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1 Introduction 

In several empirical studies, attention is focused on the analysis of the conditional mean of 

a response variable as a function of observed covariates/factors; this can be the base for the 

specification of an appropriate regression model. However, the use of such an approach 

could provide an incomplete analysis only and it may lead to unreliable conclusions when 

the assumptions for the linear regression model are not met. 

Just to give an example, standard regression models may be influenced by the presence of 

outliers in the data, which could affect model parameter estimates. 

The quantile regression model (QR) in the following, introduced by Koenker and Bassett 

(1978), was originally considered for its robustness features; it has raised great interest in 

the literature and success in various application areas since it can offer a more detailed 

picture of the response when compared to standard linear regression models.  

The great advantage of quantile regression is the possibility to estimate the entire 

conditional distribution of the response variable and to study the influence of explanatory 

variables on the form of the distribution of Y. 

This model has become highly consolidated thanks to its properties in terms of robustness 

against outliers, efficiency for a wide range of error distributions and equivariance to 

monotonic transformations.  

To give more details, let us briefly remind the features of a standard linear regression 

model. The model aims at identifying the mean of Y conditional are a  set of explanatory 

variables X which can be either quantitative (covariates) or qualitative (factors). On the 

other end, the quantile regression aims at identifying the quantile of Y at level τ(0,1),  

conditional are X = x. 

Generally, a linear model is specified as follows: 

𝑦 = 𝑋𝛽 + 𝜀 

where y is an (n,1) vector of observed values for the response, X is an (n,p) design matrix 

and  is a (p,1) vector of effects that need to be estimated, last,  is an (n,1) measurement 

error vector. 

Sometimes, the matrix X can be considered as a stochastic matrix including random data 

drawn from a distribution, but it is generally preferred to assume X values are fixed and 
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exogenous. As a starting point, it is assumed that the vector  is a Gaussian rv with 

independent and identically distributed elements having mean 0 and constant variance σ2. 

Quantile regression (Koenker and Bassett, 1978; Koenker, 2005) represents a useful 

generalization of median regression whenever the interest is not limited to the estimation 

of a location parameter at the centre of the conditional distribution of the response 

variable but extends to location parameters (quantiles) at other parts of this conditional 

distribution.  

Similarly, expectile regression (Newey and Powell, 1987) generalizes least squares 

regression at the centre of a distribution to estimation of location parameters at other parts 

of the target conditional distribution namely, expectiles. 

Breckling and Chambers (1988) introduced M-quantile regression that extends the ideas of 

M-estimation (Huber, 1964; Huber and Ronchetti, 2009) to a different set of location 

parameters for that lie between quantiles and expectiles the response conditional 

distribution.  M-quantile regression could be considered as a quantile-like generalisation 

of mean regression based on influence functions, or a combination of quantile and 

expectile regression (Newey and Powell, 1987). In fact, M-quantiles aim at combining the 

robustness properties of quantiles with the efficiency properties of expectiles. 

The independence assumption, between the units used in the classic models, can not be 

always satisfied; for example, in the case of multilevel data where the observed sample is 

made of lower level units (pupils, time occasions) nested within higher level units 

(classrooms, individuals), referred to as clusters. In that context, in fact, we may think at 

lower level units (eg. pupils) from the same higher level unit (eg. class) as more similar to 

each other than to units from a different  higher level unit. 

In the case where, for example, the subjects have different means, but very similar within 

variability, we can think that the response y is obtained by adding to the linear predictor 

random intercepts that describe unobserved features specific to higher level units. In this 

case the intercept changes across subjects and it represents the effects of unobserved 

covariates specific to higher level units. 

The use of cluster-specific effects may help us introduce a simple structure of association 

between observations from the same group/ cluster. 

The notation should be slightly modified to account for a potential hierarchical structure; 

let yij i=1,…,m, j =1, …,ni represent the value of the response variable for the j-th lower level 

unit within the i-th cluster unit. The corresponding design vector variable is denoted by xij.  
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Generalizing the previous argument, we may consider cluster-specific random effects bi 

within a generalized linear model structure: 

𝑔{𝐸(𝑦𝑖|𝑥𝑖, 𝑏𝑖)} = 𝑥𝑖
′𝛽 + 𝑤𝑖

′𝑏𝑖 

where wi represents a subset of variables whose effects may vary across clusters according 

to a distribution 𝑓𝑏(∙). It is usually assumed that 𝐸(𝑏|𝑋) = 0  to ensure identifiability of the 

corresponding elements in β, and 𝑓𝑏(𝑏𝑖|𝑋𝑖) = 𝑓𝑏(𝑏𝑖)  implying exogeneity of observed 

covariates. 

In this case, the likelihood function can not be analytically computed. The resulting 

integral, may be calculated by either Gaussian Quadrature (GQ), see Abramowitz and 

Stegun (1964) and Press et al. (2007), or adaptive Gaussian Quadrature (aGQ), see Liu and 

Pierce (1994), Pinheiro and Bates (1995); However, in both cases with a high computational 

effort. Monte Carlo and simulated ML approaches have been discussed as potential 

alternatives, see Geyer and Thompson (1992), McCulloch (1994) and Munkin and Trivedi 

(1999). 

Rather than using a parametric distribution for the random effects, we may leave 𝑓𝑏(∙) 

unspecified and approximate it using a discrete distribution on G <m locations {𝜉1, … , 𝜉𝐺}. 

The number of locations is bounded from above by the number of different higher level 

units profiles (see Aitkin, 1999). 

This approach may be considered as a model-based clustering approach, where the 

population of interest is assumed to be divided into G homogeneous sub-populations 

which differ for the values of the regression parameter vector; this approach is therefore 

less parsimonious than a fully parametric one. 

Observed data are frequently characterized by a spatial dependence; that is the observed 

values can be influenced by the "geographical" position. In such a context it is possible to 

assume that the values observed in a given area are similar to those recorded in 

neighboring areas. Such data is frequently referred to as spatial data and they are 

frequently met in epidemiological, environmental and social studies, for a discussion see 

Haining, (1990). Spatial data can be multilevel, with samples being composed of lower 

level units (population, buildings) nested within higher level units (census tracts, 

municipalities, regions) in a geographical area.  

Green and Richardson (2002) proposed a general approach to modelling spatial data based 

on finite mixtures with spatial constraints, where the prior probabilities are modelled 

through a Markov Random Field (MRF) via a Potts representation (Kindermann and Snell, 

1999, Strauss, 1977). This model was defined in a Bayesian context, assuming that the 

interaction parameter for the Potts model is fixed over the entire analyzed region. Geman 



 

4 

 

and Geman (1984) have shown that this class process can be modelled by a Markov 

Random Field (MRF). As proved by the Hammersley-Clifford theorem, modelling the 

process through a MRF is equivalent to using a Gibbs distribution for the membership 

vector. In other words, the spatial dependence between component indicators is captured 

by a Gibbs distribution, using a representation similar to the Potts model discussed by 

Strauss (1977). 

In this work, a Gibbs distribution, with a component specific intercept and a constant 

interaction parameter, as in Green and Richardson (2002), is proposed to model effect of 

neighboring areas. 

This formulation allows to have a parameter specific to each component and a constant 

spatial dependence in the whole area, extending to quantile and m-quantile regression the 

proposed by Alfò et al. (2009) who suggested to have both intercept and interaction 

parameters depending on the mixture component, allowing for different prior probability 

and varying strength of spatial dependence. 

We propose, in the current dissertation to adopt this prior distribution to define a Finite 

mixture of quantile regression model (FMQRSP) and a Finite mixture of M-quantile 

regression model (FMMQSP), for spatial data. 

The dissertation is structured into eight chapters. After an introduction to the thesis 

content the second chapter outlines the standard linear quantile regression model, 

discussing general properties such as robustness and equivariance and detailing the 

estimation method proposed by Koenker and Bassett (1978). The asymmetric Laplace 

distribution (ALD) is introduced to cast parameter estimation a maximum likelihood 

(ML). The third chapter describes the use of individual-specific random effects to model 

association between multi levels observations. Parametric Quantile and M-quantile 

regression models with random effects, proposed by Geraci and Botai (2007) and Tzavidis 

et al. (2016) respectively, are presented in this and the following chapter. Non-parametric 

models, specifically finite mixtures of quantile and M-quantile model are also presented. 

The chapter 5 contains the main thesis proposal. The spatial dependence is included in the 

Quantile and the M-quantile model via the approach discussed by Green and Richardson 

(2002). This model uses finite mixture models with spatial constraints defined by Markov 

random field for the prior probabilities of component membership. Such an approach has 

been already used by Alfò et al. (2009) in the context of generalized linear models. We 

extend their proposal by applying this procedure to quantile and M-quantile regression 

models to give a more complete representation of the (conditional) response distribution. 
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The proposed methodology is evaluated in a Monte-Carlo simulation study in chapter 6. 

We compare different regression models in a series of different scenarios. While in the 

chapter 7 an application of the proposed models to a study on real data is described. 

Finally in chapter 8 we provide conclusions and suggestions for further research. 
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2 Standard Quantile Regression 

In empirical studies attention is often focused on the analysis of the conditional mean for a 

response variable as a function of a set of observed covariates/factors in a linear regression 

framework. The use of such an approach could provide only an incomplete analysis and 

lead to unreliable conclusions when the assumptions of the linear regression model are not 

met. Standard regression models may also be influenced by the presence of outliers in the 

data, as these could heavily affect the estimation of model parameters. 

The goal of standard regression models is to describe how the conditional expectation of a 

response variable changes as a function of a set of explanatory variables. However, 

considering the expected value as the only parameter of interest could not guarantee a 

reliable description of the impact of explanatory variables on the response; as we may be 

interested in features of such a distribution which could fruitfully described by 

appropriate quantiles. 

In some empirical situations the major interest focuses on the tail of the distribution; for 

example, this is true in environmental context, where the limit value of a variable of 

interest (eg. Radon, PCBs, dioxins, heavy metals, etc.) may be regulated by law. 

Quantile regression model (QR), introduced by Koenker and Bassett (1978), was originally 

appreciated for its robustness features, and it has been recently raising great interest in the 

literature in several application areas since it can offer a more detailed picture of the 

response when compared to standard regression model. The estimation of model 

parameters is pursued via a quite standard optimization problem. To formalize, let us 

introduce some notation; similarly to what happens for the calculation of the sample 

mean, defined as the solution to the problem of minimizing the sum of squared errors, we 

can define the quantile at level τ  (0,1) as the solution of a simple minimization problem. 

 

2.1 Definition of Quantile 

The (conditional) quantile function is a basic concept which is worth to be introduced. Let 

us consider a (discrete or continuous) random variable, for a given level τ ∈ (0, 1), the τ-th 

quantile of X can be defined as the value 𝛾𝜏 ∈ R such that 

𝐹−(𝛾𝜏) ≤ 𝜏 ≤ 𝐹(𝛾𝜏) 
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If X is continuous, the previous inequalities hold exactly and the quantile is univoquely 

defined. When if X is discrete, the above inequalities define a closed interval, and this 

implies that the quantile is not unique. To univoquely identify the quantile, we establish 

by convention that this is always the smallest element in the set of possible solutions. This 

definition can be formalized as follows 

𝛾𝜏 = 𝑚𝑖𝑛{𝛾: 𝐹(𝛾) ≥ 𝜏} 

The τ-quantile of X is a real number such that 𝑃𝑟(𝑋 ≤ 𝑥𝜏) ≥ 𝜏 and that 𝑃𝑟(𝑋 ≥ 𝑥𝜏) ≥ 1 − 𝜏. 

There is only one τ-quantile if the equation Fx(x) = τ has at most one solution, where Fx(x) = 

Pr (X ≤ x ). corresponds to the cdf of X. We define the quantile function of X as an 

application 𝜏 → 𝐹𝑋
−1(𝜏) that associates a suitable τ-quantile of the random variable X to a 

number in the unit line τ ∈ [0, 1]. Thus, the quantile function may be defined as follows : 

𝑄𝑋(𝜏) = 𝐹𝑋
−1(𝜏) = 𝑚𝑖𝑛{𝑥 ∈ ℝ|𝐹𝑋(𝑥) ≥ 𝜏, 0 < 𝜏 < 1} 

where 𝐹𝑋(∙) represents the cdf of X. 

This function provides the unconditional τ-th quantile of X, defined as the smallest value 

in the set of possible values that give a value of the cdf not lower that τ. 

In other words, the quantile function expresses, for each level τ ∈ [0, 1], the value of the 

random variable 𝑥𝜏  such that 𝐹𝑋(𝑥𝜏) ≥ 𝜏 and 𝑃(𝑋 > 𝑥𝜏) ≤ 1 − 𝜏. The quantile function is 

therefore defined as the inverse of the cdf: 

{
𝑄𝑋(𝑥𝜏) = 𝐹𝑋

−1(𝜏)          

𝐹𝑋(𝑥𝜏) = 𝑄𝑋
−1(𝑥𝜏) = 𝜏

 

whenever the appropriate inverses exist. Koenker and Bassett (1978) proposed to estimate 

the quantiles by solving the optimization problem based on the following loss function: 

𝐿(𝜉𝜏) = ∑ 𝜏|𝑋𝑖 − 𝜉𝜏|

𝑖∈{𝑙|𝑋𝑙≥𝜉𝜏}

+ ∑ (1 − 𝜏)|𝑋𝑖 − 𝜉𝜏|

𝑖∈{𝑙|𝑋𝑙<𝜉𝜏}

 (2.1) 

when the solution satisfies 

𝜉𝜏 = 𝑎𝑟𝑔 min
𝜉𝜏∈𝑅

𝐿(𝜉𝜏) (2.2) 

The absolute differences between the observations and the optimal unknown value ξτ are 

weighted by τ for 𝑋𝑖 ≥ 𝜉𝜏, and by (1 − τ) for 𝑋𝑖 < 𝜉𝜏 see Koenker (2005). If τ = 0.5, the 

median is defined. The previously introduced equation can be defined, in a compact form 

through the introduction of the check function, defined as follows: 

𝜌𝜏(𝑢) = 𝑢(𝜏 − I(𝑢 < 0))    0 < 𝜏 < 1 
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where 𝐼(∙)  represents the indicator function. The check function can be represented 

graphically as in Figure 2.1 below: 

 

Figure 2.1 Check function 

Based on such a definition, the loss function in equation (2.2) can be rewritten as follows  

𝐿(𝜉𝜏) = ∑ 𝜌𝜏(𝑋𝑖 − 𝜉𝜏)

𝑖

 (2.3) 

and the conditional quantile is estimated as 

𝜉𝜏 = 𝑎𝑟𝑔 min
𝜉𝜏∈𝑅

𝐿(𝜉𝜏) (2.4) 

Considering the loss function in equation (2.1), we may notice that the solution may not be 

unique if nτ is not an integer (Koenker, 2005). The minimization of the loss function allows 

to identify the empirical quantile at any τ level. In the case X is a continuous variable, the 

expected loss function can be defined as: 

𝐸(𝜌𝜏(𝑋 − 𝜉𝜏)) = 𝜏 ∫ (𝑥 − 𝜉𝜏)𝑑𝐹𝑋(𝑥)
∞

𝜉𝜏

− (1 − 𝜏) ∫ (𝑥 − 𝜉𝜏)𝑑𝐹𝑋(𝑥)
𝜉𝜏

−∞

 (2.5) 

The expected loss function can be minimized by setting equal to zero the first derivative; 

the first order condition is 

𝑑𝐸(𝜌𝜏(𝑋 − 𝜉𝜏))

𝑑𝜉𝜏
= 𝜏

∫ (𝑥 − 𝜉𝜏)𝑑𝐹𝑋(𝑥)
∞

𝜉𝜏

𝑑𝜉𝜏
− (1 − 𝜏)

∫ (𝑥 − 𝜉𝜏)𝑑𝐹𝑋(𝑥)
𝜉𝜏

−∞

𝑑𝜉𝜏
 

= −𝜏 ∫ 𝑑𝐹𝑋(𝑥)
∞

𝜉𝜏

+ (1 − 𝜏) ∫ 𝑑𝐹𝑋(𝑥)
𝜉𝜏

−∞

 

= −𝜏(1 − 𝐹(𝜉𝜏)) + (1 − 𝜏)𝐹(𝜉𝜏) 

= 𝐹𝑋(𝜉𝜏) − 𝜏 = 0 

The second derivative is positive as Fx(x) is non decreasing with x ∈ R; therefore the 

expected loss function is convex and it is minimized if and only if 𝐹(𝜉𝜏) = 𝜏, i.e. 𝜉𝜏 =

𝐹−1(𝜏), as in equation (2.2). 
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The observation developed in this Section show that the quantiles may be expressed as the 

solution to a simple optimization problem; this leads to more general methods of 

estimating parameters via conditional quantile functions. 

 

2.2 Quantile regression 

The standard regression model specifies a model for the mean of the response Y 

conditional on a set of explanatory variables X. On the other hand, the quantile regression 

specifies the conditional distribution of Y, at each quantile τ(0,1) as a function of X. 

As it as been previously noticed, the quantile regression provides a more accurate 

description of the conditional distribution through the evaluation of conditional quantiles. 

Let us assume that the quantile regression model is 

𝑌𝑖 = 𝑄𝜏(𝑌𝑖|𝑥𝑖) + 𝜀𝑖𝜏  i = 1, … , n  (2.6) 

where Yi denotes the response variable, 𝑥𝑖  represent a vector of p explanatory variables 

and a constant term and 𝜀𝜏 is an error term whose distribution varies with the quantile 

τ(0,1). The fundamental assumption of such regression model is that the τ- th conditional 

quantile of the error term is 𝑄𝜏(𝜀𝑖,𝜏|𝑥𝑖) = 0 

Therefore, based on such hypothesis, the τ- th quantile of the response Yi conditional on 

the value 𝑥𝑖 can be written as 

𝑄𝜏(𝑌𝑖|𝑥𝑖) = 𝑥𝑖
′𝛽𝜏 (2.7) 

The parameter values τ may vary with τ, that is the quantile regression model is a model 

with varying parameters and this means that the effect of each term in  the design vector 

may not be constant over the conditional response distribution Y|X. In this sense, a 

variable with no impact at the centre may well be thought of as having a substantial 

impact on the tails of 𝑓𝑌|𝑋. Given τ∈ (0, 1) and considering equations (2.5), (2.6) and (2.7) 

the parameter vector τ can be estimated by solving the following problem  

𝛽̂𝜏 = argmin
𝛽𝜏∈𝑅𝑝

( ∑ 𝜏|𝑦𝑖 − 𝑥𝑖
′𝛽𝜏|

𝑖∈{𝑖:𝑦𝑖≥𝑥𝑖
′𝛽𝜏}

+ ∑ (1 − 𝜏)|𝑦𝑖 − 𝑥𝑖
′𝛽𝜏|

𝑖∈{𝑖:𝑦𝑖<𝑥𝑖
′𝛽𝜏}

) 

 

= argmin
𝛽𝜏∈𝑅𝑝

∑ 𝜌𝜏(𝑦𝑖 − 𝑥𝑖
′𝛽𝜏)

𝑖

 (2.8) 

Median regression is a particular case of quantile regression with τ = 0.5 (Koenker, 2005). 
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Unlike least squares estimation, equation (2.8) does not lead to closed form solutions since 

the check function is not derivable at the origin. Rather the problem in equation (2.8) can be 

considered as a linear programming problem that can be solved numerically. As it regards 

the median regression problem, Barrodale and Roberts (1974) proposed an efficient 

simplex algorithm that was subsequently generalized for any conditional quantile by 

Koenker and D'Orey (1987). Such algorithms require a computational effort that make 

them rarely used. In fact, this algorithm is quite slow for data sets with a large number of 

observations (n>100'000). Another algorithm, the interior point algorithm, which also 

solves general linear programming problems, was introduced in this context by Portnoy 

and Koenker (1997). This algorithm shows great advantages in computational efficiency 

over the simplex algorithm for data sets with a large number of observations. 

2.2.1 Parameter estimation 

Let us consider a sample of n observations (𝑦𝑖 , 𝑥𝑖), 𝑖 = 1, … , 𝑛; this can be rewritten in 

matrix form, where 

Y=[y1,...,yn]' 

represents the response vector (with mutually independent terms), thought as composed 

by iid random variables Yi, i=1,...,n. 

The matrix of explanatory variables is  

𝑋
(𝑛𝑥𝑝) = [

𝑥1
𝑇

∙
𝑥𝑛

𝑇
] = [

𝑥11 ⋯ 𝑥1𝑝

⋮ ⋱ ⋮
𝑥𝑛1 ⋯ 𝑥𝑛𝑝

] 

The quantile regression model is based on the following hypothesis: 

𝑌𝑖 = 𝑄𝜏(𝑌𝑖|𝑥𝑖) + 𝜀𝑖𝜏 

𝑄𝜏(𝑌𝑖) = 𝑥𝑖
𝑇𝛽𝜏  𝑖 = 1, . . , 𝑛 

𝜀𝑖𝜏~𝐹 𝑖𝑖𝑑: 

𝑄(𝜀𝑖𝜏| 𝑥𝑖) = 𝑄(𝜀𝑖𝜏) = 0 

The estimates for 𝛽𝜏 are obtained by solving the minimization problem: 

min
𝛽𝜏∈𝑅𝑝

[ ∑ 𝜏|𝑦𝑖 − 𝑥𝑖
′𝛽𝜏|

𝑖∈{𝑖:𝑦𝑖≥𝑥𝑖
′𝛽𝜏}

+ ∑ (1 − 𝜏)|𝑦𝑖 − 𝑥𝑖
′𝛽𝜏|

𝑖∈{𝑖:𝑦𝑖<𝑥𝑖
′𝛽𝜏}

] (2.9) 



 

12 

 

As we have already mentioned, the solution 𝛽̂𝜏  can not be written in a closed form 

expression as with the least squares estimate. However, the solutions to the problem 

equation (2.9) have some nice algebraic properties, as shown by Koenker and Bassett 

(1978).  

First, a solution to the minimization problem above does always exist but it is not 

generally unique; for this purpose, let us denote by 𝐵𝜏 the set of solutions, and let: 

• ℒ = {1, … , 𝑛} be the set of indices for the sample observations; 

• ℋ𝑝 be the set of all (
𝑛
𝑝) possible subsets h= {𝑗1, … , 𝑗𝑝} of elements in ℒ that can be 

obtained by selecting p different elements. 

Let us consider the generic element ℎ ∈ ℋ𝑝, and denote by: 

ℎ̅ = ℒ ∖ ℎ 

the complementary set to h, i.e. the set made by the (n-p) elements in ℒ that do not belong 

to h. Let 𝑋[ℎ] be the square matrix of order p obtained by selecting, the rows corresponding 

to indices {𝑗1, … , 𝑗𝑝} from X and 𝑌[ℎ] the response vector for the same set of indices. 

Last, denote by: 

𝐻𝑝 = {ℎ ∈ ℋ𝑝: 𝑟𝑎𝑛𝑘(𝑋[ℎ]) = 𝑝} ⊆ ℋ𝑝 

the subset of ℋ𝑝 containing elements ℎ ∈ ℋ𝑝 such that the matrix 𝑋[ℎ] is non-singular. We 

can prove the following theorem 

 

Theorem 1 -If the matrix X has full column rank, then the set 𝐵𝜏 of the possible solutions to 

the minimization problem in equation (2.9) has at least one element of the form: 

𝛽̂𝜏 = (𝑋[ℎ∗])
−1

𝑦[ℎ∗], ℎ∗ ∈ ℋ𝑝   

 

and 𝐵𝜏 is the convex hull of all the solutions having this form. 

Theorem 1 states that, conditional on a set of hypotheses, there is an element ℎ∗ ∈ 𝐻𝑝 such 

that: 

𝑦[ℎ∗] = 𝑋[ℎ∗]𝛽̂𝜏 

Therefore, from a graphical point of view, the quantile regression can be considered as a 

hyperplane passing exactly through (at least) p points out of the n observed. 
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The fact that the hyperplane equation for quantile regression is univocally determined by 

a subset of p observations, out of the n sample units, has raised some criticisms see eg. 

Koenker (2005), mainly regarding two aspects: 

1. the estimator somewhat ignores a portion of the sample information; 

2. if we consider the median regression (τ = 1/2), since the estimator is a linear 

function of a subset of sample units, under the conditions of the Gauss-Markov 

theorem, it cannot improve LS estimator in terms of efficiency. 

Koneke and Bassett (1978), however, state that all sampling observations are used in the 

estimation process to determine the "optional" subset ℎ∗  containing the p points that 

determine the hyperplane equation for the quantile regression model. The estimator 𝛽̂𝜏 is 

intrinsically non-linear if we consider the selection of the element ℎ∗ ∈ 𝐻𝑝. 

Let us rearrange the rows of X and y in such a way that the first p rows correspond to the 

observations in the set ℎ∗ used to determine the hyperplane equation for the quantile 

regression model. We may therefore write the following equality: 

[
𝑦[ℎ∗]

𝑦[ℎ̅∗]
] = [

𝑋[ℎ∗] 0

𝑋[ℎ̅∗] 𝐼
] [

𝛽̂𝜏

𝜀[̂ℎ̅∗]
] = [

𝑋[ℎ∗]𝛽̂𝜏

𝑋[ℎ̅∗]𝛽̂𝜏 + 𝜀[̂ℎ̅∗]

] 

where 𝜀[̂ℎ̅∗] is the vector of residuals corresponding to the n-p observations of in the set ℎ̅∗, 

defined by: 

𝜀[̂ℎ̅∗] = 𝑦[ℎ̅∗] − 𝑋[ℎ̅∗]𝛽̂𝜏 = 𝑦[ℎ̅∗] − 𝑋[ℎ̅∗]𝑋[ℎ∗]
−1 𝑦[ℎ∗] 

The matrix 0 is a matrix contain null elements with size (p,n-p), while I denotes the 

identity matrix of order (n-p). 

Comparing the estimator obtained via the median regression (τ = 1/2) with the least 

squares estimator, we have: 

𝛽̂0.5 = (𝑋[ℎ∗])
−1

𝑦[ℎ∗] Median Regression 

𝛽̂𝑂𝐿𝑆 = (𝑋𝑇𝑋)−1𝑋𝑇𝑦 Ordinary Least Squares Regression 

The two estimators show substantial differences: 

1. the estimator for the parameter of the median regression model involves a subset of 

p observations drawn out of the n sample units. All the sample observations are 

implicitly used to establish which points determine the hyperplane equation. The 

ordinary least squares estimator is an explicit function of all the observations. 
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2. the set ℎ∗ of the observations characterizing the solution 𝛽̂𝜏 varies, in general, with 

varying realizations of the error vector . 

From a geometrical point of view, the ordinary least squares estimators is based on taking 

into consideration a linear projection 𝑦̂ = 𝑋𝛽̂  and minimizing the Euclidean distance 

‖𝑦 − 𝑦̂‖. To characterize the estimator for the parameter vector in a quantile regression 

model, Koenker (2005) proposes to imagine inflating a ball centered at y until it touches 

the subspace spanned by X. The quantile regression 𝜌𝜏(∙) dissimilarity measure 

𝑑𝜏(𝑦, 𝑦̂) = ∑ 𝜌𝜏(𝑦𝑖 − 𝑦̂𝑖)

𝑛

𝑖=1

 

can be compared to the shape of a diamond. Replacing Euclidean balls with polyhedral 

diamonds raises some new problems, but many nice features still persist. Expression (2.9) 

can be rewritten as follows: 

𝜓(𝛽𝜏, 𝜏, 𝑦, 𝑋) = ∑ 𝜏(𝑦𝑖 − 𝑥𝑖
′𝛽𝜏)

[𝑖:𝑦𝑖≥𝑥𝑖
′𝛽𝜏]

+ ∑ (1 − 𝜏)(𝑦𝑖 − 𝑥𝑖
′𝛽𝜏)

[𝑖:𝑦𝑖<𝑥𝑖
′𝛽𝜏]

= ∑ [𝜏 −
1

2
+

1

2
𝑠𝑔𝑛(𝑦𝑖 − 𝑥𝑖

′𝛽𝜏)] [𝑦𝑖 − 𝑥𝑖
′𝛽𝜏]

𝑛

𝑖=1

 

where sgn denotes the sign function: 

𝑠𝑔𝑛(𝑢) = {
+1 𝑢 > 0
0 𝑢 = 0

−1 𝑢 < 0
, 𝑢 ∈ ℝ𝑝 

The minimization problem can therefore be characterized by the following theorem. 

Theorem 2 (Bassett and Koenker, 1978) - The value  𝛽̂𝜏 = (𝑋[ℎ∗])
−1

𝑦[ℎ∗] is a unique solution 

to the Problem (2.9) if and only if: 

(𝜏 − 1)𝕝𝑝 ≤ ∑ [
1

2
−

1

2
𝑠𝑔𝑛(𝑦𝑖 − 𝑥𝑖

𝑇𝛽̂𝜏) − 𝜏] 𝑥𝑖
𝑇(𝑋[ℎ∗])

−1

𝑖∈ℎ̅∗

≤ 𝜏𝕝𝑝  

where 𝕝𝑝  denotes a p dimensional column vector with unit elements. 

Considering the directional derivative of the function ψ towards the direction w, it is 

possible to show that the aforesaid theorem (Bassett and Koenker, 1978) is proved. 
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2.2.2 Properties of solutions 

Quantile regression should not only be considered as a useful tool for a more detailed 

description of the (conditional) distribution of a response variable; it has additional 

properties when compared to standard linear regression, such as the equivariance to 

monotone transformation of the dependent variable, the robustness to outlying values and 

efficiency (Koenker, 2005). 

These properties had already been introduced in the original paper by Koenker and 

Bassett (1978) and we discuss them in details below. 

 

2.2.2.1 Equivariance 

Let 𝐵𝜏 = 𝐵(𝜏; 𝑦, 𝑋) represent the set of solutions to the minimization problem (2.9) and 

𝛽̂𝜏 = 𝛽̂(𝜏; 𝑦, 𝑋) be an estimate for the parameters of the regression hyperplane for the τ-th 

conditional quantile, 𝜏 ∈ [0,1] then we have that: 

i) 𝛽̂(𝜏; 𝜆𝑦, 𝑋) = 𝜆𝛽̂(𝜏; 𝑦, 𝑋),                                     λ >  0 

ii) 𝛽̂(𝜏; 𝜆𝑦, 𝑋) = 𝜆𝛽̂(1 − 𝜏; 𝑦, 𝑋),                             λ <  0   

iii) 𝛽̂(𝜏; 𝑦 + 𝑋𝛾, 𝑋) = 𝛽̂(𝜏; 𝑦, 𝑋) + 𝛾,                       𝛾 ∈ ℝ𝑝 

iv) 𝛽̂(𝜏; 𝑦, 𝑋𝐴) = 𝐴−1𝛽̂(𝜏; 𝑦, 𝑋) A (n,p) non singular matrix 

The first property states that when all the response values are multiplied by a quantity λ> 

0, then the solution will be subject to the same transformation. The second property shows 

that when if the response values are multiplied by a quantity λ<0, then the parameter 

estimation for the regression hyperplane of order τ correspond to the coefficients of the 

regression hyperplane of order 1- τ, for the original values y where sign is changed due to 

multiplying by λ. 

According to the third property, when a linear combination of the design matrix with 

coefficient  is added to the vector of responses y, the solution corresponds to the sum of 

the solution for vector y plus . 

The last property is called the equivariance to reparameterization of design and derives 

from the effect of a non-singular matrix A (pxp) introduced in the model. The recourse to 

reparameterization is quite common in regression analysis (von Eye and Schuster 1998) 

when the matrix of the explanatory variables is not of full column rank. 
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2.2.2.2 Equivariance under monotonic transformations 

Another important feature is equivariance under monotonic transformations; let us 

remind the definition of the quantile function 𝑄𝑦(𝜏) , of a random variable Y, with  

distribution function 𝐹𝑌|𝑋(∙) 

𝑄𝑦(𝜏) = 𝐹𝑌
−1(𝜏) = 𝑖𝑛𝑓{𝑦|𝐹𝑌(𝑦) ≥ 𝜏}   0 < 𝜏 < 1 

If 𝑔(∙) is a strictly monotone increasing, continuous from the left function, we have that: 

𝜏 = 𝑃[𝑌 ≤ 𝑄𝑌(𝜏)] = 𝑃[𝑔(𝑌) ≤ 𝑔(𝑄𝑌(𝜏))]   0 < 𝜏 < 1 

In other words, the quantile function of the r.v. 𝑔(𝑌), obtained by applying an increasing 

monotone function 𝑔(∙) to Y, is given by 𝑔(𝑄𝑌(𝜏)). 

Similarly, for the conditional quantile function we have: 

𝑄𝑔(𝑌)|𝑋(𝜏|𝑥) = 𝑔 (𝑄𝑌|𝑋(𝜏|𝑥)) ,     0 < 𝜏 < 1 

This property is peculiar to the quantiles since, for example, it does not hold for the 

(conditional) mean 

𝔼(𝑔(𝑌)|𝑥) ≠ 𝑔(𝔼(𝑌|𝑥)) 

as equality holds only for specific forms of 𝑔(∙), for example when 𝑔(∙) is linear. 

 

2.2.2.3 Distribution of the sign of residuals 

There is a relation between the number of positive, negative and null residuals. Given a 

solution 𝛽̂𝜏 ∈ 𝐵𝜏 to the minimization problem in equation (2.9), the corresponding vector of 

regression residuals is defined by: 

ε̂ = y − Xβ̂τ 

Let us consider a partition of the set of indices {1, … , 𝑛}  based on the sign of the 

corresponding residuals. Then let 

• 𝑍𝛽̂𝜏
= {𝑖: 𝜀𝑖̂ = 0}  denote the set of indexes corresponding to points with a zero 

residual, with cardinality, 𝑛0. 

• 𝑁𝛽̂𝜏
= {𝑖: 𝜀𝑖̂ < 0} denote the set of indexes corresponding to points with a negative 

residual, with cardinality, 𝑛−. 

• 𝑃𝛽̂𝜏
= {𝑖: 𝜀𝑖̂ > 0} denote the set of indexes corresponding to points with a positive 

residual; with cardinality, 𝑛+. 

The three sets are disjoint and we can prove the following theorem. 
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Theorem 3 - If the design matrix X contains a column of 1’s (i.e. the regression hyperplane 

contains the intercept), then: 

𝑛− ≤ 𝑛𝜏 ≤ 𝑛 − 𝑛+ = 𝑛− + 𝑛0 

If 𝛽̂𝜏 is the unique solution to the minimization in equation (2.9) then the inequality holds 

strictly. 

2.2.2.4 Robustness 

As we have previously mentioned, one of advantages of the quantile regression model 

when compared to standard regression is robustness to outliers. The robustness of 

solution to outlying values can be characterized by the following theorem. 

Theorem 4 - If 𝛽̂ ∈ 𝐵(𝜏; 𝑦, 𝑋) , where 𝐵(𝜏; 𝑦, 𝑋)  represent the set of solutions to the 

minimization problem (2.9), then 𝛽̂ ∈ 𝐵(𝜏; 𝑋𝛽̂ + 𝐷𝜀̂, 𝑋) where D is a (nxn) diagonal matrix 

with non-negative elements and 𝜀̂ = 𝑦 − 𝑋𝛽̂(𝜏; 𝑦, 𝑋). 

The theorem states that a perturbation in y leaving the sign of the residuals unchanged 

leaves also the solution to the minimization problem unchanged. 

In geometrical terms, this property means that the solution does not change if you "move" 

the points by varying the corresponding Y values until these ones remain on the same side 

of the hyperplane, i.e. the sign of the corresponding residuals does not change. 

 

2.2.3 Parameter estimation using the Asymmetric Laplace distribution 

A method to cast estimation for quantile regression in a parametric context, eg. ML 

approach is based on adopting the asymmetric Laplace distribution (see Geraci and Bottai, 

2007). In this case, the optimization problem in equation (2.9) is equivalent to estimate 

parameter via optimizing the likelihood function based on the ALD. 

Let us consider data in the form (xi, yi), i = 1,…,n , where yi are independent scalar 

observations of a continuous response variable with common cdf 𝐹𝑦(∙ |𝑥), whose shape is 

not exactly known, and xi are design vectors X. Linear conditional quantile functions are 

defined by:  

𝑄(𝜏|𝑥𝑖) = 𝑥𝑖
𝑇𝛽,      𝑖 = 1, … . , 𝑁 (2.10) 

where 𝜏 ∈ (0,1), 𝑄(⋅) ≡ 𝐹𝑦𝑖

−1(⋅), 𝛽𝜏 ∈ ℝ𝑃 is an unknown vector of parameters. As we have 

previously remarked, the parameter estimates in τ-quantile regression, represent the 

solution to the following minimization problem: 
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𝐿𝜏(𝛽) = min
𝛽∈𝑅𝑝

{ ∑ 𝜏|𝑦𝑖 − 𝑥𝑖
𝑇𝛽|

𝑛

𝑖∈(𝑖:𝑦𝑖≥𝑥𝑖
𝑇𝛽)

+ ∑ (1 − 𝜏)|𝑦𝑖 − 𝑥𝑖
𝑇𝛽|

𝑛

𝑖∈(𝑖:𝑦𝑖<𝑥𝑖
𝑇𝛽)

} (2.11) 

and, the estimate 𝛽̂ will clearly depend on the value τ. 

Koenker and Machado (1999) and Yu and Moyeed (2001) have introduced the asymmetric 

Laplace density (ALD), using it as a parametric distribution that help recast the 

minimization of the sum of absolute deviations into a maximum likelihood into 

framework. 

Given a response Y with an ALD (μ, σ, τ) density, 𝑌 ∼ 𝐴𝐿𝐷(𝜇, 𝜎, 𝜏) , the individual 

contribution to the likelihood function is given by 

𝑓(𝑦|𝛽, 𝜎) =
𝜏(1 − 𝜏)

𝜎
𝑒𝑥𝑝 {−𝜌𝜏 (

𝑦 − 𝜇𝜏

𝜎
)} (2.12) 

where  
𝜏
() = (𝜏 − 𝐼( ≤ 0)) is the loss function, I (.) denotes the indicator function, τ∈ 

(0, 1) is the asymmetry parameter (skewness), σ> 0 and 𝜇𝜏 ∈ ℝ are the scale and the 

location parameters. The loss function 𝜌(∙) assigns weight τ or 1 –τ to observations that are 

respectively, higher or lower than 𝜇𝜏, with by 𝑃𝑟(𝑦 ≤ 𝜇𝜏) = 𝜏. Therefore, the distribution 

of Y is divided by the location parameter 𝜇𝜏 into two parts, one on the left associated to a 

weight τ and one on the right with (1-τ), see Yu and Zhang (2005). 

Let us set 𝜇𝜏𝑖 = 𝑥𝑖
𝑇𝛽𝜏 and 𝐲 = (y1, … , yn). Assuming that 𝑦𝑖 ∼ 𝐴𝐿𝐷(𝜇𝑖, 𝜎, 𝜏)  the likelihood 

from a sample of n independent observations is 

𝐿(𝛽, 𝜎; 𝑦, 𝜏) ∝ 𝜎−1𝑒𝑥𝑝 {− ∑ 𝜌𝜏 (
𝑦𝑖 − 𝜇𝑖𝜏

𝜎
)

𝑛

𝑖=1

} 

If we consider σ as nuisance parameter, the maximization of the above mentioned 

likelihood 𝐿(𝛽𝜏, 𝜎; 𝑦, 𝜏) with respect to parameter 𝛽𝜏 is equivalent to the minimization of 

the objective function 𝐿𝜏(𝛽).  

Thus, the ALD is useful as a bridge between the likelihood and the non parametric 

framework for estimation of model parameters in a linear quantile regression model. 

 

2.3 M-quantile regression 

The M-quantile regression model integrates the expectile regression (a generalization of 

the standard regression see Newey and Powell, 1987) and the quantile regression by 

Koenker and Bassett (1978) into a single framework. The integration of these two 

modelling approaches help define a quantile-type generalization of robust regression 
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estimated via influence functions (M-quantile regression). M-estimation is a method, 

based on the use of influence functions, introduced by Huber (1973) to guarantee 

robustness of parameter estimates to outliers. It controls the effect of outliers by limiting 

the effect of those points with a residual greater than a given threshold c. 

The M-Quantile regression (MQ) of order τ for a response with conditional density 𝑓(𝑦|𝑥), 

introduced by Breckling and Chambers (1988), is defined as the solution to the following 

estimating equation: 

∫ 𝜓𝜏 (𝑦 − 𝑀𝑄𝜏(𝑦|𝑥; 𝜓))𝑓(𝑦|𝑥)𝑑𝑦 = 0 

where ψτ is a (potentially asymmetric) influence function, corresponding to the first 

derivative of a (potentially asymmetric) loss function 𝜌τ, τ∈ (0, 1). In the case of a linear M-

Quantile regression model, we assume that: 

𝑀𝑄𝜏(𝑦|𝑥; 𝜓) = 𝑥𝑖
′𝛽𝜏 (2.13) 

which correspond to the assumption 𝑀𝑄𝜏(𝜀|𝑥; 𝜓) = 𝑀𝑄(𝜀|𝜓) = 0 , where  is the 

measurement error. The estimates of βτ are obtained by minimizing 

∑ 𝜌𝜏(𝑦𝑖 − 𝑥𝑖
′𝛽𝜏)

𝑛

𝑖=1

 (2.14) 

By specifying the form of the asymmetric loss function 𝜌𝜏(∙), it is possible to obtain the 

standard regression model (𝜌τ quadratic and τ=0.5), the linear expectile regression model 

(𝜌τ quadratic and τ≠0.5, see Newey and Powell, 1987), and the quantile regression model, 

if the loss function introduced by  Koenker and Bassett (1978) is used. 

For M quantile regression, we choose to adopt the Huber loss function (Breckling and 

Chambers, 1988) defined by: 

𝜌𝜏(𝑢) = {
2𝑐|𝑢| − 𝑐2{𝜏𝐼(𝑢 > 0) + (1 − 𝜏)𝐼(𝑢 ≤ 0)}, 𝑖𝑓 |𝑢| > 𝑐

𝑢2{𝜏𝐼(𝑢 > 0) + (1 − 𝜏)𝐼(𝑢 ≤ 0)},                        𝑖𝑓|𝑢| ≤ 𝑐
 

where 𝐼(∙) represents the indicator function and 𝑐 ∈ ℝ+ denotes a tuning constant. The 

value assumed by this constant plays a fundamental role in the estimation process; in fact, 

this value can be used to balance robustness and efficiency in the MQ regression model. 

With c tending to zero, robustness increases, but efficiency decreases (in this case we are 

moving towards quantile regression); with large and positive c robustness decreases and 

efficiency increases (as we are moving towards expectile regression). 

Setting the first derivative of (2.14) equal to zero leads to the following estimating 

equations: 
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∑ 𝜓𝜏

𝑛

𝑖=1

(𝑟𝑖𝜏)𝑥𝑖 = 0 

where riτ = yi − MQτ(yi|xi; ψ) is the residual, and: 

ψτ(riτ) = 2ψ(s−1riτ){τI(riτ > 0) + (1 − τ)I(riτ ≤ 0)} 

Here, s>0 represents the scale parameter. In the case of robust regression, it is often 

estimated by 𝑠̂ = 𝑚𝑒𝑑𝑖𝑎𝑛|𝑟𝑖𝜏|/0.6745. Since the focus of this paper is on M-type estimation, 

we use as influence function the so called Huber Proposal 2: 

ψ(u) = uI(−c ≤ u ≤ c) + c sgn(u)I(|u| > 𝑐) 

Provided that the tuning constant c is strictly greater than zero, the estimates of βτ can be 

obtained using an iterative by weighted least squares algorithm, IWLS (Kokic et al, 1987). 

Quantiles have a more intuitive interpretation than M-quantiles, even if they both target 

essentially the same part of the distribution of interest (Jones, 1994). It should be 

emphasized that M-quantile estimation offers some advantages: 

i. it easily allows to robustly estimate regression parameters; 

ii. it can trade robustness for efficiency in inference by varying the choice of the tuning 

constant c in the influence function; 

iii. it offers computational stability as we can use a wide range of continuous influence 

functions instead of L1 norm used in the quantile regression context (Tzavidis et al., 

2016). 

The asymptotic theory for M-quantile regression with i.i.d. errors and fixed regressors can 

be derived from the results in Huber (1973), see Breckling and Chambers (1988). Bianchi 

and Salvati (2015) prove the consistency of the estimator of 𝛽𝜏, provide its asymptotic 

covariance matrix when regressors are stochastic and propose a variance estimator for the 

M-quantile regression coefficients based on a sandwich approach. 

 

  



 

21 

 

3 Quantile regression with random effects  

Generally, a linear regression model with constant effects is defined as follows: 

𝑦 = 𝑋𝛽 + 𝜀 (3.1) 

where y is an (n,1) vector of observed response values, 𝑋 ∈ 𝑀(𝑛, 𝑝) is a design matrix,  is 

the corresponding vector of parameters to be estimated and  is an (n,1) measurement 

error vector. 

While this is not strictly necessary, it is often assumed that the vector  is normally 

distributed with mean 0 and constant variance σ2, with independent and identically 

distributed iid elements. The choice for a parametric distribution makes the theory, for the 

sample distribution of parameter estimates, more easily to be applied; the only really 

necessary hypothesis are 𝐸(𝜀|𝑥) = 𝐸(𝜀|𝑥) = 0 and 𝑣𝑎𝑟(𝜀|𝑥) = 𝑣𝑎𝑟(𝜀) = 𝜎2. 

The independence assumption cannot be always satisfied, as in the case of multilevel or 

hierarchically structured data where the observed sample is composed by lower level 

units (pupils, temporal occasions, results) nested within higher level units (classrooms, 

individuals, questionnaires), usually referred to as clusters. 

For example, let us consider a test carried out on patients who have been administered a 

given treatment with the aim at evaluating how this can affect patients' symptoms. By 

taking measurements on each subject at different times, corresponding to the days 

following treatment administration, we implicitly use the patient as the sample unit with 

measurements corresponding to time occasion nested within patients. 

From a model specification perspective, the measurements referring to the same subject 

cannot be assumed to be independent from each other, while subjects can be still 

considered independent. 

When the subjects have different mean, but a very similar variability, we can think that the 

response y is obtained by adding to the linear predictor individual-specific intercepts that 

describe the individual characteristics at the study start or at a baseline measurement. The 

intercept changes across subjects and help us explain the differences between subjects that 

cannot be explained by observed covariates. In this case, model (3.1) can be rewritten as 

follows: 

𝑌 = 𝐷𝛼 + 𝑋𝛽 + 𝜀 
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where 𝛼 = (𝛼1, … , 𝛼𝑛) represents the vector of individual specific intercepts, referring to 

individual-specific deviations from the overall intercept term in 𝑋𝛽 , 𝐷 = 𝐼𝑛⨂𝕝𝑇 , and 

individual and time indexes are denoted by i=1,...,n and t=1,...,T. 

 

3.1 Linear and Generalized Linear Mixed Models  

A number of study designs, such as those derived by multilevel, longitudinal and cluster 

sampling, typically require the application of ad hoc statistical methods to take into 

account the association between observations belonging to the same unit or cluster. To 

analyse this type of complex data, we can use popular and flexible models referred to as 

mixed-effect models. By means of cluster-specific effects, they account for variability 

between clusters, while fixed effects are usually included to account for variability in the 

response within clusters. 

By generalizing the standard regression models, we assume that a set of observations 

grouped into m clusters have been recorded for the response and the design vector. Let us 

denote the size of group i by 𝑛i (i = 1, ..., m). The linear mixed models (LMMs) see eg. 

McCulloch and Searle (2000), Searle et al. (1992), Verbeke and Molenberghs (2000) is 

defined by 

𝑦𝑖𝑗 = 𝑥𝑖𝑗
𝑇 𝛽 + 𝑤𝑖𝑗

𝑇 𝑏𝑖 + 𝜀𝑖𝑗 (3.2) 

where yij is the response value for the j-th (lower level) unit in the i-th clusters j=1,…, 𝑛i, i=1 

,…, m; xij is the corresponding p-dimensional design vector  is the fixed parameter vector 

and wij is a q< p-dimensional vector. Usually 𝑤𝑖𝑗 ⊆ 𝑥𝑖𝑗  so that 𝑏𝑖  can be thought of as 

individual-specific effects measuring, for a given covariate, the individual specific 

deviation from the corresponding element in the fixed parameter vector 𝛽. Last, ij is the 

measurement error vector. Last, 𝑏𝑖 is the individual specific effect, and we assume that 

𝑏~𝑁(0, 𝜎𝑏
2) , 𝜖𝑖𝑗~𝑁(0, 𝜎2)  𝑏𝑖 ⊥ 𝜀𝑖𝑗 , we may estimate parameters in (3.2) via maximum 

likelihood. Assuming normality for the error components, 𝑐𝑜𝑣(𝑏𝑗 , 𝑏𝑗′) = 0 𝑗 ≠ 𝑗′, so if we 

assume, for simplicity sake, that 𝑏𝑖 ∼ 𝑀𝑉𝑁𝑞(0, Σ𝑏), we derive for the marginal likelihood 

the following expression (Harville, 1979). 

𝑙(𝛽, 𝜎𝑏
2, 𝜎2) = −

1

2
𝑙𝑜𝑔|𝑉| −

1

2
(𝑦 − 𝑋𝛽)′𝑉−1(𝑦 − 𝑋𝛽) 

(3.3) 

where y is the response vector, 𝑉 = Σ + 𝑊Σ𝑏𝑊′,Σ = 𝜎2𝐼𝑛 ,Σ𝑏 = 𝜎𝑏
2𝐼𝑚 , W is an (n,m) 

matrix of known positive constants. Parameter estimates are obtained by solving the 
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estimating equations obtained by differentiating the log-likelihood with respect to the 

parameters and setting these derivatives equal to zero (Goldstein, 2003). 

The sensitivity of ML parameter estimates to assumptions upon the random effects 

distribution has been the focus of a huge literature, see Rizopoulos et all. (2009), 

McCulloch and Neuhaus (2005) among others. 

We notice that the poss function in equation (3.3) is quadratic. This loss function is based 

on Gaussian assumptions; however, the presence of outliers may produce inefficient and 

biased parameters estimates (Richardson and Welsh, 1995). 

One approach to robustifying the mixed effects model against departures from normality 

is to use an alternative loss function, growing at slower rate than quadratic. 

A robust estimation method has been followed by Huggins (1993), Huggins and Loesch 

(1998), Richardson and Welsh (1995), and Welsh and Richardson (1997). This approach 

consists in replacing, in the log-likelihood function, the quadratic loss function by a new 

function that grows with the residuals but at a slower rate. 

The log-likelihood function, for such a model, becomes: 

𝑙(𝛽, 𝜎𝑏
2, 𝜎2) = −

𝐾1

2
𝑙𝑜𝑔|𝑉| − 𝜌(𝑟) 

where r denotes a scaled residual defined by r = V−
1

2(y − Xβ), ρ(∙) is a continuous loss 

function with derivative denoted by ψ(∙) , K1 = E[ϵψ(ϵ)′]  is a correction factor for 

consistency, ε~N(0, In), and the terms ψ(r) and rTψ(r) are assumed to be limited. This is 

the robust maximum likelihood proposal I by Richardson and Welsh (1995). 

Richardson and Welsh (1995) proposed a further alternative, suggesting to solve the 

estimating equation for 𝜎𝑏
2, 𝜎2  derived in the context of robust maximum likelihood 

estimation  

1

2
𝜓(𝑟′)𝑉−

1
2𝑊𝑊′𝑉−

1
2𝜓(𝑟) −

𝐾2

2
𝑡𝑟(𝑉−1𝑊𝑊′) = 0 

(3.4) 

where 𝐾2 = 𝐸[𝜓(𝜀)𝜓(𝜀)′] , 𝜀~𝑁(0, 𝐼𝑛) . Richardson and Welsh (1995) called this robust 

maximum likelihood proposal II. It can be viewed as a generalization of Huber’s proposal 

II (Huber, 1981). 
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3.1.1 The semiparametric case 

As it has been noted above, in real life problems, observations are often organized in the 

form of hierarchical data; the potential association between dependent observations 

should be considered to provide valid and efficient inferences. The use of individual-

specific random effects may help us introduce a simple structure of association between 

observations. 

Let us consider a set of individual-specific random effects bi in a generalized linear model: 

𝑦𝑖𝑗|𝑥𝑖𝑗 , 𝑏𝑖~𝐿𝐸𝐹(𝜃𝑖𝑗) 

𝜃𝑖𝑗 = 𝑔{𝐸(𝑦𝑖𝑗|𝑥𝑖𝑗 , 𝑏𝑖)} = 𝑥𝑖𝑗
′ 𝛽 + 𝑤𝑖

′𝑏𝑖 

where the assumption already discussed before hold. 

Based on the local independence assumption and, if needed after a Mundlak (1978) type 

connection, the likelihood function may be written as follows: 

𝐿(Φ) = ∏ {∫ ∏ 𝑓(𝑦𝑖𝑗|𝑥𝑖𝑗 , 𝑏𝑖)

𝑛𝑖

𝑗=1ℬ

𝑓𝑏(𝑏𝑖|𝑋𝑖)𝑑𝑏𝑖} = ∏ {∫ ∏ 𝑓(𝑦𝑖𝑗|𝑥𝑖𝑗 , 𝑏𝑖)

𝑛𝑖

𝑗=1ℬ

𝑓𝑏(𝑏𝑖)𝑑𝑏𝑖}

𝑚

𝑖=1

𝑚

𝑖=1

 

where Φ is the global parameters vector. The terms bi i=1,...,m account for individual-

specific heterogeneity common to each lower-level units within the same i-th cluster. 

Generally, the likelihood function does not have a closed form and, to calculate the 

previous integral, we need to use either Gaussian Quadrature (GQ), Abramowitz and 

Stegun (1964) and Press et al. (2007), adaptive Gaussian Quadrature (aGQ) Liu and Pierce 

(1994), Pinheiro and Bates (1995), or other approximation approaches. Monte Carlo and 

simulated ML approaches are potential alternatives, even if the cost could be even higher. 

In the case of finite samples and for reduced individual sequences, these methods may 

either not provide a good approximation or be inefficient as the impact of missing 

information (ie. bi i=1,...,m) increase. 

 

3.1.2 Non parametric random effects 

Rather than using a parametric distribution for the random effects, we may leave 𝑓𝑏(∙) 

unspecified, and approximate it using a discrete distribution on G≤m locations {𝜉1, … , 𝜉𝐺}: 

𝜋𝑘 = 𝑃𝑟(𝑏𝑖 = 𝜉𝑘) ;  𝑏𝑖~ ∑ 𝜋𝑘𝛿𝜉𝑘

𝐺

𝑘=1

     𝑖 = 1, … , 𝑚 ; 𝑘 = 1, … , 𝐺 (3.5) 
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where 𝛿𝑄(∙) is a function that puts a unit of mass at Q. Using such an approximation, the 

likelihood function can be rewritten as 

𝐿(Φ) = ∏ {∑ ∏ 𝑓(𝑦𝑖𝑗|𝑥𝑖𝑗 , 𝜉𝑘)𝜋𝑘

𝑗

𝐺

𝑘=1

}

𝑚

𝑖=1

=: ∏ {∑ ∏ 𝑓𝑖𝑗𝑘𝜋𝑘

𝑗

𝐺

𝑘=1

}

𝑚

𝑖=1

 (3.6) 

where 𝛷 = {𝛽, 𝜉1, … , 𝜉𝐺 , 𝜋1, … , 𝜋𝐺} is the global parameter vector and 𝑓𝑖𝑗𝑘 = 𝑓(𝑦𝑖𝑗|𝑥𝑖𝑗 , 𝜉𝑘) is 

the distribution of the response for the j-th measurement in the i-th cluster drawn from the 

k-th component of the finite mixture, k = 1, ..., G. 

While the above distribution is based on Non Parametric Maximum Likelihood (NPML) 

theory by Laird (1978), Simar (1976), Böhning (1982) and Lindsay (1983 a, b), the previous 

equation (3.6) can be also motivated by a model-based clustering approach, where the 

population of interest is (assumed to be) divided into G homogeneous sub-populations 

which differ for the values of the regression parameters only. The number of unknown 

parameters to be estimated is higher than in the corresponding parametric model. In fact, 

both 𝜉𝑘and 𝜋𝑘 k=1,...,G are unknown parameters, and G itself is unknown, even if it is 

usually considered as fixed and estimated through appropriate penalized likelihood 

criteria. The seminal papers by Aitkin (1996, 1999) establish a connection between mixed-

effect models and finite mixtures. 

When using discrete individual-specific coefficient, the regression model can be expressed, 

in the k-th component of the mixture as follows: 

𝑔{𝐸(𝑦𝑖𝑗|𝑥𝑖𝑗, 𝜉𝑘)} = 𝑥𝑖𝑗
′ 𝛽 + 𝑤𝑖𝑗

′ 𝜉𝑘 

The score function is: 

𝑆(Φ) =
𝜕 log[𝐿(Φ)]

𝜕Φ
=

𝜕ℓ(Φ)

𝜕Φ
= ∑ ∑ (

𝑓𝑖𝑘𝜋𝑘

∑ 𝑓𝑖𝑙𝜋𝑙𝑙
) ∑

𝜕 log 𝑓𝑖𝑗𝑘

𝜕Φ
𝑗

𝐺

𝑘=1

𝑚

𝑖=1

= : ∑ ∑ 𝜔𝑖𝑘 ∑
𝜕 log 𝑓𝑖𝑗𝑘

𝜕Φ
𝑗

𝐺

𝑘=1

𝑚

𝑖=1

 

where the weights 

𝜔𝑖𝑘 =
∏ 𝑓𝑖𝑗𝑘𝜋𝑘𝑗

∑ ∏ 𝑓𝑖𝑗𝑙𝜋𝑙𝑗𝑙
𝑖 = 1, … , 𝑚, 𝐾 = 1, … , 𝐺 

represent the posterior probability of component membership. The score function is just a 

sum of the likelihood equations for a standard GLM with weights 𝜔𝑖𝑘. The log-likelihood 

function can be directly maximized, or indirectly maximized through and EM-type 

algorithms. The basic EM algorithm is defined by solving equations for a given set of the 

weights, and updating the weights according to the current parameter estimates see Aitkin 

(1999) for details. 
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3.2 Linear quantile mixed models  

Extension of standard QR models to multilevel or hierarchical data has led to several 

distinct approaches based on individual specific effects. These can be classified into two 

types: parametric and non-parametric. 

The latter family includes fixed effect (Koenker 2004, Lamarche 2010) and weighted effect 

(Lipsitz et al., 1997) models. The former is based on the use of the asymmetric Laplace 

density (ALD) with individual-specific effects having a Gussian (Geraci and Bottai 2007, 

Liu and Bottai 2009; Yuan and Yin 2010; Lee and Neocleous 2010; Farcomeni 2012) or other 

parametric distributions (Reich et al. 2010). The two families are not mutually exclusive; 

just to give an example, the penalization method suggested by Koenker (2004) may, as 

noted by Geraci and Bottai (2007), be considered as based on the asymmetric Laplace 

density with individual-specific effects. 

Let us consider multilevel data in the form (𝑦𝑖𝑗, 𝑥𝑖𝑗) i=1,...,m, j=1,…,ni, where 𝑥𝑖𝑗 denotes a 

p-dimensional design vector and𝑦𝑖𝑗  is the j-th value of a continuous random variable 

measured on subject (cluster) i. 

In a fixed effect framework, Koenker (2004) proposed to consider the following 

optimization problem with a penalty term 𝜆 

min
𝛼,𝛽

∑ ∑ 𝜔𝜌𝜏(𝑦𝑖𝑗 − 𝑥𝑖𝑗
𝑇 𝛽 − 𝑏𝑖)

𝑛𝑖

𝑗=1

+ 𝜆 ∑|𝑏𝑖|

𝑚

𝑖=1

𝑚

𝑖=1

 (3.7) 

where λ is the penalization parameter, ω is the weight regulating the influence of 

individual-specific effects bi on the τ-th quantile. βτ summarizes the impact of the 

observed covariates on the τ-th quantile for an individual whose baseline level is equal to 

bi. The dependence between observations from the same individual is not accounted, even 

if the term 𝜆 ∑ |𝑏𝑖|
𝑚
𝑖=1  resembles a log-density. 

The penalization parameter λ must be arbitrarily set and its choice may heavily influence 

inference on 𝛽𝜏; therefore, this choice is a fundamental issue. Using a penalized approach, 

estimating a τ-distributional individual effect would be impracticable (Geraci and Bottai, 

2007). 

Since the results achieved by adopting this method depend on the choice of the parameter 

λ, we need to select a suitable value. Lamarche (2010) proposed a method to select the 
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penalty term; as this term influences asymptotic variance, it can be selected by minimizing 

the trace of the estimated asymptotic covariance matrix.  

Geraci and Bottai (2007) proposed to avoid these issue by using random individual-

specific effects, defining the linear quantile mixed model (LQMM). Let 𝑏𝑖 represent a q-

dimensional vector of individual-specific parameters; the quantile function depends on 𝑥𝑖𝑗 

as follows (see Yu Zhu et al, 2016, Geraci and Bottai, 2007, 2014 and Liu and Bottai, 2009): 

𝑄𝑦𝑖𝑗|𝑏𝑖
(𝜏|𝑥𝑖𝑗 , 𝑏𝑖) = 𝑥𝑖𝑗

′ 𝛽 + 𝑤𝑖
′𝑏𝑖, 𝑗 = 1, … , 𝑛𝑖 ,    𝑖 = 1, … , 𝑚 

where wi represents a subset of 𝑥𝑖𝑗  associated to individual-specific effects bi varying 

across individuals according to a distribution 𝑓𝑏(∙). 

If we assume that, conditional on bi, yij i = 1, ..., m and j = 1,…,ni are independently random 

variables with Asymmetric Laplace density, we obtain: 

𝑓(𝑦𝑖𝑗|𝛽, 𝑏𝑖, 𝜎) =
𝜏(1 − 𝜏)

𝜎
𝑒𝑥𝑝 {−𝜌𝜏 (

𝑦𝑖𝑗 − 𝜇𝑖𝑗

𝜎
)} 

where μij= 𝑄𝑦𝑖𝑗|𝑏𝑖
(𝜏|𝑥𝑖𝑗 , 𝑏𝑖) represents the location parameter for the τ-th quantile (Geraci e 

Bottai, 2007), and 𝜏 ∈ (0,1) is a fixed known value. 

Dependence between observations from the same subject (cluster) is introduced in the 

model by the individual specific considered as iid random variables. To complete 

assumptions on individual effects we will denote the corresponding density by fb, indexed 

by a parameter 𝜙𝜏  which may depend on τ. Finally, we assume that εij and bi are 

independent on X and each other. If 𝑏𝑖 and 𝑥𝑖 are dependent a Mundlak -type approach 

can be used. 

Given the individual sequence yi=(yi1,…,yini) and assuming local independence, the 

conditional (on 𝑏𝑖) density for the joint individual sequence is 

f(y𝑖|β, 𝑏𝑖, σ) = ∏ f(y𝑖𝑗|β, 𝑏𝑖, σ)

𝑛𝑖

𝑗=1

 

The density for the complete data (yi, bi) can be rewritten as follows: 

𝑓𝑦,𝑏(𝑦𝑖 , 𝑏𝑖|𝛷) = 𝑓𝑦|𝑏(𝑦𝑖|𝛽, 𝑏𝑖 , 𝜎)𝑓𝑏(𝑏𝑖|𝜎𝑏) (3.8) 

i=1,…,m, where 𝑓𝑏(𝑏𝑖|𝜎𝑏) denotes the density for the individual-specific effects bi and 𝛷 =

(𝛽, 𝜎, 𝜎𝑏)  is the "global" vector of parameters. The marginal density based on the 

assumption of independence of higher-level cluster is: 
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𝑓(𝑦, 𝑏|𝛷) = ∏ 𝑓𝑌(𝑦𝑖|𝛽, 𝑏𝑖)𝑓𝑏(𝑏𝑖|𝑥𝑖)

𝑚

𝑖=1

 

 

3.2.1 Parameter estimation  

By integrating out the random effects, based on the exogeneity assumption 𝑓𝑏(𝑏𝑖|𝑋𝑖) =

𝑓𝑏(𝑏𝑖)  or of the controlling for the linear effect of 𝑥𝑖  on 𝑏𝑖 , we obtain the marginal 

distribution for the individual sample of the response : 

𝑓(𝑦𝑖|𝛷) = ∫ 𝑓𝑌,𝑏(𝑦𝑖, 𝑏𝑖|𝛷)

𝑅𝑁

𝑑𝑏𝑖 (3.9) 

Inference on the parameter vector 𝛷 = (𝛽, 𝜎, 𝜎𝑏)  is based on the marginal likelihood, 

defined by 

𝑙(𝜂; 𝑦) = ∑ 𝑙𝑜𝑔 𝑓(𝑦𝑖|𝛷).

𝑚

𝑖

 

In general, however, the integral in equation (3.9) that does not have a closed form.  

Therefore, Geraci and Bottai (2007) propose to estimate model parameters through a 

Monte Carlo EM algorithm, often applied in the context of LMMs (Meng and Van Dyk, 

1998; Booth and Hobert, 1999). 

Let us consider a generic individual; the E-step at the (t + 1) th iteration can be used to 

calculate the (conditional on observed data) expectation of the complete data log-

likelihood: 

𝑄𝑖(Φ|Φ(t)) = 𝐸{𝑙𝑐(Φ; 𝑦𝑖, 𝑏𝑖)|𝑦𝑖; Φ(t)} 

= ∫{log 𝑓(𝑦𝑖|𝛽, 𝑏𝑖, 𝜎) + log 𝑓(𝑏𝑖|𝜎𝑏)}𝑓(𝑏𝑖|𝑦𝑖, Φ(t)) 𝑑𝑏𝑖 (3.10) 

where Φ(t) = {𝛽(t), 𝜎(t), 𝜎𝑏
(t)

} is the vector of current parameter estimates and 𝑙𝑐(∙) is the 

complete data log-likelihood. The expected value is expressed with respect to the missing 

data distribution conditional on the observed data y and the current parameter estimates. 

The approximation of the expected value of the complete data log-likelihood can be 

carried out using a suitable Monte Carlo approach. 

If we consider the random effects as known, the LQMM model is specified by 
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𝐿̂𝜏𝑖(𝛽) = ∑ 𝜏|𝑦̂𝑖𝑗 − 𝑥𝑖𝑗
𝑇 𝛽|

𝑛𝑖

𝑗∈(𝑗:𝑦̂𝑖𝑗≥𝑥𝑖𝑗
𝑇 𝛽)

+ ∑ (1 − 𝜏)|𝑦̂𝑖𝑗 − 𝑥𝑖𝑗
𝑇 𝛽|

𝑛𝑖

𝑗∈(𝑗:𝑦̂𝑖𝑗<𝑥𝑖𝑗
𝑇 𝛽)

 

where 𝑦̃𝑖𝑗 = 𝑦𝑖𝑗 − 𝑏𝑖. By applying the usual linear programming algorithm, we may update 

𝛽 by the following minimization 

min
𝛽∈𝑅𝑝

𝐿̃𝜏(𝛽),    𝐿̃𝜏(𝛽) = ∑ 𝐿̃𝜏𝑖(𝛽)

𝑚

𝑖=1

 

Since the random effects are not observed, Geraci and Bottai (2007) propose to take a 

sample 𝑏𝑖 = (𝑏𝑖1, … , 𝑏𝑖𝑀)  of size M form the posterior density of the random effects 

conditional on the observed data 

𝑓(𝑏𝑖|𝑦𝑖, Φ) ∝ 𝑓(𝑦𝑖|𝛽, 𝑏𝑖 , 𝜎)𝑓(𝑏𝑖|𝜎𝑏) 

 and to approximate the expected value by 

𝑄𝑖
∗(𝛷|𝛷(𝑡)) =

1

𝑀
∑ 𝑙𝑐(𝛷; 𝑦𝑖, 𝑏𝑖𝑘)

𝑀

𝑘=1

 

An iterative procedure can then be applied to obtain the estimates for Φ, with fixed τ. The 

standard errors of parameter estimates, can be obtained through a bootstrap approach by 

considering the matrix (yi,Xi) as the basic resampling unit (Lipsitz et al., 1997), as it is 

usual for longitudinal data. 

 

3.2.2 The choice of the random individual-specific distribution 

The choice of the distribution for the individual-specific random effects has been largely 

debated. The use of a Gaussian distribution in the linear mixed models framework 

considerably simplifies the analytical form of the expectation of the complete data log-

likelihood function that is needed when using the EM algorithm. We may also note that, 

for a fixed covariance matrix, 𝛽  can be estimated via GLS. This simplification allows to 

reduce the time to convergence. 

Assuming that the individual-specific effects are independent and identically distributed 

random variates, the joint individual density can be rewritten as: 
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𝑓(𝑦𝑖, 𝑏𝑖|𝛷) = 𝑓(𝑏𝑖|𝜎𝑏) ∏ 𝑓(𝑦𝑖𝑗|𝛽, 𝑏𝑖, 𝜎)

𝑛𝑖

𝑗=1

= {
𝜏(1 − 𝜏)

𝜎
}

𝑛𝑖 1

√2𝜋𝜎𝑏

𝑒𝑥𝑝 [− ∑ {𝜌𝜏 (
𝑦𝑖𝑗 − 𝜇𝑖𝑗

𝜎
)} −

1

2𝜎𝑏
𝑏𝑖

2

𝑛𝑖

𝑗=1

] 

In the case of a strong asymmetry we may assume that 𝑏𝑖~𝐴𝐿𝐷(0, 𝜎𝑏 , 𝜏), where 𝜏 defines 

the degree of asymmetry of the individual-specific random effect distribution, and the 

joint density for the i-th unit is equal to 

𝑓(𝑦𝑖, 𝑏𝑖|𝛷) = 𝑓(𝑏𝑖|𝜎𝑏) ∏ 𝑓(𝑦𝑖𝑗|𝛽, 𝑏𝑖, 𝜎)

𝑛𝑖

𝑗=1

= {
𝜏(1 − 𝜏)

𝜎
}

𝑛𝑖 1

4𝜎𝑏
𝑒𝑥𝑝 [− ∑ {𝜌𝜏 (

𝑦𝑖𝑗 − 𝜇𝑖𝑗

𝜎
)} −

1

2𝜎𝑏

|𝑏𝑖|

𝑛𝑖

𝑗=1

] 

In the case of a median regression, fixing τ=0.5 and λ = σ / 𝜎𝑏, the joint density can be 

rewritten as: 

𝑓(𝑦𝑖 , 𝑏𝑖|𝛷) =
1

(4𝜎𝑏)𝑛𝑖+1𝜆𝑛𝑖
𝑒𝑥𝑝 [−

1

2𝜎
{∑(|𝑦𝑖𝑗 − 𝜇𝑖𝑗τ|) + 𝜆|𝑏𝑖|

𝑛𝑖

𝑗=1

}] 

It is worth noting that the exponential argument has a form similar to that of the penalized 

quantile regression (PQR) proposed by Koenker (2004) for quantile regression applied to 

multilevel data, based on a fixed effect type estimator. 

 

3.2.3 Fimite Mixtures of Quantile Regression 

Let us consider hierarchical data with repeated measurements in the form (𝑦𝑖𝑗 , 𝑥𝑖𝑗
′ ) for 

j=1,...,ni, and i= 1,...,m, where 𝑦𝑖𝑗  is the j-th value of a continuous on response the i-th 

subject, 𝑥𝑖𝑗
′  j are row vectors of a known design matrix and β is a (p,1) vector of fixed 

regression coefficients. We follow the notation in the linear-mixed model and define the 

linear mixed-effects quantile function for response 𝑦𝑖𝑗 as: 

𝑦𝑖𝑗 = 𝑥𝑖𝑗
′ 𝛽 + 𝑤𝑖𝑗

′ 𝑏𝑖 + 𝜀𝑖𝑗 

where 𝑤𝑖𝑗  is a (q,1) subset of 𝑥𝑖𝑗  with individual-specific effects; 𝑏𝑖  is a (q,1) vector of 

random regression coefficients; the error term 𝜀𝑖𝑗 j=1,...,ni, and i= 1,...,m, is assumed to be 

independently distributed as ALD. We also assume independence between 𝑏𝑖 and 𝜀𝑖𝑗 and 
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between the random regression coefficients 𝑏𝑖  and the explanatory variables 𝑥𝑖𝑗
′ , see 

Mundlak (1978).. The conditional density function of 𝑦𝑖𝑗|𝑏𝑖 can be written as: 

𝑓(𝑦𝑖𝑗|𝑏𝑖, 𝑥𝑖𝑗; 𝛽, 𝜎) =
𝜏(1 − 𝜏)

𝜎
𝑒𝑥𝑝 {−𝜌𝜏 (

𝑦𝑖𝑗 − 𝜇𝑖𝑗𝜏

𝜎
)} 

where 𝜇𝑖𝑗𝜏 = 𝑥𝑖𝑗
′ 𝛽𝜏 + 𝑤𝑖𝑗

′ 𝑏𝑖  is the linear predictor for the τ-th quantile function, and 𝜏 ∈

(0,1)  is fixed and known. 

Let 

𝑓(𝑦𝑖|𝑏𝑖, 𝑥𝑖; 𝛽, 𝜎) = ∏ 𝑓(𝑦𝑖𝑗|𝑏𝑖, 𝑥𝑖𝑗; 𝛽, 𝜎)
𝑛𝑖

𝑗=1
 

be the density for the i-th subject conditional on the random effect 𝑏𝑖. The complete data 

density (𝑦, 𝑏) is 

𝑓(𝑦|𝑏, 𝑥; Φ) = ∏ ∏ 𝑓(𝑦𝑖𝑗|𝑏𝑖, 𝑥𝑖𝑗; Φ)𝑓𝑏(𝑏𝑖|𝑥𝑖; Φ)

𝑛𝑖

𝑗=1

𝑚

𝑖=1

 (3.11) 

where we assume that fb(bi|xi; Φ)  the is density of bi , Φ = {β, σ, Σ}  is the vector of 

parameters of interest. 

We obtain the estimates for Φ by maximising the marginal density f(y|x; Φ), which is 

calculated by integrating out the random effects b in equation (3.11). That is, 

L(Φ) = ∫ f(y|b, x; Φ) fb(bi|xi; Φ)db. 

As discussed above this integral is frequently intractable. Then, using a non parametric 

distribution for the random effects, we may approximate it using a discrete distribution on 

G <m locations {ξ1, … ,ξG} as we have showen for GLLMs in section 3.1.2. 

In this case, as we have commented before, the likelihood function is 

𝐿(Φ) = ∏ {∑ ∏ 𝑓(𝑦𝑖𝑗|𝑥𝑖𝑗 , 𝜉𝑘)𝜋𝑘

𝑗

𝐺

𝑘=1

}

𝑚

𝑖=1

=: ∏ {∑ ∏ 𝑓𝑖𝑗𝑘𝜋𝑘

𝑗

𝐺

𝑘=1

}

𝑚

𝑖=1

= ∏ ∑ ∏ 𝜋𝑘

𝜏(1 − 𝜏)

𝜎𝑘
𝑒𝑥𝑝 {−𝜌𝜏 (

𝑦𝑖𝑗 − 𝜇𝑖𝑗𝑘

𝜎𝑘
)}

𝑗

𝐺

𝑘=1

𝑚

𝑖=1

 

where 𝜇𝑖𝑗𝑘 =  𝑥𝑖𝑗
′ 𝛽𝜏 + 𝑤𝑖𝑗

′ 𝜉𝑘  and 𝛷 = {𝛽, 𝜉1, … , 𝜉𝐺 , 𝜋1, … , 𝜋𝐺} is the global parameter vector, 

𝑓𝑖𝑗𝑘 is the AL distribution for the j-th measurement in the i-th cluster drawn from the k-th 

component of the finite mixture, k = 1, ..., G. 



 

32 

 

We discuss the EM the algorithm for ML estimation in the general case of multilevel data, 

with j = 1,..,ni measurements corresponding to i=1,…,m upper-level units, and a given 

quantile τ∈ (0,1). 

Let us denote by zik,τ, the variable indicating whether the i-th unit comes from the k-th 

component of the mixture when the τ-th quantile is considered. Each component of the 

mixture is characterized by a different vector of regression parameters, 𝜉𝑘,𝜏, k = 1, …, G. 

Therefore, we may write: 

𝜋𝑘 = 𝑃𝑟(𝑍𝑖𝑘,𝜏 = 1) = 𝑃𝑟(𝑏𝑖,𝜏 = 𝜉𝑘,𝜏) 

while the remaining parameters βτ and στ are constant across the components. In a 

complete data setting, we would have observed the couple (yi,zi;τ) where zi,τ=(zi1,τ,…,ziG,τ), 

and the log-likelihood function would therefore be equal to: 

ℓ𝑐(Φ𝜏) = ∑ ∑ 𝑧𝑖𝑘,𝜏{log 𝑓𝜏(𝑦𝑖|𝛽𝜏, 𝜉𝑘,𝜏, 𝜎𝜏) + log(𝜋𝑘,𝜏)}

𝐺

𝑘=1

=

𝑚

𝑖=1

 

= ∑ ∑ 𝑧𝑖𝑘,𝜏 {log [∏ 𝑓𝜏(𝑦𝑖𝑗|𝛽𝜏, 𝜉𝑘,𝜏, 𝜎𝜏)

𝑛𝑖

𝑗=1

] + log(𝜋𝑘,𝜏)}

𝐺

𝑘=1

𝑚

𝑖=1

= 

= ∑ ∑ 𝑧𝑖𝑘,𝜏 {∑ log[𝑓𝜏(𝑦𝑖𝑗|𝛽𝜏, 𝜉𝑘,𝜏, 𝜎𝜏)]

𝑛𝑖

𝑗

+ log(𝜋𝑘,𝜏)}

𝐺

𝑘=1

𝑚

𝑖=1

 
(3.12) 

where, as used, 𝛷 = { 𝛽,  𝜉1, … , 𝜉𝐺 , 𝜋1, … ,  𝜋𝐺} represents the global of parameters vector for 

τ∈ (0,1). 

As we have remarked above, in the E-step of the EM algorithm, at the (t+1)th iteration, we 

compute the expected value of the complete data log likelihood over the indicator vector 

zik,τ, conditional on the observed data yi and the current parameter estimates Φ̂𝜏

(𝑡)
. 

Therefore, at the t+1 iteration of the algorithm we compute 

𝜔𝑖𝑘,𝜏
(𝑡+1)

=
𝜋𝑘,𝜏

(𝑡)
𝑓𝑖𝑘,𝜏 (Φ̂𝜏

(𝑡)
)

∑ 𝜋𝑙,𝜏
(𝑡)

𝑓𝑖𝑙,𝜏 (Φ̂𝜏

(𝑡)
)𝑙

 

i=1,…,m and k=1,…,G. The conditional expectation of the complete data log-likelihood for 

multilevel data, given the observed data yi and the current parameters Φ̂𝜏
(𝑡)

, is: 

𝑄(Φ𝜏|Φ̂𝜏
(𝑡)

) = 𝐸
Φ̂𝜏

(𝑡)[ℓ𝑐(Φ𝜏)|𝑦𝑖] = ∑ ∑ 𝜔𝑖𝑘,𝜏
(𝑡+1)

{∑ log[𝑓𝜏(𝑦𝑖𝑗|𝛽𝜏, 𝜉𝑘,𝜏, 𝜎𝜏)]

𝑛𝑖

𝑗

+ log(𝜋𝑘,𝜏)}

𝐺

𝑘=1

𝑚

𝑖=1
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Maximizing the function Q (.) with respect to Φτ, we obtain updated maximum likelihood 

estimates Φ̂𝜏
(𝑡+1)

 given the posterior probability 𝜔𝑖𝑘;𝜏
(𝑡+1)

, through the likelihood equations: 

𝜕𝑄(Φ𝜏|Φ̂𝜏
(𝑡)

)

𝜕Φ𝜏
= 0 

From the likelihood point of view, the Fimite Mixtures of Quantile Regression (FMQR) 

model is equivalent to a finite mixture of regression models with errors having on 

asymmetric Laplace distribution (ALD), which can be regarded as an extension of the 

traditional mixtures of regression models.  
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4 M-quantile regression with random effects 

Tzavidis et al. (2010, 2016) extended M-quantile regression to multilevel data by 

considering cluster-specific effects to account for the hierarchical structure of observed 

data. In the simplest case, an individual-specific intercept 𝑏𝑖 is added to the M-quantile 

model: 

Tzavidis et al. (2016) propose the use of estimating equations based on asymmetric loss 

functions to estimate model parameters, thus defining MQRE regression.  

To obtain the estimating equations, robust maximum likelihood estimation is applied by 

asymmetrically weighting the residuals (Sinha and Rao, 2009), using Huber proposal II: 

1

2
𝜓𝜏(𝑟𝜏)′𝐵𝜏

1
2𝑉𝜏

−1𝑊𝑊𝑇𝑉𝜏
−1𝐵𝜏

1
2𝜓𝜏(𝑟𝜏) −

𝐾2𝜏

2
𝑡𝑟(𝑉𝜏

−1𝑊𝑊′) = 0 

1

2
𝜓𝜏(𝑟𝜏)′𝐵𝜏

1
2𝑉𝜏

−1𝑉𝜏
−1𝐵𝜏

1
2𝜓𝜏(𝑟𝜏) −

𝐾2𝜏

2
𝑡𝑟(𝑉𝜏

−1) = 0 

where 𝑟𝜏 = 𝐵𝜏

−
1

2(𝑦 − 𝑋𝛽𝜏)  is the vector of scaled residuals with components rij, 𝐵𝜏 =

𝑑𝑖𝑎𝑔(𝑉𝜏) and 

𝑉𝜏 = Σ𝜏 + 𝑊Σ𝑏𝜏𝑊′,Σ𝜏 = 𝜎𝜏
2𝐼𝑛,Σ𝑏𝜏 = 𝜎𝑏𝜏

2 𝐼𝑚 

where 𝜎𝜏
2 and 𝜎𝑏𝜏

2  are the MQ specific variance parameters and 

𝐾2 = 𝐸[𝜓𝜏(𝜀)𝜓𝜏(𝜀)′], 𝜀~𝑁(0, 𝐼𝑛). 

To solve these equations, Tzavidis et al. (2016) proposed the joint use of a Newton-

Raphson algorithm and an iterative fixed point method (Anderson, 1973). Fixed effects are 

estimated by using the Newton-Raphson algorithm, while variance parameters are 

estimated by using the fixed point method. This approach allows to prevent convergence 

problems during the estimation of variance components, which are frequently observed 

with the use of Newton-Raphson algorithms. 

 

𝑀𝑄𝑦𝑖𝑗
(𝜏|𝑥𝑖𝑗 , 𝑏𝑖; 𝜓) = 𝑥𝑖𝑗

′ 𝛽𝜏 + 𝑤𝑖𝑗
′ 𝑏𝑖 (4.1) 

𝑋′𝑉𝜏
−1𝐵𝜏

1
2𝜓𝜏(𝑟𝜏) = 0 

(4.2) 
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4.1 Non parametric individual-specific effects 

Starting from the work of Tzavidis et al. (2016) Borgoni et al. (2019) introduce a M-quantile 

model with bivariate splines used to model spatial dependence, representing a non 

parametric alternative to usual individual-specific effects. 

In the case of data whose behaviour is non linear, we may add a flexible component to the 

linear predictor of the M-quantile model as proposed by Borgoni et al (2019). In the form 

of a penalization, penalized splines are effective tools for a number of reasons. First, they 

are reasonably simple to implement, as they represent a relatively straightforward 

extension of a linear term. Second, their flexibility allow to include wide range of 

modelling features, eg. to account, as in the present case, for spatial dependence. 

Splines refer to piecewise polynomials defined using a set of basis functions to handle 

non-linear structures in the data; for example the spatial pattern of a variable of interest 

can be explained as a function of the location of the points, represented by their 

coordinates. A bivariate smoothing spline can be included in the model specification to 

represent spatial dependence in terms of a set of bivariate basis functions. Following 

Ruppert et al. (2003), Pratesi et al. (2009) suggested the use of radial basis functions to 

derive low-rank thin plate splines. 

In this context, the M-quantile model in equation (4.1) can be rewritten: 

where X is a design matrix, 𝛽𝜏  is the vector of fixed parameters, bτ is an individual-specific 

parameter vector (cluster-specific), W is a matrix containing elements in x associated to 

varying effects; Wsp  is a spline matrix and K is the number of spline knots. More 

specifically (Opsomer et al. 2008), 

𝑊𝑠𝑝 = [𝐶(𝑢𝑖 − 𝑘𝑗)]
1≤𝑖≤𝐾

1≤𝑖≤𝑛
[𝐶(𝑘𝑖 − 𝑘𝑘)]1≤𝑖,𝑘≤𝐾

−1 2⁄  

where 𝑘𝑗  and 𝑘𝑖 , j=1,...,K, i=1,...,K, are two-dimensional vectors representing the 

cartographic coordinates of knots i and j. 𝑢𝑖 is a two-dimensional vector representing the 

cartographic coordinates of sampling location i and 𝐶(𝑠) = ‖𝑠‖2
2𝑙𝑜𝑔‖𝑠‖2 where 𝑠 ∈ ℝ2 and 

‖𝑠‖2 is the Euclidean norm of s in ℝ2. 

Model fit is a practical advantage of the representation offered by spline based models. 

The usual penalised spline-fitting criterion requires estimating a penalising or smoothing 

parameter prior to model estimation. Cross-validation is generally a way to tackle this 

problem. Using mixed models avoids this step as the model can be directly estimated 

using the appropriate routines for linear mixed models. Moreover, including random 

𝑀𝑄𝑦(𝜏|𝑋, 𝑏, ; 𝜓) = 𝑋𝛽𝜏 + 𝑊𝑏𝜏 + 𝑊𝑠𝑝
𝜏
 (4.3) 
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coefficients for the spline basis components allows to account for the bias due to omitted 

variables. Treating the coefficients of the knots as random leads to a smoother 

representation of the estimated effect, compared to using fixed effects specification, and 

avoids data overfitting (Ruppert et al., 2003). 

The estimating equations are based on extending the idea of asymmetric weighting of the 

residuals in equation (4.2) (Tzavidis et al. 2016; Borgoni et al. 2018): 

𝑋′𝑉𝜏
−1𝐵𝜏

1
2𝜓𝜏(𝑟𝜏) = 0 (4.4) 

1

2
𝜓𝜏(𝑟𝜏)′𝐵𝜏

1
2𝑉𝜏

−1𝑊𝑊𝑇𝑉𝜏
−1𝐵𝜏

1
2𝜓𝜏(𝑟𝜏) −

𝐾2𝜏

2
𝑡𝑟(𝑉𝜏

−1𝑊𝑊′) = 0 

1

2
𝜓𝜏(𝑟𝜏)′𝐵𝜏

1
2𝑉𝜏

−1𝑉𝜏
−1𝐵𝜏

1
2𝜓𝜏(𝑟𝜏) −

𝐾2𝜏

2
𝑡𝑟(𝑉𝜏

−1) = 0 

where 𝑟𝜏 = 𝐵𝜏

−
1

2(𝑦 − 𝑋𝛽𝜏) is the vector of scaled residues with components rij, 𝐵𝜏  is the 

diagonal matrix with main diagonal elements bij equal to the components placed on the 

diagonal of covariance, 𝜓𝜏(𝑟𝜏) the derivative of a loss function ρ𝜏 

𝑉𝜏 = Σ𝜀𝜏
+ 𝑊Σ𝑏𝜏

𝑊′ + 𝑊𝑠𝑝Σ𝜏
𝑊𝑠𝑝

′,Σ𝜀𝜏
= 𝜎𝜀𝜏

2 𝐼𝑛, Σ𝜏
= 𝜎𝜏

2 𝐼𝐾,Σ𝑏𝜏
= 𝜎𝑏𝜏

2 𝐼𝑚 

where 𝜎𝜀𝜏
2 , 𝜎𝜏

2 and 𝜎𝑏𝜏

2  are the MQ specific variance parameters and 

𝐾2 = 𝐸[𝜓𝜏(𝜀)𝜓𝜏(𝜀)′], 𝜀~𝑁(0, 𝐼𝑛). 

To solve equations (4.4) Tzavidis et al. (2016) propose to use a Newton-Raphson algorithm 

and an iterative fixed point method (Anderson, 1973). In particular, fixed effects are 

estimated by using the Newton-Raphson algorithm, while variance parameters are 

estimated by using the fixed point method. This approach allows to prevent convergence 

problems during the estimation of variance components, which are frequently observed 

with the use of the Newton-Raphson algorithm. 
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4.2 Finite mixtures of M-quantile regressions 

Alfò et al. (2017) extended the M-quantile models with individual-specific effects starting 

from the semiparametric approach we have discussed in section 2.3. Where a discrete 

distribution for the effects is considered. 

Yu and Moyeed (2001) show the relationship between the loss function for quantile 

regression and the maximization of a likelihood function based on a Asymmetric Laplace 

density. 

Bianchi et al. (2015) propose a similar alternative for the M-quantile regression. This 

proposal is based on the assumption that the loss functions belong to the large class of 

continuously differentiable convex functions, with special attention the Huber to loss 

function. It is possible to show that minimizing the Huber loss function (Huber, 1964) is 

equivalent to maximizing a likelihood function based on the Asymmetric Least 

Informative (ALID) density, see Bianchi et al. (2015). A further extension has been 

proposed by Alfò et al. (2017),where the ALID is used and finite mixtures of M-quantile 

models are fitted using the EM algorithm. 

The ALID distribution (Asymmetric Least Informative Density) proposed by Bianchi et al. 

(2015) has the following form: 

fτ(⋅) =
1

Bτ(στ)
exp{−ρτ(⋅)} (4.5) 

where Bτ(στ) is a normalizing constant  

𝐵𝜏(𝜎𝜏) = 𝜎𝜏√
𝜋

𝜏
[Φ(𝑐√2𝜏) −

1

2
] + 𝜎𝜏√

𝜋

1 − 𝜏
[Φ (𝑐√2(1 − 𝜏)) −

1

2
] +

𝜎𝜏

2𝑐𝜏
𝑒𝑥𝑝{−𝑐2𝜏}

+
𝜎𝜏

2𝑐(1 − 𝜏)
𝑒𝑥𝑝{−𝑐2(1 − 𝜏)} 

In the M-quantile model 

𝑀𝑄𝜏(𝑦𝑖𝑗|𝑥𝑖𝑗 , 𝜉𝑘,𝜏; 𝜓) = 𝑥𝑖𝑗
′ 𝛽𝜏 + 𝑤𝑖𝑗

′ 𝜉𝑘,𝜏 

The distribution of bi may vary with quantiles. As previously stated, we assume that, 

without loss of generality, the following equality holds: 

∑ 𝜋𝑘𝜉𝑘,𝜏 = 0
𝑘

∀𝜏 

which mimic 𝐸(𝑏𝑖|𝑥𝑖) = 𝐸(𝑏𝑖) = 0  

To estimate parameters βτ e 𝜉𝑘, we maximize the log-likelihood function: 



 

39 

 

ℓ(Φ) = ∑ log {∑ ∏ 𝑓𝜏(𝑦𝑖𝑗|𝑥𝑖𝑗 , 𝜉𝑘)𝜋𝑘

𝑗

𝐺

𝑘=1

}

𝑚

𝑖=1

=: ∑ log {∑ ∏ 𝑓𝑖𝑗𝑘𝜋𝑘

𝑗

𝐺

𝑘=1

}

𝑚

𝑖=1

 

where 𝑓𝑌|𝑏
𝜏  denotes the ALID density. The score function components are: 

𝑆(𝛽𝜏) ∑ ∑ 𝜔𝑖𝑘,𝜏 ∑ 𝜓𝜏(𝑦𝑖𝑗 − 𝑥𝑖𝑗
′ 𝛽𝜏 − 𝑤𝑖𝑗

′ 𝜉𝑘,𝜏)

𝑛𝑖

𝑗=1

𝐺

𝑘=1

𝑚

𝑖=1

𝑥𝑖𝑗 = 0 

𝑆(𝜉𝑘,𝜏) ∑ 𝜔𝑖𝑘,𝜏 ∑ 𝜓𝜏(𝑦𝑖𝑗 − 𝑥𝑖𝑗
′ 𝛽𝜏 − 𝑤𝑖𝑗

′ 𝜉𝑘,𝜏)

𝑛𝑖

𝑗=1

𝑚

𝑖=1

𝑤𝑖𝑗 = 0 

where 

𝜔𝑖𝑘,𝜏 =
𝜋𝑘,𝜏𝑓𝑖𝑘,𝜏

∑ 𝜋𝑙,𝜏𝑓𝑖𝑙,𝜏𝑙
=

𝜋𝑘,𝜏 ∏ 𝑓𝑖𝑗𝑘,𝜏𝑗

∑ 𝜋𝑙,𝜏 ∏ 𝑓𝑖𝑗𝑙,𝜏𝑗𝑙
 

can be interpreted as the posterior probability for the i-th higher level unit (cluster) from 

the k-th component of the mixture at quantile τ. Here fijk,τ represents the ALID distribution 

coming for the k-th component and the τ-th quantile. 

We discuss the EM the algorithm for ML estimation in the general case of multilevel data, 

with j = 1,..,ni measurements corresponding to i=1,…,m upper-level units, and a given 

quantile τ∈ (0,1). 

Let us denote by zik,τ, the variable indicating whether the i-th unit comes from the k-th 

component of the mixture when the τ-th quantile is considered. Each component of the 

mixture is characterized by a different vector of regression parameters, 𝜉𝑘,𝜏, k = 1, …, G. 

Therefore, we may write: 

𝜋𝑘 = 𝑃𝑟(𝑍𝑖𝑘,𝜏 = 1) = 𝑃𝑟(𝑏𝑖,𝜏 = 𝜉𝑘,𝜏) 

while the remaining parameters βτ and στ are constant across the components. In a 

complete data framework, for each higher level unit we would have observed the couple 

(yi,zi;τ) where zi,τ=(zi1,τ,…,ziG,τ), and the log-likelihood function would be equal to: 

ℓ𝑐(Φ𝜏) = ∑ ∑ 𝑧𝑖𝑘,𝜏{log 𝑓𝜏(𝑦𝑖|𝛽𝜏, 𝜉𝑘,𝜏, 𝜎𝜏) + log(𝜋𝑘,𝜏)}

𝐺

𝑘=1

=

𝑚

𝑖=1

 

= ∑ ∑ 𝑧𝑖𝑘,𝜏 {log [∏ 𝑓𝜏(𝑦𝑖𝑗|𝛽𝜏, 𝜉𝑘,𝜏, 𝜎𝜏)

𝑛𝑖

𝑗=1

] + log(𝜋𝑘,𝜏)}

𝐺

𝑘=1

𝑚

𝑖=1

= 

(4.6) 
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= ∑ ∑ 𝑧𝑖𝑘,𝜏 {∑ log[𝑓𝜏(𝑦𝑖𝑗|𝛽𝜏, 𝜉𝑘,𝜏, 𝜎𝜏)]

𝑛𝑖

𝑗

+ log(𝜋𝑘,𝜏)}

𝐺

𝑘=1

𝑚

𝑖=1

 

where 𝛷 = { 𝛽,  𝜉1, … , 𝜉𝐺 , 𝜋1, … ,  𝜋𝐺} represents the global of parameters vector for τ∈ (0,1). 

As we have remarked above, in the E-step of the EM algorithm, at the (t+1)th iteration we 

compute the expected value of the complete data log likelihood over the indicator vector 

zik,τ, conditional on the observed data yi and the current parameter estimates Φ̂𝜏
(𝑡)

. 

Therefore, at the t+1 iteration of the algorithm we compute 

𝜔𝑖𝑘,𝜏
(𝑡+1)

=
𝜋𝑘,𝜏

(𝑡)
𝑓𝑖𝑘,𝜏(Φ̂𝜏

(𝑡)
)

∑ 𝜋𝑙,𝜏
(𝑡)

𝑓𝑖𝑙,𝜏(Φ̂𝜏
(𝑡)

)𝑙

 

i=1,…,m and k=1,…,G. The conditional expectation of the complete data log-likelihood for 

multilevel data, given the observed data yi and the current parameters Φ̂𝜏
(𝑡)

, is: 

𝑄(Φ𝜏|Φ̂𝜏
(𝑡)

) = 𝐸
Φ̂𝜏

(𝑡)[ℓ𝑐(Φ𝜏)|𝑦𝑖] = ∑ ∑ 𝜔𝑖𝑘,𝜏
(𝑡+1)

{∑ log[𝑓𝜏(𝑦𝑖𝑗|𝛽𝜏, 𝜉𝑘,𝜏, 𝜎𝜏)]

𝑛𝑖

𝑗

+ log(𝜋𝑘,𝜏)}

𝐺

𝑘=1

𝑚

𝑖=1

 

Maximizing the function Q (.) with respect to Φτ, we obtain updated maximum likelihood 

estimates Φ̂𝜏
(𝑡+1)

 given the posterior probability 𝜔𝑖𝑘;𝜏
(𝑡+1)

: 

𝜕𝑄(Φ𝜏|Φ̂𝜏
(𝑡)

)

𝜕Φ𝜏
= 0 

the updates are obtained by solving likelihood equation that can be written separately for 

each element in Φ: 

𝑆(𝛽𝜏) = ∑ ∑ 𝜔𝑖𝑘,𝜏
(𝑡)

∑
𝜕

𝜕𝛽𝜏
log[𝑓𝜏(𝑦𝑖𝑗|𝛽𝜏, 𝜉𝑘,𝜏, 𝜎𝜏)]

𝑛𝑖

𝑗

𝐺

𝑘=1

𝑚

𝑖=1

= − ∑ ∑ 𝜔𝑖𝑘,𝜏
(𝑡)

∑
𝜕𝜌𝜏((𝑦𝑖𝑗 − 𝑥𝑖𝑗

′ 𝛽𝜏 − 𝑤𝑖𝑗
′ 𝜉𝑘,𝜏) 𝜎𝜏⁄ )

𝜕𝛽𝜏

𝑛𝑖

𝑗

𝐺

𝑘=1

𝑚

𝑖=1

=  ∑ ∑ 𝜔𝑖𝑘,𝜏
(𝑡)

∑ 𝜓𝜏 (
𝑦𝑖𝑗 − 𝑥𝑖𝑗

′ 𝛽𝜏 − 𝑤𝑖𝑗
′ 𝜉𝑘,𝜏

𝜎𝜏
)

𝑛𝑖

𝑗

𝐺

𝑘=1

𝑚

𝑖=1

𝑥𝑖𝑗

𝜎𝜏
 

𝑆(𝜉𝑘,𝜏) = ∑ 𝜔𝑖𝑘,𝜏
(𝑡)

∑ 𝜓𝜏 (
𝑦𝑖𝑗 − 𝑥𝑖𝑗

′ 𝛽𝜏 − 𝑤𝑖𝑗
′ 𝜉𝑘,𝜏

𝜎𝜏
)

𝑛𝑖

𝑗

𝑚

𝑖=1

𝑤𝑖𝑗

𝜎𝜏
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𝑆(𝜎𝜏) = ∑ ∑ 𝜔𝑖𝑘,𝜏
(𝑡)

∑
𝜕

𝜕𝜎𝜏
log[𝑓𝜏(𝑦𝑖𝑗|𝛽𝜏, 𝜉𝑘,𝜏, 𝜎𝜏)]

𝑛𝑖

𝑗

𝐺

𝑘=1

𝑚

𝑖=1

=

= ∑ ∑ 𝜔𝑖𝑘,𝜏
(𝑡)

∑
𝜕

𝜕𝜎𝜏
{− log 𝐵𝜏(𝜎𝜏) + log[𝑓𝜏(𝑦𝑖𝑗|𝛽𝜏, 𝜉𝑘,𝜏, 𝜎𝜏)]}

𝑛𝑖

𝑗

𝐺

𝑘=1

𝑚

𝑖=1

= 

= ∑ ∑ 𝜔𝑖𝑘,𝜏
(𝑡)

∑ [−
1

𝜎𝜏
+ 𝜓𝜏 (

𝑦𝑖𝑗 − 𝑥𝑖𝑗
′ 𝛽𝜏 − 𝑤𝑖𝑗

′ 𝜉𝑘,𝜏

𝜎𝜏
) (

𝑦𝑖𝑗 − 𝑥𝑖𝑗
′ 𝛽𝜏 − 𝑤𝑖𝑗

′ 𝜉𝑘,𝜏

𝜎𝜏
2

)]

𝑛𝑖

𝑗

𝐺

𝑘=1

𝑚

𝑖=1

 

𝑆(𝜋𝑘) = ∑ [
𝜔𝑖𝑘,𝜏

(𝑡)

𝜋𝑘
−

𝜔𝑖𝐺,𝜏
(𝑡)

𝜋𝐺
]

𝑚

𝑖=1

= ∑ [
𝜔𝑖𝑘,𝜏

(𝑡)

𝜋𝑘
−

1 − ∑ 𝜔𝑖𝑙,𝜏
(𝑡)𝐺−1

𝑙=1

1 − ∑ 𝜋𝑙
𝐺−1
𝑙=1

]

𝑚

𝑖=1

, 𝑘 = 1, … , 𝐺 − 1 

Regardless of the (conditional) density adopted for the response, the expression in 𝑆(𝜋𝑘) 

leads to the standard updates: 

𝜋̂𝑘
(𝑡)

=
𝜔𝑖𝑘,𝜏

(𝑡)

𝑚
     𝑘 = 1, … , 𝐺 − 1 

The updated estimates for the remaining model parameters depend on the specific 

conditional density form we choose. 

In the case where 𝑓𝜏(⋅)  corresponds to the asymmetric least informative distribution 

(ALID), the M-step updates are calculated by an IWLS algorithm, which corresponds to a 

weighted version of the standard algorithm for M-quantile regression. 

 

4.2.1 The provision of standard errors 

To provide the standard error for model parameter estimates, we need first to compute the 

Hessian for Φ: 

𝐻𝑒(𝛽𝜏, 𝛽𝜏) = − ∑ ∑ 𝜔𝑖𝑘,𝜏
(𝑡)

∑ 𝜓𝜏
′ (

𝑦𝑖𝑗 − 𝑥𝑖𝑗
′ 𝛽𝜏 − 𝑤𝑖𝑗

′ 𝜉𝑘,𝜏

𝜎𝜏
)

𝑛𝑖

𝑗

𝐺

𝑘=1

𝑚

𝑖=1

𝑥𝑖𝑗

𝜎𝜏

𝑥𝑖𝑗
′

𝜎𝜏
 

𝐻𝑒(𝛽𝜏, 𝜉𝑘,𝜏) = − ∑ 𝜔𝑖𝑘,𝜏
(𝑡)

∑ 𝜓𝜏
′ (

𝑦𝑖𝑗 − 𝑥𝑖𝑗
′ 𝛽𝜏 − 𝑤𝑖𝑗

′ 𝜉𝑘,𝜏

𝜎𝜏
)

𝑛𝑖

𝑗

𝑚

𝑖=1

𝑥𝑖𝑗

𝜎𝜏

𝑤𝑖𝑗
′

𝜎𝜏
 

𝐻𝑒(𝛽𝜏, 𝜎𝜏) = − ∑ ∑ 𝜔𝑖𝑘,𝜏
(𝑡)

[∑ 𝜓𝜏
′ (

𝑦𝑖𝑗 − 𝑥𝑖𝑗
′ 𝛽𝜏 − 𝑤𝑖𝑗

′ 𝜉𝑘,𝜏

𝜎𝜏
) (

𝑦𝑖𝑗 − 𝑥𝑖𝑗
′ 𝛽𝜏 − 𝑤𝑖𝑗

′ 𝜉𝑘,𝜏

𝜎𝜏
2

)

𝑛𝑖

𝑗

𝑥𝑖𝑗

𝜎𝜏

𝐺

𝑘=1

𝑚

𝑖=1

+ 𝜓𝜏 (
𝑦𝑖𝑗 − 𝑥𝑖𝑗

′ 𝛽𝜏 + 𝑤𝑖𝑗
′ 𝑏𝑘,𝜏

𝜎𝜏
)

𝑥𝑖𝑗

𝜎𝜏
2

] 
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𝐻𝑒(𝜉𝑘,𝜏, 𝜉𝑘,𝜏) = − ∑ 𝜔𝑖𝑘,𝜏
(𝑡)

∑ 𝜓𝜏
′ (

𝑦𝑖𝑗 − 𝑥𝑖𝑗
′ 𝛽𝜏 − 𝑤𝑖𝑗

′ 𝜉𝑘,𝜏

𝜎𝜏
)

𝑛𝑖

𝑗

𝑚

𝑖=1

𝑤𝑖𝑗

𝜎𝜏

𝑤𝑖𝑗
′

𝜎𝜏
 

𝐻𝑒(𝜉𝑘,𝜏, 𝜎𝜏) = − ∑ 𝜔𝑖𝑘,𝜏
(𝑡)

[∑ 𝜓𝜏
′ (

𝑦𝑖𝑗 − 𝑥𝑖𝑗
′ 𝛽𝜏 − 𝑤𝑖𝑗

′ 𝜉𝑘,𝜏

𝜎𝜏
) (

𝑦𝑖𝑗 − 𝑥𝑖𝑗
′ 𝛽𝜏 − 𝑤𝑖𝑗

′ 𝜉𝑘,𝜏

𝜎𝜏
2

)

𝑛𝑖

𝑗

𝑤𝑖𝑗

𝜎𝜏

𝑚

𝑖=1

+ 𝜓𝜏 (
𝑦𝑖𝑗 − 𝑥𝑖𝑗

′ 𝛽𝜏 + 𝑤𝑖𝑗
′ 𝜉𝑘,𝜏

𝜎𝜏
)

𝑤𝑖𝑗

𝜎𝜏
2

] 

𝐻𝑒(𝜎𝜏, 𝜎𝜏) = ∑ ∑ 𝜔𝑖𝑘,𝜏
(𝑡)

𝐺

𝑘=1

∑ [
1

𝜎𝜏
2

− 𝜓𝜏
′ (

𝑦𝑖𝑗 − 𝑥𝑖𝑗
′ 𝛽𝜏 − 𝑤𝑖𝑗

′ 𝜉𝑘,𝜏

𝜎𝜏
) (

𝑦𝑖𝑗 − 𝑥𝑖𝑗
′ 𝛽𝜏 − 𝑤𝑖𝑗

′ 𝜉𝑘,𝜏

𝜎𝜏
2

)

2𝑛𝑖

𝑗

𝑚

𝑖=1

− 2𝜓𝜏 (
𝑦𝑖𝑗 − 𝑥𝑖𝑗

′ 𝛽𝜏 − 𝑤𝑖𝑗
′ 𝜉𝑘,𝜏

𝜎𝜏
) (

𝑦𝑖𝑗 − 𝑥𝑖𝑗
′ 𝛽𝜏 − 𝑤𝑖𝑗

′ 𝜉𝑘,𝜏

𝜎𝜏
)] 

𝐻𝑒(𝜋𝑘, 𝜋𝑙) = ∑ [−
𝜔𝑖𝑘,𝜏

(𝑡)

𝜋𝑘
2 1(𝑙 = 𝑘) −

1 − ∑ 𝜔𝑖𝑔,𝜏
(𝑡)𝐺−1

𝑔=1

(1 − ∑ 𝜋𝑔
𝐺−1
𝑔=1 )

2]

𝑚

𝑖=1

, 𝑘, 𝑙 = 1, … , 𝐺, 

where 

𝜓𝜏
′ (𝑢) = {

2(1 − 𝜏) −𝑐 ≤ 𝑢 < 0
2𝜏 0 ≤ 𝑢 ≤ 𝑐
0 |𝑢| > 𝑐

 

and the term 1(𝐴)  denotes the indicator function for condition A to hold, while 

𝐻𝑒(𝛽𝜏, 𝜋𝑘,𝜏) = 𝐻𝑒(𝜉𝑘,𝜏, 𝜋𝑘,𝜏) = 𝐻𝑒(𝜎𝜏, 𝜋𝑘,𝜏) = 0 due to parameter distinctiveness. 

In the M-step in the EM algorithm, the weights 𝜔𝑖𝑘,𝜏
(𝑡)

 are kept fixed and model parameters 

are updated; in the E-step parameters are kept fixed and weights updated. However, the 

EM algorithm does not provide standard error estimates for model parameters, because it 

does not consider the portion of information which is missing due to unavailable 

information on zik i=1,…,m e k=1,…,G. In the case of quantile regression, standard errors 

are usually computed using a non-parametric bootstrap approach, see Geraci and Bottai 

(2014). In the current M-quantile context we may rely on the approach discussed by Louis 

(1982) and, for practical purposes, on the formula by Oakes (1999). 

Let us denote by 𝐼(Φ𝜏) the observed information for Φ𝜏 where: 

𝐼(Φ𝜏) = −
𝜕2ℓ(Φ𝜏)

𝜕Φ𝜏𝜕Φ𝜏
′
 

and by Φ̂𝜏
(𝑡)

 the parameters current estimates. The Oakes (1999) identity is:  

𝐼(Φ̂𝜏) = − {
𝜕𝑄(Φ𝜏|Φ̂𝜏)

𝜕Φ𝜏𝜕Φ𝜏
′

|
Φ𝜏=Φ̂𝜏

+
𝜕2𝑄(Φ𝜏|Φ̂𝜏)

𝜕Φ𝜏
′ 𝜕Φ̂𝜏

|
Φ𝜏=Φ̂𝜏

} 
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The right hand side consists of two arguments. The first is given by the second derivative 

of the conditional expected value of the log-likelihood given the observed data, and 

represent the expected information. This component is simple to get from the EM 

algorithm. The second component is the first derivative of the conditional expected value 

of the complete data score function with respect to the current parameter estimates, that is 

the posterior weights are not considered as fixed but as functions of the current parameter 

estimates, and this represents the impact of missing information. 

Once the observed information has been calculated at the ML estimate Φ̂𝜏, we calculate the 

sandwich estimator (see e.g. Huber, 1967; White, 1980): 

𝐶𝑜𝑣̂(Φ̂𝜏) =  𝐼(Φ̂𝜏)
−1

𝑉(Φ̂𝜏)𝐼(Φ̂𝜏)
−1

 

where 𝑉(Φ̂𝜏) = ∑ 𝑆𝑖(Φ̂𝜏)𝑆𝑖(Φ̂𝜏)
′𝑚

𝑖=1  is the estimate for cov(S). This approach has been 

discussed by Alfò et al. (2017) and dates back to the procedure described by Friedl and 

Kauermann (2000). This estimator allows to obtain a standard error estimate robustified to 

model misspecification, which may arise due to the assumption on response distribution. 

Therefore, using this estimate for the covariance matrix, we can approximate standard 

errors for model parameter estimates. 

Standard conditions for identifiability in regression models do not apply directly to finite 

mixtures of regression models, see De Sarbo and Cron (1988). Identifiability needs the 

covariance matrix to be of full rank; However non-identifiability may also occur when the 

full rank condition is met, see Hennig (2000) and Wang et al. (1996). Given that the M-

quantile model is a specific linear model estimated by IWLS, we may speculate that the 

regression parameters are identifiable if and only if the number of components is not 

higher than the number of distinct (p-1)-dimensional hyperplanes in the sample. 
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5 Models for spatial data 

Observed data frequently show a spatial pattern and this may induce some sort of 

"spatial" dependence; that is the observed values can be influenced by statistical unit 

geographical position. This type of data is called spatial data and they are frequently met 

in epidemiological, environmental and social studies (Haining, 1990). 

Spatial dependence, arises because of a principle described in the Tobler's first law, which 

states that: 

…everything is related to everything else, but near things are more related than 

distant things. (Tobler , 1970) 

For example, it is possible to assume that the values observed in a given area are similar to 

those recorded in the neighboring areas.  

This spatial relationship is very evident if we consider the environmental data from the 

PMetro project. In this project, between 2012 and 2015, various space-time measurements 

of aerosols and gases were collected using instruments integrated in one of the 

Minimetro's cabins, a public transport in the city of Perugia (Italy), see Del Sarto et al. 

(2019). The variable being studied by Del Sarto et al. (2019) is the logarithm of the 

concentration of particles, which can be spatially represented (see Figure 5.1); as it can be 

noticed closer shows how similar values are quite similar. 
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Figure 5.1 (Pmetro project) cartography of the (log) particle concentration referred Perugia  

Spatial data can be multilevel, with a sample composed by lower level units (population, 

buildings) nested within higher level geographical units (census tracts, municipalities, 

regions).  

In the following, we will consider neighboring areas, as those areas that are adjacent 

according to the Queen criterion. For two zones to be adjacent in the sense of the Queen's 

contiguity, they only need to share a common limit point. This name comes from the chess 

game, in the case of a regular grid, where the Queen has freedom of movement. 

 

5.1 The Potts Model 

Let us consider a finite mixture model, with marginal density described by 

f(y𝑖) = ∑ πkf(y𝑖𝑗|zik = 1)

k

 

If spatial dependence is present, we may assume according to Green and Richardson 

(2002) that the prior probability for a certain area to belong to a given component is 

influenced by the component the neighboring areas belong to.  

Green and Richardson (2002) proposed a general approach based on finite mixture models 

with spatial constraints, where the prior probabilities are modelled through a Markov 
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Random Field (MRF) by adopting a Potts representation (Kindermann and Snell 1999, 

Strauss and Ikeda 1990). 

The proposed Gibbs distribution is characterized by the use of a component specific 

intercept and a constant interaction parameter to model the effect of neighboring areas, 

under the assumption that spatial dependence is constant over the whole analyzed region. 

According to the work by Geman and Geman (1984), the class process z ik i=1,...,m k=1,...,G , 

can be modelled by a MRF. 

Let us denote by zik,τ, the binary variable indicating whether the i-th unit comes from the k-

th component of the finite mixture. We may assume that the prior probability for a given 

cluster to belong to a given component is influenced by the component the neighboring 

clusters belong to. Geman and Geman (1984) have shown that such a class process can be 

modelled by a Markov Random Field (MRF). According to the Hammersley-Clifford 

theorem (Hammersley and Clifford, 1971), modelling the process through a MRF is 

equivalent to using a Gibbs distribution for the component indicator. In other words, the 

spatial dependence between component labels is described by a Gibbs distribution, using 

a representation similar to the one proposed by Strauss (1977). That is we should no longer 

consider the priors as  

πik = Pr(zik = 1) =
exp(αk)

∑ exp(αk)k
, (5.1) 

but, rather, the same term defined as conditional on the neighboring observations 

𝜁𝑖𝑘 = Pr(z𝑖 = k|z𝑙 , 𝑙 ∈ N𝑖) =  Pr(z𝑖𝑘 = 1|z𝑙𝑘 , 𝑙 ∈ N𝑖). (5.2) 

where, as already discussed, z𝑖𝑘 denotes the vector of cluster indicators for cluster i = 1, ..., 

m, 𝑁𝑖, is a subset of S describing the set of units neighboring to the i-th, for witch we have: 

𝑖 ∉ 𝑁𝑖    ∀𝑖 ∈ 𝑆, 𝑗 ∈ 𝑁𝑖 ⟺ 𝑖 ∈ 𝑁𝑗 and S is a regular lattice. In this case, the Gibbs distribution 

is defined by: 

ζik =  Pr(zik = 1|zlk, l ∈ Ni) ∝ exp {−ϑ ∑ V(zik, zlk)

l∈Ni

} (5.3) 

i=1,...,m, k=1,...,G. The parameter  represents the interaction (regularization) parameter 

describing the strength of spatial dependence, which is supposed to be constant over the 

analyzed region. The term V(∙) denotes the potential function: 

V(zik, zlk) = {
−1    if zikzlk = 1 
0                    else

 (5.4) 
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A potential alternative to this standard Gibbs distribution can be defined by using cluster-

specific parameters as proposed by Alfò et al. (2009): 

ζik =  Pr(zik = 1|zlk, l ∈ Ni) ∝ exp {αk − ϑk ∑ V(zik, zlk)

l∈Ni

} (5.5) 

where, the potential function 𝑉(∙) has been modified to: 

V(zik, zlk) = {
−1    if zikzlk = 1 
+1                     else

 (5.6) 

In this way, the probability of being a member of the k-th component increases (if >0) 

with the number of neighbours coming from that component and decreases with the 

number of neighbours belonging to different component. Given the k-th component, the 

conditional distribution is: 

log(𝜁𝑖𝑘) ∝ [𝛼𝑘 − 𝜗𝑘 ∑ 𝑉(z𝑖𝑘, z𝑙𝑘)

𝑙∈N𝑖

] = [𝛼𝑘 − 𝜗𝑘(𝑛𝑖𝑘 − 𝑛𝑖𝑘̅)] 
(5.7) 

k = 1, ..., G, where the values 𝑛𝑖𝑘 and 𝑛𝑖𝑘̅ represent the member of areas in Ni that do or do 

not belong to the k-th component. Equation (5.7) defines a multinomial logit or, more 

precisely, a Strauss automodel (Strauss and Ikeda, 1990) for the prior (conditional) 

probability of component membership. 

The parameter αk is a component-specific intercept, and log(αk) is proportional to the prior 

probability of the corresponding component when 𝑛𝑖𝑘 = 𝑛𝑖𝑘̅  that is in the case of 

maximum uncertainty or when 𝜃 = 𝑐 that is independence holds . Finally, the parameter 

k provides information on the strength of association as it describes how belonging to a 

component is influenced by neighboring areas membership. In the present work, we adopt 

a different form of the Gibbs distribution: 

ζik =  Pr(zik = 1|zlk, l ∈ Ni) ∝ exp {αk − ϑ ∑ V(zik, zlk)

l∈Ni

} (5.8) 

This distribution is characterized by the use of a cluster-specific intercept 𝛼𝑘 which refer to 

the log prior when spatial dependence is absent, or when maximum uncertainty 𝑛𝑖𝑘 = 𝑛𝑖𝑘̅ 

holds and a constant interaction parameter ϑ. This formulation allows to have a parameter 

specific to each component and a constant spatial dependence in the whole area, while the 

potential function is defined as in Alfò et al. (2009): 

V(zik, zlk) = {
−1    if zikzlk = 1 
+1                     else

 (5.9) 
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In this function, the number of concordant areas in Ni is penalized by the number of 

discordant areas to account for a different size of the set of neighbours Ni  i=1,…,m.  

The previous expression (5.8) does no longer describe a multidimensional logit, but rather 

a conditional logit, McFadden (1973). In fact, the multidimensional logit model focuses on 

the individual as a unit of analysis and considers the individual features as explanatory 

variables, while the conditional logit model focuses on the set of alternatives for each 

individual and the explanatory variables are specific to each alternative (Hoffman and 

Duncan, 1988). 
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5.2 Finite Mixtures model for spatial data, estimation 

Let us consider a study area defined on a regular lattice S with cells indexed by i =1,...,m. 

Given cell 𝑖 ∈ 𝑆, 𝑦𝑖 represents the response value observed at that position. The set 𝑁𝑖, is a 

subset of S including the units neighboring to the i-th one, for witch we have that: 𝑖 ∉

𝑁𝑖∀𝑖 ∈ 𝑆, 𝑗 ∈ 𝑁𝑖 ⟺ 𝑖 ∈ 𝑁𝑗 hold. 

Using such definition for neighbouring units (cells), and considering the prior conditional 

probability of component membership 𝜁𝑖𝑘  decribed in equation (5.8), the likelihood 

function can be rewritten 

𝐿(𝜃) = ∏ ∑ 𝑓(𝑦𝑖|𝜃𝑘)𝜁𝑖𝑘

𝑘

𝑚

𝑖=1

 (5.10) 

and the log likelihood function is: 

𝑙(𝜃) = ∑ 𝑙𝑜𝑔

𝑚

𝑖=1

∑ 𝑓(𝑦𝑖|𝜃𝑘)𝜁𝑖𝑘

𝑘

 (5.11) 

As usual, the component labels are unobserved and, therefore, they must be considered as 

missing data; this leads to the use of the EM algorithm. The hypothetical space of the 

complete data is given by (𝑦𝑖; 𝑧𝑖𝑘) i = 1, ..., m and k = 1, ..., G. The complete data log 

pseudo-likelihood (PL) function is: 

𝑙𝑐(Φ𝑞) = log {∏ ∏[𝑓(𝑦𝑖|𝜃𝑘)𝜁𝑖𝑘]𝑧𝑖𝑘

𝑘

𝑚

𝑖=1

} = 

= ∑ ∑ 𝑧𝑖𝑘[log 𝑓(𝑦𝑖|𝜃𝑘) + log 𝜁𝑖𝑘]

𝑘𝑖

 

which should be maximized under the constraint ∑ 𝜁𝑖𝑘𝑘 = 1 . This represents an 

approximation of the "true" likelihood, which cannot be calculated, at least not in a simple 

way. In fact, the approximation of the log pseudo-likelihood consists in considering the 

areas as independent and it is appropriate when the spatial dependence is weak. In cases 

of heavy spatial dependence, MPL estimates may present a strong bias, see van Duijn et 

al.( 2007). 
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5.3 Finite Mixtures with multilevel spatial data 

We may also consider spatial dependence in the case where each unit of the lattice 

includes 𝑛𝑖 elements, with i = 1, ..., m, j=1,…,ni. That is, we may consider multilevel spatial 

data with lower-level units included within higher level clusters corresponding to cells of 

a regular lattice. In this case, the pseudo-likelihood function can be rewritten: 

𝐿(𝜃) = ∏ ∑ ∏ 𝑓(𝑦𝑖𝑗|𝜃𝑘)𝜁𝑖𝑘

𝑛𝑖

𝑗=1

G

k=1

𝑚

𝑖=1

 (5.12) 

The hypothetical space of the complete data is given by (𝑦𝑖𝑗; 𝑧𝑖𝑗𝑘) i=1,…,m, j=1,…,ni and 

k=1,…,G, and the pseudo-likelihood (PL) for complete data can be written as: 

𝑙𝑐(Φ) = log {∏ ∏ ∏[𝑓(𝑦𝑖𝑗|𝜃𝑘)𝜁𝑖𝑘]
𝑧𝑖𝑗𝑘,𝜏

𝑛𝑖

𝑗=1𝑘

𝑚

𝑖=1

} = 

= ∑ ∑ ∑ 𝑧𝑖𝑗𝑘,𝜏[log 𝑓(𝑦𝑖𝑗|𝜃𝑘) + log 𝜁𝑖𝑘]

𝑗𝑘𝑖

 

The score function is: 

𝑆(Φ) =
𝜕 log[𝐿(Φ)]

𝜕Φ
=

𝜕ℓ(Φ)

𝜕Φ
= ∑ ∑ (

𝑓𝑖𝑘𝜁𝑖𝑘

∑ 𝑓𝑖𝑙𝜁𝑖𝑙𝑙
) ∑

𝜕 log 𝑓𝑖𝑗𝑘

𝜕Φ
𝑗

𝐺

𝑘=1

𝑚

𝑖=1

= : ∑ ∑ 𝜔𝑖𝑘 ∑
𝜕 log 𝑓𝑖𝑗𝑘

𝜕Φ
𝑗

𝐺

𝑘=1

𝑚

𝑖=1

 

(5.13) 

where: 

𝜔𝑖𝑘 =
𝜁𝑖𝑘 ∏ 𝑓𝑖𝑗𝑘𝑗

∑ 𝜁𝑖𝑙 ∏ 𝑓𝑖𝑗𝑙𝑗𝑙
𝑖 = 1, … , 𝑚; 𝑘 = 1, … , 𝐺 

represent the posterior (conditional) probability of component membership. As we have 

previously seen, the score function represents a sum of the score functions for component-

specific regression models with weights 𝜔𝑖𝑘. The log likelihood function can be maximized 

indirectly, by EM-type algorithms. 

The basic EM algorithm is defined by solving equations for a given set of weights and 

updating the weights according to the current parameter estimates . 
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5.4 Finite Mixtures of (M-) Quantile regression for spatial data 

We may consider spatial dependence also in the (M-) quantile regression model with 

individual- specific effects. The hypothetical space of the complete data is given by 

(𝑦𝑖𝑗; 𝑧𝑖𝑗𝑘,𝜏) i=1,…,m, j=1,…,ni and k=1,…,G. The pseudo-likelihood (PL) for the complete 

data can be written as: 

𝑙𝑐(Φ𝜏) ∝ ∑ ∑ 𝑧𝑖𝑘,𝜏

𝐺

𝑘=1

{∑ log [𝑓𝜏(𝑦𝑖𝑗|𝛽𝜏, 𝜉𝑘,𝜏, 𝜎𝜏)]

𝑛𝑖

𝑗=1

+ log (𝜁𝑘,𝜏)}

𝑚

𝑖=1

 (5.14) 

where 𝑓𝜏(∙) is the ALD/ALID in expressions(2.12)and for (4.5). In the E-step of the EM 

algorithm, we define the expected log pseudo-likelihood by taking the expectation of the 

log pseudo-likelihood for complete data over the component indicators conditional on the 

observed data and the current parameter, estimates replacing zik by: 

𝜔𝑖𝑘,𝜏
(𝑡+1)

=
𝜁𝑖𝑘

(𝑡)
𝑓𝑖𝑘,𝜏(Φ̂𝜏

(𝑡)
)

∑ 𝜁𝑖𝑙
(𝑡)

𝑓𝑖𝑙,𝜏(Φ̂𝜏
(𝑡)

)𝑙

 (5.15) 

where 𝜔𝑖𝑘,𝜏
(𝑡+1)

 represents the (conditional) posterior probability for the i-th cluster to belong 

to the k-th component of the analyzed area, given the observed data, the membership of 

neighboring units and the quantile level.  

The conditional expectation of the complete data log pseudo-likelihood function is: 

𝑄(Φτ|Φ̂𝜏
(𝑡)

) = 𝐸
Φ̂𝜏

(𝑡) {𝑙𝑐(Φτ)|𝑦𝑖}  

∝ ∑ ∑ 𝜔𝑖𝑘,τ
(𝑡+1)

𝐺

𝑘=1

{∑ log [𝑓τ(𝑦𝑖𝑗|𝛽τ, 𝜉𝑘,τ, 𝜎τ)]

𝑛𝑖

𝑗=1

+ log (𝜁𝑘)}

𝑚

𝑖=1

∝ ∑ ∑ 𝜔𝑖𝑘,τ
(𝑡+1)

𝐺

𝑘=1

{∑ log [𝑓τ(𝑦𝑖𝑗|𝛽τ, 𝜉𝑘,τ, 𝜎τ)]

𝑛𝑖

𝑗=1

}

𝑚

𝑖=1

+ ∑ ∑ 𝜔𝑖𝑘,τ
(𝑡+1)

𝐺

𝑘=1

{log (
𝑒𝑥𝑝[𝛼𝑘,τ − 𝜗τ𝑉(𝑧𝑖𝑘,𝜏, 𝑧𝑙𝑘,𝜏)]

∑ 𝑒𝑥𝑝[𝛼ℎ,τ − 𝜗τ ∑ 𝑉(𝑧𝑖ℎ,𝜏, 𝑧𝑙ℎ,𝜏)𝑙∈N𝑖
]𝐺

ℎ=1

)}

𝑛

𝑖=1

 

(5.16) 

where 𝜁𝑘 is defined in equation (5.8) and 𝑉(∙) is a potential function in equation (5.6). The 

maximization of the function 𝑄(∙ |Φ̂𝜏
(𝑡)

) with respect to parameters Φτ={βτ, στ, 𝜉1;τ,..., 𝜉G;τ, 

α1;τ, …, αG;τ, ϑτ} for τ∈ (0,1) can be divided into different sub-step. The estimates are 

obtained through the score equation: 

𝜕𝑄(Φ𝜏|Φ̂𝜏
(𝑡)

)

𝜕Φ𝜏
= 0 
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In the first sub-step only the parameters βτ, στ and 𝜉k;τ are taken into account, this is 

equivalent to considering the estimates for a model with a known spatial dependence 

structure. 

In the second sub-step the estimates of parameters (αk;τ, ϑτ) of the Gibbs distribution are 

updated using the following pseudo score equation (5.16): 

𝜕𝑄 (Φ𝜏|Φ̂𝜏
(𝑡+1)

)

𝜕(𝛼𝑘,𝜏, 𝜗𝜏)
=

𝜕

𝜕(𝛼𝑘,𝜏, 𝜗𝜏)
∑ ∑ 𝜔𝑖𝑘,𝜏

(𝑡+1)

𝐺

𝑘=1

{log (
𝑒𝑥𝑝[𝛼𝑘,τ − 𝜗τ𝑉(𝑧𝑖𝑘,𝜏, 𝑧𝑙𝑘,𝜏)]

∑ 𝑒𝑥𝑝[𝛼ℎ,τ − 𝜗τ ∑ 𝑉(𝑧𝑖ℎ,𝜏, 𝑧𝑙ℎ,𝜏)𝑙∈N𝑖
]𝐺

ℎ=1

)}

𝑚

𝑖=1

= 0 (5.17) 

which is the weighted sum of the pseudo-likelihood equations for a Strauss automodel 

with weights 𝜔𝑖𝑘,𝜏
(𝑡+1)

.  

At each iteration of the M step, the membership is assumed to be known and a conditional 

logit model is estimated. This model is implemented using 𝜔𝑖𝑘,τ
(𝑡+1)

 as a response variable, 

while we use G counting variables describing the potential function as covariates.  

A Newton-type algorithm can be used to provide pseudo ML estimates for 𝛼𝑘;𝜏 and 𝜗𝜏, 

k=1,...,G-1. 

So, updates for model parameters are defined as  

{β𝜏, σ𝜏, 𝜉k;𝜏} = 𝑎𝑟𝑔𝑚𝑎𝑥{β𝜏,σ𝜏,𝜉k;𝜏} ∑ ∑ 𝜔𝑖𝑘,𝜏
(𝑡+1)

𝐺

𝑘=1

{∑ log [𝑓𝜏(𝑦𝑖𝑗|𝛽𝜏, 𝜉𝑘;𝜏 , 𝜎𝜏)]

𝑛𝑖

𝑗=1

}

𝑚

𝑖=1

 

while for the Strauss model 

{𝛼𝑘;𝜏, 𝜗𝜏} = 𝑎𝑟𝑔𝑚𝑎𝑥{𝛼𝑘;𝜏,𝜗𝜏} ∑ ∑ 𝜔𝑖𝑘,𝜏
(𝑡+1)

𝐺

𝑘=1

{log (
𝑒𝑥𝑝[𝛼𝑘,τ − 𝜗τ𝑉(𝑧𝑖𝑘,𝜏, 𝑧𝑙𝑘,𝜏)]

∑ 𝑒𝑥𝑝[𝛼ℎ,τ − 𝜗τ ∑ 𝑉(𝑧𝑖ℎ,𝜏, 𝑧𝑙ℎ,𝜏)𝑙∈N𝑖
]𝐺

ℎ=1

)}

𝑚

𝑖=1

 

The E- and M-steps are alternated until convergence, obtained with a sequence of non 

decreasing (pseudo) likelihood values which is bounded from above. The algorithm can be 

simply programmed and it is quite efficient compared to other techniques. As regards the 

choice of the number of components it is possible to use the technique based on Model 

comparison with composite likelihood information criteria. We perform the estimation 

algorithm for an increasing number of components of the mixture, starting from the 

number of groups equal to 2 and stopping as soon as the Composite likelihood Bayesian 

information criteria (CLBIC) begins to increase. The Bayesian information criterion (BIC) 

can be considered a CLBIC assessment because, otherwise, calculating the Hessian matrix 

and the Jacobian matrix would be very complicated (Ng and Joe 2014). 
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6 Simulation study 

In this section we describe a small scale simulation study to evaluate the performance of 

the proposed method, for three different quantile levels, τ = 0.25, τ = 0.5 and τ = 0.75. We 

have considered a regular lattice of size 20X20, with m = 400 cells; within each cell, we 

have ni=n units. Two covariates are considered, normally 𝑋1𝑖~𝐸𝑋𝑃𝑚(𝑚, 𝜆) assumes the 

same value for all the units in a cell, while 𝑋2𝑖𝑗~𝑁(0,1), i=1,...,m, j=1,...,n, is varying with 

units in a cell. 

We fix G = 4, with two possible spatial structure scenarios, as depicted in Figure 6.1. 

  
Figure 6.1 Lattice divided into G=4 groups: with a regular structure (left), and a less-

regular structure (right) 

The response values 𝑦𝑖𝑗 have been generated according to the following linear model: 

𝑦𝑖𝑗 =  ∑ 𝛽0k𝐼(𝑧𝑖 = 𝑘)

𝐺

𝑘=1

+ 𝛽1𝑋1𝑖 + ∑ 𝛽2k𝐼(𝑧𝑖 = 𝑔)

𝐺

𝑘=1

𝑋2𝑖𝑗 + 𝜀𝑖𝑗     i =  1, . . . , 400, j =  1, . . . , 20  

where 𝜀𝑖𝑗~𝑁(0,1) , 𝛽0 = (−5, −3, 3, − 5)  , 𝛽1 = (2)  e 𝛽2 = (−1, 2, −3,0.5) . The coefficients 

with 𝛽0 and 𝛽2 vary with the component while 𝛽1 is constant over the lattice. As, it can be 

noticed the spatial dependence between units is only due to the adjacency, as 

neighbouring units are more likely to belong to the some component.. This scenario has 

been replicated for B=1’000 samples. 
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The aim of this simulation study is to evaluate the behavior of finite mixtures of quantile 

(FMQR) and M quantile (FMMQ) regression, when considering geographically located 

units. In this way, the estimates obtained from the FMQRSP and FMMQSP models will be 

compared to those from FMQR and FMMQ, respectively. 

The simulation study has been implemented using the R software. The estimates for 

FMMQ and FMQR have been obtained using the R functions developed by Alfò et al. 

(2017). An EM algorithm for maximum (pseudo) likelihood estimation has been 

implemented for FMMQSP and FMQRSP. Using a non optimized R code on a 2 GHz Intel 

Core i7 laptop with 16 Gb RAM, the average time for each scenario is about 17 hours for 

all the B=1’000 samples and all the considered models. 

As we have previously seen, the tuning constant c can take on different values for the both 

the FMMQ and the FMMQSP models. In those cases where the data do not present outlier 

values, the best choice for c is a value that tends to ∞. Cantoni and Ronchetti (2001) 

suggest using c = 1.2, while Street et al. (1988) suggests using c = 1.25. Huber (1981) 

suggests c = 1.345, because it provides a reasonably high efficiency in the Gaussian case, it 

produces a 95% efficiency when errors are Gaussian and it still offers protection against 

outliers. 

Wang et al. (2007) suggested a data-based approach for the definition of the tuning 

constant. In this way , the choice of the tuning constant can be performed automatically, 

within the step M of the EM algorithm. In this phase the constant can be estimated 

simultaneously with other parameters maximizing the log-likelihood function. However, 

no closed form solution is available. The estimation technique is based on the log-

likelihood function, and it can be performed by defining a value in a grid defined over an 

appropriate segment (0.01, 100). The calculation of the log-likelihood will then be 

performed for a fixed c value in the grid. The c to be selected is the value from the grid 

that maximizes the log-likelihood function. This procedure is computationally complex, 

and, for this reason, we have considered two different values: c = 1.345 and c = 100 only. 

FMMQR and FMMQSPR (c = 1.345) are more robust to outliers and, when heterogeneity in 

the form of model parameters varying with the spatial cluster is present, we may guess 

that they should perform better than the single level M-quantile model (MQ). Also, when 

outliers are present, we expect that FMMQR and FMMQSPR will perform better than their 

expectile counterparts, FMMQE and FMMQSPE (c = 100), and the linear random effect 

model (Mixed). 

A significant problem in the definition of spatial models is the initial allocation of the m 

cells to the component; in fact, once G is fixed, the initial choice of the component could be 
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an issue. In this simulation study we chose to assign the units to group by a simple k-

means algorithm available through the library "stats", function kmeans. 

At each iteration of algorithms discussed in section 5.4  the units are allocated according to 

a MAP rule. The procedure is thus repeated until convergence and if at least one group is 

empty, the procedure is interrupted. 

To describe component membership given the neighboring units, we have used model in 

equation (5.8). This can be estimated via a conditional logit model by McFadden (1973), 

which provides a good approximation to the Potts model where covariates are random. 

From a computational point of view, the conditional logit model needs for each individual 

a row for each category of the variable of interest. That is in the current case, for each 

geographical unit, we have 4 rows; in our case, leading to mXG=400*4 rows in the dataset. 

The conditional probability that the geographical unit i is assigned to component k=1,...,G 

is given by: 

𝑝𝑖𝑘 =
𝑒𝑥𝑝(𝛼𝑘 − 𝜗 ∑ 𝑉(𝑧𝑖𝑘, 𝑧𝑗𝑘)𝑗∈𝑁𝑖

)

∑ 𝑒𝑥𝑝(𝛼𝑙 − 𝜗 ∑ 𝑉(𝑧𝑖𝑙, 𝑧𝑗𝑙)𝑗∈𝑁𝑖
)𝐺

𝑙=1

 

and the R mlogit function from library mlogit was used to estimate parameters (𝛼𝑘 ,ϑ) 

k=1,..,G. 

To compare the performance of the different model specifications, the following measures 

have been used in addition to the overall mean estimates and the Mean squared error 

(MSE) estimate: 

• for model parameters efficiency (EFF), this indicator defines the efficiency of the 

standard model compared to the spatial corresponding one: 

𝐸𝐹𝐹(𝛽̂) =
MSE(𝛽̂)̂

MSE(𝛽̂𝑠𝑝)̂
 (6.1) 

• adjusted Rand index, a measure of similarity between two partitions, to understand 

whether the partition produced by the model agrees with the true one. 
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6.1 Simulation results 

The first measure to evaluate and compare the models we have discussed so far is the 

average value of parameter estimates over the B=1000 simulation samples in the two 

scenarios we have considered (see Figure 6.1).  

From the analysis of the distribution of estimates in the two scenarios, we notice that the 

estimates moderate bias with respect to the true parameter value. The results are however 

quite reliable but for a few cases and models . 

Models without spatial effects show a greater bias only in the case of 𝛽21 and quantile 0.25. 

 

Table 6.1 scenario 1 (regular lattice): Mean values of parameter estimation 

Model Quantile 

fixed 

coefficients 
component-specific slope parameter 

𝛽1 𝛽21 𝛽22 𝛽23 𝛽24 

True value - 2.00 -1.00 2.00 -3.00 0.50 

FMQR 

25 2.00 -0.55 1.98 -2.98 0.50 

50 2.00 -0.93 2.00 -2.98 0.50 

75 2.00 -0.99 2.00 -2.78 0.48 

FMMQR 

25 1.99 -0.39 1.99 -2.98 0.50 

50 1.99 -0.90 2.00 -2.98 0.50 

75 2.00 -1.00 2.00 -2.83 0.48 

FMMQE 

25 2.00 -0.35 1.99 -3.00 0.50 

50 2.00 -0.93 2.00 -2.97 0.50 

75 2.00 -0.99 2.00 -2.81 0.48 

FMQRSP 

25 1.94 -0.81 1.97 -2.93 0.46 

50 1.96 -0.99 1.93 -3.00 0.44 

75 1.93 -0.91 1.89 -2.99 0.44 

FMMQSPR 

25 1.96 -0.80 1.97 -2.97 0.46 

50 1.96 -0.99 1.99 -3.00 0.50 

75 1.95 -0.99 1.93 -3.03 0.46 

FMMQSPE 

25 1.96 -0.85 1.96 -2.96 0.46 

50 1.96 -1.00 1.99 -2.99 0.47 

75 1.94 -0.99 1.98 -2.99 0.49 
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Table 6.2 scenario 2 (no regular lattice): Mean values of parameter estimation 

Model Quantile 
fixed 

coefficients 
component-specific slope parameter 

𝛽1 𝛽21 𝛽22 𝛽23 𝛽24 

True value - 2.00 -1.00 2.00 -3.00 0.50 

FMQR 

25 2.00 -0.55 1.99 -2.98 0.50 

50 2.00 -0.93 2.00 -2.97 0.50 

75 2.00 -0.99 2.00 -2.81 0.48 

FMMQR 

25 1.99 -0.42 1.99 -2.98 0.50 

50 2.00 -0.94 2.00 -2.99 0.50 

75 2.00 -1.00 2.00 -2.98 0.48 

FMMQE 

25 1.99 -0.32 1.99 -3.00 0.50 

50 2.00 -0.94 2.00 -2.99 0.50 

75 2.00 -1.00 2.00 -2.84 0.48 

FMQRSP 

25 1.94 -0.78 1.97 -2.92 0.45 

50 1.94 -0.99 1.94 -3.00 0.44 

75 1.91 -0.89 1.88 -2.98 0.45 

FMMQSPR 

25 1.95 -0.79 1.97 -2.96 0.46 

50 1.94 -1.00 2.00 -3.00 0.50 

75 1.93 -0.99 1.94 -3.02 0.46 

FMMQSPE 

25 1.95 -0.82 1.97 -2.94 0.47 

50 1.94 -1.00 1.99 -2.98 0.48 

75 1.63 -1.00 1.98 -2.97 0.49 

 

When we move from scenario 1 to scenario 2 we observe a (relatively large) bias arising 

for =0.25 in a few cases. 

In Figure A.1-Figure A.10, A.Appendix, we report the distribution, across simulated 

samples, of estimates for 𝛽1 and 𝛽2g and the two scenarios 

We may notice that in the second scenario, as far as the estimation of the parameters 𝛽1 and 𝛽2g is 

concerned, the increase of their variability is mainly characterized by the increase of anomalous 

values and therefore distant from the true value of the parameters. 
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To better analyze the behaviour of parameter estimates, we can use an estimate for the 

mean squared error (MSE).  

The MSE analysis reveals that, in both scenarios (see Table 6.3 and Table 6.4), the 

discrepancy between the estimated values and the true values is higher for the models 

with spatial effects when compared to those not accounting for spatial dependence. This 

difference is essentially due to the higher variability of estimates obtained when a spatial 

estimators prior is considered. 

Table 6.3 scenario 1 (regular lattice): mean squared error (MSE) 

Model Quantile 

fixed 

coefficients 
component-specific slope parameter 

𝛽1 𝛽21 𝛽22 𝛽23 𝛽24 

FMQR 

25 0.0005 0.3337 0.0067 0.0126 0.0010 

50 0.0003 0.0920 0.0020 0.0206 0.0018 

75 0.0004 0.0112 0.0046 0.3223 0.0085 

FMMQR 

25 0.0061 0.7279 0.0057 0.0168 0.0034 

50 0.0038 0.1357 0.0019 0.0302 0.0020 

75 0.0011 0.0065 0.0007 0.2865 0.0069 

FMMQE 

25 0.0014 0.7735 0.0053 0.0042 0.0006 

50 0.0006 0.0980 0.0011 0.0429 0.0010 

75 0.0010 0.0069 0.0007 0.2477 0.0074 

FMQRSP 

25 0.0079 0.2124 0.0104 0.1070 0.0148 

50 0.0063 0.0048 0.0259 0.0025 0.0170 

75 0.0112 0.0960 0.0336 0.0623 0.0132 

FMMQSPR 

25 0.0063 0.2104 0.0117 0.0827 0.0154 

50 0.0063 0.0031 0.0020 0.0520 0.0026 

75 0.0077 0.0030 0.0280 0.0201 0.0092 

FMMQSPE 

25 0.0059 0.1613 0.0139 0.1117 0.0147 

50 0.0072 0.0023 0.0033 0.0496 0.0085 

75 0.0085 0.0028 0.0044 0.0518 0.0044 
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Table 6.4 scenario 2 (no regular lattice): mean squared error (MSE) 

Model Quantile 

fixed 

coefficients 
component-specific slope parameter 

𝛽1 𝛽21 𝛽22 𝛽23 𝛽24 

FMQR 

25 0.000 0.333 0.006 0.012 0.001 

50 0.000 0.089 0.002 0.033 0.002 

75 0.000 0.008 0.004 0.260 0.007 

FMMQR 

25 0.005 0.697 0.004 0.035 0.001 

50 0.002 0.089 0.002 0.010 0.001 

75 0.001 0.003 0.001 0.046 0.006 

FMMQE 

25 0.003 0.815 0.005 0.001 0.001 

50 0.000 0.083 0.001 0.021 0.001 

75 0.001 0.005 0.001 0.238 0.006 

FMQRSP 

25 0.013 0.245 0.010 0.119 0.017 

50 0.016 0.003 0.022 0.002 0.017 

75 0.021 0.127 0.036 0.066 0.011 

FMMQSPR 

25 0.013 0.234 0.012 0.089 0.013 

50 0.014 0.002 0.002 0.043 0.002 

75 0.019 0.002 0.023 0.019 0.010 

FMMQSPE 

25 0.012 0.196 0.012 0.110 0.011 

50 0.016 0.002 0.004 0.055 0.006 

75 0.209 0.002 0.004 0.051 0.004 

 

If we look at the efficiency of estimates through the EFF measure defined in equation (6.1), 

see Table 6.5 and Table 6.6, in both scenarios the estimates made using models without 

spatial effects seem to produce (slightly) higher values of MSE, even if the behaviour is not 

monotone.  

For the first component-specific parameter, models with spatial effects seem to be more 

efficient, but this is quite an exception to the above mentioned phenomenon. 
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Table 6.5 scenario 1 (regular lattice): Efficiency (EFF) 

Model Quantile 
fixed 

coefficients 
component-specific slope parameter 

𝛽1 𝛽21 𝛽22 𝛽23 𝛽24 

FMQR/FMQRSP 

25 0.06 1.57 0.65 0.12 0.06 

50 0.05 19.26 0.08 8.08 0.10 

75 0.03 0.12 0.14 5.17 0.65 

FMMQE/FMMQSPE 

25 0.24 4.79 0.38 0.04 0.04 

50 0.08 41.83 0.33 0.87 0.12 

75 0.12 2.44 0.17 4.78 1.71 

FMMQR/FMMQSPR 

25 0.96 3.46 0.49 0.20 0.22 

50 0.61 43.18 0.96 0.58 0.77 

75 0.14 2.16 0.03 14.23 0.75 

 

 

Table 6.6 scenario 2 (no regular lattice): Efficiency (EFF) 

Model Quantile 

fixed 

coefficients 
component-specific slope parameter 

𝛽1 𝛽21 𝛽22 𝛽23 𝛽24 

FMQR/FMQRSP 

25 0.034 1.359 0.578 0.104 0.067 

50 0.018 31.736 0.084 13.447 0.098 

75 0.018 0.061 0.118 3.922 0.659 

FMMQE/FMMQSPE 

25 0.252 4.149 0.428 0.012 0.054 

50 0.018 34.645 0.362 0.381 0.166 

75 0.005 2.065 0.322 4.698 1.616 

FMMQR/FMMQSPR 

25 0.386 2.977 0.321 0.399 0.113 

50 0.132 38.677 1.113 0.225 0.716 

75 0.072 1.389 0.057 2.467 0.581 
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The standard error estimates in the current context, is calculated using the bootstrap. This 

is a statistical technique based on resampling with replacement, which can be used to 

approximate the sampling distribution of given estimator. 

The technique has been used, among others by Alfò et al. (2017) to evaluate finite mixtures 

models. In the present dissertation a spatial dataset composed by geographical units is 

used. The adoption of a bootstrap technique in such a context involves the creation of m 

samples of size n composed solely by a portion of the original geographical space. These 

re-samples would lead to a completely different geography and, therefore, may bias the 

observed spatial association. 

To avoid these drawbacks, in the simulation study we have discussed, we decided to 

evaluate the "quality" of model estimates by using a high number of replications (B=1'000) 

in order to provided an estimated of the standard deviation of the model parameter 

estimates simulations across and compare it with the one obtained by the bootstrap 

approach. 

To analyse the standard deviation behaviour in the two considered scenarios, the standard 

deviation obtained by examining just the first 20, 50, 500 was replicates considered in 

addition to the one obtained by considering all the replicates (see Table 6.7- Table 6.18). 

Analysing the first scenario and the first 20 iterations, the standard error does seem to be 

almost non-convergent, as in the subsequent iterations a slight decrease in the estimates 

can be clearly seen. In the case of the second scenario, the estimates are slightly more 

variable, but they reach a certain stability already of the 50 replicates. 

In this context, it is interesting to note that in both scenarios, for all the analyzed models, 

the behaviour is similar when the number of replicates increases. 
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Table 6.7 scenario 1 (regular lattice): standard deviation analysis of the model FMQR (20, 50, 500 and 1000 replicates) 

Replicates 

fixed 

coefficients 
component-specific slope 

parameter 

𝛽1 𝛽21 𝛽22 𝛽23 𝛽24 

 = 0.25 

20 0.02270 0.36312 0.10243 0.16695 0.03344 

50 0.02270 0.36312 0.10243 0.15115 0.03344 

500 0.02140 0.36769 0.07993 0.12629 0.03019 

1000 0.02122 0.36447 0.07993 0.12629 0.03095 

 = 0.50 

20 0.01934 0.40434 0.05907 0.22159 0.05466 

50 0.01826 0.40434 0.05907 0.20845 0.04571 

500 0.01826 0.28132 0.04659 0.19438 0.04319 

1000 0.01736 0.29583 0.04500 0.17954 0.04189 

 = 0.75 

20 0.02148 0.11163 0.07151 0.56214 0.09628 

50 0.01951 0.11163 0.07151 0.56214 0.09628 

500 0.01951 0.10542 0.06644 0.46780 0.08742 

1000 0.01950 0.10579 0.06756 0.47587 0.08933 

 

Table 6.8 scenario 1 (regular lattice): standard deviation analysis of the model FMMQE (20, 50, 500 and 1000 

replicates) 

Replicates 

fixed 

coefficients 
component-specific slope parameter 

𝛽1 𝛽21 𝛽22 𝛽23 𝛽24 

 = 0.25 

20 0.06681 0.59836 0.08908 0.22675 0.02544 

50 0.06681 0.59836 0.08908 0.22675 0.02544 

500 0.03762 0.59607 0.07571 0.08026 0.02459 

1000 0.03762 0.59743 0.07122 0.07822 0.02434 

 = 0.50 

20 0.02756 0.32880 0.05174 0.22663 0.05119 

50 0.02756 0.32880 0.04486 0.22663 0.05119 

500 0.02337 0.29908 0.03663 0.15910 0.02957 

1000 0.02374 0.30515 0.03301 0.15261 0.03221 

 = 0.75 

20 0.04935 0.12453 0.03904 0.52393 0.12436 

50 0.03990 0.12453 0.02951 0.52393 0.09510 

500 0.03642 0.09539 0.02952 0.50780 0.08681 

1000 0.03160 0.08310 0.02733 0.49938 0.08403 
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Table 6.9 scenario 1 (regular lattice): standard deviation analysis of the model FMMQR (20, 50, 500 and 1000 

replicates) 

Replicates 

fixed 

coefficients 
component-specific slope parameter 

𝛽1 𝛽21 𝛽22 𝛽23 𝛽24 

 = 0.25 

20 0.13938 0.83738 0.09271 0.13758 0.08237 

50 0.13054 0.59813 0.09271 0.13758 0.08237 

500 0.12447 0.59809 0.08241 0.11383 0.05935 

1000 0.07771 0.59834 0.07452 0.11398 0.05834 

 = 0.50 

20 0.09317 0.48312 0.04858 0.16092 0.05770 

50 0.07931 0.35900 0.04858 0.14168 0.05022 

500 0.07240 0.35900 0.04719 0.13448 0.04560 

1000 0.06141 0.35546 0.04363 0.13251 0.04485 

 = 0.75 

20 0.03889 0.09340 0.04024 0.61890 0.10168 

50 0.03889 0.09299 0.03181 0.50533 0.10168 

500 0.03350 0.08866 0.02891 0.47964 0.08300 

1000 0.03311 0.08027 0.02728 0.47964 0.08142 

 

Table 6.10 scenario 1 (regular lattice): standard deviation analysis of the model FMQRSP (20, 50, 500 and 1000 

replicates) 

Replicates 

fixed 

coefficients 
component-specific slope parameter 

𝛽1 𝛽21 𝛽22 𝛽23 𝛽24 

 = 0.25 

20 0.06430 0.60005 0.14101 0.36448 0.12615 

50 0.06430 0.44237 0.10752 0.36448 0.12615 

500 0.06666 0.41967 0.09815 0.31840 0.11470 

1000 0.06660 0.41967 0.09810 0.30086 0.11464 

 = 0.50 

20 0.07084 0.09323 0.20348 0.07476 0.14343 

50 0.07084 0.08407 0.14571 0.05635 0.14343 

500 0.06813 0.06796 0.14535 0.05144 0.11739 

1000 0.06773 0.06796 0.14535 0.05109 0.11618 

 = 0.75 

20 0.08400 0.26692 0.15874 0.26922 0.09787 

50 0.08400 0.26692 0.15946 0.26922 0.09787 

500 0.07938 0.29618 0.15128 0.24147 0.09835 

1000 0.07938 0.29618 0.14273 0.24620 0.09907 
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Table 6.11 scenario 1 (regular lattice): standard deviation analysis of the model FMMQSPR (20, 50, 500 and 1000 

replicates) 

Replicates 

fixed 

coefficients 
component-specific slope parameter 

𝛽1 𝛽21 𝛽22 𝛽23 𝛽24 

 = 0.25 

20 0.07640 0.59634 0.12208 0.28751 0.13397 

50 0.07640 0.43963 0.12208 0.28751 0.13397 

500 0.06883 0.41357 0.10040 0.28102 0.11651 

1000 0.06879 0.41353 0.10368 0.28228 0.11553 

 = 0.50 

20 0.07042 0.05614 0.04500 0.22042 0.07847 

50 0.07042 0.05614 0.04500 0.22042 0.06830 

500 0.06651 0.05405 0.04587 0.22989 0.06453 

1000 0.06820 0.05534 0.04511 0.22823 0.05012 

 = 0.75 

20 0.10036 0.07042 0.14864 0.13209 0.08996 

50 0.07543 0.06429 0.14864 0.13209 0.08996 

500 0.07128 0.05750 0.14943 0.13533 0.09065 

1000 0.07237 0.05424 0.15179 0.13453 0.08893 

 

Table 6.12 scenario 1 (regular lattice): standard deviation analysis of the model FMMQSPE (20, 50, 500 and 1000 

replicates) 

Replicates 

fixed 

coefficients 
component-specific slope parameter 

𝛽1 𝛽21 𝛽22 𝛽23 𝛽24 

 = 0.25 

20 0.06640 0.45574 0.10952 0.29753 0.16061 

50 0.06640 0.45574 0.10952 0.29753 0.12355 

500 0.06414 0.34752 0.10974 0.27048 0.11780 

1000 0.06680 0.37217 0.11141 0.27996 0.11435 

 = 0.50 

20 0.10594 0.07382 0.06222 0.23574 0.10552 

50 0.08248 0.07382 0.06222 0.23574 0.10552 

500 0.07529 0.04537 0.05436 0.23475 0.09776 

1000 0.07241 0.04736 0.05665 0.22560 0.08888 

 = 0.75 

20 0.07591 0.04064 0.09649 0.25289 0.06325 

50 0.07591 0.04064 0.07467 0.25289 0.06325 

500 0.07370 0.05559 0.06816 0.23108 0.06732 

1000 0.07370 0.05280 0.06508 0.22881 0.06418 
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Table 6.13 scenario 2 (no regular lattice): standard deviation analysis of the model FMQR (20, 50, 500 and 1000 

replicates) 

Replicates 

fixed 

coefficients 
component-specific slope parameter 

𝛽1 𝛽21 𝛽22 𝛽23 𝛽24 

 = 0.25 

20 0.053 0.918 0.248 0.330 0.085 

50 0.021 0.375 0.094 0.135 0.035 

500 0.021 0.369 0.076 0.110 0.034 

1000 0.021 0.367 0.076 0.110 0.034 

 = 0.50 

20 0.043 0.663 0.067 0.830 0.137 

50 0.019 0.251 0.025 0.371 0.052 

500 0.017 0.290 0.038 0.183 0.047 

1000 0.017 0.290 0.043 0.179 0.041 

 = 0.75 

20 0.067 0.548 0.138 0.627 0.239 

50 0.024 0.245 0.069 0.528 0.097 

500 0.020 0.088 0.069 0.501 0.088 

1000 0.020 0.088 0.065 0.472 0.082 

 

Table 6.14 scenario 2 (no regular lattice): standard deviation analysis of the model FMMQR (20, 50, 500 and 1000 

replicates) 

Replicates 

fixed 

coefficients 
component-specific slope parameter 

𝛽1 𝛽21 𝛽22 𝛽23 𝛽24 

 = 0.25 

20 0.316 3.155 0.252 0.634 0.086 

50 0.119 1.192 0.089 0.240 0.038 

500 0.095 0.847 0.064 0.194 0.038 

1000 0.071 0.601 0.062 0.187 0.038 

 = 0.50 

20 0.150 1.359 0.202 0.505 0.134 

50 0.053 0.514 0.091 0.191 0.050 

500 0.050 0.317 0.045 0.098 0.047 

1000 0.043 0.291 0.046 0.098 0.038 

 = 0.75 

20 0.099 0.646 0.075 0.522 0.212 

50 0.049 0.228 0.030 0.241 0.095 

500 0.039 0.075 0.034 0.223 0.079 

1000 0.037 0.058 0.037 0.212 0.076 
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Table 6.15 scenario 2 (no regular lattice): standard deviation analysis of the model FMMQE (20, 50, 500 and 1000 

replicates) 

Replicates 

fixed 

coefficients 
component-specific slope parameter 

𝛽1 𝛽21 𝛽22 𝛽23 𝛽24 

 = 0.25 

20 0.232 1.694 0.295 0.110 0.061 

50 0.095 0.599 0.104 0.042 0.023 

500 0.057 0.597 0.077 0.036 0.023 

1000 0.055 0.597 0.071 0.037 0.024 

 = 0.50 

20 0.040 1109 0.196 0.391 0.133 

50 0.018 0.419 0.074 0.195 0.066 

500 0.017 0.279 0.039 0.152 0.040 

1000 0.017 0.281 0.036 0.143 0.032 

 = 0.75 

20 0.099 0.390 0.117 1.243 0.176 

50 0.049 0.195 0.052 0.507 0.062 

500 0.035 0.070 0.047 0.489 0.073 

1000 0.032 0.070 0.038 0.462 0.077 

 

Table 6.16 scenario 2 (no regular lattice): standard deviation analysis of the model FMQRSP (20, 50, 500 and 1000 

replicates) 

Replicates 

fixed 

coefficients 
component-specific slope parameter 

𝛽1 𝛽21 𝛽22 𝛽23 𝛽24 

 = 0.25 

20 0.257 0.973 0.260 1.020 0.376 

50 0.105 0.397 0.116 0.416 0.133 

500 0.102 0.427 0.102 0.356 0.122 

1000 0.096 0.444 0.098 0.334 0.121 

 = 0.50 

20 0.326 0.313 0.415 0.140 0.341 

50 0.163 0.110 0.157 0.053 0.152 

500 0.125 0.061 0.137 0.050 0.118 

1000 0.113 0.052 0.135 0.049 0.115 

 = 0.75 

20 0.397 0.755 0.331 0.490 0.270 

50 0.140 0.338 0.148 0.245 0.096 

500 0.113 0.338 0.141 0.245 0.094 

1000 0.113 0.338 0.144 0.256 0.091 
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Table 6.17 scenario 2 (no regular lattice): standard deviation analysis of the model FMMQSPR (20, 50, 500 and 1000 

replicates) 

Replicates 

fixed 

coefficients 
component-specific slope parameter 

𝛽1 𝛽21 𝛽22 𝛽23 𝛽24 

 = 0.25 

20 0.296 1.051 0.236 0.743 0.253 

50 0.105 0.429 0.096 0.332 0.113 

500 0.103 0.430 0.097 0.311 0.108 

1000 0.103 0.438 0.105 0.295 0.108 

 = 0.50 

20 0.392 0.071 0.118 0.411 0.108 

50 0.139 0.035 0.059 0.184 0.048 

500 0.115 0.050 0.046 0.205 0.044 

1000 0.105 0.048 0.043 0.207 0.045 

 = 0.75 

20 0.316 0.203 0.334 0.313 0.157 

50 0.119 0.083 0.149 0.140 0.079 

500 0.119 0.049 0.147 0.135 0.092 

1000 0.119 0.049 0.141 0.135 0.092 

 

Table 6.18 scenario 2 (no regular lattice): standard deviation analysis of the model FMMQSPE (20, 50, 500 and 1000 

replicates) 

Replicates 

fixed 

coefficients 
component-specificslopeparameter 

𝛽1 𝛽21 𝛽22 𝛽23 𝛽24 

 = 0.25 

20 0.373 1.037 0.288 0.989 0.296 

50 0.132 0.423 0.109 0.374 0.105 

500 0.113 0.417 0.108 0.330 0.099 

1000 0.097 0.406 0.105 0.326 0.098 

 = 0.50 

20 0.420 0.198 0.117 0.625 0.276 

50 0.148 0.088 0.058 0.236 0.113 

500 0.120 0.053 0.062 0.237 0.083 

1000 0.114 0.049 0.059 0.233 0.077 

 = 0.75 

20 0.795 0.197 0.214 0.628 0.168 

50 0.281 0.070 0.081 0.237 0.069 

500 0.267 0.052 0.070 0.227 0.068 

1000 0.267 0.049 0.065 0.223 0.061 
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Another interesting element to analyze is the estimated partitions. Considering the 

Adjusted Rand Index (ARI see Hubert and Arabie (1985)) we can see, in both the proposed 

scenarios, the models with spatial effects are associated to a higher average value when 

compared to the non-spatial models (see Table 6.19 and Table 6.20). The distribution of the 

ARI indicator in models with spatial effects is concentrated around the median value, ie it 

assumes a value that smoothly varies between 0.71 and 0.84 for the different quantiles. For 

the models without spatial effect, the value varies between 0.41 and 0.70.  

Table 6.19 scenario 1 (regular lattice): Adjusted Rand index 

 FMQR FMMQR FMMQE 

 25 50 75 25 50 75 25 50 75 

Min. 0.43 0.43 0.43 0.00 0.00 0.00 0.00 0.00 0.00 
1st Qu. 0.46 0.80 0.48 0.00 0.80 0.51 0.51 0.80 0.51 
Median. 0.51 0.80 0.51 0.51 0.80 0.51 0.51 0.80 0.51 
Mean 0.60 0.76 0.62 0.46 0.70 0.55 0.60 0.75 0.63 
3rd Qu. 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 

Max. 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 

 FMQRSP FMMQSPR FMMQSPE 

 25 50 75 25 50 75 25 50 75 

Min. 0.37 0.69 0.72 0.37 0.37 0.37 0.37 0.37 0.37 
1st Qu. 0.80 0.82 0.82 0.81 0.82 0.83 0.81 0.82 0.83 
Median. 0.82 0.83 0.83 0.82 0.83 0.84 0.82 0.84 0.84 
Mean 0.81 0.83 0.84 0.80 0.85 0.86 0.80 0.84 0.86 
3rd Qu. 0.83 0.84 0.88 0.82 0.87 0.91 0.82 0.88 0.91 

Max. 0.97 0.97 0.97 0.92 1.00 1.00 0.89 1.00 1.00 
Table 6.20 scenario 2 (no regular lattice): Adjusted Rand index 

 FMQR FMMQR FMMQE 

 25 50 75 25 50 75 25 50 75 

Min. 0.33 0.33 0.33 0.00 0.00 0.00 0.00 0.00 0.00 
1st Qu. 0.36 0.70 0.38 0.00 0.70 0.41 0.41 0.70 0.41 
Median. 0.41 0.70 0.41 0.41 0.70 0.41 0.41 0.70 0.70 
Mean 0.50 0.66 0.52 0.39 0.62 0.46 0.51 0.65 0.55 
3rd Qu. 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 

Max. 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 

 FMQRSP FMMQSPR FMMQSPE 

 25 50 75 25 50 75 25 50 75 

Min. 0.27 0.63 0.63 0.27 0.27 0.27 0.27 0.27 0.27 
1st Qu. 0.70 0.71 0.71 0.71 0.72 0.73 0.71 0.72 0.73 

Median. 0.71 0.73 0.73 0.72 0.73 0.74 0.72 0.73 0.74 
Mean 0.71 0.74 0.74 0.70 0.75 0.76 0.70 0.74 0.76 
3rd Qu. 0.72 0.74 0.78 0.72 0.77 0.81 0.72 0.76 0.81 
Max. 0.90 0.87 0.88 0.84 0.88 0.89 0.81 0.90 0.90 
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 = 0.25 

 
 

 = 0.50 

 
 

 = 0.75 

 
Figure 6.2 scenario 1 (regular lattice): Adjusted Rand index, boxplot 
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 = 0.25 

 
 

 = 0.50 

 
 

 = 0.75 

 
Figure 6.3 scenario 2 (no regular lattice): Adjusted Rand index, boxplot 
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7 Empirical application: housing prices in Rome 

To better illustrate the features of the proposed approach, it was applied to the analysis of 

the relationship between property sales in Rome in 2001 and socio-economic 

characteristics of the area where the property is located. The source for the analysed data on 

sale of new or renovated properties is provided by the real estate agency of the Territory 

Agency. The prices refer to the various urban sectors of the municipality of Rome better 

said toponymy subdivisions. The city of Rome in 2001 was composed by 115 toponomastic 

subdivisions (Figure 7.1): 

• 22 "Rioni" defining the historic center, established in the Middle Ages on the basis of the 14 

Augustan regions and expanded at the end of the 19th century, all within the Aurelian 

Walls but Borgo and Prati  

• 35 "Quartieri" surrounding the historic center outside the Aurelian Walls, including the 

three "marine quarters" Ostia is divided in 

• 6 "Suburbi", territories beyond the district  

• 52 "Zone" slightly populated across Grande Raccordo Anulare (GRA) 

 

Figure 7.1 Toponomastic divisions for the city of Rome in 2001 
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The available dataset combines the information of the trades occurred in the 6 suburbs with the 

homonymous and neighboring quarters, thus leading to the partition in 109 territorial units are 

represented below (Figure 7.2). 

 

Figure 7.2 The city of Rome in 2001 is composed of 109 territorial units under study 

In 2001 new or renovated homes price is equal to € 3,344,954 / sqm, with a range that varies from € 

2,000 / sqm to € 5,600 / sqm (Table 7.1). Analyzing the observed price distribution in the 

municipality we can see that it is bimodal, with two modes, corresponding to 2'500 € / sqm, and 

4'700 € / sqm (Figure 7.3). 
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Figure 7.3 Distribution of price by sqm for new or renovated houses  

Analyzing the selling price from a geographical point of view, we can see how the corresponding 

building position seem to greatly affect the housing price. In particular, the value decreases as the 

distance from the center of Rome increases(Figure 7.4). 

 

Figure 7.4 Geographical representation of the mean price of houses (€ / sqm) 
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Regarding the socio-economic characteristics of the territorial units/buildings, 5 indicators 

have been considered, based on the Population and Housing Census for year 2001. The 

analyzed indicators are: 

1) Population percentage over 65 years 

𝑃65 =
𝑃𝑜𝑝65+

𝑃𝑜𝑝
∗ 100 

where 𝑃𝑜𝑝65+  indicates the resident population aged 65 and over, while Pop 

represents the resident population. 

2) Average number of rooms: 

𝑁𝑟𝑜𝑜𝑚𝑠 =
𝑁𝑟𝑜𝑜𝑚𝑠 𝑡𝑜𝑡 

𝑁homes
 

where 𝑁𝑟𝑜𝑜𝑚𝑠 𝑡𝑜𝑡 and 𝑁homes respectively correspond to the number of total rooms 

and the number of total dwellings. 

3) Percentage of employees 

𝑃empl =
𝑁employees

𝑁employment
∗ 100 

where 𝑁employees represents the number of employees while 𝑁employment indicates 

the number of persons employed. 

4) Percentage of employees in the Industry sector 

𝑃ind =
𝑁emp ind

𝑁employment
∗ 100 

where 𝑁emp ind indicates the number of employees in the industrial sector, while 

𝑁employment indicates the total number of persons employed. 

5) Percentage of employees in the Commerce sector  

𝑃com =
𝑁emp com

𝑁employment
∗ 100 

where 𝑁emp com is the number of employees in the Commerce sector and the total 

number is  of persons employed denoted by 𝑁employment. 
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Table 7.1 Descriptive statistics of the data 

Variable Label Range Mean SD 

Buying and selling New or renovated homes (€/sqm) Price (2'000; 5'600) 3'345.0 997.3 

Average number of rooms 𝑁rooms (5,57; 26,57) 17.4 5.5 

Population percentage over 65 years 𝑃65 (3,09; 5,22) 4.0 0.4 

Percentage of employees 𝑃empl (53,41; 86,62) 74.7 7.9 

Percentage of employees in the Industry sector 𝑃ind (8,31; 66,67) 17.8 8.4 

Percentage of employees in the Commerce sector 𝑃com (0,00 25,94) 17.9 4.7 

 

The choice of these socio-economic indicators is motivated by the high correlation with the 

phenomenon under study. Indeed analyzing the Table 7.2 we can see that the correlation between 

the price variable and the covariates, for 𝑁rooms, assumes absolute values higher than 0.29. We 

also note, interestingly, that the 𝑃65 variable is highly correlated, 0.68, with the price variable. 

In the analysis under study it was preferred to standardize the variables as these have different 

variability and size. 

 

Table 7.2 correlation matrix 

 

Price 𝑃65 𝑁rooms 𝑃empl 𝑃ind 𝑃com 

Price 1.00 0.68 0.29 -0.64 -0.51 -0.45 

𝑃65 0.68 1.00 0.19 -0.33 -0.41 -0.45 

𝑁rooms 0.29 0.19 1.00 -0.49 -0.05 -0.45 

𝑃empl -0.64 -0.33 -0.49 1.00 0.08 0.31 

𝑃ind -0.51 -0.41 -0.05 0.08 1.00 -0.10 

𝑃com -0.45 -0.45 -0.45 0.31 -0.10 1.00 
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Table 7.5 Plot of price by covariates. 

We extend the exploratory analysis considering the FMQR, FMMQ, FMQRSP and 

FMMQSP models. As before, M-quantile and M-quantile models with spatial effects are 

estimated using the Huber influence function with c = 1.345 (FMMQR and FMMQSPR) and 

c = 100 (FMMQE and FMMQSPE). 

The Price variable is the dependent variable (response), the 𝑁rooms variable is associated to 

a fixed effect, while the others namely 𝑃65 , 𝑃empl, 𝑃ind  and 𝑃com , are all associated to 

component specific effects. This model choice is motivated by the fact that the price in 

square meters for houses is influenced by the house size, while the other variables play the 

role of characterizing the socio-economic context where the house is located. 

We have considered three quantiles 0.25, 0.50 and 0.75: for each, we estimated the models 

for an increasing number of components of the mixture, starting from G=2 and stopping as 

soon as the BIC begins to increase. The BIC can be considered as CLBIC assessment 

because, otherwise, calculating the Hessian matrix and the Jacobian matrix would be very 

complicated (Ng and Joe 2014).  
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According to this approach, the optimal number of components both for models with 

spatial and non-spatial effects is always G=2, but for three FMMQSPR cases of quantile 

0.25, FMMQE and FMMQR of quantile 0.75, where G=3. (see Table 7.3). 

Table 7.3 BIC values for varying number of mixture components K and varying quantile (the optimal models are 

reported in boldface) 

Group FMQRSP 
 

Group FMQR 

K 0.25 0.50 0.75 
 

K 0.25 0.50 0.75 

2 169.4 139.2 162.8 

 

2 146.5 166.5 164.5 

3 292.7 313.6 376.2 
 

3 160.6 168.1 199.6 

4 - - - 
 

4 202.0 182.2 - 

     
  

  
  

Group FMMQSPR 
 

Group FMMQR 

K 0.25 0.50 0.75 
 

K 0.25 0.50 0.75 

2 4'583.4 153.2 166.4 

 

2 150.2 151.7 169.6 

3 206.8 184.0 191.5 
 

3 166.9 161.1 165.3 

4 4649 - 4649 
 

4 - - 179.5 

  
    

 
  

  
  

Group FMMQSPE 
 

Group FMMQE 

K 0.25 0.50 0.75 

 

K 0.25 0.50 0.75 

2 191.9 182.3 193.2 
 

2 155.9 147.9 4574.0 

3 224.0 212.6 215.5 
 

3 157.3 4'602.1 725.2 

4 - - - 
 

4 4'630.3 181.6 4'768.013 

 

The models we have considered are characterized by two groups. Looking at the intercept 

parameter estimates we can deduce that the territorial units in the first group are 

characterized by a lower economic value. 

The behaviour of covariate estimated effects is similar in all the models we have 

considered. In fact, if we look at the component-specific parameters the variables 𝑃empl,

𝑃ind  and 𝑃com  have a negative effect, while for the variable 𝑃65  the parameter takes a 

positive value (see Table 7.4 and  
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Table 7.5). In the first component the values (in absolute) are more contained. 

Also the 𝑁rooms coefficient assumes a value that is basically negative or close to zero, but 

for the FMMQE model at quantile 0.75. 

Table 7.4 Parameter estimates, for FMQR, FMMQR and FMMQE at dipendent quantiles 

 0.25 0.50 0.75 

FMQR 

 intercept parameter 

 1 Group 2 Group 1 Group 2 Group 1 Group 2 Group 

 -0.80 -0.11 -0.10 0.14 0.21 0.32 

 component-specific slope parameter 

 1 Group 2 Group 1 Group 2 Group 1 Group 2 Group 
P65 0.14 0.28 0.27 0.29 0.47 0.12 
Pempl 0.03 -0.56 -0.48 -0.55 -0.34 -0.66 
Pind -0.08 -0.41 -0.43 -0.40 -0.42 -0.24 
Pcom -0.04 -0.22 -0.25 -0.21 -0.31 -0.44 

 Fixed coefficients 

Nrooms -0.05 -0.02 -0.10 

FMMQR  

 intercept parameter 

 1 Group 2 Group 1 Group 2 Group 1 Group 2 Group 3 Group 

 -0.66 -0.06 -0.47 0.01 -0.58 0.13 0.81 

 component-specific slope parameter 

 1 Group 2 Group 1 Group 2 Group 1 Group 2 Group 3 Group 
P65 0.13 0.28 0.08 0.31 0.06 0.25 -0.04 
Pempl 0.01 -0.54 0.26 -0.56 -0.01 -0.56 0.69 
Pind -0.06 -0.44 0.01 -0.42 0.03 -0.47 -0.91 
Pcom -0.08 -0.27 -0.26 -0.24 -0.15 -0.29 -0.80 

 Fixed coefficients 

Nrooms -0.07 -0.06 -0.04 

FMMQE  

 intercept parameter 

 1 Group 2 Group 1 Group 2 Group 1 Group 2 Group 3 Group 

 -0.67 -0.09 0.02 0.02 -1.36 1.93 4.11 

 component-specific slope parameter 

 1 Group 2 Group 1 Group 2 Group 1 Group 2 Group 3 Group 
P65 0.11 0.30 0.43 0.28 -0.70 1.48 1.94 
Pempl 0.22 -0.52 0.73 -0.54 5.13 1.13 7.67 
Pind -0.02 -0.42 0.40 -0.40 0.85 0.32 -0.31 

Pcom -0.05 -0.25 0.73 -0.24 2.00 1.84 1.26 

 Fixed coefficients 
Nrooms -0.06 -0.06 5.69 

 



 

81 

 

Table 7.5 Parameter estimates, for FMQRSP, FMMQSPR and FMMQSPE at dipendent quantiles  

 0.25 0.50 0.75 

FMQRSP 

 intercept parameter 

 1 Group 2 Group 1 Group 2 Group 1 Group 2 Group 

 -0.52401 0.1603706 -0.32 0.22 -0.25 0.39 

 component-specific slope parameter 

 1 Group 2 Group 1 Group 2 Group 1 Group 2 Group 
P65 0.21 0.05 0.27 0.16 0.28 0.15 
Pempl -0.16 -0.41 -0.17 -0.44 -0.06 -0.51 
Pind -0.23 -0.61 -0.20 -0.54 -0.18 -0.56 
Pcom -0.16 -0.16 -0.13 -0.14 -0.11 -0.05 

 Fixed coefficients 

Nrooms -0.06 0.03 0.07 

FMMQSPR  

 intercept parameter 

 1 Group 2 Group 3 Group 1 Group 2 Group 1 Group 2 Group 

 -0.45 -0.02 -0.04 -0.40 0.15 -0.31 0.27 

 component-specific slope parameter 

 1 Group 2 Group 3 Group 1 Group 2 Group 1 Group 2 Group 
P65 0.18 0.28 0.23 0.16 0.21 0.13 0.25 
Pempl -0.28 -0.38 -0.52 -0.16 -0.51 -0.08 -0.54 
Pind -0.09 -0.48 -0.45 -0.22 -0.49 -0.22 -0.38 
Pcom -0.30 -0.42 -0.29 -0.18 -0.22 -0.21 -0.25 

 Fixed coefficients 

Nrooms -0.23 -0.11 -0.12 

FMMQSPE  

 intercept parameter 

 1 Group 2 Group 1 Group 2 Group 1 Group 2 Group 

 -0.51 -0.15 -0.43 0.02 -0.30 0.20 

 component-specific slope parameter 

 1 Group 2 Group 1 Group 2 Group 1 Group 2 Group 
P65 0.15 0.18 0.15 0.22 0.14 0.22 
Pempl -0.22 -0.51 -0.12 -0.52 -0.03 -0.53 
Pind -0.22 -0.60 -0.21 -0.57 -0.21 -0.50 
Pcom -0.19 -0.28 -0.19 -0.25 -0.21 -0.26 

 Fixed coefficients 

Nrooms -0.21 -0.14 -0.11 

 

To evaluate the fit of spatial and non-spatial regression models, we show in Figure 7.6 and 

Figure 7.7 the expected values for different Quantiles and M-quantiles. 

Each panel shows that the model captures the relationship between the response variable 

and the covariate: the residuals for each Quantile are well dispersed, but for the FMMQE 

model with quantile 0.75, where the model fails to well represent the phenomenon. 
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Therefore, except for this case, these graphs show a good fit of the regression models to 

the data. 

From this figure it is possible to notice the different colors used to represent the residuals. 

This represents the learning group of the single unit, the components are well separated in 

the models with spatial effects, while for the models without spatial effects we do not have 

a clear distinction between the components. 

 

 
Figure 7.6 Predicted values and residuals for FMQR, FMMQR and FMMQE at different quantiles 
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Figure 7.7 Predicted values and conditional residuals for the FMQRSP, FMMQSPR and FMMQSPE at different 

quantiles 

Analyzing the data from a spatial point of view, the classical models (FMQR, FMMQE and 

FMMQR) show a more dispersed spatial pattern which may have a difficult interpretation, 

and have a strong concentration of units into a single group (see Figure 7.8). The models 

do not seem to capture the difference between houses near and far from the center of 

Rome, respectively. 

Instead, we can see how the models with spatial effects (FMQRSP, FMMQSPE and 

FMMQSPR) allocate the units into component that are more compact and coherent with 

the nature of the phenomenon (see Figure 7.9). In fact, in the analyzed models at the 

different quantiles, two clusters of units are generally visualized; the first group includes 

all the units in the "rioni" and almost all the "quartieri" located to the north, north-west 

and south, while the other includes the remaining areas of Rome. Despite being in the 

suburbs it is interesting to notice that the "Torricola" and "Castel di Leva" areas are 

inserted in the pattern described above. This partition is quite stable across quantiles for 

FMQRSP. 
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Regarding the FMMQSPE model, and the quantiles 0.25 and 0.50, several zones in the 

north-east and south borders beyond the GRA are included, with respect to the situation 

we have previously seen. As for quantile 0.75, the situation is more compact with only the 

territorial units within in the GRA belonging to the first cluster. 

Finally, as for the FMMQSPR at the 0.25 quantile, as previously seen, there are 3 groups, 

the units of the center of Rome are joined to different areas on the north-east and south 

borders beyond the GRA. As far as quantiles 0.50 and 0.75 are concerned, the situation is 

more compact with units located in the center of Rome associated only to areas in the 

southern borders beyond the GRA. 
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Figure 7.8  Partition of the territorial units by FMQR, FMMQE and FMMQR models at different quantiles 

  



 

86 

 

 

 

 

 

Figure 7.9 Partition of the territorial units by FMQRSP, FMMQSPE and FMMQSPR at different quantiles 
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From the analysis of the averages and the standard deviations of the analyzed variables 

for the estimated clusters, we may notice that the units clusterized by the spatial models 

are more homogeneous than the ones clusterized by the models  without spatial effect (see 

Table 7.6 and  

Table 7.7). Going into the details of the analysis, we observe that two profiles are created 

in which in the inhabited center areas, the dwellings have the highest house prices, are 

larger, the population is older, there is less occupied population as dependent, both in the 

industry sector and in the commerce sector. 

Table 7.6 Table of means and standard deviation of the variables under study in the groups created by the FMQR, 

FMMQE and FMMQR models with respect to the 0.25, 0.50 and 0.75 quantiles 

Quantile Comp 

Buying and selling 
New or renovated 

homes 

Average 
number of 

rooms 

Population 
percentage 

over 65 
years 

Percentage 
of 

employees 

Percentage 
of 

employees 
in the 

Industry 
sector 

Percentage 
of 

employees 
in the 

Commerce 
sector 

Price Nrooms P65 Pempl Pind Pcom 

mean sd mean sd mean sd mean sd mean sd mean sd 

FMQR 

25 
1 2'569.4 252.7 4.0 0.4 14.9 4.6 74.3 6.2 19.5 5.8 20.4 3.8 
2 3'498.4 1'018.5 4.0 0.4 17.9 5.5 74.8 8.2 17.5 8.8 17.4 4.8 

50 
1 3'039.5 842.0 4.0 0.4 17.3 5.7 75.0 7.1 17.8 7.7 18.1 4.5 
2 3'747.9 1'050.4 4.0 0.4 17.5 5.3 74.3 9.0 17.9 9.3 17.7 5.1 

75 
1 3'211.5 1'031.9 4.1 0.4 15.5 5.2 73.4 7.6 19.3 11.0 17.7 5.4 

2 3'450.0 964.8 4.0 0.4 18.8 5.3 75.7 8.1 16.6 5.2 18.1 4.2 

FMMQR  

25 
1 2'768.8 541.3 4.0 0.5 14.6 5.0 75.7 6.6 19.9 7.1 19.2 3.6 
2 3'444.1 1'025.8 4.0 0.4 17.9 5.5 74.5 8.1 17.5 8.5 17.7 4.9 

50 
1 2'888.5 575.2 4.1 0.5 14.9 5.3 76.2 6.8 20.4 6.6 18.8 3.5 
2 3'406.8 1'027.9 4.0 0.4 17.7 5.5 74.5 8.1 17.5 8.5 17.8 4.9 

75 

1 2'646.2 218.4 4.1 0.5 14.5 5.6 75.5 6.0 20.1 7.8 18.8 3.8 

2 3'395.7 1'008.3 4.0 0.4 17.6 5.4 74.5 8.2 17.5 8.5 17.9 4.9 

3 4'800.0 435.9 3.9 0.9 21.4 5.8 76.8 8.3 16.2 4.4 16.4 4.6 

FMMQE  

25 
1 2'863.6 610.4 4.1 0.6 15.6 5.5 75.6 7.1 19.1 7.1 18.3 3.4 

2 3'399.0 1'019.7 4.0 0.4 17.6 5.5 74.6 8.0 17.7 8.5 17.9 4.9 

50 
1 3'150.0 1'014.9 4.3 0.7 20.5 4.0 73.2 10.5 15.8 4.1 17.0 3.5 
2 3'352.4 1'000.8 4.0 0.4 17.3 5.5 74.8 7.9 17.9 8.5 18.0 4.8 

75 

1 4'133.3 1'294.1 4.8 0.8 20.8 7.5 66.6 7.2 16.4 5.7 14.5 6.2 

2 3'287.3 962.9 4.0 0.3 17.1 5.3 75.2 7.8 17.9 8.5 18.1 4.6 

3 4'500.0 - 3.2 - 25.1 - 76.9 - 15.7 - 18.8 - 
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Table 7.7 Table of means and standard deviation of the variables under study in the groups created by the FMQRSP, 

FMMQSPE and FMMQSPR models with respect to the 0.25, 0.50 and 0.75 quantiles 

Quantile Group 

Buying and 
selling New or 

renovated 
homes 

Average 
number of 

rooms 

Population 
percentage 

over 65 
years 

Percentage 
of 

employees 

Percentage 
of employees 

in the 
Industry 
sector 

Percentage of 
employees in 

the 
Commerce 

sector 

Price Nrooms P65 Pempl Pind Pcom 

mean sd mean sd mean sd mean sd mean sd mean sd 

FMQRSP 

25 
1 2'678.8 428.6 3.9 0.3 14.3 4.2 78.8 4.8 20.9 9.4 19.7 4.5 
2 4'367.4 711.0 4.2 0.4 22.1 3.6 68.5 7.7 13.1 2.6 15.3 3.7 

50 
1 2'678.8 428.6 3.9 0.3 14.3 4.2 78.8 4.8 20.9 9.4 19.7 4.5 
2 4'367.4 711.0 4.2 0.4 22.1 3.6 68.5 7.7 13.1 2.6 15.3 3.7 

75 
1 2'678.8 428.6 3.9 0.3 14.3 4.2 78.8 4.8 20.9 9.4 19.7 4.5 

2 4'367.4 711.0 4.2 0.4 22.1 3.6 68.5 7.7 13.1 2.6 15.3 3.7 

FMMQSPR  

25 
1 2'703.4 442.7 3.9 0.3 14.6 4.2 79.3 4.4 19.5 4.6 20.3 2.9 
2 4'137.8 912.6 4.2 0.4 20.8 5.0 69.3 7.7 14.8 8.3 15.5 4.6 
3 2'350.0 - 4.0 - 14.3 - 66.7 - 66.7 - 0.0 - 

50 
1 2'678.5 431.9 3.9 0.3 14.3 4.2 78.8 4.9 20.9 9.4 19.6 4.6 
2 4'329.5 746.3 4.2 0.4 21.9 3.9 68.6 7.6 13.2 2.7 15.4 3.9 

75 
1 2'678.9 435.3 3.9 0.3 14.5 4.1 78.8 4.9 21.1 9.4 19.7 4.6 

2 4'292.2 779.1 4.2 0.4 21.5 4.5 68.9 7.8 13.2 2.7 15.5 3.8 

FMMQSPE  

25 
1 2'689.3 442.3 3.9 0.3 14.6 4.1 78.9 4.9 21.0 9.6 19.6 4.6 
2 4'178.1 876.9 4.2 0.4 20.9 5.0 69.3 7.8 13.7 3.5 15.8 4.0 

50 
1 2'689.3 442.3 3.9 0.3 14.6 4.1 78.9 4.9 21.0 9.6 19.6 4.6 
2 4'178.1 876.9 4.2 0.4 20.9 5.0 69.3 7.8 13.7 3.5 15.8 4.0 

75 
1 2'681.3 425.9 3.9 0.3 14.3 4.2 78.8 4.8 20.9 9.3 19.7 4.5 

2 4'403.6 678.5 4.2 0.4 22.4 3.1 68.2 7.6 12.9 2.3 15.1 3.7 
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8 Concluding remarks 

When the values assumed by a response are influenced by geographical position of the 

units, the assumption of independence between observations can lead to substantial bias 

in the parameter estimates. 

A potential way to solve this issue is through the use of finite mixture models with spatial 

constraints, where priors are modelled through a Markov Random Field (MRF) using a 

Potts representation, see Green and Richardson (2002). 

According to the Hammersley-Clifford theorem, modelling the process through an MRF is 

equivalent to using a Gibbs distribution. 

In this work, a form of the Gibbs distribution is proposed, characterized by a component-

specific intercept and a constant interaction parameter. This formulation allows to have, at 

the same time, a specific benchmark probability for each component and a similar spatial 

dependence in the whole area. The parameters in the prior distribution can be estimated 

by using a conditional logit model. 

This specification has been applied to finite mixtures of quantile (FMQR) and M-quantile 

(FMMQ) models, in order to account for spatial dependence, and to define finite mixture 

of quantile (FMQRSP) and M-quantile regression (FMMQSP) with spatial effects. 

From a small scale simulation study we can see that the inclusion of spatial effects in the 

FMQR and FMMQ models does produce some additional variability in the estimates 

without a clear improvement is bias. In fact, in both cases there is a slight increase in the 

MSE values. This issue is however mitigated if we look at the partition obtained if we 

insert spatial dependence.  

In fact, if we consider the application of the models to the empirical case concerning the 

price of housing in Rome, we can see that the classical models (FMQR, FMMQE and 

FMMQR) produce a more dispersed (and less meaningful) spatial pattern, with a strong 

concentration of territorial units into a single group. The models do not seem to capture 

the difference existing between houses near and far from the center of Rome. 

Instead, analyzing the models with spatial effects (FMQRSP, FMMQSPE and FMMQSPR), 

the partitions of the units assumes a shape which is more compact and coherent with the 

nature of the analyzed phenomenon. 
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As previously seen, we have only taken into consideration the geographical units that are 

actually adjacent to each other. It would be interestingto apply the proposal taking into 

account not only the adjacent units, but also their distance. That is considering a 

continuous rather then a binary measure of adjacency. 
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A. Appendix  

 = 0.25 

 
 

 = 0.50 

 
 

 = 0.75 

 
Figure A.1 Boxplot for the didtribution of the fixed parameter estimates (scenario 1)  
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 = 0.25 

 
 

 = 0.50 

 
 

 = 0.75 

 
Figure A.2 Boxplot for distribution of 𝛽21 estimates (scenario 1) 
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 = 0.75 

 
 

Figure A.3 Boxplot for distribution of 𝛽22 estimates (scenario 1) 
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Figure A.4 Boxplot for distribution of 𝛽23 estimates (scenario 1) 
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 = 0.75 

 
Figure A.5 Boxplot for distribution of 𝛽24 estimates (scenario 1) 
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 = 0.75 

 
Figure A.6 Boxplot for the didtribution of the fixed parameter estimates (scenario 2) 
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Figure A.7 Boxplot for distribution of 𝛽21 estimates (scenario 2) 
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Figure A.8 Boxplot for distribution of 𝛽22 estimates (scenario 2) 
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Figure A.9 Boxplot for distribution of 𝛽23 estimates (scenario 2) 
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Figure A.10 Boxplot for distribution of 𝛽24 estimates (scenario 2) 
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