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Overdetermined problems and constant mean
curvature surfaces in cones

Filomena Pacella and Giulio Tralli

Abstract. We consider a partially overdetermined problem in a sector-
like domain Ω in a cone Σ in RN , N ≥ 2, and prove a rigidity result of
Serrin type by showing that the existence of a solution implies that Ω is a
spherical sector, under a convexity assumption on the cone.
We also consider the related question of characterizing constant mean cur-
vature compact surfaces Γ with boundary which satisfy a ‘gluing’ condition
with respect to the cone Σ. We prove that if either the cone is convex or
the surface is a radial graph then Γ must be a spherical cap.
Finally we show that, under the condition that the relative boundary of
the domain or the surface intersects orthogonally the cone, no other as-
sumptions are needed.

1. Introduction

Let Σ be an open cone in RN , N ≥ 2, with vertex at the origin O, i.e., denoting
by ω an open connected domain on the unit sphere SN−1 then

Σ = {tx : x ∈ ω, t ∈ (0,+∞)}.

A first question we consider in this paper is the study of a partially overdetermined
problem in a sector-like domain Ω ⊂ Σ to the aim of showing a rigidity result of
Serrin-type [26].
In connection with this we study constant mean curvature (CMC, in short) (N−1)-
dimensional manifolds contained in Σ with smooth boundary satisfying suitable
‘gluing’ conditions with respect to ∂Σ.

Let us set the problems and state precisely our results.
Given an open cone Σ such that ∂Σr{O} is smooth, we consider a bounded domain
Ω ⊂ Σ and denote by Γ its “relative (to Σ)” boundary, i.e. Γ is the part of ∂Ω which
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is contained in Σ. Then, setting Γ1 = ∂ΩrΓ and denoting by HN−1(·) the (N−1)-
dimensional Hausdorff measure, we will assume that HN−1(Γ1) > 0, HN−1(Γ) > 0,
and that Γ is a smooth (N−1)-dimensional manifold, while ∂Γ = ∂Γ1 ⊂ ∂Σr{O}
is a smooth (N − 2)-dimensional manifold.
Such a domain Ω will be called a sector-like domain and we point out that the
vertex O needs not to be on Γ1.
We define the partially overdetermined problem

(1.1)


−∆u = 1 in Ω,

u = 0 on Γ,
∂u
∂ν = −c < 0 on Γ,
∂u
∂ν = 0 on Γ1 r {O}.

Here and in what follows, ν = νx is going to denote the exterior unit normal to
∂Ω wherever is defined (that is for x ∈ Γ ∪ Γ1 r {O}). When we write νx with
x ∈ ∂Γ we actually mean that νx is the normal to Γ, which is defined thanks to
the smoothness of Γ up to the boundary. Also 〈·, ·〉 stands for the standard scalar
product in RN . We have the following

Theorem 1.1. Let c > 0 be fixed and assume that Σ is a convex cone such that
Σr{O} is smooth. If Ω is a sector-like domain and there exists a classical C2(Ω)∩
C1(Γ ∪ Γ1 r {O})-solution u of problem (1.1) such that u ∈ W 1,∞(Ω) ∩W 2,2(Ω)
then

Ω = Σ ∩BR(p0), and u(x) =
N2c2 − |x− p0|2

2N
,

where BR(p0) denotes the ball centered at a point p0 ∈ RN and radius R = Nc.
Moreover, one of the following two possibilities holds:

(i) p0 = O;

(ii) p0 ∈ ∂Σ and Γ is a half-sphere lying over a flat portion of ∂Σ.

It is well known that the ‘classical’ overdetermined problem, i.e. when ∂Ω = Γ,
is strictly related to the question of characterizing compact CMC surfaces without
boundary. The famous Aleksandrov’s theorem [3], proved by the method of moving
planes, shows that the only compact constant mean curvature surfaces without
boundary are spheres. A different proof of this result given in [24] is essentially
based on studying a related Dirichlet problem in a domain whose boundary is the
given CMC surface.
Analogously we study CMC surfaces Γ with boundary contained in the cone Σ.
We consider smooth (N-1)-dimensional manifolds Γ ⊂ Σ which are relatively open,
bounded, connected, and orientable; we also assume that Γ is smooth up to its non-
empty boundary ∂Γ ⊂ ∂Σ r {O}. Under these assumptions Γ can be considered
as the relative boundary of a sector-like domain Ω in which we consider the mixed
boundary value problem

(1.2)


−∆u = 1 in Ω,

u = 0 on Γ,
∂u
∂ν = 0 on Γ1 r {O}.
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We prove the following result

Theorem 1.2. Let Σ be a convex cone such that Σr {O} is smooth, and let Γ be
a surface as described above. We also assume the following conditions

1) denoting by nx ∈ TxΓ the outward unit conormal to ∂Γ, and by ds the (N−2)-
dimensional Hausdorff measure, then

(1.3)

∫
∂Γ

〈x, nx〉 ds ≤ 0;

2) the weak solution u of problem (1.2) is in W 1,∞(Ω) ∩W 2,2(Ω).

Then, if Γ has constant mean curvature H > 0, we have

Γ = Σ ∩ ∂B 1
H

(p0) for some p0 ∈ RN .

Moreover, one of the following two possibilities holds:

(i) p0 = O;

(ii) p0 ∈ ∂Σ and Γ is a half-sphere lying over a flat portion of ∂Σ.

Let us remark that both hypotheses 1) and 2) of Theorem 1.2 are kind of “glu-
ing conditions” between the cone and the surface Γ. For the first one this is evident.
For the second one we observe that for the mixed boundary value problem (1.2)
the regularity of the solution up to the boundary strongly depends on the way Γ
and Γ1 intersect (see [13, 9]). Indeed a weak solution of (1.2) (in the Sobolev space
V(Ω) = {u ∈ H1(Ω) : u ≡ 0 on Γ}) is always of class C∞(Ω) and has classical
derivatives on Γ ∪ Γ1 r {O}, but the question of regularity on the whole ∂Ω is a
delicate issue and is related to the angles formed at the intersection between Γ and
Γ1. The same remark applies to Theorem 1.1 where we require the solution to be
in W 1,∞(Ω) ∩W 2,2(Ω). In the case of orthogonality between Γ and Γ1 we prove,
in Section 6 (Proposition 6.1), that a solution of (1.2) is C2

(
Ω r {O}

)
while the

regularity at the vertex is ensured by the results in [2, 21]. Thus, the hypothesis
that u ∈ W 1,∞(Ω) ∩W 2,2(Ω) in Theorem 1.1 and in Theorem 1.2 holds. Hence
in this case Theorem 1.1 and Theorem 1.2 hold without other conditions, and we
restate them in Section 6 (Theorem 6.2 and Theorem 6.3). Let us point out that
in the orthogonal case an alternative proof of Theorem 1.2 completely indepen-
dent of the associated PDE problem can be provided adapting the one given by
Montiel and Ros in [22] for closed surfaces (see Theorem 6.3). We also mention
that for surfaces intersecting orthogonally a convex cone the result of Theorem 1.2
has already been given in [8]. Their proof is similar to ours, using the approach of
Reilly, but the authors do not say anything about the regularity needed to carry
on the procedure. They also neglect to consider the case ii) of Theorem 1.2 which
can, actually, occur. On the other side, they consider also the case of higher order
curvatures.
In Section 3 we make a comment about the validity of Theorem 1.1 in general cones
by assuming a kind of integral overdetermined condition on Γ1 (see Proposition
3.2).



4 F. Pacella and G. Tralli

Concerning CMC surfaces, in the next theorem we will show another characteriza-
tion of them where we assume that the surface Γ is starshaped (or, equivalently, a
radial graph) but the cone can be arbitrary and nothing is required about solutions
of the mixed boundary problem in the related sector-like domain. Moreover we do
not need to assume the mean curvature H to be positive.

Theorem 1.3. Let Σ be any cone in RN such that Σr{O} is smooth, and suppose
that Γ ⊂ Σ is a smooth (N − 1)-dimensional manifold which is relatively open,
bounded, orientable, connected and with smooth boundary contained in ∂Σ. Assume
that the mean curvature of Γ is a constant H ∈ Rr {0}, and that

(1.4)

∫
∂Γ

H 〈x, nx〉 ds−
∫
∂Γ

〈∇nν, x〉 ds ≤ 0,

where nx is as in Theorem 1.2 and ∇ denotes the usual Levi-Civita connection in
RN . If Γ is strictly starshaped with respect to O, i.e.

〈x, νx〉 > 0 for every x ∈ Γ,

then we have
Γ = ∂B 1

|H|
(p0) ∩ Σ for some p0 ∈ RN .

As for the condition (1.3) of Theorem 1.2, we have that when Γ and ∂Σ inter-
sect orthogonally the assumption (1.4) is automatically satisfied since all integrals
involved vanish. We prove this in Section 6, where we restate Theorem 1.3 without
any gluing condition (Theorem 6.4). Let us point out that the characterization of
CMC surfaces in Theorem 1.3 is new also in the case of orthogonality between Γ
and ∂Σ, indeed the results of [8] requires the cone to be convex.

Let us comment on our results. The overdetermined problem (1.1) is a variant
of the classical problem considered by J. Serrin in his famous paper [26] where more
general differential equations are considered. Since then, overdetermined problems
have attracted the attention of many mathematicians, and plenty of results in
bounded or unbounded domains and for different kinds of differential operators
have been obtained. The related bibliography is very large, so we quote in this
paper only the results strictly related to ours.
In our case the problem is partially overdetermined; in fact we impose both Dirich-
let and Neumann conditions only on a part of the boundary, namely Γ, while a
sole homogeneous Neumann boundary condition is assigned on Γ1.
The results of Theorem 1.1 and Theorem 1.2 are strictly related to a relative isoperi-
metric inequality in cones obtained in [18] which indeed inspired the research of
this paper. Considering measurable sets E ⊂ Σ and their De Giorgi-perimeter
relative to Σ, PΣ(E), i.e. the ‘measure’ of the part of ∂E contained in Σ, the
relative isoperimetric problem consists in proving the inequality

(1.5) PΣ(E) ≥ c|E|
N−1
N

with the best constant c and in characterizing the minimizers. This relative isoperi-
metric inequality was first studied in [18] in connection to the symmetrization of
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mixed boundary condition elliptic problems and to Sobolev inequalities (and their
best constants) for functions not vanishing on the whole boundary (see [17, 23, 14]).
In the paper [18], the authors proved (1.5) for convex cones via Brunn-Minkowski

theory with c = Nα
1
N

N , where αN is the measure of the unit sector Σ1 = Σ∩B1(0).
They also characterized the minimizers in the case of smooth cones. Alterna-
tive proofs and generalizations of this theorem in convex cones are provided in
[7, 10, 25]. The proof given in [10] does not require the smoothness of the cone and
allows to prove a quantitative version of (1.5), even with more general densities.
It is also observed in [10] that if the cone contains lines then the characterization
of the equality case in (1.5) holds up to translation along the lines. Thus we can
state the following result

Theorem A. If Σ is a convex cone in RN , N ≥ 2, then the following isoperimetric
inequality holds:

(1.6) PΣ(E) ≥ Nα
1
N

N |E|
N−1
N

for any measurable set E ⊂ Σ with Lebesgue measure |E| < +∞, where αN is the
measure of the unit sector Σ1 = Σ∩B1(0). Moreover, if Σ does not contain lines,
equality holds if and only if E is a convex sector ΣR = Σ∩BR(0) of radius R ≥ 0.

Let us also point out that in [4] the result of Theorem A has been extended to
almost convex cones.
Hence, relatively to convex cones Σ, the spherical sectors ΣR play in the isoperi-
metric problem the same role as the balls in the whole RN . Note that in [18] it is
used and pointed out that the sets F minimizers for (1.6) have the property that
their relative boundary ∂ΣF intersects ∂Σ orthogonally. This and the fact that the
minimizers have constant mean curvature enlighten also the connection between
(1.6) and Theorem 1.2.
Since the balls in RN are the only bounded connected sets Ω for which the overde-
termined problem

(1.7)


−∆u = 1 in Ω,

u = 0 on ∂Ω,
∂u
∂ν = −c < 0 on ∂Ω

has a solution (Serrin’s theorem [26]), while spheres are the only compact constant
mean curvature surfaces without boundary (Aleksandrov’s theorem [3]), it is quite
natural to ask whether the spherical sectors and the spherical caps share the same
property relatively to cones. These are indeed the contents of Theorem 1.1, The-
orem 1.2, and Theorem 1.3.
We recall that, at the same time when the paper of Serrin was published, H.F.
Weinberger [27] proved the same rigidity result for (1.7) with an easier proof based
on integral identities (Serrin’s paper concerns more general elliptic equations).
Moreover, quite recently an alternative proof of the same result has been provided
in [6] also based on integral identities as well as on symmetric functions of the
eigenvalues of the Hessian matrix. To get Theorem 1.1 we give two proofs, follow-
ing respectively the approach in [6] and in [27]. We believe that it is interesting to
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see how the convexity of the cone comes into play in both of them. Then, following
the ideas of Reilly [24] (as in [8]) which are also based on integral identities, we
prove Theorem 1.2.
Finally, let us comment on Theorem 1.3. On one side it is restricted to starshaped
CMC surfaces Γ (i.e. radial graphs), on the other side it does not require any
convexity assumption on the cone Σ, neither on the regularity of solutions of the
mixed boundary problem which does not play any role in the proof. This indicates
that the convexity assumption on the cone can be removed by paying the price of
considering only starshaped surfaces. A natural question is then the following:

can one prove the same rigidity result of Theorem 1.1 without assuming that the
cone is convex but requiring instead that the domain Ω is strictly starshaped with

respect to the origin?

We conjecture that the answer should be affirmative, even though both proofs of
Theorem 1.1 strongly rely on the convexity of the cone. To this aim, we also refer
the reader to Proposition 3.2.
The proof of Theorem 1.3 follows an old proof of J.H. Jellett [16] for compact CMC
starshaped surfaces without boundary. It has been recently used in [20] to prove a
rigidity result for the Levi curvature in a context where the classical proof of A.D.
Aleksandrov [3] by moving planes and the proof of R.C. Reilly [24] by integral
identities seem not to work.
Let us finally point out that Theorem 1.1 suggests that a parallel symmetry result
should hold for positive solutions of nonlinear mixed boundary problems in spher-
ical sectors in the same way as the famous Gidas-Ni-Nirenberg [11] theorem in the
ball was inspired by Serrin’s result. In other words, we mean that all positive solu-
tions of a certain class of nonlinear problems in spherical sectors should be radial.
The difficulty in getting such symmetry is that the standard moving-plane method
cannot be straightforwardly applied in cones. An attempt in this direction has
been done in [5] by a quite sophisticated modification of the moving plane method
obtaining a complete result only in dimension two.

The paper is organized as follows. In Section 2 we state and/or prove some
preliminary results. In Section 3 we prove Theorem 1.1, while Section 4 is devoted
to the proof of Theorem 1.2. In Section 5 we consider starshaped surfaces and
prove Theorem 1.3. Finally, in Section 6 we study the case when the surface Γ and
the cone Σ intersect orthogonally.

2. Preliminaries

Let us first recall standard definitions.
In the sequel we are going to need the notions of Laplace-Beltrami operator, second
fundamental form, and mean curvature for a smooth hypersurface. We recall them
here. Fix N ≥ 2. We indicate with 〈·, ·〉 the usual inner product in RN , and with
∇ the standard Levi-Civita connection. Let M be a (N − 1)-dimensional smooth
orientable submanifold of RN , considered with the induced metric. For x ∈ M ,
we denote by ν = νx a choice for the unit normal. Every time that M is part of
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the boundary of a bounded set, we will always choose ν as the outward normal. If
{e1, . . . , eN−1} is a orthonormal frame of the tangent space to M , we can define
the gradient and the Laplace-Beltrami operator on M , when applied to smooth
functions f , respectively as

DMf =

N−1∑
j=1

ej(f)ej , ∆Mf =

N−1∑
j=1

e2
j (f)−

(
∇Mej ej

)
f,

where ∇M stands for the Levi-Civita connection induced on M (that is ∇MU V =
∇UV − 〈∇UV, ν〉 ν).
On the other hand, the second fundamental form h of M is the bilinear symmetric
form defined on TM × TM as

(2.1) h(ei, ej) = 〈∇eiν, ej〉 , per i, j ∈ {1, . . . , N − 1}.

The mean curvature of M is then defined as

H =
1

N − 1
tr(h).

If M is locally {u(x) = s} ⊆ ∂{u > s} for a smooth function u, and |Du| 6= 0 on
M , then ν = − Du

|Du| and we can write

(2.2) (N − 1)H = − ∆u

|Du|
+

〈
D2uDu,Du

〉
|Du|3

.

Considering a convex cone Σ which is smooth outside the vertex O and a related
sector-like domain as defined in the Introduction, we have that the second funda-
mental form of ∂Σ at the points of Γ1 r {O} is nonnegative definite, i.e.

(2.3) h(·, ·) ≥ 0 in Γ1 r {O}.

We now recall the matrix inequalities which are crucial for the proofs of our results.
In the literature such inequalities are well-known and they have been successfully
exploited to get rigidity results.
For any n × n symmetric matrix A = (aij) we denote with ‖A‖2 the sum of the
squares of the elements. Moreover, we denote by σ2(A) the second elementary
symmetric functions of the eigenvalues of A. In other words,

σ2(A) =
∑

1≤i<j≤n

det

(
aii aij
aji ajj

)
=

1

2

(
(tr(A))2 − ‖A‖2

)
.

For any A, we have the following matrix inequality:

(2.4) ‖A‖2 ≥ 1

n
(tr(A))2,

and
(2.5)

equality holds in (2.4) if and only if A is a multiple of the identity matrix In.
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Rewriting (2.4) in terms of σ2, we get one of the Newton inequalities

(2.6) σ2(A) ≤ n− 1

2n
(tr(A))2, with equality iff A is a multiple of In.

We are now going to show some general lemmas used in the following sec-
tions. They mainly concern the validity of maximum-type principles in sector-like
domains and the issues around uniqueness of spherical sectors.

Lemma 2.1. Fix a sector-like domain Ω. Let F : Ω −→ RN be a vector field such
that

F ∈ C1(Ω ∪ Γ ∪ Γ1 r {O}) ∩ L2(Ω) and div(F ) ∈ L1(Ω).

Then ∫
Ω

div(F )(x) dx =

∫
Γ

〈F, ν〉 dσ +

∫
Γ1r{O}

〈F, ν〉 dσ.

Proof. The problem relies on the lack of regularity for the vector field F at the
non-regular part of ∂Ω, i.e. at the vertex (in the case O ∈ Γ1) and at ∂Γ (where Γ
and Γ1 intersect). We argue by approximating Ω by domains obtained by chopping
off a tubular neighborhood of ∂Γ and a neighborhood of O. Since ∂Γ and O are
far apart, we can first divide Ω as Ω = Ω1 ∪Ω2 where {O} ∈ ∂Ω1 and Γ ⊂ ∂Ω2 (in
the case O ∈ Γ1, otherwise Ω1 = ∅). We then define, for small ε > 0,

Ω1
ε := {x ∈ Ω1 : |x| > ε} Ω2

ε = {x ∈ Ω2 : d(x, ∂Γ) > ε}.

For any small ε1, ε2 > 0 we have F ∈ C1(Ω
1

ε1) ∩ C1(Ω
2

ε2) and we can write∫
Ω1
ε1

divF +

∫
Ω2
ε2

divF

=

∫
Ω∩∂Bε2 (0)

〈F, ν〉 dσ +

∫
Ω∩Uε2

〈F, ν〉 dσ +

∫
Gε1∪Gε2

〈F, ν〉 dσ,

where Uε = {x : d(x, ∂Γ) = ε}, Gε1 = ∂Ω1
ε1 r (Ω ∩ ∂Bε1(0)), and Gε2 =

∂Ω2
ε2 r (Ω ∩ Uε2). From the assumptions, the left-hand side converges to

∫
Ω

divF
as ε1, ε2 → 0. Moreover, exploiting |F | ∈ L2(Ω), we prove that there exist two
sequences {ε1

j}, {ε2
j} converging to 0 (which we can assume to be monotone de-

creasing) such that

(2.7)

∫
Ω∩∂B

ε1
j
(0)

〈F, ν〉 dσ → 0 and

∫
Ω∩U

ε2
j

〈F, ν〉 dσ → 0.

Let us prove this claim. Denoting f = |F |, we have that the functions ρ 7→∫
Ω∩∂Bρ(0)

f dσ and ρ 7→
∫

Ω∩Uρ f dσ are in L1((0, 1)) (by coarea formula). Since

they are L1-functions, we have that, for any δj = 1
j with j ∈ N, there exists
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ε1
j , ε

2
j ∈ (0, δj) such that∫

Ω∩∂B
ε1
j
(0)

f dσ ≤ 1

δj

∫ δj

0

∫
Ω∩∂Bρ(0)

f dσ dρ =
1

δj

∫
Ω∩Bδj (0)

f ≤

≤ 1

δj

(∫
Ω∩Bδj (0)

f
N
N−1

)N−1
N ∣∣Ω ∩Bδj (0)

∣∣ 1
N ≤ |B1|

1
N

(∫
Ω∩Bδj (0)

f
N
N−1

)N−1
N

,

and also (since ∂Γ is a smooth (N − 2)-dimensional surface and |{x : d(x, ∂Γ) <
ε}| ∼ ε2)∫

Ω∩U
ε2
j

f dσ ≤ 1

δj

∫ δj

0

∫
Ω∩Uρ

f dσ dρ =
1

δj

∫
Ω∩{d(x,∂Γ)<δj}

f ≤

≤

(∫
Ω∩{d(x,∂Γ)<δj}

f2

) 1
2 |Ω ∩ {d(x, ∂Γ) < δj}|

1
2

δj
.

(∫
Ω∩{d(x,∂Γ)<δj}

f2

) 1
2

.

Since we have f ∈ L2(Ω) ⊆ L
N
N−1 (Ω), we have that both the right-hand sides

converge to 0 as δj = 1
j → 0. This proves (2.7). We thus deduce that the term∫

G
ε1
j
∪G

ε2
j

〈F, ν〉 dσ →
∫

Ω

divF as j → +∞.

On the other hand, being Gε1j ∪ Gε2j a monotone sequence of sets which exhaust

Γ ∪ Γ1 r {O}, one can easily get (by Beppo Levi’s theorem) also∫
G
ε1
j
∪G

ε2
j

〈F, ν〉 dσ →
∫

Γ∪Γ1r{O}
〈F, ν〉 dσ.

This completes the proof of the desired identity. 2

In a similar way we get the following maximum principle

Lemma 2.2. Fix a sector-like domain Ω. Let h ∈ C2(Ω) ∩ C1(Γ ∪ Γ1 r {O})
satisfy 

−∆h ≥ 0 in Ω,

h = 0 on Γ,
∂h
∂ν ≥ 0 on Γ1 r {O}.

If in addition h ∈ L∞(Ω) ∩W1,2(Ω), then h ≥ 0.

Proof. We want to prove that the negative part h− ≡ 0. Let us define the vector
field

F = h−Dh ∈ L2(Ω).
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Since ∆h ≤ 0, it also holds almost everywhere that div(F ) ≤ −|Dh−|2 ∈ L1(Ω).
We are then in the position to argue as in the previous lemma by approximating
Ω by the sequence Ωε. This gives

−
∫

Ωε

|Dh−|2 ≥
∫

Ωε

div(F )

=

∫
Ω∩∂Bε(0)

〈F, ν〉 dσ +

∫
Ω∩Uε

〈F, ν〉 dσ +

∫
Gε

〈F, ν〉 dσ

≥
∫

Ω∩∂Bε(0)

〈F, ν〉 dσ +

∫
Ω∩Uε

〈F, ν〉 dσ,

where in the last inequality we used the boundary conditions for h in Γ∪Γ1r{O}.
As in the proof of Lemma 2.1 we can say that the last two integrals converge to 0
up to subsequences. Therefore we get∫

Ω

|Dh−|2 ≤ 0.

Then, by the Poincaré inequality, which still holds since HN−1(Γ) > 0 and h− = 0
on Γ, we get h− ≡ 0 in Ω. 2

We state as corollary what we are going to need in the proofs of our main
results.

Corollary 2.3. Fix a sector-like domain Ω. Let u be a classical solution of (1.2)
such that u ∈W1,∞(Ω). Then u > 0 in Ω ∪ Γ1.
Moreover, if u ∈ W1,∞(Ω) ∩W2,2(Ω) is a classical solution of (1.1) and if the
function v := |Du|2 + 2

N u satisfies
−∆v ≤ 0 in Ω,

v = c2 > 0 on Γ,
∂v
∂ν ≤ 0 on Γ1 r {O},

then v ≤ c2 in Ω.

Proof. The previous Lemma yields u ≥ 0 in Ω. By strong maximum principle and
Hopf lemma we get u > 0 in Ω ∪ Γ1.
For the second part, we just notice that we can apply the previous lemma to the
function h = c2 − v thanks to the assumption u ∈W1,∞(Ω) ∩W2,2(Ω). 2

Note that we will show in Section 3 that the function v actually satisfies the
boundary condition on Γ1 because of the convexity of the sector-like domain Ω.

We end this preliminary section by providing the lemma which will be used to
identify the center p0 of the sphere cutting the sector-like domain Ω in Theorem
1.1 or the CMC surface in Theorem 1.2. To prove this, we follow the proof given
in [25, Lemma 4.10] providing all details for the convenience of the reader.
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Lemma 2.4. Let Σ be a convex cone such that ∂Σr {O} is smooth. Assume that
there exist a point p0 ∈ RN and R > 0 such that

S := ∂BR(p0) ∩ Σ and ∂Σ meet orthogonally at the points of ∂S ⊂ ∂Σ.

Then one of the following two possibilities holds:

(i) p0 = O;

(ii) p0 ∈ ∂Σ r {O} and S is a half-sphere lying over a flat portion of ∂Σ.

Proof. Let us divide the proof in multiple steps.
Step I. Consider maxx∈∂S

1
2 |x|

2. This is attained at a point ȳ ∈ ∂S r {O}. We
claim that

p0 ∈ 〈ȳ〉 ⊂ (∂Σ) ∪ (−∂Σ) ,

where by 〈ȳ〉 we mean the straight line passing through O and ȳ. Let’s prove this
claim. By the definition of ȳ and the Lagrange multipliers theorem, we have that
ȳ = ∇

(
1
2 | · |

2
)

(ȳ) is a linear combination of νSȳ and νΣ
ȳ (which are the outward unit

normals respectively to the ball and to the cone at the point ȳ). By assumption
νS and νΣ are orthogonal on ∂S. Moreover, ȳ and νΣ

ȳ are orthogonal, since Σ is a
cone. This implies that

ȳ is parallel to νSȳ =
ȳ − p0

R
,

and in particular that p0 is a multiple of ȳ.
Step II. Let us prove that

p0 ∈ ∂Σ.

We can assume that Σ is not the flat cone (i.e. a half-space), since otherwise
−∂Σ = ∂Σ and we have nothing to prove. By Step I we already know that
p0 = t · ȳ for some t ∈ R. We want to rule out the possibility that t < 0. To do
this, we assume by contradiction that

p0 = t · ȳ for t < 0.

This implies that |ȳ − p0| = |ȳ| + |p0|. On the other hand, the distance from the
center of the sphere p0 is the same for every point y ∈ ∂S. Thus we get

|ȳ|+ |p0| = |ȳ − p0| = |y − p0| ≤ |y|+ |p0| ≤ |ȳ|+ |p0| ∀ y ∈ ∂S,

where the last inequality holds by the very definition of ȳ. Hence all the previous
inequalities are in fact equalities for all y ∈ ∂S, in particular there is equality in
the triangle inequality which says that every y ∈ ∂S is parallel to p0 6= 0. This
is a contradiction in RN for any N ≥ 3. It is a contradiction also in R2 since we
assumed that ∂Σ is not a hyperplane.
Step III. Denoting by [p0, x] the segment connecting p0 and x, we want to prove
that

[p0, x] ⊂ ∂Σ ∀x ∈ ∂S r {O}.
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If p0 = O, this follows just from the definition of a cone since ∂S ⊂ ∂Σ. Thus, we
can assume p0 6= O. Pick any x ∈ ∂S r {O}. We know that x−p0

R = νSx is tangent
to ∂Σ at the point x by the orthogonality assumption. Hence we get

[p0, x] ⊂ x+
〈
νSx
〉
⊂ x+ Tx∂Σ.

On the other hand we have

[p0, x] ⊂ Σ

since both p0 and x belong to ∂Σ r {O} (by Step II) and since Σ is convex. If we
assume the existence of x̄ ∈ (p0, x) such that x̄ ∈ Σ = Σ r ∂Σ, this would be in
contradiction with the fact that x̄ belongs to the supporting hyperplane x+Tx∂Σ.
This proves that [p0, x] ⊂ ∂Σ as desired.
Step IV. We finally prove that

p0 6= O =⇒ S is a half-sphere lying over a flat portion of ∂Σ.

Suppose p0 6= O. For any x ∈ ∂Sr{O}, we have by Step III that p0+t·(x−p0) ∈ ∂Σ
for all t ∈ [0, 1], which implies that x − p0 ∈ Tp0∂Σ. This holds also for x = O.
Hence we have proved that

∂S ⊂ p0 + Tp0∂Σ.

Therefore ∂S ⊆ ∂BR(p0) lies on a hyperplane passing through the center p0. This
means that ∂S is a great circle and S is a half-sphere. By convexity of the cone,
also the disc bounded by ∂S has to lie on ∂Σ. This completes the proof. 2

3. Overdetermined problems in convex cones

We are now ready to prove Theorem 1.1. As stated in the Introduction, we provide
two proofs following the approaches in [6] and [27]. Let us remark that in all
applications of the divergence theorem below we are going to exploit Lemma 2.1
without any further mention.

Proof of Theorem 1.1. Consider the solution u of our overdetermined problem
(1.1), which, by standard elliptic regularity theory, has classical derivatives on
Γ ∪ Γ1 ∪ {O} and it is positive in Ω by Corollary 2.3. First of all we get∫

Ω

|Du|2 − udx =

∫
Ω

|Du|2 + (∆u)udx =

∫
Ω

div (uDu) dx =

=

∫
Γ

u
∂u

∂ν
dσ +

∫
Γ1

u
∂u

∂ν
dσ = 0,

so that

(3.1)

∫
Ω

|Du|2 dx =

∫
Ω

udx.
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Moreover, the overdetermined condition on Γ gives

(3.2) |Ω| = −
∫

Ω

∆u(x) dx = −
∫

Γ

∂u

∂ν
dσ = c|Γ|.

We need more integral identities. From the assumptions on u, the Green’s identity,
and since ∆(〈x,Du〉) = 2∆u+ 〈x,D(∆u)〉 = −2 in Ω, we deduce that∫

Ω

2u− 〈x,Du〉 dx =

∫
Ω

∆u 〈x,Du〉 −∆(〈x,Du〉)udx =

=

∫
Ω

div (〈x,Du〉Du− uD(〈x,Du〉)) dx =

=

∫
∂Ω

〈x,Du〉 ∂u
∂ν
− u 〈D(〈x,Du〉), ν〉dσ =

=

∫
Γ

〈x,Du〉 ∂u
∂ν

dσ −
∫

Γ1

u 〈D(〈x,Du〉), ν〉dσ =

= c2
∫

Γ

〈x, ν〉dσ −
∫

Γ1

u
(
〈Du, ν〉+

〈
D2u · x, ν

〉)
dσ =

= c2
(∫

Ω

div(x) dx−
∫

Γ1

〈x, ν〉dσ
)
−
∫

Γ1

u
〈
D2ux, ν

〉
dσ =

= Nc2|Ω| −
∫

Γ1

u
〈
D2ux, ν

〉
dσ.

On the other hand∫
Ω

〈x,Du〉+Nudx =

∫
Ω

〈
D

(
|x|2

2

)
, Du

〉
+ ∆

(
|x|2

2

)
udx =

=

∫
Ω

div

(
uD

(
|x|2

2

))
dx =

∫
Γ

u 〈x, ν〉dσ +

∫
Γ1

u 〈x, ν〉dσ = 0.

Putting together the last two relations, we get

(3.3) (N + 2)

∫
Ω

udx = Nc2|Ω| −
∫

Γ1

u
〈
D2u · x, ν

〉
dσ.

Now we show that 〈
D2u(x)x, ν

〉
= 0 for all x ∈ Γ1 r {O} :

this depends on the fact that Γ1 is on the boundary of the cone and on the Neumann
condition ∂u

∂ν = 0 we imposed on Γ1. As a matter of fact, since 〈x, ν〉 = 0, x is
tangent to the cone and we can denote by P the tangent vector field differentiating
along the radial direction x, i.e. P =

∑N
k=1 xk∂xk . Since also ∂u

∂ν = 0 on Γ1 r {O},
we have Du(x) is tangent to the cone at x: let us denote by Nu the vector field

differentiating along the tangential direction Du, that is Nu =
∑N
k=1 uk(x)∂xk .

For every x ∈ Γ1 r {O}, we thus have
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0 = P (〈Du, ν〉) = 〈∇P (Nu), ν〉+ h(x,Du) = 〈∇P (Nu), ν〉 =

N∑
k,j=1

xkukjνj =

=
〈
D2u · x, ν

〉
.

Hence, (3.3) becomes

(3.4)

(
1 +

2

N

)∫
Ω

udx = c2|Ω|.

From (3.2) and the definition of the mean curvature H(x) of (almost every) level
sets of {u = u(x)} in (2.2), we get∫

Ω

|Du|2 dx = −
∫

Ω

|Du|2∆udx

=

∫
Ω

2
〈
D2uDu,Du

〉
− div

(
|Du|2Du

)
dx

=

∫
Ω

2
〈
D2uDu,Du

〉
dx−

∫
Γ

|Du|2 ∂u
∂ν

dσ

= 2(N − 1)

∫
Ω

H(x)|Du|3 dx+ 2

∫
Ω

∆u|Du|2 dx+ c3|Γ|

= 2(N − 1)

∫
Ω

H(x)|Du|3 dx− 2

∫
Ω

|Du|2 dx+ c2|Ω|.

Using (3.1) and (3.4), we deduce that

(3.5)

∫
Ω

H(x)|Du|3 dx =
c2

N + 2
|Ω|.

On the other hand, since σ2(·) is homogeneous of degree 2, we have σ2(A) =

1
2

∑
ij
∂σ2(A)
∂aij

aij . If we denote J σ2(A) =
(
∂σ2(A)
∂aij

)N
i,j=1

, it is easy to see from the

definition that J σ2(A) = tr(A)IN −A. This says, by (2.2), that

(3.6) (N − 1)H|Du|3 = −
〈
J σ2(D2u)Du,Du

〉
, and also

(3.7) σ2(D2u) =
1

2
tr
(
J σ2(D2u)D2u

)
=

1

2
div
(
J σ2(D2u)Du

)
.

Using (3.6) and (3.7) in (3.5), we get
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c2|Ω| = (N + 2)

∫
Ω

H(x)|Du|3 dx = −N + 2

N − 1

∫
Ω

〈
J σ2(D2u)Du,Du

〉
dx

= −N + 2

N − 1

∫
Ω

div
(
uJ σ2(D2u)Du

)
dx+ 2

N + 2

N − 1

∫
Ω

uσ2(D2u) dx

= −N + 2

N − 1

∫
Γ1

u
〈
J σ2(D2u)Du, ν

〉
dσ + 2

N + 2

N − 1

∫
Ω

uσ2(D2u) dx

= −N + 2

N − 1

∫
Γ1

u
〈(

tr(D2u)IN −D2u
)
Du(x), ν

〉
dσ

+ 2
N + 2

N − 1

∫
Ω

uσ2(D2u) dx

=
N + 2

N − 1

∫
Γ1

u
〈
D2uDu, ν

〉
dσ + 2

N + 2

N − 1

∫
Ω

uσ2(D2u) dx.(3.8)

Up to this point all the relations we proved are in fact equalities. By using the
convexity of the cone we now show that

(3.9)
〈
D2uDu, ν

〉
≤ 0 on Γ1 r {O},

which, in particular, implies

(3.10)

∫
Γ1

u
〈
D2uDu, ν

〉
dσ ≤ 0.

In fact, at any point of Γ1 r {O}, in our notations we get (from (2.1), (2.3), and
the Neumann condition on Γ1)

0 = Nu(〈Du, ν〉) = 〈∇NuNu, ν〉+ h(Du,Du) ≥(3.11)

≥ 〈∇NuNu, ν〉 =

N∑
j,k=1

ukukjνj =
〈
D2uDu, ν

〉
.

Therefore, by (3.8) and (3.10), we have

c2|Ω| ≤ 2
N + 2

N − 1

∫
Ω

uσ2(D2u) dx.

We can now exploit the matrix inequality (2.6), together with (3.4), and we get

(3.12) c2|Ω| ≤ N + 2

N

∫
Ω

u (∆u)
2

dx =
N + 2

N

∫
Ω

udx = c2|Ω|.

Hence, the inequalities we performed are in fact equalities. In particular we have
the equality case in (2.6). This says that D2u(x) = λ(x)IN in Ω. Since ∆u = −1,
it has to be

D2u = − 1

N
IN ∀x ∈ Ω.
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By the connectedness of Ω, there exist A ∈ R and p0 ∈ RN such that

u(x) =
A− |x− p0|2

2N

in Ω. But u = 0 on Γ, and therefore A > 0 and Γ ⊆ ∂B√A(p0) ∩ Σ. By connect-
edness, Γ is actually equal to ∂B√A(p0)∩Σ. This implies that on Γ the normal is

given by ν = x−p0√
A

, and we have

−c = 〈Du, ν〉 = −|x− p0|2

N
√
A

= −
√
A

N
⇐⇒ A = N2c2.

We have then proved that

Γ = ∂BNc(p0) ∩ Σ and u =
N2c2 − |x− p0|2

2N
.

We can now conclude by invoking Lemma 2.4. In fact, we have proved in particular
that the function u (which is now explicit) is C1 up to ∂Γ. Thus, for any x ∈ ∂Γ,
the normal to Γ is parallel to Du(x) and it is orthogonal to the normal to the cone
by the Neumann condition. Lemma 2.4 provides then the two possibilities stated
in Theorem 1.1. 2

Remark 3.1. Note that the equality in (3.12) implies also the equality in (3.9)
(since u > 0), which in turn implies that h(Du,Du) = 0 at any point of Γ1 r {O}
(via (3.11)). This suggests how in cones where the results is not true (obviously
not convex) the points of Γ1 with some negative curvature should play a role for
the possible existence of non-radial solution.

The pointwise inequality (3.9) will be used also in the proof we will provide
at the end of this section following [27] (and even in the proof of Theorem 1.2 in
Section 4).
Nevertheless, as we highlighted during the proof, the inequality which is needed
to carry the previous proof forward is in fact the weaker integral condition (3.10).
This condition is not a geometric requirement for the cone, but it involves the
behavior of the solution u on Γ1. Moreover, following the above proof, it is clear
that the strict inequality ∫

Γ1

u
〈
D2uDu, ν

〉
dσ < 0

cannot occur (this can be read as a non-existence result under such strict inequality
condition). On the other hand, the equality case can be seen as another overde-
termined condition to be imposed on Γ1 to get the Serrin-type result without a
convexity assumption for the cone Σ. Indeed we have the following

Proposition 3.2. Let c > 0 be fixed and assume that Σ is a cone such that Σr{O}
is smooth. Suppose Ω is a sector-like domain and u ∈ W 1,∞(Ω) ∩W 2,2(Ω) is a
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classical solution of the following problem

−∆u = 1 in Ω,

u = 0 on Γ,
∂u
∂ν = −c < 0 on Γ,
∂u
∂ν = 0 on Γ1 r {O},∫
Γ1
u
〈
D2uDu, ν

〉
dσ = 0.

Then the assertions of Theorem 1.1 hold.

Second proof of Theorem 1.1. As in [27], we can consider the function (sometimes
called P-function)

v = |Du|2 +
2

N
u,

where u is the solution of our overdetermined problem (1.1). We can compute

(3.13) Dv = 2D2uDu+
2

N
Du.

Since ∆u = −1 in Ω, we also get

(3.14) ∆v = 2
∥∥D2u

∥∥2
+ 2 〈Du,D(∆u)〉 − 2

N
= 2

(∥∥D2u
∥∥2 − (∆u)2

N

)
.

The matrix inequality (2.4) tells us that ∆v ≥ 0 in Ω. Let us also check the
boundary conditions for v. On Γ we know that ν = − Du

|Du| , since u = 0 there (and

u > 0 in Ω by Corollary (2.3)). Thus Du = −cν and v ≡ c2 on Γ. By (3.13) and
since ∂u

∂ν = 0 on Γ1 r {O}, we have ∂v
∂ν = 2

〈
D2uDu, ν

〉
in Γ1 r {O}. From the

convexity assumption for the cone Σ we infer (see (3.9)) that ∂v
∂ν ≤ 0 on Γ1 r {O}.

Hence the function v satisfies:
∆v ≥ 0 in Ω,

v = c2 on Γ,
∂v
∂ν ≤ 0 on Γ1 r {O}

and by Corollary 2.3 we have

(3.15) v ≤ c2 in Ω.

On the other hand, from the integral identities proved in (3.1) and (3.4), we can
compute the integral of the function v and we get∫

Ω

v dx =

∫
Ω

|Du|2 +
2

N
udx =

(
1 +

2

N

)∫
Ω

udx = c2|Ω|.

By (3.15), we then have
v ≡ c2 in Ω.



18 F. Pacella and G. Tralli

In particular, we deduce from (3.14) that

(∥∥D2u
∥∥2 − (∆u)2

N

)
= ∆v ≡ 0.

The equality case in the matrix inequality (2.5) implies that D2u is proportional
to IN in Ω. From now on, we can argue as in the previous proof. 2

Remark 3.3. It is worth noticing that the proofs of Theorem 1.1 do not really
need that Γ (and hence Ω) is completely contained in Σ as long as Γ1 lies on ∂Σ
and Σ is convex.

Remark 3.4. Let us comment about the smoothness of the cone assumed in The-
orem 1.1 (or Theorem 1.2). The smoothness required is the one which allows to
carry on the integral identities or inequalities needed. To do this less regularity on
∂Σ is enough. For example, if ∂Σ is piecewise smooth as in the case of a polyhedral
convex cone we could use the same approximation procedure of Lemma 2.1 to make
the proof of Theorem 1.1 and get that Ω = BNc(p0) ∩ Σ. However if ∂Σ r {O} is
not smooth it is not true that p0 is necessarily the origin O (when there are not
flat portion of ∂Σ). This can be easily understood in the example of a polyhedral
convex cone, where the point p0 can belong to any edge (and move along it) and
BNc(p0) is a ball which intersects only the two sides of the edge. Hence to char-
acterize Ω as a spherical sector centered at O, which was our aim, the smoothness
of the cone is needed. We also observe that the characterization of the sector-like
domain Ω proved in Theorem 1.1 is analogue to the one for stable sets of the rel-
ative perimeter functional in convex cones shown in [25, Theorem 4.9] where also
the smoothness of the cone is required.

4. CMC surfaces in convex cones

We provide here the proof of Theorem 1.2.

Proof of Theorem 1.2. Let us consider the solution u to the boundary problem
(1.2). By Corollary 2.3, we have u > 0 in Ω, and |Du| cannot vanish in the
(relative) interior of Γ by Hopf’s lemma. Thus, the function u locally defines Γ
and ν = − Du

|Du| there. By the matrix inequality (2.6), together with (3.7) and (3.6),

we have
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|Ω| =
∫

Ω

(∆u)
2

dx ≥ 2N

N − 1

∫
Ω

σ2

(
D2u

)
dx

=
N

N − 1

∫
Ω

div
(
J σ2(D2u)Du

)
dx

= − N

N − 1

∫
Γ

〈
J σ2(D2u)Du,

Du

|Du|

〉
dσ +

N

N − 1

∫
Γ1

〈
J σ2(D2u)Du, ν

〉
dσ

= N

∫
Γ

H|Du|2 dσ +
N

N − 1

∫
Γ1

〈
J σ2(D2u)Du, ν

〉
dσ

= N

∫
Γ

H|Du|2 dσ +
N

N − 1

∫
Γ1

〈(
tr(D2u)IN −D2u

)
Du, ν

〉
dσ

= N

∫
Γ

H|Du|2 dσ − N

N − 1

∫
Γ1

〈
D2uDu, ν

〉
dσ.

Once again, as in the Section 3, we can exploit the convexity of the cone to say
that

〈
D2uDu, ν

〉
≤ 0 on Γ1 r {O} (see (3.9)). Therefore we have

|Ω| ≥ N
∫

Γ

H|Du|2 dσ.

Since H is constant, and by Hölder inequality, we get

|Ω| ≥ N

(∫
Γ
|Du|dσ

)2∫
Γ

1
H dσ

=
NH

|Γ|

(∫
Γ

〈Du, ν〉 dσ

)2

=
NH

|Γ|

(∫
Ω

∆udx

)2

= NH
|Ω|2

|Γ|
.(4.1)

Let us now compute the tangential gradient DΓ and the Laplace-Beltrami operator
∆Γ of the function 1

2 |x|
2. We recall (see also (5.1) and (5.2)) that this yields

DΓ

(
1

2
|x|2
)

= x− 〈x, ν〉 ν and ∆Γ

(
1

2
|x|2
)

= (N − 1)(1−H 〈x, ν〉)

for x ∈ Γ. Integrating over Γ and exploiting the integral assumption (1.3), we get

(N − 1)

∫
Γ

1−H 〈x, ν〉 dσ =

∫
Γ

∆Γ

(
1

2
|x|2
)

dσ

=

∫
∂Γ

〈
DΓ

(
1

2
|x|2
)
, nx

〉
ds

=

∫
∂Γ

〈x− 〈x, ν〉 ν, nx〉 ds =

∫
∂Γ

〈x, nx〉 ds ≤ 0.

Hence we have

|Γ| ≤ H
∫

Γ

〈x, ν〉 dσ = H

∫
∂Ω

〈x, ν〉 dσ = H

∫
Ω

div(x) dx = NH|Ω|.
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Adding this to the inequality in (4.1), we get

|Ω| ≥ NH |Ω|
2

|Γ|
≥ |Ω|.

Therefore, all the inequalities we used are in fact equalities: in particular the matrix
inequality (2.6) and the Hölder inequality. The equality case in (2.6) implies that
D2u = − 1

N IN in Ω. As in Section 3 we can deduce that u is then quadratic and
Γ has to be equal to ∂BR(p0) ∩ Σ for some point p0. Then R = 1

H , and the
intersection between Γ and ∂Σ is forced to be orthogonal since u solves there the
homogeneous Neumann condition. Thus, Lemma 2.4 provides again the only two
possibilities for the location of p0. 2

5. Starshaped CMC surfaces

This section is devoted to the proof of Theorem 1.3.

Proof of Theorem 1.3. Let us compute the gradient and the Laplacian of the func-
tions (defined on Γ)

1

2
|x|2 and λ(x) = 〈x, νx〉 .

A direct calculation shows that, for all x ∈ Γ,

(5.1) DΓ

(
1

2
|x|2
)

= x− 〈x, ν〉 ν,

(5.2) ∆Γ

(
1

2
|x|2
)

= (N − 1)− (N − 1)Hλ.

Moreover, denoting by h the second fundamental form of Γ, we have, for all x ∈ Γ,

(5.3) DΓλ =

N−1∑
i=1

〈x,∇eiν〉 ei =

N−1∑
i,j=1

〈x, ej〉h(ei, ej)ei,

(5.4) ∆Γλ = (N − 1)H − ‖h‖2λ.

The last relation depends on the fact that H is constant, and it can be proved by
using Codazzi equations (see also [19, Chapter 2]). Let us define

u =
1

2
H|x|2 − λ.

By (5.2) and (5.4), and since H is constant, we have

(5.5) ∆Γu = ∆

(
1

2
H|x|2 − λ

)
= (‖h‖2 − (N − 1)H2)λ ≥ 0
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which is a consequence of the starshapedness assumption (λ > 0) and of the matrix
inequality (2.4) applied to h. The Laplace-Beltrami operator is in divergence form
(∆Γ = div(DΓ)). By integrating the relation (5.5) over Γ, we thus obtain

(5.6) 0 ≤
∫

Γ

(‖h‖2 − (N − 1)H2)λ dσ =

∫
Γ

∆Γudσ =

∫
∂Γ

〈DΓu, nx〉 ds.

From (5.1) and (5.3), we can compute the term

〈DΓu, n〉 = H 〈x, n〉 −
N−1∑
i=1

〈x,∇eiν〉 〈ei, n〉 = H 〈x, n〉 − 〈x,∇nν〉 .

Hence, the gluing integral assumption (1.4) ensures that the integral at the right
hand side of (5.6) is nonpositive. In particular, we deduce from (5.5) that the term
(‖h‖2 − (N − 1)H2)λ has to vanish identically on Γ. Therefore, since λ > 0, we
get

‖h‖2 = (N − 1)H2 =
1

N − 1
(trace(h))2 on Γ.

Thus, for any x ∈ Γ, the equality case in (2.4) holds true. From (2.5), we then
have

(5.7) h = HIN−1.

Let us show that this implies that Γ is a portion of a sphere. For any k ∈
{1, . . . , N}, we denote by xk and νk the k-th components of x and ν (i.e. xk =
〈x, ∂k〉 and νk = 〈ν, ∂k〉). We can consider the functions

vk = Hxk − νk.

If we compute the gradient, using (5.7) and the fact that H is constant, we get

DΓvk = H

N−1∑
j=1

〈ej , ∂k〉 ej

−
N−1∑
i,j=1

h(ei, ej) 〈ej , ∂k〉 ei

 =

= H

N−1∑
j=1

〈ej , ∂k〉 ej

−
N−1∑
i,j=1

Hδij 〈ej , ∂k〉 ei

 = 0 on Γ.

Since Γ is connected, this says that vk is constant in Γ, that is

for any k ∈ {1, . . . , N} there exists a constant ck such that vk ≡ ck in Γ.

Since H ∈ Rr {0}, we have

vk = Hxk − νk = ck ∀ k ⇐⇒ xk −
1

H
ck =

1

H
νk ∀ k

=⇒
N∑
k=1

(
xk −

1

H
ck

)2

=
1

H2
⇐⇒ |x− p0|2 =

1

H2
.
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Hence Γ is contained in a sphere of radius 1
|H| . Since also the cone Σ is connected

by definition, we have that, for some point p0, Γ = ∂B 1
|H|

(p0)∩Σ as we wished to
prove. 2

Note that the integral condition (1.4) can be rewritten as

(5.8)

∫
∂Γ

(H 〈xΓ, n〉 − h(xΓ, n)) ds ≤ 0,

where xΓ is the projection of the vector x to TxΓ. We recall that both ν and
h, whenever computed at points of ∂Γ, have to be meant as the exterior normal
and the second fundamental form of Γ extended up to the boundary thanks to the
smoothness (which is always assumed).
Under the hypotheses of the previous theorem one cannot provide any information
about the location of the point p0 (except that ∂Br(p0) has to be starshaped with
respect to O). Indeed, for any sphere ∂Br(p0) we surely have h = 1

r IN−1 = HIN−1

and hence the integrand in (5.8) vanishes.

6. The case of orthogonal intersection

Throughout this section we will assume that

(6.1) Γ and ∂Σ intersect orthogonally at the points of ∂Γ = ∂Γ1 ⊂ ∂Σ.

Proposition 6.1. Fix Ω to be a sector-like domain, and let u be the weak solution
of (1.2). If (6.1) holds, then

u ∈ C2,α
(
Ω r {O}

)
.

Proof. By standard regularity theory u is smooth in Ω∪Γ∪Γ1 r {O}. We have to
prove the smoothness up to ∂Γ. So, fix a point x0 ∈ ∂Γ. Without loss of generality
we can assume that, in a neighborhood U of x0, we can write

Σ ∩ U = {x = (x′, xN ) ∈ U : xN > g(x′)} and

∂Σ ∩ U = {x = (x′, xN ) ∈ U : xN = g(x′)}

for some smooth function g. Consistently, x0 = (x′0, g(x′0)). Denoting ∇′ the
gradient in the x′−variables, we can define ψ : U 7→ RN as

ψ(x) = ψ(x′, xN ) =

(
x′ − x′0 −

g(x′)− xN
1 + |∇′g(x′)|2

∇′g(x′), xN − g(x′)

)
.

Such a transformation maps Σ∩U into {yN > 0}, it flattens ∂Σ locally and behaves
well with respect to the homogeneous Neumann condition on Γ1 (it was considered
e.g. in [1]). In particular, at the points x ∈ ∂Σ ∩ U we have

Jψ(x) =

(
IN−1 − ∇

′g(x′)⊗∇′g(x′)
1+|∇′g(x′)|2

∇′g(x′)
1+|∇′g(x′)|2

− (∇′g(x′))
t

1

)
.
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Since this is an invertible matrix, we can consider a neighborhood U0 ⊆ U of
x0 where ψ is a local diffeomorphism. We can also assume O /∈ U0. Identifying
y = ψ(x) for x ∈ U0 and considering, for any smooth function f , the corresponding
f̃ = f ◦ ψ−1, one can check that

−1

1 + |∇′g(x′)|2
∂f

∂ν
(x) =

∂f̃

∂yN
(y) at the points x ∈ ∂Σ ∩ U0 ⇐⇒

⇐⇒ y ∈ ψ(U0) ∩ {yN = 0}.

This says that the orthogonality condition (6.1) translates into

(6.2) ψ(Γ ∩ U0) and {yN = 0} meet orthogonally at ψ(∂Γ ∩ U0) ⊂ {yN = 0}.

Let us now define

Ω̃ = ψ(Ω ∩ U0), M0 = ψ(Γ ∩ U0), M1 = ψ(Γ1 ∩ U0), v(y) = u(ψ−1(y)).

From (1.2) we get 
−Lv = 1 in Ω̃,

v = 0 on M0,
∂v
∂yN

= 0 on M1

,

where L = tr
(
A(y)D2

)
+〈b(y),∇〉 is an elliptic operator in ψ(U0) (with coefficients

which are smooth in a neighborhood). More precisely we have

Ai,j(y) = 〈∇ψi(x),∇ψj(x)〉 and bk(y) = ∆ψk(x).

From the expression of the coefficients Ai,j(·) we can notice that the fact that ψ is
a diffeomorphism locally around x0 ensures the strict ellipticity of the operator L.
Note also that Ai,N = 0 at yN = 0 for all i ∈ {1, . . . , N − 1}. Hence we can define

Ai,j(y) =

{
Ai,j(y) if y ∈ Ω̃ ∪M1,

Ai,j(y
′,−yN ) if (y′,−yN ) ∈ Ω̃,

with
i, j ∈ {1, . . . , N − 1}

or (i, j) = (N,N),

=

{
Ai,j(y) if y ∈ Ω̃ ∪M1,

−Ai,j(y′,−yN ) if (y′,−yN ) ∈ Ω̃
with either i = N or j = N ;

bk(y) =

{
bk(y) if y ∈ Ω̃ ∪M1,

bk(y′,−yN ) if (y′,−yN ) ∈ Ω̃,
with k ∈ {1, . . . , N − 1},

=

{
bk(y) if y ∈ Ω̃ ∪M1,

−bk(y′,−yN ) if (y′,−yN ) ∈ Ω̃
with k = N ;

w(y) =

{
v(y) if y ∈ Ω̃ ∪M1,

v(y′,−yN ) if (y′,−yN ) ∈ Ω̃.
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In this way we have

w ∈ C2(Ωref ), A ∈ C1(Ωref ), b ∈ L∞(Ωref ), where

Ωref =
{
y = (y′, yN ) : y ∈ Ω̃ ∪M1 or (y′,−yN ) ∈ Ω̃

}
.

Moreover, from (6.2) we have ∂Ωref is C2-smooth (actually C2,1) and

−
(
tr
(
A(·)D2

)
+ 〈b(·),∇〉

)
w = 1 in Ωref .

We can deduce from [12, Theorem 9.15] that w ∈ W 2,p(Ωref ) for any p, and in
particular w ∈ C1,α(Ωref ). We can thus rewrite the equation as

−tr
(
A(·)D2w

)
∈ Cα

and then, by [12, Theorem 6.6], w ∈ C2,α up to the boundary. By construction,
we infer that v ∈ C2,α at ψ(∂Γ ∩ U0) which in turn implies u is C2,α up to x0.
This proves the statement. 2

The last proposition tells us that, in the special case of the orthogonal intersec-
tion, we have not to worry about the regularity at ∂Γ for the solution of problems
(1.2)-(1.1). On the other hand, as mentioned in the Introduction we also have that
at the vertex O of a convex cone the W 1,∞ ∩W 2,2-regularity is ensured by the
results of [21, 2]. We can then restate Theorem 1.1 in the following way

Theorem 6.2. Let c > 0 be fixed, and assume that Σ is a convex cone such that
∂Σ r {O} is smooth. Suppose that Ω is a sector-like domain, and (6.1) holds.
Then, if the weak solution u of 1.2 satisfies ∂u

∂ν = −c on Γ, we have

Ω = Σ ∩BNc(p0), and u(x) =
N2c2 − |x− p0|2

2N
.

Moreover, one of the following two possibilities holds:

(i) p0 = O;

(ii) p0 ∈ ∂Σ and Γ is a half-sphere lying over a flat portion of ∂Σ.

In the same way we can restate Theorem 1.2. Let us also stress that, under
the orthogonality condition, the vector we have denoted by nx has to be normal
to ∂Σ at every x ∈ ∂Γ: thus 〈x, nx〉 = 0 ∀x ∈ ∂Γ, which obviously implies (1.3).
It means that the following theorem holds

Theorem 6.3. Fix a convex cone Σ such that ∂Σ r {O} is smooth. Consider a
connected, orientable, bounded, and relatively open hypersurface Γ ⊂ Σ, with non-
empty boundary ∂Γ ⊂ ∂Σr{O}. Assume that Γ is smooth up to its boundary, and
that (6.1) holds. Then, if Γ has constant mean curvature H > 0, we have

Γ = Σ ∩ ∂B 1
H

(p0).

Moreover, one of the following two possibilities holds:
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(i) p0 = O;

(ii) p0 ∈ ∂Σ and Γ is a half-sphere lying over a flat portion of ∂Σ.

We would like to give another proof of Theorem 6.3 via an adaptation of the
proof by Montiel and Ros [22] of the classical Aleksandrov’s theorem. We feel
it is interesting to notice how in this proof (where the PDE (1.2) never really
appears) the convexity assumption of the cone and the orthogonality condition at
the intersection play their crucial role.

Proof. For any x ∈ Γ, let us denote by ki(x) (for i ∈ {1, . . . , N − 1}) the principal
curvatures of Γ at x, and by km(x) := maxi ki(x). Notice that km(x) ≥ H > 0.
Following [22], we put

Z :=

{
(x, t) ∈ Γ× R : 0 < t ≤ 1

km(x)

}
, and

ζ : Z 7→ RN , ζ(x, t) = x− tνx.

Denoting as usual by Ω the sector-like domain associated with Γ, we claim that

Ω ⊆ ζ (Z) .(6.3)

Once this is established, we can proceed mainly as in [22] and Section 4. For the
reader’s convenience, we provide here the main details. Denoting by J Z(x, t) the
tangential Jacobian of ζ at (x, t) ∈ Z, we get from (6.3) and from the change of
variables formula that

|Ω| ≤ |ζ(Z)| ≤
∫
Z

J Z(x, t) =

∫
Γ

(∫ 1
km(x)

0

N−1∏
i=1

(1− tki(x)) dt

)
dσ(x).

Notice that 1 − tki(x) ≥ 0 by construction. We can now use the arithmetic-
geometric mean inequality and we get, since km(x) ≥ H, that

|Ω| ≤
∫

Γ

∫ 1
km(x)

0

(
N−1∑
i=1

1− tki(x)

N − 1

)N−1

dt

 dσ(x)

=

∫
Γ

(∫ 1
km(x)

0

(1− tH)
N−1

dt

)
dσ(x)

≤
∫

Γ

(∫ 1
H

0

(1− tH)
N−1

dt

)
dσ(x) =

1

N

∫
Γ

1

H
dσ(x) =

|Γ|
NH

.(6.4)

This is exactly (4.1). Then, by arguing as in Section 4 and recalling that 〈x, nx〉
vanishes identically on ∂Γ by the orthogonality condition, we get∫

Γ

1−H 〈x, ν〉 dσ =
1

N − 1

∫
Γ

∆Γ

(
1

2
|x|2
)

dσ =
1

N − 1

∫
∂Γ

〈x, nx〉 ds = 0
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and thus

|Γ| = H

∫
Γ

〈x, ν〉 dσ = H

∫
∂Ω

〈x, ν〉 dσ = H

∫
Ω

div(x) dx = NH|Ω|.

Putting this relation into (6.4), we then realize that

|Ω| ≤ |Γ|
NH

= |Ω|,

i.e. we have equality in all the inequalities in (6.4). In particular there is the equal-
ity case in the arithmetic-geometric mean inequality, from which we can deduce
that all the principal curvatures are equal to H. From here it is easy to infer that
Γ is a piece of a sphere (see e.g. the details at the end of the proof of Theorem
1.3).
Thus, we are left with the proof of the claim (6.3). The convexity assumption
for the cone Σ plays a crucial role for proving such an inclusion. Pick y ∈ Ω and
consider xy ∈ Γ such that |y − xy| = d(y,Γ). Suppose that xy belong to ∂Γ, and
denote by nxy ∈ TxyΓ the unit conormal vector to ∂Γ pointing outwards. The
minimality condition at xy yields

〈
xy − y, nxy

〉
=

〈(
∇|x− y|

2

2

)
|x=xy

, nxy

〉
=

〈(
∇Γ |x− y|2

2

)
|x=xy

, nxy

〉
≤ 0.

On the other hand, since xy ∈ ∂Σ and the orthogonality assumption between Γ
and ∂Σ holds, we have

〈
xy, nxy

〉
= 0. Thus we get

〈
y, nxy

〉
≥ 0. But this is

impossible: in fact, y ∈ Ω ⊂ Σ and, by the convexity of the cone, y lies inside the
half-spaces determined by the supporting hyperplanes to ∂Σ, i.e.

〈
y, nxy

〉
< 0.

This contradiction implies that

xy ∈ Γ = Γ r ∂Γ.

Therefore, the ball B = B|xy−y|(y) is (locally around xy) inside Ω and is tangent

to ∂Γ at xy. Hence νxy =
xy−y
|xy−y| and

y = xy − |xy − y|νxy .

By comparison we also have |xy−y| = 1
KB
≤ 1

km(xy) . This yields (xy, |xy−y|) ∈ Z
and y = ζ(xy, |xy − y|), and the claim is finally proved.
In this way we have proved the existence of some p0 ∈ RN for which Γ = Σ ∩
∂B 1

H
(p0). As before, Lemma 2.4 determines p0. 2

We end the paper by proving the counterpart of Theorem 1.3 under the or-
thogonality assumption. As already anticipated in the Introduction, the integral
gluing condition (1.4) is automatically satisfied.

Theorem 6.4. Let Σ be any cone in RN such that Σr{O} is smooth. Suppose that
Γ ⊂ Σ is a smooth (N−1)-dimensional manifold which is relatively open, bounded,
orientable, connected and with smooth boundary contained in ∂Σ. Assume that
(6.1) holds and the mean curvature of Γ is a constant H ∈ Rr {0}. If Γ is strictly
starshaped with respect to O, then we have Γ = ∂B 1

|H|
(p0) ∩ Σ for some p0 ∈ ∂Σ.
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Proof. We shall prove that the integral in (5.8) vanishes under the orthogonality
assumption. We recall that xΓ stands for the projection of x in the directions
which are tangent to Γ. The N = 2 case is trivial since x is forced to be parallel
to ν at ∂Γ. Thus we assume N ≥ 3. Denoting by

F = (N − 1)HxΓ − h(xΓ, ·) =

N−1∑
j,l=1

(h(el, el) 〈x, ej〉 − h(el, ej) 〈x, el〉) ej

where {ej} is a orthonormal frame of Γ, it is known that

divΓ (F ) = (N − 2)(N − 1)H − 2σ2(h) 〈x, ν〉 .

This is in fact an application of Codazzi equations, and it is one possible way to
prove the Minkowski formula relating H and σ2(h) (in our notations of Section 2,
the term σ2 is not normalized). This implies that

(6.5)

∫
Γ

H − 1(
N−1

2

)σ2(h) 〈x, ν〉 =
1

N − 2

∫
∂Γ

(
H 〈xΓ, n〉 −

1

N − 1
h(xΓ, n)

)
ds.

On the other hand, we know that the orthogonality condition implies that n is
normal to the cone and then 〈xΓ, n〉 = 〈x, n〉 = 0. Moreover, again by the orthog-
onality condition, it holds

(6.6)

∫
Γ

H − 1(
N−1

2

)σ2(h) 〈x, ν〉 = 0.

Such a Minkowski formula is in fact proved in [8, Proposition 1] by using Hsiung’s
original argument in [15] and exploiting 〈x, n〉 ≡ 0 on ∂Γ. Combining (6.5) and
(6.6), we deduce that ∫

∂Γ

h(xΓ, n) = 0,

so that the integral in (5.8) vanishes. Therefore, the proof of Theorem 1.3 can
be carried out and Γ = ∂B 1

|H|
(p0) ∩ Σ for some p0 ∈ RN . By making use of

the orthogonality condition we then can follow the first two steps of the proof of
Lemma 2.4 (we recall that we are not assuming the Σ is convex), and deduce that
p0 ∈ ∂Σ. 2
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Padova, Via Marzolo 9 - 35131 Padova, Italy.

E-mail: giulio.tralli@unipd.it

mailto:pacella@mat.uniroma1.it
mailto:giulio.tralli@unipd.it

	Introduction
	Preliminaries
	Overdetermined problems in convex cones
	CMC surfaces in convex cones
	Starshaped CMC surfaces
	The case of orthogonal intersection

