≤ 0, u′ ≤ 0 and u > 0 in [0, R) then

u′′(r) =
u′(r)

r
+

c2
k
r(R− r)β−1u(r)−γ−1

(

βu(r) + γ(R− r)u′(r)
)

≤
u′(r)

r
.

Hence, if r = |x− y|, the function u defined by (6) is the unique solution of (5).
If β > 0 then the function

u(r) =

(

c2R
β(1 + γ)

2k
(R2 − r2)

)

1

1+γ

(7)

is a supersolution of (5). This trivially follows from the inequality (R − r)β ≤ Rβ and the
fact that (7) is the solution in BR(y) of P

+
k (D2u) + c2R

βu−γ = 0, u = 0 on ∂BR(y).
In this way for any β > −1 we have found a continuous supersolution of (5) vanishing on the

boundary. Moreover if σ = min
{

1
γ+1 ,

β+1
γ+1

}

there exists a constant C = C(k, γ, β,R, c2) such

that
|u(r1)− u(r2)| ≤ C|r1 − r2|

σ (8)

for any r1, r2 ∈ [0, R].
Now we use the uniformly convexity of Ω, i.e.

Ω =
⋂

y∈Y

BR(y), (9)

to provide u. For any y ∈ Y and x ∈ BR(y) let us denote by uy(r), r = |x − y|, the
supersolution of (5) constructed above. Define

u(x) = inf
y∈Y

uy(r). (10)

We claim that u yields a continuous supersolution of (1), positive in Ω and null on ∂Ω.
For any x1, x2 ∈ Ω, using (8)

|u(x1)− u(x2)| ≤ sup
y∈Y

|uy(|x1 − y|)− uy(|x2 − y|)|

≤ C ||x1 − y| − |x2 − y||σ ≤ C|x1 − x2|
σ.
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Hence u is Hölder continuous in Ω.
We now show that u is positive in Ω. Let x0 ∈ Ω, in this way δΩ(x0) > 0. Moreover, since
Ω ⊆ BR(y), for any y ∈ Y it holds that δBR(y)(x0) ≥ δΩ(x0). If β ∈ (−1, 0]

uy(|x0 − y|) =

(

c2(1 + γ)

k

(

R

β + 1
(δBR(y)(x0))

β+1 −
1

β + 2
(δBR(y)(x0))

β+2

))
1

1+γ

≥

(

c2(1 + γ)

k

(

R

β + 1
(δΩ(x0))

β+1 −
1

β + 2
(δΩ(x0))

β+2

))
1

1+γ

(11)

where we have used the monotonicity of the map t ∈ [0, R] 7→ R
β+1 t

β+1 − 1
β+2t

β+2.
If β > 0 it holds

uy(|x0 − y|) ≥

(

c2R
β+1(1 + γ)

2k
δBR(y)(x0)

)

1

1+γ

≥

(

c2R
β+1(1 + γ)

2k
δΩ(x0)

)

1

1+γ

.

(12)

Since the lower bounds in (11)-(12) are positive and independent on y ∈ Y then u is strictly
positive in Ω.
As far as the boundary Dirichlet condition is concerned fix any x0 ∈ ∂Ω. Then there exists
yx0

∈ Y such that x0 ∈ ∂BR(yx0
) and

u(x0) ≤ uy0(x0) = 0.

Since x0 is arbitrary we conclude that u = 0 on ∂Ω.
It remains to prove that u is supersolution. By standard argument it is sufficient to show

that for any y ∈ Y the function uy is supersolution of

P+
k (D2u) + c2δΩ(x)

βu−γ = 0 in Ω.

If β ≥ 0 this is immediate, since by construction uy is solution of

P+
k (D2u) + c2δBR(y)(x)

βu−γ = 0 in Br(y)

and δBR(y)(x) ≥ δΩ(x).
Now we consider the case β ∈ (−1, 0). Let x0 ∈ Ω and let ϕ ∈ C2(Ω) such that

(u− ϕ)(x) ≥ (u− ϕ)(x0) = 0 ∀x ∈ Ω.

Select y0 ∈ Y , depending on x0, such that

δΩ(x0) = δBR(y0)(x0). (13)

We claim that
u(x0) = uy0(|x0 − y0|). (14)

As in (11) for any y ∈ Y

uy(|x0 − y|) =

(

c2(1 + γ)

k

(

R

β + 1
(δBR(y)(x0))

β+1 −
1

β + 2
(δBR(y)(x0))

β+2

))
1

1+γ

≥

(

c2(1 + γ)

k

(

R

β + 1
(δBR(y0)(x0))

β+1 −
1

β + 2
(δBR(y0)(x0))

β+2

))
1

1+γ

= uy0(|x0 − y0|)
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where we have used that fact that δBR(y)(x0) ≥ δΩ(x0) = δBR(y0)(x0). This implies (14).
Hence ϕ is a test function touching from below uy0 at x0. Using (13) we conclude

P+
k (D2ϕ(x0)) + c2δΩ(x0)

βϕ(x0)
−γ = P+

k (D2ϕ(x0)) + c2δBR(y0)(x0)
βϕ(x0)

−γ ≤ 0.

From the proof of Theorem 1.1 we immediately obtain the following

Corollary 3.1. Let u be the solution of (1) provided by Theorem 1.1. Then there exists
positive constants ai = ai(k,R, c1, c2, α, β, γ) for i = 1, 2 such that

a1δΩ(x)
α+2

γ+1 ≤ u(x) ≤ a2δΩ(x)
σ, x ∈ Ω, (15)

where σ = min
{

1
γ+1 ,

β+1
γ+1

}

.

Remark 3.2. Note that in the cases F = P+
k and β ≤ 0 the solution of (1) in the ball BR(y)

is explicit, see (6). From this we obtain a more precise information of the solution u near the
boundary of Ω and (15) reduces to

a1δΩ(x)
σ ≤ u(x) ≤ a2δΩ(x)

σ, x ∈ Ω. (16)

It is remarkable that even in the simplest case β = 0, the best regularity we can expect is

then C0, 1

1+γ (Ω). Accordingly |Du(x)| → ∞ as x → ∂Ω, independently on γ > 0. This is a
main difference with respect to uniformly elliptic setting, see [13, Theorem 1.2], [7, Theorem
1.2] and [8, Theorems 2 and 8], where the gradient stay bounded in Ω depending on whether
γ < 1 or γ > 1.

Remark 3.3. It is worth to point out that the proof of Theorem 1.1, in particular the
construction of the supersolution defined by (10), still works for some degenerate elliptic
operators which don’t satisfy (H2) for any X ∈ SN , but they do only in some proper subset
of SN . For instance let us the consider the elliptic operator

F (q,X) = Tr

(

I −
q ⊗ q

1 + |q|2

)

X.

Note that F (Du,D2u) = 0 is the equation of minimal surfaces in nonparametric form.
If we restrict the domain of F to q ∈ R

N and X ∈ S− =
{

X ∈ SN s.t. λ1(X) ≤ 0
}

we have

F (q,X) ≤ TrX −
|q|2

1 + |q|2
λ1(X) ≤ P+

N−1(X).

Then the function (10), which is concave, is in turn supersolution of the equation

∆u+
D2uDu ·Du

1 + |Du|2
+ p(x)u−γ = 0 in Ω. (17)

Concerning the construction of a subsolution vanishing on ∂Ω we can argue as in the above
proof. Hence we obtain existence and uniqueness for (17) with u = 0 on ∂Ω.
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Proof of Theorem 1.2. For any ρ ∈ (0, 1) let us consider the ODE problem











kw′(r)
r

+ w(r)−γ

1−r
= 0 for r ∈ (0, ρ)

w′(0) = 0
w(ρ) = 0.

By computations

w(r) =

(

1 + γ

k

(

r − ρ+ log
1− r

1− ρ

))
1

1+γ

and

w′′ =
w′

r
−

r

k(1− r)2
w−γ +

γr

k(1− r)
w−γ−1w′ ≤

w′

r
.

Hence w(|x|) is the solution of

{

P+
k (D2w) + δB1

(x)−1w−γ = 0 in Bρ

w = 0 on ∂Bρ.
(18)

Let us assume by contradiction that there exists a supersolution u of (4). Since β ≤ −1 and
δB1

≤ 1 then u is in turn a positive supersolution of (18). The comparison principle yields
u(x) ≥ w(|x|) in Bρ. Hence for any x ∈ B1

u(x) ≥ lim
ρ→1

w(|x|) = ∞

contradiction.

We conclude this section by few considerations about solutions of

{

F (D2u) + u−γ = 0 in B1

u = 0 on ∂B1
(19)

for some explicit radial invariant operators of interests for this paper, namely truncated
Laplacians P±

k and the infinity Laplacian, and their connection with the full Laplacian ∆.

In the proof of Theorem 1.1 we found that u(r) =
(

1+γ
2k (1− r2)

)
1

1+γ
is the radial solution of

(19) for F = P+
k .

In order to solve (19) for F = P−
k , we study the second order problem

{

u′′(r) + (k − 1)u
′(r)
r

+ u(r)−γ = 0 for r ∈ (0, ρ)
u(ρ) = u′(0) = 0.

Note that rk−1u′(r) is decreasing, hence u is decreasing and positive in [0, ρ). Moreover

(

u′′ −
u′

r

)′

= −
k

r

(

u′′ −
u′

r

)

+ γu−γ−1u′ ≤ −
k

r

(

u′′ −
u′

r

)

i.e.
(

rk
(

u′′ − u′

r

))′
≤ 0, from which we infer that u′′ ≤ u′

r
for any r ∈ [0, ρ) and that u(|x|)

is solution of (19) in Bρ. Using the scaling invariance of the problem, v(x) := α
− 2

γ+1u(α|x|)

9



is solution if u is, hence we can pick α such that ρ = 1. Observe that P−
k acts in this setting

similarly to the Laplacian in dimension k.
The case k = 1 leads us to the solution not only of P−

1 , but also of ∆∞. For this set
U(x) = u(r). For x 6= 0 then |DU(x)| = |u′(r)| 6= 0 and so ∆∞U(x) = u′′(r) = U(x)−γ . If
x = 0 one has D2U(0) = u′′(0)I, hence λ1(D

2U(0)) = λN (D2U(0) = −U(0)−γ . Let us point
put that U /∈ C1(B1) if and only if γ ≥ 1. This follows from the fact that for r ∈ [0, 1) it

holds that u′(r)2

2 + u(r)1−γ

1−γ
= u(0)1−γ

1−γ
if γ 6= 1 and u′(r)2

2 + log(u(r)) = log(u(0)) if γ = 1.

For the sake of completeness let us mention that there are also cases in which the solution
of (1) in B1 with p(x) = δB1

(x)α, α > 0, is explicit as well. Consider the minimal operator
F = P−

k , or more general any partial sum of eigenvalues of the form F (D2u) =
∑k

i=1 λji(D
2u)

with k < N and jk < N . By a straightforward computation the radial function

u(|x|) =

(

1 + γ

k(1 + α)
(1− |x|)α+1

(

|x|+
1

α+ 2
(1− |x|)

))
1

1+γ

is solution of F (D2u) + δB1
(x)αu−γ = 0 in B1, u = 0 on ∂B1 as long as α ≥ γ. Moreover

u ∈ C1(B1).

4 Generalizations

The proofs of Theorems 1.1-1.2 extend to some cases of equations depending also on first
order terms, such as

{

F (D2u) +H(x,Du) + p(x)u−γ = 0 in Ω
u = 0 on ∂Ω

(20)

where H ∈ C(Ω× R
N) satisfies the structure conditions: ∃b ∈ R+ such that

|H(x, q)| ≤ b|q| ∀(x, q) ∈ Ω× R
N (H4)

and there exists ω a modulus of continuity such that

|H(x, q)−H(y, q)| ≤ ω(|x− y|(1 + |q|)) ∀(x, y, q) ∈ Ω2 × R
N . (H5)

Assumption (H5) is standard for the validity of comparison principle.

In this section we are concerned with the existence of solutions within this large class of
equation. We shall see that the existence results are very sensitive to the “size of b” in (H4),
even in in the simplest case Ω = BR and H(x,Du) = b|Du| problem (20) has no solutions
(in fact supersolutions) if b is too large with respect R. This is the case for instance of the
partial sums (see example 2, Section 2) of the form

F (D2u) =
k
∑

i=1

λji(D
2u), k < N and j1 > 1. (21)

Proposition 4.1. Let F as in (21). If bR ≥ k then there are no positive viscosity superso-
lutions of

F (D2u) + b|Du|+ u−γ = 0 in BR. (22)

10



Proof. For ε > 0 the function

uε(r) =

(

1 + γ

b

(

r −
k

b
+ ε+

k

b
log

k − br

εb

))
1

1+γ

is solution of
{

k u′(r)
r

− bu′(r) + u(r)−γ = 0 for r ∈ (0, k
b
− ε)

u′(0) = 0, u(k
b
− ε) = 0.

Moreover for r < k
b
− ε

u′ε(r) = −
r

k − br
uε(r)

−γ ≤ 0 (23)

and

u′′ε(r) =
u′ε(r)

r
−

r

(k − br)2
uε(r)

−2γ−1
(

γr + buε(r)
γ+1
)

≤
u′ε(r)

r
.

(24)

In view of (23)-(24) we infer that uε(|x|) solves

{

F (D2uε) + b|Du|+ u−γ
ε = 0 in B k

b
−ε

uε = 0 on ∂B k
b
−ε.

Let us assume by contradiction that there exists u positive supersolution of (22). Since
B k

b
−ε ⊂ BR and uε = 0 on ∂B k

b
−ε then comparison principle yields u(x) ≥ uε(|x|) in B k

b
−ε.

Sending ε → 0 we obtain that u ≡ ∞ in B k
b
, contradiction.

Remark 4.2. It is worth to point out that the nonexistence result expressed by Proposition
4.1 is no longer valid in general if we replace u−γ with δΩ(x)

αu−γ , with α > 0. Indeed by a
direct computation one can show that if bR = k and α ∈ (0, 1), then the function

u(|x|) =

(

(1 + γ)

∫ R

|x|

s(R− s)α

k − bs
ds

)
1

1+γ

=

(

(1 + γ)R

kα(α + 1)
(R− |x|)α (R+ α|x|)

)
1

1+γ

is solution of P+
k (D2u) + b|Du|+ δBR

(x)αu−γ = 0 in BR and u = 0 on ∂BR.

The above Proposition shows that the condition bR ≥ k is a real obstruction to the
existence of solutions of (20). Nevertheless, as soon as bR < k, the analogous Theorem 1.1
holds true.

Theorem 4.3. Let Ω be bounded and uniformly convex domain. Assume that F , p(x) and H
satisfy respectively the assumptions (H1)-(H2), (H3) and (H4)-(H5). If bR < k and β > −1,
then for any γ > 0 there exists a unique u ∈ C(Ω) positive viscosity solution of (20).

Sketch of the proof. The function u(x) = εd(x)
α+2

γ+1 is still a subsolution by choosing ε suitably
small.
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Concerning the existence of a supersolution of (20) vanishing on the boundary of Ω, let us
consider the problem

{

P+
k (D2u) + b|Du|+ c2δ

β
BR(y)u

−γ = 0 in BR(y)

u = 0 on ∂BR(y).
(25)

Set r = |x− y| for x ∈ BR(y). The function

uy(r) =

(

c2(1 + γ)

∫ R

r

s(R− s)β

k − bs
ds

)

1

1+γ

is solution of (25) if β ∈ (−1, 0]. Moreover u ∈ C
0,β+1

γ+1 (BR(y)) uniformly with respect to y.
If instead β > 0 then the function

uy(r) =

(

c2R
β(1 + γ)

b

(

r −R+
k

b
log

k − br

k − bR

))

1

1+γ

is supersolution of (25), u = 0 on ∂BR(y) and u ∈ C
0, 1

γ+1 (BR(y)) uniformly with respect to
y. Then according to the sign of β and following the arguments of the proof of Theorem 1.1
with minor changes, the function

u(x) = inf
y∈Y

uy(|x− y|), x ∈ Ω

provides the desired supersolution of (20).

Theorem 4.4. Let bR ≤ k and let γ > 0. Then for any β ≤ −1 the equation

P+
k (D2u)− b|Du|+ δB1

(x)βu−γ = 0 in BR (26)

has no viscosity supersolutions.

Proof. For any ρ ∈ (0, R) the function

w(r) =

(

(1 + γ)

∫ ρ

r

s(R− s)β

(k + bs)
ds

)

1

1+γ

is solution of
{

kw′

r
+ bw′ + (R− r)βw−γ = 0 for r ∈ (0, ρ)
w′(0) = 0, w(̺) = 0.

Using the assumptions β ≤ −1 and bR ≤ k we have

w′′(r) =
w′

r
− r

(R − r)2β

(k + br)2
w(r)−2γ−1

[

(−b(R− r)− β(k + br)) (R− r)−β−1w(r)γ+1 + rγ
]

≤
w′

r
.

Hence we infer that w(|x|) is solution
{

P+
k (D2w)− b|Dw|+ δB1

(x)−βw−γ = 0 in Bρ

w = 0 on ∂Bρ.

Since w → ∞ as ρ → R, then the comparison principle prevent the existence of supersolutions
of (26).

12



References

[1] Birindelli, Isabeau; Galise, Giulio; Ishii, Hitoshi A family of degenerate elliptic operators:
maximum principle and its consequences, Ann. Inst. H. Poincaré Anal. Non Linéaire 35
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