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Abstract
In the work of Alladi et al. (J Algebra 174:636–658, 1995) the authors provided a
generalization of the two Capparelli identities involving certain classes of integer par-
titions. Inspired by that contribution, in particular as regards the general setting and
the tools the authors employed, we obtain new partition identities by identifying fur-
ther sets of partitions that can be explicitly put into a one-to-one correspondence by
the method described in the 1995 paper. As a further result, although of a different
nature, we obtain an analytical identity of Rogers–Ramanujan type, involving gener-
ating functions, for a class of partition identities already found in that paper and that
generalize the first Capparelli identity and include it as a particular case. To achieve
this, we apply the same strategy as Kanade and Russell did in a recent paper. This
method relies on the use of jagged partitions that can be seen as a more general kind
of integer partitions.

Keywords Partition identity · Rogers–Ramanujan identity · Jagged partition ·
Analytical identity

Mathematics Subject Classification Primary 11P84; Secondary 05A17 · 11P82 ·
11P83

1 Introduction

In a 1969 paper, [2], Andrews characterized the type of partition sets that could be set
into a bijection using Euler’s classical trick to show that partitions of n into distinct
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parts are asmany as partitions of n into odd parts. In particular, Andrews proved that an
identity of Schur ([12]) and one of Göllnitz ([10]) provide examples of “Euler-pairs”.
Inspired by that paper, here we look at one of the identities given in [6], see also [8].
We study the bijection provided byAlladi et al. in [1] and we find new sets of partitions
that can be set into a bijection using the same approach. For further details on this
subject and some generalizations we refer the reader to [3–5,7,9].

As the starting point of our research, we consider the partition identity which was
proved in [1] and in particular theConcludingRemarks (Section 7), according towhich
the first Capparelli’s identity (see [7]) can be generalized from modulo 3 to modulo t
by means of suitable dilations. In Sect. 2 we find an analytical identity for the partition
identity modulo t . This is done using the same method as in [11] to compute the
generating functions of the sum side. In Sect. 3 we again look back at [1], this time
by generalizing the machinery which led the authors to build up the partition identity.
In particular, we study a different class of partition identities which are indexed by
two coprime integers s and t . As better clarified in Sect. 3, these two parameters play
different roles and actually generalize the roles of s = 2 and t = 3 in [1]. In the
present setting we obtain a new family of partition identities.

2 An analytical identity for an Alladi–Andrews–Gordon bijection

Let n, t be positive integers with t > 2 and denote by C(n)t the set of partitions of
n with distinct parts that are either divisible by t or congruent to t ± 1 (mod 2t).
Furthermore, let D(n)t denote the set of partitions of n with distinct parts larger than
1 that are either divisible by t or congruent to ± 1 (mod t) and whose difference is
at least t + 1, with the following exception: the difference between two adjacent parts
can be smaller than t + 1 if they are both divisible by t or their sum is divisible by 2t .
Alladi et al. proved the following proposition (see [1]).

Proposition 1 C(n)t and D(n)t have the same cardinality.

In the present section we find an analytical expression for the above partition iden-
tity. The proof of our result is inspired by the argument in [11]. In accordance with
that paper, we provide the following definition.

Definition 2 For a fixed positive integer k, a k-jagged partition is a finite sequence
(a1, . . . , am) such that a1, . . . , am ∈ Z, a1 > 0, and ai+1 − ai ≥ −k, for every
i = 1, . . . ,m − 1.

Clearly, if k = 0, we obtain the classical partitions written in weakly increasing order,
as in [11]. The set of classical partitions (b1, . . . , bm) is easily seen to be in bijection
with the set of k-jagged partitions (a1, . . . , am) by associating bi to ai + (i − 1)k;
essentially, we add a k-staircase. In the present paper, this bijection plays an important
rolewhen passing to generating functions. For our purposes, we now consider a special
class of k-jagged partitions.

Definition 3 A k-jagged partition is called strong if it satisfies the condition ai ′ −ai ≥
−k, for every i = 1, . . . ,m and i ′ = i + 1, . . . ,m.
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With this definition it is now possible to introduce the key concept we require for our
proof.

Definition 4 For each positive integer j and strong k-jagged partitionμ, we define the
maximal block M j corresponding to j in the following way. If there is an element ai
of μ such that ai = j and with the property that every element before ai is smaller
than j , then M j is the maximal subsequence of μ starting with ai whose elements
belong to the set { j, j − 1, j − 2, . . . , j − k}. If there is no element ai satisfying the
above conditions, then M j is the empty set.

The maximal blocks are in bijection with the positive integers and it is not hard to see
that a given strong k-jagged partition is exactly the juxtaposition of all its maximal
blocks. While it seems difficult to work out the general form of a maximal block, in
our context such blocks enjoy some additional properties whichmake their description
easy in order to obtain Theorem 5.

Example We have that

μ = (3, 5, 5, 4, 5, 6, 4, 3, 4, 0,−2, 5, 11)

is a 4-jagged partition and it is not a strong 4-jagged partition. However it is a 8-jagged
partition and a strong 8-jagged partition. If we regard μ as a strong 8-jagged partition,
we have the following maximal blocks:

M3 = (3),

M5 = (5, 5, 4, 5),

M6 = (6, 4, 3, 4, 0,−2, 5),

M11 = (11),

M j = ∅, for j = 1, 2, 4, 7, 8, 9, 10 and j ≥ 12.

Adding the 8-staircase (0, 8, 16, 24, 32, 40, 48, 56, 64, 72, 80, 88, 96)weget the clas-
sical partition (3, 13, 21, 28, 37, 46, 52, 59, 68, 72, 78, 93, 107).

In the proof of the following theorem we need some further notation. Let b be
a finite subsequence; by b∗ we mean a string of either 0 or more contiguous
blocks of b, and by b• we mean either the empty string or b itself. For instance,
the notation (6, 4, 6, 3)∗(6, 5)• is compatible with any of the following: (6, 5),
(6, 4, 6, 3), (6, 4, 6, 3, 6, 4, 6, 3, 6, 4, 6, 3), or (6, 4, 6, 3, 6, 4, 6, 3, 6, 5), but not
with (6, 4, 6, 3, 6, 5, 6, 5) or (6, 4, 6, 3, 6, 5, 6, 4, 6, 3).

Theorem 5 Let t be an integer greater than 2 and

Q(a, b, c, d) = 2a2 + 1

2
b2 + c2 + d2 + 2ab + 2ac + 2ad + bc + bd + cd.

We have

∏

n≡0,t−1,t,t+1 (mod 2t)

(1 + qn) =
∞∑

a=0

∞∑

b=0

∞∑

c=0

∞∑

d=0

qtQ(a,b,c,d)+ t
2 b−c+d

(q2t , q2t )a(qt , qt )b(qt , qt )c(qt , qt )d
,
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where the left-hand side is the generating function of the partitions with distinct parts
congruent to 0, t−1, t, t+1 (mod 2t), and the right-hand side is the generating func-
tion of partitions with distinct parts greater than 1 and congruent to 0,± 1 (mod t)
such that the difference between consecutive parts is at least t +1 unless they are both
0 (mod t) or their sum is 0 (mod 2t).

Proof It is straightforward to see that the infinite product is the generating function of
C(n)t . With Proposition 1 in mind, it suffices to show that the quadruple sum is the
generating function of D(n)t . For every positive integer j , the configurations that are
not allowed in D(n)t are the following:

• j, j ;
• t j − 1, t j ;
• t j − 1, t j + t − 1;
• t j, t j + 1;
• t j, t j + t − 1;
• t j + 1, t j + t − 1;
• t j + 1, t j + t ;
• t j + 1, t j + t + 1.

If we subtract a t-staircase, we get

• j, j − t ;
• t j − 1, t j − t ;
• t j − 1, t j − 1;
• t j, t j − t + 1;
• t j, t j − 1;
• t j + 1, t j − 1;
• t j + 1, t j ;
• t j + 1, t j + 1.

Hence, the maximal blocks are the following:

• Mt j−1 = (t j − 1, t j − t + 1)∗(t j − 1)•;
• Mt j = (t j)∗;
• Mt j+1 = (t j + 1)•.

It follows that the generating function is

∞∏

j=1

1 + xqt j−1

1 − xqt j−1 · xqt j−t+1

∞∏

j=1

1

1 − xqt j

∞∏

j=1

(1 + xqt j+1)

= (−xqt−1, qt )∞(−xqt+1, qt )∞
(x2qt , q2t )∞(xqt , qt )∞

=
∞∑

a=0

x2aqta

(q2t , q2t )a

∞∑

b=0

xbqtb

(qt , qt )b

∞∑

c=0

xcq(t−1)cq
tc(c−1)

2

(qt , qt )c

∞∑

d=0

xdq(t+1)dq
td(d−1)

2

(qt , qt )d

=
∞∑

a=0

∞∑

b=0

∞∑

c=0

∞∑

d=0

x2a+b+c+dq4a+4b+2c2+c+2d2+3d

(q2t , q2t )a(qt , qt )b(qt , qt )c(qt , qt )d
.
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Now we add a t-staircase which, in terms of generating functions, corresponds to

the substitution xm �→ xmq
tm(m−1)

2 . Moreover, since we are not interested in taking
account of the number of parts, we set x = 1 and this gives the result. 
�
Remark 6 For t = 3 the sum of the previous proposition gives the same sum obtained
in [11] using the substitution x �→ 1, i �→ b, j �→ c, k �→ d, l �→ a and also the
same sum obtained in [9, Equation (2.6)] using the substitution r �→ d, s �→ c, t �→
b, v �→ a, q �→ q3, a �→ q−2, b �→ q−4.

3 Partition identities for the “s-rate , t-stack” case

As mentioned in the Introduction, in the present section we construct an original class
of partition identities which are indexed by two coprime integers s and t , with t odd.
Given a partition of a positive integer n into distinct parts, we list its parts in decreasing
order, as in [1]. Fix three positive integers n, s, t , with s, t coprime and greater than 1;
denote by C(n)ts the set of partitions of n with distinct parts multiple of s or multiple
of t . LetW = {hs+ kt : h, k ∈ N} andU = N−W , where N is the set of nonnegative
integers. Notice that U is finite because its largest element is (s − 1)(t − 1) − 1.

Now denote byD(n)ts the set of partitions of n with distinct parts d1, . . . , dm , where
the elements di1 > di2 > · · · > dip are precisely those not congruent to 0 (mod t),
and with the following conditions which all parts di must fulfill.

D0. Setting

f p = dip − (m − i p)t,

f p−1 = dip−1 − (m − i p−1 − 1)t,

...

f p−h = dip−h − (m − i p−h − h)t,

...

f1 = di1 − (m − i1 − p + 1)t,

(1)

we require that f p be congruent to 0 or t (mod s), and the same must hold for
fi − fi+1, with i = 1, . . . , p − 1.

D1. di ∈ W .
D2. If di ≡ 0 (mod t), then di > t(m − i).
D3. If di −di+r < t +1 for some positive integer r , then at least one of the following

conditions must be satisfied:

I. di − di+r �≡ 0 (mod s) and di ≡ di+r ≡ 0 (mod t);
II. di − di+r = s j and di + di+r �≡ ±s j (mod st).

Notice that C(n)t2 has a different meaning from C(n)t ; a similar remark concerns
D(n)t2 and D(n)t . We are going to prove the following result.

Proposition 7 C(n)ts and D(n)ts have the same cardinality.
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In order to establish the above propositionweprove a stronger result, namely, Propo-
sition8, forwhich somemore terminology is needed.Wedenote byC(n; i1, . . . , it−1, k)ts
the subset of C(n)ts whose parts are grouped according to their congruence class
as follows: i1 parts congruent to s (mod st), . . . , it−1 parts congruent to (t − 1)s
(mod st), k parts larger than t(

∑t−1
j=1 i j ) and congruent to 0 (mod t). Similarly,

set D(n; i1, . . . , it−1, k)ts to be the subset of D(n)ts having ih parts congruent to hs
(mod t), with 1 ≤ h ≤ t − 1, and k further parts congruent to 0 (mod t). Now we
proceed with the proof of the stronger result.

Proposition 8 C(n; i1, . . . , it−1, k)ts and D(n; i1, . . . , it−1, k)ts have the same cardi-
nality.

Proof Given a partition in C(n; i1, . . . , it−1, k)ts , we associate to it a partition in
D(n; i1, . . . , it−1, k)ts , with an algorithm that generalizes the classical case t = 3
in [1]; also our terminology traces back to that paper. Later we show that such a
procedure is reversible.

Let π ∈ C(n; i1, . . . , it−1, k)ts .
Step 1 Setting p = ∑t−1

j=1 i j , split π into the subpartition π1 = (a1, . . . , ap) of
those elements not congruent to 0 (mod t) and the subpartition π2 made up of those
elements congruent to 0 (mod t). Notice that two elements in π1 have difference s j
only if they have sum not congruent to ±s j (mod st), i.e., they satisfy D3-II. Indeed,
suppose we have two parts sα, sβ ∈ π1 such that sα − sβ = s j and s j . Assuming,
by contradiction, that sα + sβ ≡ ±s j (mod st), since α = β + j we have either
2sβ + s j ≡ s j (mod st) or 2sβ + s j ≡ −s j (mod st). In the first case 2β ≡ 0
(mod t). In the second, likewise, we have 2α ≡ 0 (mod t). Since t is odd, it follows
that α or β are congruent to 0 (mod t), in both cases contradicting the assumption.
Step 2 Split π2 into the subpartitions π5 and π4 consisting, respectively, of those
elements larger than tp and those not greater. Set π5 = (b′

1, . . . , b
′
k) and π4 =

(b′′
1 , . . . , b

′′
r ).

Step 3Weconstruct the t-fold conjugate ofπ4, in symbolsπ∗
4 . Ifπ4 = ∅, thenπ∗

4 = ∅.
Otherwise, set b′′

1 = u1t, b′′
2 = u2t, . . . , b′′

r = ur t , with u1 ≥ u2 ≥ . . . ≥ ur ; then
π∗
4 is the partition whose diagram has tr columns. Specifically, consider ur rows with

cardinality tr , ur−1 − ur rows with cardinality t(r − 1), . . . , u2 − u3 rows with
cardinality 2t , u1 − u2 rows with cardinality t . Notice that the columns, taken as
blocks of t columns each, give the elements of π4.

For example, for t = 7, if π4 = (35, 14, 7), divide by 7 each part thus obtaining
(5, 2, 1), and then form a diagram by using “blocks” of 7 squares

by stacking, respectively, 5 blocks, 2 blocks, 1 block, as follows:

thus getting π∗
4 = (21, 14, 7, 7, 7).

Step 4 Let α1 ≥ α2 ≥ · · · ≥ αu1 where αi is the cardinality of the i th row of the
diagram associated to π∗

4 . Add the partitions π1 and π∗
4 by adding the corresponding
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parts ai + αi for 1 ≤ i ≤ u1 and leaving alone the elements au1+1 . . . ap. Notice
that this is possible as u1 ≤ p, since b′′

1 = u1t ≤ tp. We thus get a new partition
π6 = (a′

1, . . . , a
′
p), with a

′
i > a′

i+1, for i = 1, . . . , p− 1. This operation either leaves
the differences between the parts unchanged or increases them by multiples of t so
that condition D3-II still holds. Moreover the condition D0 for the symbols a′

i in place
of fi holds; in fact the difference between a′

i and a
′
i+1 can be either 0 or t (mod s) and

no larger multiples are possible, because of the structure of the diagram.
Step 5 Construct a string π5/π6 by juxtaposing, left to right, first the elements of
π5, then those of π6. In this string ih parts are congruent to hs (mod t), for h =
1, . . . , t − 1, and k parts congruent to 0 (mod t), the latter being larger than tp.
Step 6 Subtract multiples of t to the elements of π5/π6, by obtaining the following
new elements:

b̄′
1 = b′

1 − (p + k − 1)t,

b̄′
2 = b′

2 − (p + k − 2)t,

...

b̄′
k = b′

k − pt,

ā′
1 = a′

1 − (p − 1)t,

ā′
2 = a′

2 − (p − 2)t,

...

ā′
p = a′

p − 0t .

Notice that while the elements b̄′
i remain in a nonincreasing order, this does not nec-

essarily happen for the elements ā′
i . To be more precise, the nondecreasing order fails

whenever a′
i − a′

i+1 = j < t . In such a case ā′
i+1 = ā′

i + t − j > ā′
i . Moreover the

elements b̄′
i are all strictly positive since they are above the threshold value tp, while

the elements ā′
i may be negative.

Step 7 Starting from the string S0 = (b̄′
1, . . . , b̄

′
k, ā

′
1, . . . , ā

′
p), we define a recursive

algorithm which will lead us to a final string S f in k steps. Define the generic i-th
step, 1 ≤ i ≤ k. Place b̄′

i in the string Si−1 in the rightmost possible position so that
all the elements to its left are larger than itself. At the end of the process we get the
desired string S f .
Step 8Denote by c1, . . . , cp+k the elements of S f .We construct the following elements
di , for i = 1, . . . , p + k:

d1 = c1 + (p + k − 1)t,

d2 = c2 + (p + k − 2)t,

...

dp+k−1 = cp+k−1 + t,

dp+k = cp+k .
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Thedifference�between two elementsdi anddi+1 that are not congruent to 0 (mod t)
may be less than t + 1 only if � is a multiple of s and the sum is not congruent to ±�

(mod t).
Instead, if di �≡ 0 (mod t) and di+1 ≡ 0 (mod t) (or vice versa), we have di =

ci + (p+ k − i)t and di+1 = ci+1 + (p+ k − i − 1)t . Since ci+1 − ci ≥ 1, we deduce
that di+1 − di ≥ t + 1.

Notice that D0 holds. Indeed, the elements fi obtained from the elements di not
congruent to 0 (mod t), by the formulas (1), coincide with a′

i for which we already
observed that they satisfy the requirements in Step 4. Therefore this algorithm trans-
forms a partition π in C(n; i1, . . . , it−1, k)ts into a partition in D(n; i1, . . . , it−1, k)ts
that we denote by π3 again in accordance with [1].

Finally, we only need to show that this procedure is completely reversible. Given
a partition π̃ of n in D(n; i1, . . . , it−1, k)ts it is trivial to trace back the steps up
to Step 5. We thus get a partition of n made of some elements not congruent to 0
(mod t) and of some elements congruent to 0 (mod t). The set of the first type of
elements, consistently with previous notation, we denote by π6 = (a′

1, . . . , a
′
p), with

a′
i > a′

i+1, for i = 1, . . . , p − 1. The set of the second type of elements we denote by
π5 = (b′

1, . . . , b
′
k), with b

′
i > b′

i+1, for i = 1, . . . , k − 1.
Now, check whether a′

p is congruent to 0 or t modulo s. In the first case do nothing.
In the second case create a diagram with one row of t squares. Proceed inductively by
creating, in corresponding with each a′

i , a row of squares to be stacked on top of the
row corresponding to a′

i+1, with the same number of squares of the row corresponding
to a′

i+1 if a
′
i ≡ a′

i+1 (mod s); otherwise add t new squares to the row. We thus form a
diagram that gives, by using stacks of t columns, the elements ofπ4 and, using the rows
(corresponding to π∗

4 ), the quantities to be subtracted from the elements of π6, in order
to obtain the elements of π1. In this fashion, the partition π in C(n, i1, . . . , it−1, k)ts
is completely reconstructed. 
�
Remark 9 If t is even we can state an analogous proposition, but we must substitute
the D3 condition with the following one:

D3′. If di − di+r < t + 1 for some positive integer r , then at least one of the
following conditions must be satisfied:

I. di − di+r �≡ 0 (mod s) and di ≡ di+r ≡ 0 (mod t);
II. either at least one between di and di+r is equal to sk t

2+ht for somenonnegative
integers h and k or di + di+r �≡ ±s j (mod st).

Remark 10 We observe that D(n)ts and D(n)st have the same cardinality, because
C(n)ts = C(n)st .

We conclude this section with some remarks on the particular case s = 2.

Remark 11 If s = 2, the condition D0 is trivially satisfied.

Proposition 12 Condition D2 is redundant if s = 2 and t = 3.

Proof By contradiction, assuming that D2 does not hold, let i0 be the largest integer
such that 3 | di0 ≤ 3(m − i0) and let di0+h be the next multiple of 3 from left to right
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— if there is no such multiple, set h = m − i0 + 1 and define dm+1 = 0. Clearly,
di0+h ≥ 3(m − i0 − h) + 3. Notice that h must be larger than 1. The h − 1 parts
between di0 and di0+h are all congruent to 1 or 2 (mod 3). Now condition D3 forces
the leftmost part to be not larger than di0 − 4 and the rightmost to be not smaller than
di0+h + 4. Furthermore, using condition D3, it is easy to see that every interval of the
form [α, α + 5] contains at most 2 this h − 1 parts. It follows that there are no more
than

2

⌈
di0 − 4 − (di0+h + 4) + 1

6

⌉

parts of this kind. By hypotheses, if h ≤ m − i0 such a number does not exceed
2

⌈ 3h−10
6

⌉
, which is less than h − 1, a contradiction. In the remaining case, namely if

h = m − i0 + 1, the element dm might be equal to 2 but the above argument is still
valid, using similar calculations, as long as h is even. Instead, if h is odd (necessarily
h ≥ 3), we slightly improve the argument. Since dm−1 ≥ 4, counting the h − 2 parts
from di0+1 to dm−1 leads to the following contradiction:

2

⌈
di0 − 4 − 4 + 1

6

⌉
≤ 2

⌈
3(h − 1) − 7

6

⌉
≤ h − 3 .


�
Notice that for t odd and larger than 3 Condition D2 is necessary.

4 Examples

In this sectionwe give three examples of the bijection described in the previous section.

Example 13 We illustrate an example of the bijection when s = 2 and t = 7. Let
π = (84, 70, 66, 46, 40, 38, 35, 14, 10, 8, 7, 4, 2) ∈ C(424)72.
Step 1 Split π in

π1 = (66, 46, 40, 38, 10, 8, 4, 2), π2 = (84, 70, 35, 14, 7).

So p = 8 and the threshold is tp = 56.
Step 2 Split π2 in

π5 = (84, 70), π4 = (35, 14, 7),

and hence k = 2 and r = 3.
Step 3 π4 = (35, 14, 7) �→ (5, 2, 1)

which gives the partition π∗
4 = (21, 14, 7, 7, 7).
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Step 4 π6 = π1 + π∗
4 = (66 + 21, 46 + 14, 40 + 7, 38 + 7, 10 + 7, 8, 4, 2) =

(87, 60, 47, 45, 17, 8, 4, 2).
Step 5 Form the string π5/π6 = (84, 70, 87, 60, 47, 45, 17, 8, 4, 2).
Step 6 Subtract from the string just obtained multiples of 7 as follows:

84 70 87 60 47 45 17 8 4 2 −
63 56 49 42 35 28 21 14 7 0 =

21 14 38 18 12 17 −4 −6 −3 2

Step 7 Starting from the string S0 obtained in the previous step, move 14 as far right
as possible thus obtaining

S1 = (21, 38, 18, 14, 12, 17,−4,−6,−3, 2).

Next, move similarly the number 21 obtaining

S2 = (38, 21, 18, 14, 12, 17,−4,−6,−3, 2) = S f .

Step 8 Now we add again to S f the string of multiples of 7 as before

38 21 18 14 12 17 −4 −6 −3 2 +
63 56 49 42 35 28 21 14 7 0 =

101 77 67 56 47 45 17 8 4 2

getting the partition π3 = (101, 77, 67, 56, 47, 45, 17, 8, 4, 2) ∈ D(424)72 as desired.
We now check that this process is reversible. Given the partition π3 =

(101, 77, 67, 56, 47, 45, 17, 8, 4, 2), the steps 8,7,6,5 are easily reversible and lead
to π5 and π6 = (84, 70, 87, 60, 47, 45, 17, 8, 4, 2). To recover π4 proceed as fol-
lows. Note the position where, starting from the right, we find the first odd part. In our
example it is 17 and, correspondingly, we draw a row of 7 squares. Going leftward and
ignoring the multiple of 7, we have the sequence (17, 45, 47, 60, 87) that is congruent
to (1, 1, 1, 0, 1) modulo 2. For each element with the same parity of the previous one,
we draw a row upon the others with the same number of squares than the row below
it. For each element with a different parity than the previous one, we draw a row upon
the others with 7 squares more than the row below it. This generates the diagram

that coincides with the diagram in Step 3. In this diagram there are 3 blocks of 7
columns containing 35, 14 and 7 squares, respectively. Hence π4 = (35, 14, 7).
The rows of the diagram give the string (21, 14, 7, 7, 7) which must be subtracted
to (87, 60, 47, 45, 17) to get π1.
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Example 14 We illustrate an example of the bijection when s = 3 and t = 7.
Let π = (91, 84, 75, 63, 54, 49, 39, 36, 21, 18, 14, 9, 3) ∈ C(556)73.

Step 1 Split π in

π1 = (75, 54, 39, 36, 18, 9, 3), π2 = (91, 84, 63, 49, 21, 14).

So p = 7 and the threshold is tp = 49.
Step 2 Split π2 in

π5 = (91, 84, 63), π4 = (49, 21, 14),

and hence k = 3 and r = 3.
Step 3 π4 = (49, 21, 14) �→ (7, 3, 2)

which gives the partition π∗
4 = (21, 21, 14, 7, 7, 7, 7).

Step 4 π6 = π1 + π∗
4 = (75+ 21, 54+ 21, 39+ 14, 36+ 7, 18+ 7, 9+ 7, 3+ 7) =

(96, 75, 53, 43, 25, 16, 10).
Step 5 Form the string π5/π6 = (91, 84, 63, 96, 75, 53, 43, 25, 16, 10).
Step 6 Subtract from the string just obtained multiples of 7 as follows:

91 84 63 96 75 53 43 25 16 10 −
63 56 49 42 35 28 21 14 7 0 =

28 28 14 54 40 25 22 11 9 10

Step 7 Starting from the string S0 obtained in the previous step, move the first 28 as
far right as possible thus obtaining

S1 = (28, 14, 54, 40, 28, 25, 22, 11, 9, 10).

Moving the second 28, we obtain

S2 = (14, 54, 40, 28, 28, 25, 22, 11, 9, 10).

Finally, moving 14 we get

S3 = (54, 40, 28, 28, 25, 22, 14, 11, 9, 10) = S f .
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Step 8 Now we add again to S f the string of multiples of 7 as before

54 40 28 28 25 22 14 11 9 10 +
63 56 49 42 35 28 21 14 7 0 =

117 96 77 70 60 50 35 25 16 10

getting the partition π3 = (117, 96, 77, 70, 60, 50, 35, 25, 16, 10) ∈ D(556)73 as
desired.

We now check that this process is reversible. Given the partition π3 =
(117, 96, 77, 70, 60, 50, 35, 25, 16, 10), the steps 8,7,6,5 are easily reversible and lead
to π5 = (91, 84, 63) and π6 = (96, 75, 53, 43, 25, 16, 10). To recover π4 proceed as
follows. Note the position where, starting from the right of π6, we find the first ele-
ment congruent to 7 (i.e., congruent to 1) modulo 3. In our example it is 10 and,
correspondingly, we draw a row of 7 squares. Going leftward, we have the sequence
(10, 16, 25, 43, 53, 75, 96) that is congruent to (1, 1, 1, 1, 2, 0, 0) modulo 3. For each
element with the same congruence of the previous one mod 3, we draw a row upon the
others with the same number of squares than the row below it. For each element with
a different congruence than the previous one, we draw a row upon the others with 7
squares more than the row below it. This generates the diagram

that coincides with the diagram in Step 3. In this diagram there are 3 blocks of 7
columns containing 49, 21 and 14 squares, respectively. Hence π4 = (49, 21, 14). The
rows of the diagram give the string (21, 21, 14, 7, 7, 7, 7) which must be subtracted
to (96, 75, 53, 43, 25, 16, 10) to get π1.

Example 15 Consider again π = (91, 84, 75, 63, 54, 49, 39, 36, 21, 18, 14, 9, 3), but
now as element in C(556)37. We show how to obtain the corresponding element of
D(556)37.
Step 1 Now π1 = (91, 49, 14) and π2 = (84, 75, 63, 54, 39, 36, 21, 18, 9, 3); hence
p = 3 and the threshold is tp = 9.
Step 2 Split π2 in π5 = (84, 75, 63, 54, 39, 36, 21, 18) and π4 = (9, 3).
Step 3 π4 = (9, 3) �→ (3, 1) and the diagram is

which gives the partition π∗
4 = (6, 3, 3).

Step 4 π6 = π1 + π∗
4 = (91 + 6, 49 + 3, 14 + 3) = (97, 52, 17).

Step 5 π5/π6 = (84, 75, 63, 54, 39, 36, 21, 18, 97, 52, 17).
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Step 6 Subtract from π5/π6 multiples of 3 as follows:

84 75 63 54 39 21 18 97 52 17 −
27 24 21 18 15 12 9 6 3 0 =

57 51 42 36 24 9 9 91 49 17

Step7Starting from the string S0 obtained in the previous step andmoving themultiples
of 3 by the recursive method described before, we get

S f = (91, 57, 51, 49, 42, 36, 24, 17, 9, 9).

Step 8 Now we add again to S f the string of multiples of 3 as before

91 57 51 49 42 36 24 17 9 9 +
27 24 21 18 15 12 9 6 3 0 =

118 81 72 67 57 48 33 23 12 9

getting the partition π3 = (118, 81, 72, 67, 57, 48, 33, 23, 12, 9) ∈ D(556)37 as
desired.

Also in this case it is easy to invert the process.
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