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Abstract: The blooming of nanotechnology has made available a limitless landscape of solutions
responding to crucial issues in many fields and, nowadays, a wide choice of nanotechnology-based
strategies can be adopted to circumvent the limitations of conventional therapies for cancer. Herein, the
current stage of nanotechnological applications for cancer management is summarized encompassing
the core nanomaterials as well as the available chemical–physical approaches for their surface
functionalization and drug ligands as possible therapeutic agents. The use of nanomaterials as
vehicles to delivery various therapeutic substances is reported emphasizing advantages, such as the
high drug loading, the enhancement of the pay-load half-life and bioavailability. Particular attention
was dedicated to highlight the importance of nanomaterial intrinsic features. Indeed, the ability of
combining the properties of the transported drug with the ones of the nano-sized carrier can lead to
multifunctional theranostic tools. In this view, fluorescence of carbon quantum dots, optical properties
of gold nanoparticle and superparamagnetism of iron oxide nanoparticles, are fundamental examples.
Furthermore, smart anticancer devices can be developed by conjugating enzymes to nanoparticles,
as in the case of bovine serum amine oxidase (BSAO) and gold nanoparticles. The present review
is aimed at providing an overall vision on nanotechnological strategies to face the threat of human
cancer, comprising opportunities and challenges.
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1. Introduction

Although progresses in cancer therapy have improved the overall survival rate of patients, the
cancer heterogeneity still demands new therapeutic strategies in order to reduce the burden of this
disease and to amend the prognosis. Currently, surgery, radiotherapy, and chemotherapy represent
the standard therapeutic approaches for cancer treatment. Nevertheless, in some cases the efficacy of
conventional approaches fails, especially due to difficult anatomical sites of intervention or chemo-
and radio-resistance of cancer cells which can frequently promote recurrences, metastasis and second
primary tumors [1]. In addition, full exploitation of chemotherapy, the most conventional method
approved for the treatment of cancer, is in many cases limited, mainly due to the harmful side effects
resulting from the indiscriminate action of drugs on both cancerous and healthy cells and tissues, as well
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as to low bioavailability or unfavorable biodistribution. To date, several therapeutics exploiting the
opportunities provided by nanomaterials have been successfully introduced for the treatment of cancer
and other diseases [2,3]. The primary advantages of these nanostructures reside in their high surface
to volume ratio allowing their functionalization with large amounts of targeting ligands and active
compounds and preventing their degradation. Noteworthily, considering anticancer applications,
nanoparticles can predominantly accumulate in solid tumors taking advantage of a peculiar feature of
neoplastic tissues. In fact, tumors require high oxygen and nutrient supply to proliferate, therefore,
angiogenesis is stimulated rapidly forming aberrant vasculature. Indeed, the rapid formation of
tumor blood vessels results in abnormalities in the epithelia causing tumor vasculature to be more
permeable than normal vasculature. This phenomenon, called enhanced permeation and retention
(EPR) effect, allows nanoparticles, conversely than small molecules that can diffuse back to the blood
stream, to diffuse more efficiently into tumor tissue than normal ones and to persist and accumulate in
the tumor site [4,5]. However, the advantages offered by particles of nanometric size, instead of micro-
or sub-micrometric materials (i.e., improved drug solubility and drug therapeutic index, extended
drug half-life in the target organ and reduced drug immunogenicity), are somehow restrained both by
the still poor knowledge about the mechanisms that control the interactions between nanoparticles and
cells/tissues and by the difficulties in the development of efficient drug delivery methods. Consequently,
in order to exert a control over drug release, as well as on the accumulation and clearance rates,
stimuli-responsive nanomaterials have been proposed as advanced delivery systems, designed to
display a controllable, dynamic interplay with the transported drug [6]. Nevertheless, techniques
for their cellular and subcellular targeting need improvements. To note, once entered in cancer cells
nanoparticle delivery systems can be processed in the endolysosomal system leading to their drug
cargo degradation or inactivation in the acidic compartments of the endo/lysosomal pathway. As a
general concept, endosomal escape gathers both the strategies and mechanisms employed to cope with
this issue and for more efficient cellular delivery [7]. Furthermore, the distribution of nanoparticles
and their payloads throughout the body is strictly related to numerous physicochemical factors: i.e.,
size, surface charge, protein adsorption, hydrophobicity, stability, hydration, electrophoretic mobility,
porosity, specific surface characteristics, density, and crystallinity, among others. Finally, fate and
possible toxic effect of nanoparticles deeply depends on the dosage and administration route [8].

The focus of the present review is not limited at reviewing the already approved and marketed
nanomaterials. Indeed, it is worth noting that only a narrow list of nano-based therapies is available
to clinicians for cancer treatment to date (see Table 1). Conversely, the literature on innovative
nanotechnological tools is growing fast whereas the promising results supporting their possible
exploitation are still limited to early stages of preclinical studies. This review aims at providing the
reader an overall vision of nanomaterial properties, functionalization strategies and solutions made
available by nanotechnology that can be used, today or in the near future, in the fight of the most
threatening human health issue.
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Table 1. Food and Drug Administration (FDA)-approved and already in clinical usage anti-cancer
nano-based drugs (not a complete list; adapted from National Cancer Institute website, www.cancer.gov).

Marketed Product Nano-Material Chemotherapeutic Indication Company

Abraxane Nanoparticle albumin-bound
paclitaxel (Nab-paclitaxel) Paclitaxel

Breast cancer, Pancreatic
cancer, Non-small-cell

lung cancer

Abraxis Bioscience/Astra
Zeneca/Celgene

DaunoXome

Liposome (small unilammelar
vesicles of

distearoylphosphatidylcholine
and cholesterol)

Daunorubicin Kaposi’s sarcoma Galen Pharmaceuticals

Doxil
Liposome

(PEGylated
formulation)

Doxorubicin
Kaposi’s sarcoma, Ovarian

cancer, Breast cancer,
Multiple myeloma

Johnson and Johnson

Genexol-PM Polymeric micelle
(mPEG-PDLLA) Paclitaxel Breast cancer, Lung cancer,

Ovarian cancer Samyang/Biopharm

LipoDox Liposome (mPEGylated
formulation) Doxorubicin Kaposi’s sarcoma, Ovarian

cancer, Breast cancer Taiwan Liposome

Marqibo
Liposome

(sphingomyelin/cholesterol-based
liposome)

Vincristine Acute lymphoid leukemia Talon

Mepact

Liposome
(muramyl tripeptide

embedded in phosphatidyl
ethanolamine-based liposome)

Mifamurtide Osteosarcoma Takeda

Myocet Liposome
(non-PEGylated formulation) Doxorubicin Breast Cancer Cephalon/Elan/Sopherion

therapeutics

NanoTherm Iron oxide nanoparticle Thermal ablation
glioblastoma

Magforce
Nanotechnologies

Oncaspar Polymer protein conjugate L-asparaginase Leukemia Enzon-Sigma-tau

Onivyde Liposome (PEGylated
formulation) Irinotecan Pancreatic cancer Merrimack Pharma

PEG: Polyethylene glycol.

2. Nanoparticles for Biomedical Applications

Given their peculiar properties that can change drastically upon specific surroundings,
nanomaterials must be subjected to an in-depth evaluation before being translated into in vivo
applications. Therefore, after the physicochemical characterization, biocompatibility, nanotoxicology,
pharmacokinetics and pharmacodynamics studies of the new nano-based therapeutics are mandatory
and need to be addressed [9]. Indeed, although the field of nanomedicine is constantly fed by novel
proof-of-concept studies, cancer researchers difficultly keep the pace with the increasing number of
new nano-tools which require high amount of time and resources to be assessed properly. This clearly
represents a bottleneck drastically shrinking the wide choice provided by nanotechnology to a restricted
selection of nanotechnological solutions for cancer research. Therefore, in the following section the
review firstly considers the nanomaterials being at a more advanced stage in a real-world scenario,
including carbon quantum dots, gold nanoparticles, iron oxide nanoparticles, lipid nanoparticles,
polymeric nanoparticles, and silica nanoparticles. Ideally, all these nanomaterials should respond to
prerequisites, such as biocompatibility and their excretion, colloidal and chemical stability, as well as
the possibility to be targeted. It is worth noting that nanomaterials should not be considered mere
carriers. In fact, each single type of nanomaterial possesses intrinsic properties, which, in some cases,
can be combined to the ones of the drug payload to obtain multifunctional theranostic nanodevices.

2.1. Carbon Quantum Dots

Among carbon-based nanomaterials, carbon quantum dots (CQDs) have animated enthusiastic
studies for their great potential in a wide range of biomedical applications [10]. Indeed, their favorable
chemical and physical characteristics, such as peculiar optical properties and fluorescence emissions,
have attracted increasing interest leading to the development of various applications in biosensing and
bioimaging [11]. Nevertheless, CQDs possess less limitations than conventional semiconductor based
quantum dots, such as low toxicity, avoiding the presence of heavy metals in their synthesis, that make
them particularly suitable for in vivo studies [12]. In addition, the advantages offered by their green
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synthesis, starting from a lot of available organic compounds, has prompted the development of CQDs
for biomedical applications due to their biocompatibility, low cost, and chemical inertness [10].

CQDs are typically spherical nanoparticles constituted of amorphous or crystalline cores
of graphitic, sp2 hybridized carbon or graphene and graphene oxide bound to sp3 hybridized
carbon insertions.

Depending on the synthetic route, a number of carboxyl moieties on CQD surface are generally
created, leading to good water solubility and chemical reactiveness for further functionalization.
Conversely, their separation, purification, and functionalization are cumbersome, leading usually
to low quantum yields and uncertainty in structure and composition [10,11]. To overcome this
shortcoming, surface functionalization and passivation can be exploited to modify CQD physical
properties, for instance enhancing eventually their fluorescence properties. Recently, the fluorescence
properties of spermidine based CQDs were drastically enhanced by hybridization of the carbonaceous
nanomaterial with iron oxide nanoparticles [13].

CQDs are very appealing in nanomedicine, as they did not exhibit any signs of toxicity in animal
models. Noteworthily, although the carbon cores of CQDs are per se considered safe, attention should
be payed to the nature and charge of their functional groups, which can turn out to be cytotoxic [14].
Beyond the improving use in diagnostics with the development of CQDs-based nanoprobes [15] and
low cost point-of-care devices [16] for healthcare in developing countries, CQDs have also been applied
for cancer treatment, in particular in photodynamic therapy [17,18]. This latter therapeutic approach
implies the localization and accumulation of photosensitizers in the tumor tissue, followed by the
irradiation with an appropriate wavelength that triggers the production of singlet oxygen, finally
resulting in cell death [19]. Indeed, CQDs are able to generate high amounts of reactive oxygen species,
namely singlet oxygen, making them promising photosensitizers [12]. In addition, CQDs can be
employed in radiotherapy [20]. As an example, silver coated polyethylene glycol (PEG) modified
CQDs were used as radio-sensitizer in cells where, exposed to low energy X-rays, ejected electrons
from the silver atoms generating free radicals that in turn produced localized cell damage reducing
detrimental effects on normal tissues and increasing therapeutic selectivity [21]. Moreover, CQDs have
also been proposed for the development of dual nano-carrier systems for drug or gene delivery coupled
to fluorescence tracking [22]. This fascinating approach is based on CQDs fluorescence in the red or
NIR region with reduced background emission from endogenous fluorophores and on the presence of
numerous surface chemical groups on the carbon nanoparticles allowing the condensation of DNA [23]
or the conjugation of the chemotherapeutic agent [24,25]. Therefore, dual nano-carrier systems facilitate
the transport through cell membrane and, at the same time, avoid drug leakage and non-specific
distribution to normal cells while enabling the development of image-guided drug delivery. Indeed,
the possibility to modify CQD surface by different functional groups results in a plethora of feasible
conjugating and targeting drug molecules [22] that, in addition to trackable fluorescence signal of
CQDs, offers new opportunities for the customization of injection times and dosages.

Drug loaded CQDs were also engineered for controlled release. Doxorubicin conjugated to
CQDs cross-linked with PEGylated oxidized alginate was efficiently released in vitro into the acidic
microenvironment at tumor site in a pH-dependent manner [26]. Furthermore, the antitumor activity
of doxorubicin with lower off-target effects was further exploited by conjugating folic acid to this
theranostic nanosystem [27]. Another smart example of anticancer drug controlled release from CQDs
is given by quinoline chlorambucil loaded carbon dots (Qucbl-Cdots) [28]. In this nanoconjugate, the
phototrigger 7-methoxy-quinoline moiety enabled the accurate control of the photolytic release of the
payloaded antitumor compound by tuning both the intensity of external light and the time of exposure.
In addition, the strong fluorescence of CQDs allowed their precise tracking inside the cell.

2.2. Gold Nanoparticles

Gold nanoparticles (AuNPs), due to their unique features, have been investigated extensively for
medical applications, especially in the context of innovative cancer therapies. AuNPs represent one of
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the most exploited metal nanoparticles exhibiting intriguing aspects, such as size-related electronic,
magnetic, and optical properties [29]. Among a wide range of possible methods proposed for their
synthesis allowing the production of AuNPs with specific size, structure, and characteristics, the
conventional route by reduction of gold(III) salts, mainly the citrate reduction of tetrachloroauric
acid (HAuCl4) in water [30], represents a milestone in the history of AuNPs research empowering
their multiple intended use [31]. However, other suitable methods have been developed to produce
different structures of AuNPs based on both seed-mediated growth and physical methods, such as
electrochemical and photochemical reduction, micro and ultrasonic waves, and laser ablation. One of
the most exploited property of AuNPs is the surface plasmon resonance that lies at the basis of many
different biosensors (e.g., Biacore™ by GE Healthcare, Chicago, IL, USA) [32]. This phenomenon is
due to quantum size effect occurring when the de Broglie wavelength of the valence electrons results
of the same dimension of the particle size. Then, the particles acquit as zero-dimensional quantum
dots, where free electrons are trapped and display a specific concerted oscillation frequency of the
plasma resonance, leading to the so-called plasmon resonance band in the visible spectral region [32].

The AuNPs physical properties are strictly correlated to the particle size, shape, interparticle
distance, and nature of the capping/stabilizing shell. Indeed, the size and shape of AuNPs profoundly
affect their features [29]. In particular, the size of AuNPs is strictly associated with their biodistribution
in the body leading to a general localization in liver, spleen, kidneys, lung, and significantly higher
concentrations were observed for smaller particles [33]. In addition, the maximum cellular uptake
occurs for 50 nm AuNPs that are efficiently endocytosed [34]. Overall, AuNPs showed negligible toxicity,
although they may influence cellular responses by affecting proliferation, stimulating mitochondrial
enzymes, and changing calcium and nitrogen oxide release [33]. Noteworthily, in many cases their
toxicity is attributable to the synthesis route, therefore, it should be designed carefully considering the
desired final application.

AuNPs can undergo irreversible aggregation during the synthetic process and several strategies
have been proposed to avoid this problem, including the use of surfactants such as Tween 20, prior
to the further functionalization that ultimately tune their biodistribution pattern, target delivery and
cellular uptake [31]. Indeed, functionalization, along with size and shape, determines the fate of AuNPs
upon administration. Different surface modifications of AuNPs have been studied to date, either by
physical adsorption or by covalent binding via thiol groups. Undoubtedly, one of the most exploited
compounds for AuNPs functionalization is polyethylene glycol (PEG) [33]. It has been demonstrated
that covalent PEGylation improve biocompatibility of AuNPs as well as extend their blood circulation
time by lowering their removal by reticuloendothelial system (RES) [33,35]. Moreover, PEG modified
AuNPs showed no cytotoxic effect with enhanced tumor accumulation. In addition, PEG represented
an ideal linker for different targeting ligands, i.e., tumor necrosis factor α [36] and galactose [37].

Several applications of AuNPs especially for anticancer therapy have been suggested, ranging
from photothermal and radiofrequency therapy to target driven drugs/nucleic acids delivery.
The physicochemical properties of AuNPs prompted researchers to explore different medical
applications. For instance, different chemotherapeutic agents (i.e., doxorubicin [38], gemcitabine [39],
paclitaxel [40], phthalocyanine [41], etc.) as well as antiangiogenic or angiogenesis modulating
compounds (e.g., quercetin [42]). Interestingly, synthetic peptides modulating angiogenesis have been
conjugated to the surface of AuNPs and tested both in in vitro cell models and in vivo on mice bearing
different induced tumors, showing promising results, even if far from being translated to humans [43].
Furthermore, AuNPs have been proposed as an alternative for the delivery of nucleic acids to improve
gene therapy ensuring both low environmental degradation and protection against nucleases as well
as facilitating cell entry [44].

Interestingly, a new anticancer therapy based on the higher polyamines content in tumor cells
than in normal cells, has been proposed [45] (Figure 1). Venditti and co-workers exploited core–shell
gold AuNPs stabilized with a hydrophilic polymer, namely poly(3-dimethylammonium-1-propyne
hydrochloride) (pDMPA/HCl), to load bovine serum amine oxidase (BSAO) by non-covalent
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immobilization (up to 70% in weight, depending on the pH values of the environmental medium).
Indeed, amine oxidases are key regulator enzymes of polyamine content in cells where they catalyze
the oxidative deamination of polyamines leading to the formation of cytotoxic products, i.e., H2O2

and aldehydes [46], thus killing tumor cells. To support a possible application of the as-obtained
Au@pDMPA/HCl-BSAO bioconjugate system in cancer therapy, as mentioned above, EPR phenomenon
in solid tumors, allows nanoparticles predominantly accumulate into neoplastic tissues. Noteworthily,
Au@pDMPA/HCl-BSAO bioconjugate displayed an enzymatic activity up to 40%, with respect to the
free enzyme, enabling deamination of endogenous polyamines and causing cytotoxicity in situ [45].
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Figure 1. Polyamines imbalance in tumors: an intriguing Achilles heel to fight cancer. (a) Rapidly
growing cancer cells have higher contents of intracellular polyamines compared to normal, healthy
tissues. Amine oxidases, the enzymes designated to control polyamines levels in cells, catalyze the
oxidative deamination of polyamines leading to the formation of cytotoxic products, i.e., H2O2, and
aldehydes. Exploiting different nano-based delivery strategies, bovine serum amine oxidase (BSAO)
has been used to kill tumor cells. In the cartoon, two different BSAO smart nano-vehicles are depicted:
(b) SAMN@RITC-BSAO, in which the enzyme was immobilized on the surface of magnetic iron
oxide nanoparticles through a fluorescent spacer arm [47]; (c) Au@pDMPA/HCl-BSAO, a core–shell
gold nanoparticles stabilized with the hydrophilic polymer (poly(3-dimethylammonium-1-propyne
hydrochloride) and decorated with BSAO as described in the main text [45].

2.3. Iron Oxide Nanoparticles

Nanometric iron oxides, generally maghemite (γ-Fe2O3) or magnetite (Fe3O4), have been
intensively studied in different research areas so far and, nowadays, deserve special interest for
the development of innovative biomedical and biotechnological applications. Indeed, among
nanomaterials, iron-oxide magnetic nanoparticles exhibit interesting properties, including physical and
biochemical characteristics that justify their role in diverse fields of biomedicine, especially for novel
cancer treatments. Particles, such as cross-linked iron oxide (CLIO) [48], ultrasmall superparamagnetic
iron oxide (USPIO) [49], and mono-crystalline iron oxide nanoparticles (MIONs) [50], have been
developed for therapeutic or diagnostic applications.

In order to produce iron oxide nanoparticles (IONPs), three conventional methods are commonly
used [51]: (i) Physical methods, such as electron beam lithography and gas-phase deposition. To note,
these methods are hardly able to give particles size at the nanometer scale; (ii) Wet chemical preparations,
such as sol–gel synthesis, chemical co-precipitations, oxidation and electrochemical methods,
hydrothermal, and sonochemical decomposition reactions, and nanoreactors; (iii) Microorganism based
methods, which are generally efficient and versatile with remarkable control over particle composition
and geometry.

Among the various fabrication methods reported in literature, the most common synthetic
procedures for water-soluble and biocompatible IONPs involve the co-precipitation of Fe(II) and
Fe(III) hydroxides in aqueous solutions under different experimental conditions and temperatures [51].
However, these processes do not guarantee the control over size distribution and crystallinity of the
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resulting particles. Therefore, the production of IONPs colloidal suspensions with appropriate surface
coating continues to be a significant challenge [52].

The surface coating of nanoparticles is fundamental to produce physically and chemically stable
colloidal systems and to provide functional groups allowing conjugation of active molecules and or
targeting ligands. Stabilization of IONPs can be accomplished by several processes [51], such as (i)
surface derivatization with polymeric stabilizers and/or surfactants (e.g., dextran, polyvinyl-alcohol,
polyethylene-glycol) or by deposition of thin layers of either inorganic metals (gold), nonmetals
(carbon), or oxides (SiO2); (ii) formation of polymeric shells, avoiding cluster growth after nucleation
and protecting the particles from aggregation; (iii) using hydrophobic coatings around the magnetic
core. It should be stressed that colloidal stability is essential for the interactions with biological systems.

Recently, new synthetic processes have been developed, allowing the fine control of a wide range
of nanoparticle characteristics, including composition, size, shape, magnetization, surface coating,
and charge [53]. As an example, a simple protocol to synthesize superparamagnetic nanoparticles
constituted of stoichiometric maghemite (γ-Fe2O3) in the dimension range around 10 nm has been
reported [54]. The as obtained iron oxide nanoparticles display a peculiar chemical behavior without
any superficial modification or coating derivatization. In addition, the prolonged stability in water as
colloidal suspensions as well as the high average magnetic moment represent added values for this
bare iron oxide nanoparticles that can be easily derivatized by immobilizing specific organic molecules
in solution [55].

Magnetic nanoparticles have been exploited in many fields, such as the immobilization
of proteins and enzymes [56], bioseparations [57], immunoassays [58], drug delivery [59],
and biosensors [60]. Moreover, iron oxide nanoparticles can be further decorated with imaging
molecules or therapeutic agents, and, as a consequence, being advanced into multifunctional
nano-devices with theranostic features.

IONPs, due to their superparamagnetic properties, deserved interest as Magnetic Resonance
Imaging (MRI) contrast agents, mostly used as T2 contrast probes by causing hypointensities [61,62].
This behavior ensures, for example during liver cancer diagnosis, to distinguish bright spots of
cancerous tissue from healthy Kupffer cells [63]. Indeed, the aptitude to freely pass capillaries and
to be phagocytized by reticuloendothelial system cells, as well as the possibility to be loaded with
tumor specific target molecules, make IONPs one of the most attractive device for the development
of target-specific MRI contrast agents [64]. Notably, magnetic nanoparticles are classified as medical
devices and according to the Food and Drug Administration (FDA) should conform to ISO 10993
guidelines. Consequently, some magnetic nanoparticles-based products have been already introduced
in clinics for MRI applications (i.e., Feridex®/Endorem® by AMAG Pharmaceuticals Inc., Waltham,
MA, USA) and constitute promising and safer substitutes of standard contrast agents [2,61].

Cell internalization of magnetic nanoparticles has extended the MRI applications of contrast
agents beyond imaging of vascular and tissue morphology, allowing diagnosis of liver diseases, cancer
metastasis, in vivo tracking of implanted cells and grafts [65,66], as well as targeted drug delivery in
cancer cells [67,68].

The irradiation of magnetic nanoparticles with radio-frequencies in the range of 100 kHz to 1 MHz
leads to the increase of environment temperature due to energy loss following radio-waves absorption
by the nanomaterial. This feature can be used to enhance the temperature of cells and tissues at the
tumor site for hyperthermia treatments [69]. Hyperthermia is a therapeutic approach based on the
increase of temperature in localized tissues using external medical devices that causes damage/death
of cancer cells or that may synergistically improve the effects of other anticancer treatments, such as
radiations or chemotherapeutic agents, inducing cell death by either apoptosis or necrosis at regional
level (tumor site). As reported in the previous paragraph, oxidative deamination of polyamines leads
to the formation of cytotoxic products [46]. Interestingly, it has been reported that at 42 ◦C polyamines
in combination with BSAO enzymatic nanosystem causes a considerable enhancement of cytotoxicity
in tumor cells, in comparison to that obtained at 37 ◦C [69]. It has been proposed that hyperthermia
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acts at the initial stages of the treatment, both by accelerating the kinetics of the molecular interactions
at the membranes level and by favoring drug release into cancer cells [70,71].

It should be noted that the application of magnetic nanomaterials for clinical hyperthermia is
aimed at overcoming the limitation of traditional treatments, which involve the unavoidable heating
of healthy tissues, resulting in damages due to the limited penetration of heat into the body by
conventional sources, such as microwaves, lasers and ultrasounds [72]. Indeed, some magnetic iron
nanoparticles are already approved to be used for clinical thermotherapy to destroy tumor cells
or sensitization for additional therapies (e.g., Nano Therm® by MagForce, Berlin, Germany) [2].
Noteworthily, during this process a temperature triggered drug release from magnetic nanoparticles
loaded with anticancer compounds was described [73]. Indeed, IONPs can be loaded with various
cargos (chemotherapeutics, photosensitizers, immune modulators) further improving their possible
applications for cancer therapies. In this context, for instance, the improvement of in situ formation of
cytotoxic polyamine (e.g., spermine) metabolites seems essential and may be obtained by combinations
of treatments with drugs that enhance cytotoxicity in hyperthermic conditions between 42 and 45 ◦C [70].
Likewise, sensitizing cells by lysosomotropic compounds enhanced hydrogen peroxide and other
spermine metabolites (aldehydes) induced cell damage [74]. Therefore, the development of nano-based
approaches to amplify the cytotoxic effect of spermine metabolites appears strategic and may represent
an exciting challenge for nanotechnologists.

2.4. Lipid Nanoparticles

Nanotechnologies have been proposed for the development of novel diagnostic tools and
therapeutic treatments of a wide range of diseases, from viral infections and cardiovascular diseases
to cancer. In particular, many efforts have been carried out to minimize the harmful impacts of
chemotherapeutic agents in cancer therapy for the prevention of side effects on healthy tissues, for
increasing drug accumulation and efficacy at tumor sites, and for developing efficient drug delivery
and targeting systems [75].

To date, a plethora of encapsulation methods for biomolecules have been developed involving
lipid vesicles, among others. Lipid vesicles are poly-molecular aggregates produced by the dispersion
of bilayer-forming amphiphilic compounds (e.g., phospholipids) [76]. Upon osmotically balanced
conditions, nanovesicles composed of amphiphilic molecules can be prepared. The hydrophobic side
of the amphiphiles constitutes the walls of the vesicle whereas the polar head groups, namely the
hydrophilic side, is exposed to water. These nanodispersed systems can be identified in three major
classes: (i) Liposomes, when the lipid bilayer encloses an aqueous core; (ii) Nanoemulsions, where a
lipid monolayer enfolds a liquid lipid core; (iii) Solid-lipid nanoparticles that are synthesized by heat
treating nanoemulsions and by cooling the lipid phase below the crystallization point, in order to obtain
a solid lipid capsule that prevent the pay-load release. From a thermodynamic standpoint, common
lipid vesicles are not stable and their formation is not a spontaneous process. These carriers are only
kinetically stable systems. Their mean size and stability depend on the molecular structure of the
amphiphiles, and, in general, on the procedure used for vesicle preparation. Instability of lipid vesicles
can induce phenomena such as fusion and aggregation, possibly evolving into precipitation [77].

Concerning the production of lipid vesicles, the employment of the highly reproducible extrusion
technique, in particular by using polycarbonate membranes with nanometer pores, leads to the
production of vesicles characterized by homogenous and mainly mono-lamellar structure. In addition,
another advantage of this technique relies on the absence of organic solvents. Lipid vesicles have
been widely applied as nanocarriers for drugs [78] and enzymes [79], for their specific payload
protection and delivery systems. In the market, several examples of liposome-based therapeutics are
already available for the treatment of several cancers (e.g., DaunoXome® by Galen Pharmaceuticals,
Craigavon, UK; Marqibo® by Talon Therapeutics, San Francisco, CA, USA; Onivyde® by Merrimack
Pharmaceuticals, Cambridge, MA, USA; Doxil®/Caelyx™ by Johnson & Johnson, New Brunswick, NJ,
USA; see Table 1) [2,80].
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2.5. Polymeric Nanoparticles

Polymeric nanomaterials were proposed as alternatives to liposomes, as they are generally
more persistent in the bloodstream and display a higher drug loading. Indeed, advances in
controlled polymerization of both natural (e.g., chitosan, dextran, alginate, gelatin, poly-L-lysine) and
synthetic (e.g., polyesters, cyclodextrins) polymers have promoted the development of multifunctional
nanoparticles with controlled size and shape, as well as surface charge and functional decoration.
Polymers, such as poly(lactic acid) (PLA), poly(lactic-co-glycolic acid) (PLGA), have been objects of
intense studies for fundamental features, such as biocompatibility as well as the potential ability of
releasing biomolecules in a controlled way [81] and over a prolonged period of time [82]. These were
already approved by FDA as excipients for controlled release of drugs [83]. In particular, the fine
tuning of physical and chemical properties of polymeric nanoparticles can achieve the delivery of their
cargoes crossing the multiple biological and anatomical barriers (e.g., blood brain barrier), answering
the need of innovative treatments for specific cancers not susceptible to classic therapeutic interventions
(i.e., glioblastoma) [84]. Noteworthily, the use of biodegradable polymers in nanocarriers design
is especially attractive. The bio-degradability of these polymers is due to the hydrolysis of ester
bonds, and its rate depends on various physicochemical parameters, which can be conveniently
tailored according to specific release patterns [85]. In particular, the incorporation of appropriate
functionalities can tune the responsiveness (e.g., assembly/disassembly) of the nanomaterial in the
biological environment under different conditions of pH, enzymatic activity, and redox state, or
in response to external stimuli, such as temperature changes, near-IR or UV-Vis light exposure,
and ultrasounds, providing targeted release at the desired site, reducing off-target delivery and
adverse side effects. Currently, the development of nano-sized polymer therapeutics, some of them
already in advanced clinical trials [86] such as polymer–drug/protein conjugates, polymeric micelles,
and polyplexes, allows the transport and release of active compounds and biomolecules (i.e., peptides
and proteins), as well as genes, to the target tissue.

Obviously, stability, biodegradability, biocompatibility, biodistribution, as well as cellular and
subcellular fate of polymeric nanoparticles and of their payload, are strictly dependent on their
chemistry. Therefore, the careful design of these nanoparticles will secure their control over their
targeting properties and future development and versatility.

Among polymeric nanomaterials, dendritic polymers have largely contributed to the broad
exploitation of nano-based material in the biomedical field [87]. Low dispersibility and viscosity, as
well as high solubility and biocompatibility, characterize dendritic polymers. In addition, the peculiar
architectures with multiple functionalities at terminal groups distinguish dendritic polymers over
linear polymers for several drug delivery applications and can be exploited, for example, to encapsulate
or conjugate either active drugs, targeting biomolecules, imaging probes, and/or solubilizing moieties.
Their nanoscale multi-functionality enables chemical smartness, and their molecular scaffold may
achieve environmentally sensitive modalities. Moreover, appropriate surface decoration of dendritic
polymers can confer structural benefits, leading to fast cellular entry, reduced macrophage uptake,
cell targeting, and easy transit across biological barriers. To date, many examples of nano-based
polymers for the delivery of chemotherapeutic drugs, such as doxorubicin [88], camptothecin [89],
or paclitaxel [90], have been successfully applied both in vitro and in vivo in different types of cancer.

In addition to synthetic polymeric nanoparticles, polysaccharides, especially alginate and
chitosan, have been proposed for the preparation of nanomaterials for theranostics applications [91].
Their reactive groups can be easily derivatized for functionalization of nanoparticles with therapeutics
(proteins, peptides, small drugs, photosensitizers) as well as diagnostic agents (sensors, imaging agents).
Moreover, polysaccharides may be produced with different sizes and charges, are biodegradable and
well tolerated in vivo. Furthermore, it has been demonstrated that nanostructured polysaccharides
can avoid the clearance by the mononuclear phagocytes, and, as a consequence, they can persist for
a longer time in the target organism [92]. Polysaccharide based nanoparticles are elective building
blocks to develop multifunctional nano-devices, combining drug delivery and imaging purposes and,
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for this reason, they are increasingly popular tools for theranostics applications. In the groups of
polysaccharides, chitosan and chitosan derivatives have been extensively investigated for protein
immobilization and drug carriers as they are able to generate a friendly environment protecting the
payload from stressing conditions and exerting a stabilizing effect during encapsulation, storage, and
release [93].

2.6. Silica Nanoparticles

Food and Drugs Administration recognized silica as a generally safe, non-toxic, and biocompatible
material [94]. The well-defined and tunable chemistry of silica nanoparticles allow the precise design of
nanosized probes and carriers [95]. Indeed, silica nanoparticles surface can be modified with different
functional groups and many biomolecules can be easily conjugated, allowing a fine control of the
interactions with biological environments [96]. Moreover, low cost, mechanical and chemical stability,
and optical transparency make silica nanoparticles particularly attractive for large scale production.

Silica surface is rich in hydroxyl groups that provide an intrinsic hydrophilicity and favorable
colloidal stability. In addition, silica surface can be easily modified with many exploitable functional
moieties, such as polymers and biological molecules, by using the well-validated siloxane chemistry,
leading to multi-functional nanoconjugates. Notably, the fine control of different critical parameters of
silica nanoparticles have allowed their development for biomedical and multidisciplinary applications.

To date, numerous protocols have been applied for the production of different silica nanomaterials
with various sizes, shapes, and specific physico-chemical characteristics. The polymeric structure
of silica nanoparticles consists of siloxane (-Si-O-Si-O-) structures with highly concentrated silanol
(Si-OH) groups on their surface. They can be prepared by two general strategies: (i) the Stöber
synthesis and (ii) the microemulsion method. According to the Stöber method [97], a silica alkoxide
precursor, such as tetraethoxysilane, undergoes hydrolysis and condensation in a mixture of ethanol
and ammonium hydroxide, resulting in the formation of monodisperse silica particles with sizes
ranging from 100 nm to few microns. During this process, fluorophores and other nanomaterials can
be incorporated into silica nanoparticles. On the other hand, the microemulsion process consisting
in the preparation of homogenous, thermodynamically stable oil-in-water or water-in-oil systems
using surfactant molecules, leads to the production of spherical and highly monodispersed silica
nanoparticles [98]. The dispersion of nano-droplets into the emulsion, also known as nanoreactors,
provide a confined nano-environment for the formation of nanoparticles. To note, the inner volume of
nanoreactors in which hydrolysis and condensation reactions of silicon alkoxides lead to the formation
of silica nanoparticles, acting as a cage, controls the size and size distribution of the final nanomaterial.
Different detergents are commonly used to obtain nanoreactors emulsion, including ionic surfactants
(e.g., Aerosol OT), and nonionic detergents, such as Tween-20 or Pluronics. In addition, by using Stöber
and microemulsion procedures, silica nanoparticles have been coated with various organic molecules
leading to the formation of core–shell structures.

Silica nanoparticles can be classified into two major families: solid silica and mesoporous silica
nanoparticles (MSPs). The more evident difference in the case of MSPs is the presence of pores and
channels that can accommodate a large number of different biomolecules and drugs. Due to their
high surface to volume ratio and tunable porous structure, MSPs have been exploited as useful drug
delivery vehicles for cancer treatments [99]. Indeed, their porous structure enables the control of
drug loading through simple diffusion mechanisms and release kinetics, enhancing drug efficacy as
well as reduced toxicity. Moreover, in vivo studies on cellular uptake, cytotoxicity, biodegradation,
biodistribution, and excretion of this nanomaterial reported satisfactory results [100,101]. In the design
of MSPs, to avoid any possible degradation or inactivation of their cargoes and the endosomal escape
(see Introduction), the so-called proton sponge effect can be exploited [83]. Specifically, the surface
modification of MSPs with cationic polymers or peptides as coating elements, induces osmotic swelling
of endosomes thus improving membrane potential and counter-ions influx, finally leading to the
disruption of the organelle membrane with the resulting release of nanoparticles as well as of their
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cargoes [102]. MSPs actively targeting to tumors can also be obtained by the attachment of different
ligand molecules, such as antibodies [103], aptamers [104], peptides [105], and growth factors [106] on
their surface, which in turn can be recognized and interact with binding partners on cancer cells.

The wide-range customization in the design of functionalized silica nanoparticles provides
a plethora of possibilities for the loading and selective delivery of anticancer drugs. Different
chemotherapeutic compounds conjugated to silica nanoparticles have been successfully exploited
in preclinical tests, such as rituximab [107], camptothecin [108], docetaxel [109], paclitaxel [110], or
doxorubicin [111], among others. However, translation from research to clinic of such new nanocarrier
systems still remains a challenge that needs to be addressed.

3. Chemistries for Biomolecule Immobilization on Nanoparticles

Although the passive targeting of nanoparticles due to EPR effect can be efficiently exploited for
the drug delivery in the tumor site, the bioconjugation technique represents a useful implementation to
enhance the active selectivity to the targeted cancer site. Several bioactive molecules can be immobilized
on the surface or entrapped within nanomaterials, such as drugs, peptides, antibodies, or aptamers
(Figure 2), providing the possibility to selectively interact with living cells and to preferentially
accumulate in the tissue of interest, such as tumors. Bioconjugation consists of linking biomolecules
to the nanoparticle, and, in the case of cancer therapy, primarily acting as ligands for targeting
tumor-specific antigens. Therefore, it can provide the selective delivery of therapeutics to pathological
sites, or, alternatively, to improve the retention of the nanoconjugate in the blood circulation system.
In this context, the fine control of surface functionalization characterizing the nanoparticles coating is
of fundamental importance for determining their interactions, effect, and fate in biological systems.

For this purpose, a number of approaches have been proposed for coupling therapeutic agents
and targeting ligands to nanoparticles (Table 2). Generally, methods involving mild reactive conditions
are suitable for drugs as well as for therapeutic peptides and proteins, which are more susceptible to
denaturation and degradation in biological environments.
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and diminish the uptake by reticuloendothelial system. Moreover, functionalization with antibodies and
proteins can empower the specific targeting to tumor tissues of chemotherapeutics, biotherapeutics (e.g.,
enzymes/peptides/gene delivery/siRNA), and optical properties (fluorescent dyes, photosensitizing
agents) of the as-obtained nano-conjugates. Finally, the formation of nanohybrids with other
nanomaterials can enlarge the possible applications of single nanomaterials. (b) Chemical entities
exposing chelating moieties, such as catechols, keto-enols, phosphate or carboxyl groups, can interact
and being bound onto “surface active maghemite nanoparticles” (SAMNs) surface due to dangling
bonds of iron(III) sites which can be compared to free Fe3+ ions. As an example, the poor bioavailability
and rapid degradation in aqueous conditions of curcumin, a well-known natural compound that
has raised an intense debate about its preventive anti-cancer activity, can be overcome by its facile
conjugation on the surface of SAMNs (Adapted with permission from [112]. Published by Wiley, 2014).

Table 2. Most used functional groups and relative chemistries to obtain biomolecules conjugation on
nanoparticles (Adapted with permission from [113]; published by American Chemical Society, 2013).

Biomolecule Functional Group Reactive Group Reaction Product

Aldehyde/ketone Amines
Hydrazine

Imine
Hydrazone

(free) Amine

Acyl azides
Aldehydes

Arylating agents
Carbodiimides

Carbonates
Epoxides

Imidoesters
N-hydroxysuccinimide ester

(NHS)
Isocyanates, Isothiocyanates

Sulfonyl chlorides

Amide
Imine

Arylamine
Amine

Carbamate
Secondary amine

Amidine
Amide

Urea/thiourea
Sulfonamide

Carboxylate
Carbodiimides,

Carbonyldiimidazole
Diazoalkanes, Diazoacetyl

Amides
Esters

Hydroxyl

Epoxides/Alkyl halogens
Periodate

Isocyanates, Carbonyldiimidazole
N,N′-disuccinimidyl carbonate,

N-hydroxysuccinimidyl
chloroformate

Ethers
Aldehydes

Carbamate or urethane

Reactive carbon (e.g., Tyr) Diazonium Diazo bond

(free) Thiol

Acryloyl derivatives
Arylating agents

Aziridine
Haloacetyl/Alkyl Halide

Maleimide
Pyridyl disulfides,

5-thio-2-nitrobenzoic acid

Thioether
Thioether
Thioether
Thioether
Thioether

Mixed disulfides

To note, the interactions of biomolecules with nanomaterials lead to the formation of a surface
layer influencing the physico-chemical behavior of the final bionanoconjugate, which, in turn, affect
the key forces governing its colloidal stability. In fact, the interactions between biomolecules and
nanomaterials may result in the formation of particle aggregation, influencing intracellular uptake,
biocatalytic activities and protein corona formation. Noteworthily, as a general concept, such proteins
shell rules over the surface properties of the nanomaterial including zeta potential, colloidal stability
and, obviously, the hydrodynamic size. Most importantly, protein corona governs the physiological
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response and drives nanoparticles to the desired therapeutic effect. At the same time, unspecific
interactions are often unavoidable [114].

Traditionally, four methods are commonly used for molecular immobilization on nanomaterials,
namely: (1) physical adsorption; (2) covalent immobilization; (3) physical entrapment (4) bio-affinity
interaction (Figure 3).Biomolecules 2020, 10, x FOR PEER REVIEW  14 of 26 
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4-(N-maleimidomethyl)cyclohexane-1-carboxylate; s-NHS: N-hydroxysulfosuccinimide.

3.1. Physical Adsorption

In general, physical absorption of a bioactive molecule on nanomaterials is comparatively weak
and, in many cases, payload losses from the nanocarrier are observed under the working conditions.
Biomolecule immobilization is commonly carried out via non-covalent approaches, as electrostatic
interactions with charged surfaces or passive adsorption onto hydrophobic surfaces [115] (Figure 3a).
Noteworthily, this kind of immobilizations do not require the modification of the molecule of interest
or the use of coupling reagents. However, non-covalent immobilization is characterized by relatively
labile and reversible interactions. As a result, loaded molecules can be easily released from the support,
which in turn results in an activity loss and concerns on robustness and efficacy. All these factors
have detrimental implications in the real applicability of these nanomaterials for therapeutic use.
Many efforts were carried out in the last decades for the development of specific nanoparticles for the
immobilization of biomolecules.

3.2. Covalent Immobilization

Covalent immobilization is particularly suitable to introduce on nanoparticles surface appropriate
proteins, peptides and antibodies that enable the active targeting of nanoparticles to tumor tissues. In this
case, the choice of the functionality is determined by the type of the target (i.e., receptor), specifically
over-expressed in cancer cells. Covalent bindings confer robustness to the nano-bio-conjugates and,
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therefore, avoid the bioactive moiety leaching. They involve reactions between chemical groups on the
ligand molecule and available reactive sites on nanoparticle surface (Figure 3b). As an example, strong
amide bonds can be developed at the protein-nanoparticle interface between exposed amine groups,
present in the lysine side chains of the biomolecule, and esters (e.g., N-hydroxysuccinimide, NHS), on
the nanomaterial outer layer [116].

However, the reactivity toward hydrolysis of NHS esters represents one of the main limitations
of this immobilization strategy. Actually, the interaction with proteins in aqueous milieus suffers
from the competition of water molecules, with obvious negative consequences on the immobilization
yield [117]. Alternatively, aldehyde groups can also be exploited in the conjugation with amino groups.
In this case, aiming at the formation of a strong secondary amine bond, the procedure includes a
reduction reaction after the binding, which can be carried out by means of a reducing agent as sodium
cyanoborohydride [118]. Furthermore, amines, as electron pair donor, can be joint to electrophiles
as the epoxide group (diglycidyl ethers) [119] which offer the advantage of being sufficiently stable
at neutral pH. Notwithstanding this approach, which can be conveniently used to overcome the
hydrolysis drawbacks, requires long reaction times (overnight) as well as docking surfaces with a high
density of epoxy groups. To note, supports showing short spacer arms effectively freeze the structure
of the immobilized protein [120].

The concept of “click reaction” was introduced in 2001 [121] and consists of a compendium
of chemical principles inspired by the efficiency of biological systems. Briefly, click reactions are
characterized by the economization of the number of involved atoms and reaction steps, strongly
thermodynamically driven and leading rapidly and irreversibly to high yield of a single reaction
product or (at least) minimal and non-toxic formation of byproducts. Examples of click reactions
applied in nanomedicine are the thiol-maleimides reaction, the Staudinger ligation, and the Huisgen
cycloaddition (see below). Indeed, cysteine residues, bearing thiol moieties, are also good options for
protein immobilization. They readily react with unsaturated carbonyls (e.g., maleimides) forming
strong thioether linkages [122]. It has been shown that maleimides are extremely reactive with thiols at
neutral pH, whereas amines are predominantly protonated and, as a consequence, un-reactive [123].
It should be considered that in most of the cases, protein surfaces disclose a poor amount of cysteine
residues. Noteworthily, this feature can be an advantageously used aiming at a site-selective binding.
Moreover, the position of cysteine residues can be designed by protein engineering and, in this
manner, it is possible to exert a control over the macromolecule binding orientation. Thiol group,
as a good nucleophile, can also react with epoxides and NHS esters, nevertheless, besides being a
time-consuming process this reaction leads to the thioester bond, which is easily hydrolysable in an
aqueous environment.

The most common method for molecule immobilization involves the conversion of
carboxylic groups to the corresponding active esters by a carbodiimide coupling agent,
and often an auxiliary nucleophile. While NHS is widely used for free amine groups,
1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC) is generally exploited to generate esters from
carboxyl groups [124]. Moreover, the synthesized esters can react further with amine functionalized
supports. Noteworthily, both these two reagents are hydrophilic, therefore they can be used in water.
However, the poor stability of carbodiimides may lead to rather low reaction yields. Noteworthily, a
likely event that cannot be neglected is the possibility that protein NHS esters react with amino groups
on other macromolecules, leading to protein polymerization.

Aldehyde groups can be generated on oligosaccharides by the chemical oxidation of 1,2-diols
moieties. For this purpose, periodate is often used as oxidizing agent. Aldehydes are used for anchoring
to hydroxylamine or hydrazine bearing supports forming the related oxime or hydrazone [125].
This strategy has been applied for the immobilization on conventional supports of a range of proteins
and antibodies featuring post-translational glycosylation, including several oxidase and protease
enzymes [126]. However, it should be taken into account that, despite the availability of multiple
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binding points on the polysaccharide chain, the presence of more than one site of glycosylation would
plausibly result in a random orientation of the immobilized protein.

Another example is phenolic oxidative cross-linking, which includes protein cross-linking on
tyrosine residues [127]. Dityrosine cross-linking naturally occurs in structural proteins, such as
elastin and silk, and is catalyzed by metallo-enzymes. Nevertheless, Ni(II) complexes with
glycine-glycine-hystidine tripeptides can also catalyze this reaction [128]. Two proximal tyrosine
residues, one from the support and the other from the desired protein, are catalytically conjoined by
the Ni(II) complex, after the oxidation cross-linking, metal ions can be removed from the solution.
Finally, the reaction yield can be assessed by measuring the typical dityrosine fluorescence emission at
420 nm [129].

In recent years, several selective immobilization methods optimized for proceeding under mild
conditions received increasing attention. Some of them rely on protein labeling with an azide
moiety [130]. Azide reacts with a phosphine giving an iminophosphorane (aza-ylide). Once this
intermediate is formed, it tends to rapidly evolve into a stable amide bond by conjugation with an
electrophile, typically an ester. This reaction, known as Staudinger ligation, has been widely employed
for the immobilization of a variety of peptides and proteins [131].

Another important example of click reaction applied for bioconjugation purposes is the
Huisgen cycloaddition [132], which consists in the reaction of a dipolarophile (e.g., azide) with
a 1,3-dipolar compound (e.g., an alkyne) that leads to 5-membered (hetero)cycles (e.g., 1,4-disubstituted
1,2,3-triazole) [133]. In the most popular version of the reaction, Cu(I) catalyzes the nearly quantitative
conversion of terminal alkyne and azide into a triazole ring. As alkyne moieties are rarely present in
biological systems, they may be introduced into the biomolecule for a range of applications involving
polymers, fluorophores, or biochemical labels [134].

Photo-irradiation (photo-click chemistry) can be used to trigger the tetrazoles and alkenes reaction,
leading to production of pyrazoline heterocycle [135]. The reaction progress can be monitored by
measuring the characteristic fluorescence of the product.

Dative bonds are relatively weak in comparison to actual covalent linkages. They can be
destabilized by pH variation or oxidation reactions and molecules can be substituted via ligand
exchange mechanism by molecule with higher affinity. Notwithstanding, the higher the number of
coordination bonds at the interface between the biomolecule and the docking surface, the greater is
the overall strength of the interaction (i.e., multipoint binding). As an example, it is well-established
that the use of multi-dentate thiols (with respect to monothiols) leads to extremely more stable
immobilization [136,137].

Amino acids, containing chelating functionalities as imidazole or carboxylic groups, are prone
to coordinate transition metals such as Ni(II), Cu(II), Zn(II), and Co(II). This property is commonly
applied for protein purification [138] and can be used for biomolecule immobilization on metal and
metal oxide nanoparticles [47]. Genetically encoded poly-histidine tags (His-tags), usually consisting
of six sequential histidine residues, is able to chelate transition metals, such as Cu(II), Co(II), Zn(II),
or Ni(II). Nanoparticles can be endowed of affinity toward His-tags by immobilizing these metal ions
on their surfaces. For this purpose, nanoparticle surface should be previously functionalized with
chelating moieties (e.g., iminodiacetic or nitrilotriacetic acid). These modified nanoparticles, displaying
affinity for the histidine tag, can be finally used to immobilize fusion proteins [139]. Care should be
taken as the linkage is relatively labile (Kd ≈ 10-5–10-6 M), even if the introduction of tags constituted
of 10–12 His-tags or two separate His-tags showed binding improvements [140].

Finally, molecules can bind directly on bare metal oxide nanoparticles coordinating the dangling
bonds at the crystal truncation, inducing a structural reorganization at the nanomaterial surface [141].
As an example, crystalline metal oxide nanoparticles (<20 nm) may adjust their surface lattice to
form under-coordinated sites [142]. These defects are the binding sites toward macromolecule
immobilization, leading to the restoration of coordination geometry of surface metal atoms. In this case,
the binding of ligands increases the surface stability involving to the reorganization of nanoparticle
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surface. A consistent behavior was found for different nanocrystalline metal oxide systems, such as
TiO2 [143], ZrO2 [144], and Fe2O3 [145].

3.3. Physical Entrapment

Encapsulation represents the best choice for the immobilization of a biomolecule in a nanomaterial,
avoiding any risk of possible alteration of the molecular structure of the biomolecule itself (Figure 3c).
Indeed, macromolecules can be extremely fragile and alterations in the three-dimensional structure
could both have a detrimental effect on their function and make them more prone to denaturation
and degradation. A useful approach to encapsulate biological active molecule, such as antibodies and
enzymes, in their functional state employs the sol–gel technique.

Sol–gels are readily prepared materials characterized by high porosity, typically titania or
silica [146]. The sol–gels are chemically inert materials designed to be mechanically and thermally
stable, that have been extensively used for protein immobilization. Despite the porosity of sol–gel
nanoparticles, substrate diffusion to the enzyme active site can be hindered and care has to be taken to
minimize the effects of limited diffusion [147].

The synthesis of sol–gels nanomaterials occurs under relatively mild conditions: firstly,
a tetra-alkoxysilane or titanium alkoxide is hydrolyzed in acidic milieu, secondly, sol is formed
by a condensation reaction, resulting in a mixture of partially hydrolyzed and partially condensed
alkoxysilanes or titanium alkoxides. The final nanostructure presents pores, which are permeated
with water (or alcohol) and, therefore, is defined as aquagel. When the latter is dried by evaporation,
a xerogel is produced. As water molecules leave the aquagel, the material collapses by action of the
capillary forces and, as a consequence, the transformation into xerogel is accompanied by a substantial
structural alteration. Solvent modification or additive introduction lead to different hydrophilic or
hydrophobic aqua-, xero-, and aerogels with very different structures and properties [148]. Even though
gels can be employed to immobilize enzymes by adsorption or even by covalent grafting, sol-gels
methods are mostly interesting to create matrixes in which enzymes can be embedded [149]

3.4. Bioaffinity Interactions

Various affinity binding interactions involving biological molecules have been proposed for drug
and macromolecule immobilization [150] (Figure 3d). All these interactions exploit the high selectivity
and specificity of binding partners [151]. The non-covalent interaction among avidin (or streptavidin)
and molecules bearing a biotin functionality is the most widespread protein-mediated approach for
biomolecule immobilization [152]. This affinity binding is very stable (Kd ≈ 10-15 M) and resistant to
denaturants, heat, proteolysis, and harsh pH. Tetrameric avidin possess four independent binding sites
for biotin [153], which can be used for the immobilization to a solid support and/or for the recognition
of a biotinylated target. The availability of nanosized supports, such as magnetic nanoparticles coated
with avidin, has increased the popularity of this immobilization approach [154–157].

In addition, antibodies have been proposed to immobilize target proteins on nanomaterials,
exploiting the selectivity of their binding interactions [158]. However, several drawbacks hinder this
method for protein immobilization [159]. Firstly, pure monoclonal antibodies are needed because
polyclonal antibodies are composed of a heterogeneous population with variable binding selectivity
toward different target epitopes, leading to a variety of antibody-target complexes. Moreover, a deep
structural knowledge of the binding interaction should be available for the determination of the binding
strength and the effect of the binding on the target. Finally, the cost of large amounts of monoclonal
antibodies is generally high and consequently the scale up of this approach could be not feasible.

4. Concluding Remarks

The rapid development of nanotechnologies has bridged the gap of biological and physical sciences
by applying nano-structures into different fields, especially in medicine and drug delivery systems. In
particular, the combination of nanoscience along with active compounds/biomolecules represents an
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appealing frontier, particularly in cancer treatment [160]. Indeed, different nanosystems are currently
under investigation to deliver drugs/biomolecules into cancerous cells or tissues for both therapeutic
and diagnostic purposes. Notably, using nano-based drug delivery systems to target drugs specifically
to the desired site of action could be an attainable option that might solve some of the critical issues
that are common to conventional therapies. In comparison to micro- or submicrometric size particles,
the main advantage of nanoparticles resides on their larger surface to volume ratio that can be used to
bind high amounts of either active/targeting biomolecules (i.e., enzymes, DNA, proteins) or chemical
compounds (e.g., chemotherapeutic agents, dyes). Noteworthily, being nanosized these structures
easily penetrate the tissues, accumulate in tumor site (i.e., EPR effect) and facilitate cell uptake of the
drug leading to successful drug delivery and action at the targeted location. Generally, therapeutic
drugs or biomolecules can be encapsulated inside the nanostructure or can be attached on their surface.
In this review, the most common chemical procedures to obtain efficient loading of biomolecules
onto different nanomaterial have been summarized. To note, the efficacy of nanostructures as drug
delivery vehicles and/or diagnostic devices inevitably differs on the basis of their size, shape, and other
physical/chemical features.

To date, several critical issues still hamper the translatability of nano-based tools from academic
studies to industrial processes and clinical applicability. A less compartmentalized and multidisciplinary
approach could favor the advancement of many promising nano-tools, which unfortunately still remain
at a research laboratory level. Indeed, albeit the first FDA-approved nanodrug (Doxil, pegylated
liposomal doxorubicin) for cancer treatment dates back to 1995 and nanomedicine development has
been a major challenge of pharmaceutical research in the last decades, many efforts have to be done yet
to translate from bench to the bedside nano-based products as powerful weapons to fight cancer.
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AuNPs Gold nanoparticles
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BSAO Bovine serum amine oxidase
γ-Fe2O3 Maghemite
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CLIO Cross-linked iron oxide
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