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Abbreviations chapter 1 
 

13-HPOT  13-hydroperoxylinoleic acid 

AOC  allene oxide cyclase 

AOS  allene oxide synthase 

APX    ascorbate peroxidase  

As  arsenic 

BPS  benzophenone synthase 

Cd  cadmium 

CHIT  chitosan 

CHS  chalcone synthase 

COS  chitosan oligosaccharides 

ET  ethylene 

ETC   electron transport chains 

ETI  effector-triggered immunity 

ETS  effector-triggered susceptibility 

GR    glutathione reductase  

HPLC  high performance liquid chromatography  

HR  hypersensitive response 

IAA    indole acetic acid 

IBA   indole butyric acid 

ICS  isochorismate synthase 

ISR  induced systemic resistance 

JA  jasmonate 

JMT   JA carboxyl methyltransferase 

LOX  lipoxygenases 

MAMP  microbial-associated molecular pattern 

MAO  monoamine oxidase 

MAPK  mitogen-activated protein kinases 

MeJA  methyl jasmonate 

MeSA  methyl salicylate 

NO  nitric oxide 
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OPR  12-oxo-phytodienoic acid reductase 

PAL   phenylalanine ammonia lyase 

PAMP  pathogen-associated molecular 

PCD  programmed cell death 

PIs  proteinase inhibitors 

PR  pathogenesis-related proteins 

PRR  pattern recognition receptors 

PTI  PAMP-triggered immunity 

ROS  reactive oxygen species 

SA  salicylic acid 

SAG  SA O-β-glucoside 

SAGT  SA glucosyltransferase 

SAMT   SA methyl transferase 

SAPB2  MeSA methyl esterase 

SAR  systemic acquired resistance 

SOD    superoxide dismutases 
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1. Introduction 

 

1.1 Hypericum perforatum 

 

The genus Hypericum, the most numerous of the nine genera of Hypericaceae family 

(Stevens 2007; APG III 2009), includes almost 470 species of herbs, shrubs and small trees. 

It is distributed in Eurasia (>230 species), North and South America (c. 40 and >130 species 

respectively), Southeast Asia (c. 47) and Africa (c. 40 species). Typical habitats are rocky, 

sometimes calcareous, and dry to moist grasslands or acidic fens and shallow swamps. In 

the tropics it is generally confined to high elevation habitats (Robson 2003). 

The most studied species of the genus is Hypericum perforatum, a medicinal plant used since 

antiquity with a broad range of pharmacological activities. 

H. perforatum is commonly known as St. John’s wort because of its blooming period which 

occurs at the end of June (June 24th is St. John’s day). Christians believed that H. perforatum 

kept evil spirits away, for this reason on St. John’s day they used to burn plants to purify the 

air and ensure good crop harvest, indeed the origin of the genus name “Hypericum” comes 

from Greek words hyper (over) and eikon (image, in the sense of ghost) because people 

believed in its exorcistical properties. The specific name “perforatum” refers to leaves that 

seem to be perforated due to the presence of secretory structures. 

H. perforatum (Fig.1) is a completely glabrous herbaceous plant species, characterized by 

an erect stem, 30 to 100 cm long and branched in the upper section; the leaves (Fig. 1B) are 

yellow-green in color, opposite, shortly petiolate; yellow flowers (Fig. 1A) are numerous, 

forming a broadly paniculate, almost corymbose, inflorescence with numerous stamens free 

or into three bundles at the base. The ovary is superior and ovoidal with three widely 

divergent styles, flowers have five sepals and five petals with dark glands along the margins; 

the fruit (Fig. 1C) is a small septate capsule; seeds (Fig. 1D) are 1 mm long cylindric, brown, 

with a pitted or finely patterned surface (Bombardelli and Morazzoni 1995). 

An anatomical characteristic of H. perforatum is the presence of two types of secretory 

structures on stems, leaves and flowers: translucent glands (Fig. 1B, E), which are colorless 

and accumulate hyperforin and essential oils, are localized all over the leaf lamina; dark 

glands (Fig. 1B, F), which are dark red and produce hypericin and its derivatives, are 

distributed on stems, leaves, flowers and anthers. 
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Fig. 1 Hypericum perforatum. A) Flowers with numerous stamens; B) leaves showing dark and 

translucent glands; C) fruits, capsules; D) seeds; E) translucent glands; F) dark gland. 
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1.2 Traditional use, pharmacological activity and clinical properties of H. 

perforatum 

 

The properties of H. perforatum have been known for centuries and its use in folk medicine 

has an ancient tradition. The Europeans have used it in order to treat a broad number of 

diseases, like anxiety, colds, depression, flue, hemorrhoids, womb muscle contractions 

during menstruation, skin irritations or infections, burns and wounds (Saddiqe et al. 2010 

and literature cited therein). The oldest references about the use of H. perforatum come from 

the Greek botanist of the I century a.C., Dioscórides, the Roman student of the I century 

a.C., Plenius, and the Greek physician and father of medicine of the V century b.C., 

Hippocrates. In the XII century, Templars were the first to discover that H. perforatum was 

very useful for improving the mood of warriors forced to bed for months. 

In last decades, H. perforatum has been studied primarily for the antidepressant activity of 

its extracts which have been widely sold in health food stores and pharmacies in Europe and 

the USA for the treatment of depression (Lecrubier et al. 2002; Kasper et al. 2006). Clinical 

studies found H. perforatum extracts to be efficacious in the treatment of mild to moderate 

depression (Kasper et al. 2010; Chen et al. 2011; Ng et al. 2017). The effectiveness of H. 

perforatum extracts has been also demonstrated in the treatment of somatoform disorders 

(Volz et al. 2002; Müller et al. 2004), obsessive-compulsive disorder (Kobac et al. 2005), 

anxiety (Singewald et al. 2004) and seasonal affective disorder (Wheatley 1999; Pjrek et al. 

2005). Moreover, studies about other H. perforatum extracts properties have been conducted, 

including anti-Alzheimer (Hofrichter et al. 2016) wound-healing (Rao et al. 1991; Öztürk et 

al. 2007), anti-inflammatory (Kumar et al. 2001), antibacterial (Conforti et al. 2005), 

antifungal (Milosevic et al. 2007), and antiviral activities (Richer and Davies 1995). 

 

 

1.3 Phytochemical content of aerial organs 

 

The phytochemical content of leaves and flowers of H. perforatum has been deeply 

investigated because secondary metabolites with anti-depressant activity are produced and 

accumulate in the aerial organs of the plant (Mennini and Gobbi 2004). Hypericum 

preparations rich in bioactive secondary metabolites are obtained through hydroalcoholic 

extraction of the flowering tops and leaves; these are exploited above all for the treatment of 

depressive states, neurovegetative disorders and anxiety (Par 1.2).  
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Hypericins (naphthodianthrones) (Fig. 2A) and hyperforins (phloroglucinols) (Fig. 2B) are 

considered the main bioactive constituents of the aerial organs of H. perforatum, they are 

produced in black globules and translucent glands, respectively (Fig. 1E-F); hypericin was 

initially described as a monoamine oxidase (MAO) inhibitor (Suzuki et al. 1984), but later 

studies indicated that this effect was not clinically significant (Mennini and Gobbi 2004 and 

literature cited therein). In last decade the anti-depressant activity of hyperforin has been 

investigated, neglected at the beginning because of its instability in most organic solvents 

and fast air oxidation (Medina et al. 2002 and literature cited therein; Isacchi et al. 2007). 

However, in addition to naphtodianthrones and phloroglucinols, several molecules have 

been characterized such as essential oils and volatile compounds (hydrocarbons, 

monoterpenes, sesquiterpenes) (Nahrstedt and Butterweck 1997; Crockett et al. 2010), 

flavonoids (flavonols, flavones, glycosides, biflavonoids, catechins), tannins and other 

phenols (caffeic, chlorogenic, p-coumaric, ferulic, p-hydroxybenzoic and vanillic acids) 

(Barnes et al. 2010 and literature cited therein).  

 

 

                  

                     

Fig. 2 Main bioactive secondary metabolites accumulated in H. perforatum shoots. Chemical 

structure of: A) hypericin and pseudohypericin; B) hyperforin and adhyperforin (Barnes et al. 2010). 

 

 

1.4 Phytochemical content of roots 

 

Although many therapeutic properties of aerial organ metabolites are known, little 

information is available on the chemical composition and biological activities of H. 

perforatum root extracts (Tocci et al. 2013; Simonetti et al. 2016). 

A B 
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The phytochemical content of St. John’s wort root includes compounds also found in shoots 

such as phenolic acids (e.g. chlorogenic acid) and flavonoids (aglycon or glucoside flavonols 

like quercetin or hyperoside, respectively) (Cui et al. 2011) (Fig. 3A-C), but also xanthones, 

which are compounds specifically biosynthesized and accumulated in roots (Crockett et al. 

2011). 

 

 

                

 

Fig. 3 Main polyphenols accumulated in H. perforatum. Chemical structures of: A) chlorogenic 

acid; B) of quercetin and C) hyperoside. 

 

 

1.5 Structure and chemical properties of xanthones 

 

Xanthones, from Greek “ξανθός” (xanthόs) which means “yellow”, are phenolic compounds 

with a limited distribution in plant kingdom. Xanthone (9H-xanthen-9-one) (Fig. 4) is the 

central core to which substituents are added to form different xanthones usually found as 

aglycones, O-glycosides and C-glycosides. They are produced mainly by plants, but also by 

some lichens, fungi and bacteria (Masters e Brase, 2012). Xanthones are typical secondary 

metabolites of plants belonging to the Hypericaceae family in particular of Hypericum 

species, but they are also synthesized in species belonging to Gentianaceae, Moraceae and 

Polygalaceae families (Negi et al. 2013). 

 

 

A B 

C 



8 
 

 

Fig. 4 Chemical structure of xanthone. 

 

 

1.5.1 Xanthone biosynthesis 

 

Exodermis and endodermis are the sites of xanthone biosynthesis in H. perforatum roots 

(Tocci et al. 2018); they are synthesized through the phenylpropanoid pathway which has 

different branches leading to many different compounds including simple phenylpropanoids, 

flavonoids, lignin and others (Demirkiran 2007).  

Key enzymes regulate this pathway moving the metabolism depending on plant’s needs. The 

phenylpropanoid pathway originates from phenylalanine, which is deaminated by 

phenylalanine ammonia lyase (PAL). This is one of the well-studied and characterized 

enzyme of plant secondary metabolism, it catalyzes the reaction which links primary 

metabolism (shikimate pathway) to secondary metabolism: phenylalanine deamination to 

trans-cinnamic acid (Fig. 5) with release of nitrogen in the form of ammonia. The 

biosynthetic pathway divides in two branches from trans-cinnamic acid to give xanthones 

or flavonoids.  p-coumaroyl-CoA and malonyl-CoA are produced from trans-cinnamic acid 

and two enzymes act on these compounds respectively: chalcone synthase (CHS) and 

benzophenone synthase (BPS) (Liu et al. 2003; Vogt 2010). 

CHS in presence of one molecule of p-coumaroyl-CoA and three of malonyl-CoA catalyzes 

consecutive decarboxylations and condensations leading to chalcone, the flavonoid 

precursor from which tannins, flavones, isoflavones, flavonols and anthocyanins are 

synthesized. 

BPS, a transferase, in presence of one molecule of benzoyl-CoA and three of malonyl-CoA 

catalyses the reaction which leads to benzophenone, the precursor of xanthones. 
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Fig. 5 Phenylpropanoid pathway. Branches leading to xanthone and flavonoid synthesis. PAL: 

phenylalanine ammonia lyase; CHS: chalcone synthase; BPS: benzophenone synthase (Liu et al. 

2003). 

 

 

1.5.2 Biological activities of xanthones in plants 

 

Phenolic compounds are known to be molecules involved in protecting plants against 

microbial attacks (Ahuja et al. 2015); in vitro studies have shown that xanthones, as observed 

for other polyphenols, are constitutively biosynthesized, although their content may 

significantly increase in response to pathogenic attack (phytoalexins). An increase in 

xanthone accumulation in cell cultures of many plant species subjected to elicitor treatments 
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has been observed: Centaurium erythraea elicited with yeast extract and methyl jasmonate 

(MeJa) (Beerhues and Berger 1995); H. perforatum elicited with Colletotrichum 

gloeosporioides cell wall extracts, Agrobaterium tumefaciens, MeJa, salicylic acid (SA) and 

chitosan (CHIT) (Conceicao et al. 2006; Franklin et al. 2009; Tocci et al. 2010). Franklin 

and colleagues (2009) proposed a double role of xanthones in the defense response as 

antioxidant and antimicrobial compounds: in vivo xanthones on one hand constitute a 

powerful antioxidant system to protect the host cells from reactive oxygen species (ROS) 

and on the other hand have also the potential to act as phytoalexins against pathogenic 

microorganisms (Fig. 6). 

In the last decades the inducible role of xanthones has been also investigated in organ 

cultures (Ishimaru et al. 1990; Vinterhalter et al. 2008; Tocci et al. 2011, 2012; Valletta et 

al. 2016). In vitro cultures of H. perforatum roots elicited with chitosan or chitosan 

oligosaccharides (which mimic a fungal attack) synthesized xanthones significantly 

increasing the concentration compared to non-treated samples (Tocci et al.2010, 2011; 

Brasili et al. 2014; Badiali et al. 2018). 

 

 

 

Fig. 6 Hypothetical role of xanthones in the plant pathogen-interaction. In the model proposed 

by Franklin et al. (2009) xanthones play dual function in plant cells during biotic stress: (1) as 

antioxidants to protect the cells from oxidative damage and (2) as phytoalexins to impair the pathogen 

growth (modified from Franklin et al. 2009). 
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1.5.3 Pharmacological activities of xanthones 

 

The interest in studying xanthone pharmacological activity had its beginning in ‘60s when 

diuretic and cardiotonic effect of mangiferin, a compound belonging to this class, was 

demonstrated (Finnegan et al. 1968 and literature cited therein). Following studies led to the 

discovery that xanthones can reverse various types of tumor (Abe et al. 2003; Chen et al. 

2004; Su et al. 2011; Núñez et al. 2016) and that they have antimutagenic and antiangiogenic 

activities (Mackeen et al. 2000; Pinto et al. 2003; Almanza et al. 2011; Núñez et al. 2016). 

Xanthones have also anti-inflammatory properties (Chung et al. 2002; Park et al. 2006; Chen 

et al. 2008), antioxidant activity (Panda et al. 2013), they are effective in the treatment of 

cardiovascular diseases (Ishiguro et al. 2002) and have an enzyme inhibitory activity against 

mono amine oxidase (MAO) enzyme which plays an important role in the regulation of some 

neurologically active amines (Ohishi et al, 2000; Gnerre et al. 2001; Urbain et al. 2008); the 

inhibitors of MAO are useful in the therapy of several neurodegenerative conditions, 

including Parkinson's disease and Alzheimer's disease, psychosis, depression and 

schizophrenia (Laban and Saadabadi 2019 and literature cited therein; Wang et al. 2019). 

In the last decades antifungal, antibacterial and antiviral activities against human pathogens 

have attracted the attention of scientists because of the onset of resistance of pathogens to 

conventional antibiotics and antifungals (De Vita et al 2012). Xanthones, in particular 

prenylated and oxygenated xanthones, showed a significant antimicrobial activity against 

microorganisms pathogenic to humans (Fotie and Bohle, 2006; Tocci et al. 2011, 2012, 

2013; Simonetti et al. 2016; Badiali et al. 2018) and plants (Cortez et al. 1998; Crockett et 

al. 2011). 

 

 

1.6 Plant defense responses 

 

Plants are sessile organisms in environments inhabited by living beings potentially 

dangerous to them (pathogens or phytophages) (biotic stress); moreover, they are subjected 

to stress caused by non-living factors depending on climate conditions (abiotic stress). For 

these reasons they had to evolve specific mechanisms to detect and consequently act against 

complex stress combinations, minimizing damage while conserving resources for growth 

and reproduction. 
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Plants have evolved different ways to perceive external attacks. As shown in Fig. 7, the 

recognition of microbial- or pathogen-associated molecular pattern (MAMP or PAMP) 

perceived by host encoded pattern recognition receptors (PRRs) leads to the PAMP-triggered 

immunity (PTI, called basal resistance). Successful pathogens secrete pathogen-encoded 

effector proteins which suppress PTI leading to the effector-triggered susceptibility (ETS), 

these factors are in turn recognized by plant resistance (R) proteins leading to the effector-

triggered immunity (ETI). Natural selection drives pathogens to avoid ETI diversifying or 

acquiring new effectors. 

 

 

 

Fig. 7 “Zig-zag” model for plant immune system (Jones and Dangl 2006). 

 

 

The typical manifestation of ETI, mostly against biotrophic pathogens and viruses 

(Glazebrook et al. 2005) is hypersensitive response (HR) (Chisholm et al. 2006; Bari et al. 

2009). The latter consist in the developing of necrotic lesions at the pathogen entry site to 

prevent the invasion into plant tissues and to deprive the pathogen of nutrients. ETI usually 

causes the accumulation of reactive oxygen species (ROS) and nitric oxide (NO), and the 

activation of defense-related genes including those encoding pathogenesis-related (PR) 

proteins (Dempsey et al. 1999). Ion fluxes (in: Ca2+ and H+; out: K+ and Cl-) occur in cells 

next to the invasion site causing the production of toxic compounds formed by molecular 

oxygen reduction, such as superoxide anion (O2
-), hydrogen peroxide (H2O2), and hydroxyl 

radical (OH•); these reactive species start radical chain reactions involving a wide variety of 

organic substances leading to lipid peroxidation, enzymatic inactivation and nucleic acid 
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degradation (Lamb and Dixon 1997), contributing to apoptosis and acting directly against 

the pathogen. Moreover, ROS are involved in cell wall fortification causing proline-rich 

protein modification (Bradley et al. 1992), this adds to lignification and callose apposition 

to create a barrier against the invader. At the same time NO is produced. Both NO and ROS 

can act also as signaling molecules (although their long-distance action is unlikely). They 

appear to function in a positive feedback loop with SA and their production is necessary for 

HR activation (Fig. 8). NO induce SA accumulation and SA is required in NO defense 

signaling. H2O2 increases following a pathogen attack and activates SA synthesis; SA then 

cooperates with ROS generated during the second phase of the oxidative burst potentiating 

cell death and genes involved in plant defense. SA also induces an increase in H2O2 

production, which in turn activates the synthesis of more SA and programmed cell death 

(PCD) in a self-amplifying loop which regulates defense responses (Dempsey et al. 1999; 

Durner et al. 1997; Overmyer et al. 2003).  

The phytohormone SA has a prominent role in HR (Par. 1.7.1.4) activating non-expressor of 

PR genes 1 (NPR1) which in turn activates PR proteins; moreover, SA is also necessary for 

systemic acquired resistance (SAR) induction, probably acting via its volatile methyl ester 

methyl salicylate (MeSA) (Park et al 2007). Among PR proteins hydrolytic enzymes are the 

principal group, they attack the pathogen cell wall and degrade it. At last, phytoalexins are 

produced, secondary metabolites with a high toxicity against pathogens. A few hours to 

several days after HR, also in distant portions of the plant PR gene expression levels increase 

leading to the development of SAR, a long-term resistance to infection by a broad diversity 

of pathogens.  
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Fig. 8 Plant response against pathogen infection. SA: salicylic acid; ROS: reactive oxygen species; 

NO: nitric oxide; MeSA: methyl salicylate; PCD: programmed cell death; PR proteins: pathogen 

related proteins; HR: hypersensitive response; SAR: systemic acquired resistance. 

 

 

Response against herbivore insects and necrotrophic pathogens involves other signalling 

molecules. The principal signalling pathway involved in plant defense responses against 

pests is the octadecanoid pathway which produces the phytohormones jasmonic acid (JA), 

methyl jasmonate (MeJA) and derivatives (Par. 1.7.1.3). This pathway is activated by pest 

oral secretions (Halitschke et al. 2001) and mechanical wounding stress leading to the release 

of systemin, a signal peptide of 18 amino acids which is cleaved from the C-terminal region 

of a 200-amino acid precursor protein called prosystemin; it induces a signal cascade leading 

to the activation of octadecanoid pathway for JA production which in turn causes the 

expression and the accumulation of defensive proteinase inhibitors (PIs), which play a 

defensive role by inhibiting the activity of digestive enzymes in the guts of insects (Sun et 

al. 2011) and induces the production of phytoalexins both locally and systemically.  

Jasmonates, synergistically with ethylene (ET), are also involved in induced systemic 

resistance (ISR) activated by non-pathogenic microorganisms; this response alerts the plant 

and causes the establishment of an advanced state of preparation against pathogenic attacks 
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(priming for enhanced defense). This type of systemic defense does not include the 

production of SA or PR proteins (Hase et al. 2008; De Vleesschauwer et al. 2008; Segarra 

et al. 2009) (Fig. 9). The defense regulatory protein NPR1 is an important regulator in SA-

dependent SAR and acts also in JA/ET-dependent ISR (Dong 2004; Pieterse and Van Loon 

2004; Leon-Reyes et al. 2009) but its activation does not induce the expression of SA-

responsive PR-genes. This suggests that NPR1 plays a key role in regulating and connecting 

different induced defense pathways (Dong 2004; Pieterse et al. 2009) via some factors 

(WRKY and MAPKs – mitogen activated protein kinase) involved in mediating the 

bidirectional antagonism between SA- and JA-mediated signaling (Li et al. 2004, 2006; 

Brodersen et al. 2006; Qiu et al. 2008) although synergism between these pathways has been 

observed (Mur et al. 2006). 

 

 

 

Fig. 9 Systemically induced immune responses (Pieterse et al. 2009). 
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1.7 Induction of responses in plant cultures: advantages of in vitro 

systems and elicitation techniques 

 

The major source of bioactive compounds for medicine, food additives, pigments, 

insecticides, cosmetics, and fine chemicals has historically been the plant kingdom. 

However, the extraction of bioactive compounds directly from plants is often not efficient, 

the extract may contain only very small quantities, or its composition may vary with the 

season or the environment. Often the biosynthesis of some compounds is activated in 

specific stages of development or in response to stress, specific environmental conditions 

and nutrients availability. Also, the characteristics of the producer organism may limit the 

availability of the molecules of interest: the plant could be rare, could have a slow or a 

difficult growth, or could be a protected species (Verpoorte et al. 2002). To obtain 

qualitatively and quantitatively standardized extracts, plant biotechnology can represent a 

valuable alternative. This technology is advantageous compared to the conventional 

agricultural production because it is independent of geographical and seasonal variations and 

various environmental factors; it offers a defined production system; it allows to obtain a 

rapid production and an efficient recovery; it allows to use plants as biotransformers for the 

production of novel compounds from cheap precursors. 

For these reasons, in the last decades many studies have focused on plant cell cultures as a 

possible method to produce plant secondary metabolites of commercial interest (Buitelaar 

and Tramper 1992; Lipsky 1992; Verpoorte et al. 1993, 1998; Su 1995). Many authors 

demonstrated that in undifferentiated calli and suspended cells of H. perforatum xanthones 

are the main secondary products accumulated (Dias et al. 1999; Dias et al. 2001; Pasqua et 

al. 2005; Conceicao et al. 2006; Mulinacci et al. 2008). However, for many of the desired 

compounds, the production from cell cultures is too low, not exploitable for applicative 

purposes. This is usually because some compounds require tissue differentiation to be 

correctly synthesized. 

To increase the production of secondary metabolites (including xanthones) elicitors can be 

used. The elicitation is a technique commonly used in plant biotechnology to enhance 

secondary metabolite production (Zhao et al. 2005; Namdeo 2007). 

 Elicitation techniques have been applied to suspended cell cultures of H. perforatum 

(literature cited in Par. 1.5.2) and the xanthone biosynthesis was significantly stimulated but 

it was insufficient for a large-scale production. The use of elicitors on organ cultures allowed 

to obtain the highest xanthone production, the adventitious root cultures of H. perforatum 



17 
 

demonstrated to be a promising reliable way for production of pharmaceutically and 

nutraceutically important metabolites (literature cited in Par. 1.5.2). 

 

 

1.7.1 Biotic stress 

 

Biotic stress is stress caused by a living organism to another; plants are continuously exposed 

to biotic stress factors such as the attack by fungi, bacteria, viruses, nematodes and 

herbivores. Nonetheless, disease takes place only if the pathogen overcomes the diverse 

defense strategies that plants put in place against the invader. After the attack, plants activate 

signaling pathways to organize a response against pest, the response culminates in the 

production of secondary metabolites (Par. 1.6). The involved signal molecules can be used 

in plant biotechnology as elicitors to mimic the attack and consequently induce the 

biosynthesis of secondary metabolites of interest or to investigate plant responses. 

 

 

1.7.1.1 Chitin and chitosan 

 

Chitin is a linear polysaccharide composed by N-acetyl-D-glucosamine repeat units linked 

by β-(1 → 4) glycosidic bonds (Fig. 10A). It is the principal component of the exoskeleton 

of arthropods and fungal cell wall, and the second-most abundant polysaccharide on earth 

following plant cellulose. Plants do not contain chitin but possess enzymes to degrade it 

(chitinases), probably because of the coevolution with their fungal pathogens (Passarinho 

and de Vries 2002). Chitinases act both directly on fungi degrading their cell wall, and 

indirectly generating chitin fragments that are recognized as stress signals by plant cells 

(Boller 1995). Unfortunately, chitin has limited utility for human applications due to its low 

solubility. 

Chitosan is obtained from a partial deacetylation of chitin (Fig. 10B) so it is an 

heteropolymer composed by N-acetyl-D-glucosamine and D-glucosamine, whose relative 

amount may vary resulting in different degrees of deacetylation, molecular weights, 

viscosities etc. (Raafat and Sahl 2009 and literature cited therein). Chitosan is more soluble 

than chitin, is biodegradable, atoxic and non-allergenic (Raafat and Sahl 2009 and literature 

cited therein). Among chitosan biological activities there are antimicrobial (Rebea et al. 

2003; Eaton et al. 2008), antioxidant (Yen et al. 2008), and hypocholesterolemic activity 
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(Xia et al. 2011 and literature cited therein). Moreover, chitosan promotes plant growth 

(Chibu et al. 2000) and it was reported to induce plant defense responses via raising of 

cytosolic Ca2+, activation of mitogen-activated protein kinases (MAPK), callose apposition, 

generation of ROS, hypersensitive response (HR), synthesis of abscisic acid (ABA), 

jasmonate, pathogenesis related proteins (PR) (Iriti and Faoro 2009 and literature cited 

therein) and phytoalexins (Fan et al. 2010; Sivanandhan et al. 2012; Sathiyabama et al. 2016) 

including xanthones in various species (Tocci et al. 2010; Krstić-Milošević et al. 2017). 

Despite many advantages, it has been reported that the use of chitosan at high concentrations 

(necessary for massive industrial production of secondary metabolites) has also 

inconveniences including the inhibitory effect on biomass growth in vitro and the 

irreversible morpho-anatomical alterations which make elicited biomass in vitro no longer 

usable for further production cycles (Brasili et al. 2014). Moreover, chitosan is insoluble in 

neutral water and other organic solvents, for this reason it is solubilized in water acidulated 

with acetic acid. This makes its use difficult in food and biomedical applications. Moreover, 

its use in basic research is also limited, at least in H. perforatum, as it has been recently 

demonstrated that acetic acid acts as an elicitor exerting itself a chitosan-like effect on 

xanthone biosynthesis (Valletta et al. 2016). 

 

 

 

Fig. 10 Chemical structure of chitin (A) and chitosan (B). 

 

 

A 

B 
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1.7.1.2 Chitosan oligosaccharides 

 

Chitosan oligosaccharides (COS) are obtained through chemical or enzymatic hydrolysis 

from chitosan and their use has recently increased. Unlike chitosan, COS are soluble in 

aqueous solutions in all proportions, due to the short chain length and to the free amino 

groups in D-glucosamine units (Jeon et al. 2000).  Moreover, they are biodegradable, 

biocompatible, atoxic and have a low viscosity. These characteristics attracted researchers’ 

attention for being promising oligosaccharides that have potentials in agriculture and in 

cosmetic, pharmaceutical and food industry. Several biological activities of COS have been 

demonstrated in recent years, including antimicrobial (Jeon and Kim 2000 and literature 

cited therein; Jeon et al. 2001; Choi et al. 2001), antitumoral (Nam et al. 1999; Jeon and Kim 

2002; Nam et al. 2007; Shen et al. 2009), antioxidant (Xing et al. 2005), hypocholesterolemic 

(Kim et al. 2005), hypoglycemic (Miura et al. 1995), anti-Alzheimer's (Yoon et al. 2009) 

and accelerating calcium absorption (Jung et al. 2006). Moreover, COS have proven to 

promote plant growth, improving the capacity of plants against salt and drought stress 

(Dzung et al. 2011; Chatelain et al. 2014; Zou et al. 2015) and to be effective elicitors of 

innate immunity against diseases of plants such as tobacco, rice, grape and other (Agrawal 

et al. 2002; Eikemo et al. 2003; Cabrera et al. 2006; Chen et al. 2009). Studies on their use 

as biopesticides have been conducted, indeed they have a powerful protective effect on 

various species of plants of economic interest (Yin et al. 2010; Zhao et al 2007). They are 

an effective post-harvest treatment for inhibiting diseases, which affect many fruits such as 

citrus fruits, tomato, pear, apple and peach (Chien et al. 2007; Badawy and Rebea 2009; 

Meng et al 2010; Yang et al 2010, 2012; Yan et al. 2011). It was also demonstrated that a 

pre-harvest administration of COS determines a higher post-harvest resistance to pathogens 

(Yan et al. 2012; Ma et al. 2013). Their biological activity strictly depends on its chemical 

and physical properties such as viscosity, polymerization degree and deacetylation degree 

(Cabrera et al. 2006 and literature cited therein; Zou et al. 2015). 

 

 

1.7.1.3 Methyl jasmonate 

 

Methyl jasmonate (MeJA) is a volatile compound which plays a long-distance signaling role 

in many cellular responses such as plant-environment, plant-herbivore and plant-plant 

interactions. In addition, MeJA and its precursor jasmonic acid (JA) are involved in many 
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developmental processes such as seed germination, root growth, stomatal closure, fruit 

maturation, leaf movement, leaf senescence, tuber formation and trichome formation 

(Creelman and Mulpuri 2002; Wasternack and Hause 2002; Wasternack 2014) (Fig. 11). 

Jasmonates (JA, MeJA and derivatives) are also involved in defense responses to biotic 

stress such as injury, wound caused by pests (Browse and Howe 2008), pathogen attack 

(Glazebrook 2005) and abiotic stress such as high salinity (Qiu et al. 2014), drought 

(Savchenko et al. 2014), cold (Du et al. 2013; Hu et al. 2013) and heat (Clarke et al. 2009). 

In stressed plants MeJA enhances protease inhibitors production against herbivores; these 

inhibitors cause the sensing of bad taste in pests and in some cases even cannibalistic 

tendencies. MeJA is also responsible for the production of phytoalexins, which act as 

antimicrobial agents. Moreover, a MeJA release to the atmosphere through stomata is 

recognized by nearby plants which activate defense responses (Farmer et al. 1990; Karban 

et al. 2000; Baldwin et al. 2006). 

 

 

 

Fig. 10 Chemical structure of A) jasmonic acid and B) methyl jasmonate. JMT: JA carboxyl 

methyltransferase (Yang et al. 2006). 

 

 

In plants MeJA is synthesized through the octadecanoid pathway (Fig. 11): external stimuli 

via the release of systemin cleaved from the C-terminal region of prosystemin, activate a 

phospholipase which releases α-linoleic acid from lipids of the chloroplast membrane. α-

linoleic acid is oxygenated by specific lipoxygenases (LOX) to 13-hydroperoxylinoleic acid 

(13-HPOT), which is converted in 12,13-epoxyoctadecatrienoic acid by allene oxide 

synthase (AOS). On the latter compound acts allene oxide cyclase (AOC) to form 12-oxo-

phytodienoic acid. This intermediate is then processed in peroxisomes through one reduction 

made by 12-oxo-phytodienoic acid reductase (OPR) and three β-oxidation cycles which 

form JA. The conjugation with isoleucine is required for its activation (JA-Ile). Free-acid JA 

might not be able to move across the cellular membrane because of its acidic characteristics 

so JA is catabolized by JA carboxyl methyltransferase (JMT) to MeJA (Yang et al. 2006; 

Browse et al. 2009 and literature cited therein) (Fig. 10). 

A B 
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Because of its role as signal molecule involved in defense responses, MeJA has been studied 

as elicitor in in vitro cultures of various plant species such as Vitis vinifera (Repka et al. 

2004), Rubus sp. (Wang et al. 2008), Mentha piperita (Krzyzanowska et al. 2012) and H. 

perforatum (Wang et al. 2015). 

 

 

 

Fig. 11 Octadecanoid pathway for jasmonic acid (JA) biosynthesis (Zhai et al. 2017). 

 

 

1.7.1.4 Salicylic acid 

 

For two centuries, salicylic acid (SA) has been studied for its medicinal use in humans. 

Contrarily, its regulatory functions in plants as phytohormone have only been investigated 

in the last 30 years. 

SA influences various processes in plant development and growth such as seed germination, 

cell growth, respiration, stomatal closure, senescence-associated gene expression, responses 

to abiotic stresses, and basal thermotolerance (Rate et al. 1999; Morris et al. 2000; Metwally 

et al. 2003; Clarke et al. 2004; Norman et al. 2004; Rajou et al. 2006; Clarke et al. 2009; and 
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literature cited therein). SA in plants is produced via two distinct pathways that require 

chorismate. This primary metabolite can be converted into SA via L-phenylalanine, 

involving a series of enzymatic reactions initially catalyzed by phenylalanine ammonia lyase 

(PAL) (Verberne et al. 1999). Chorismate can also be converted into SA via isochorismate 

in a two-step process involving isochorismate synthase (ICS) and isochorismate pyruvate 

lyase (IPL), well known in bacteria, but whose existence in plants is supported by various 

papers (Verberne et al. 2000; Wildermuth et al. 2001; Strawn et al. 2007).  Genes regulated 

by SA can be divided into two classes: early-responsive genes, induced within 30 minutes 

of SA treatment, and genes induced later, including NPR1, a master regulator of the SA-

mediated induction of PR genes. Most of the SA produced in planta is converted into SA O-

β-glucoside (SAG) by a pathogen-inducible SA glucosyltransferase (SAGT). MeSA and/or 

its glucosylated derivative MeSAG also accumulates to relatively high levels in vivo. MeSA, 

obtained from SA by salicylic acid methyl transferase (SAMT) (Fig. 12), is probably 

involved in signal translocation to distal portions of the plant and then it is hydrolyzed by 

MeSA methyl esterase (SAPB2) to SA, activating the defense genes (Park et al 2007).  

Treatments with exogenous SA have been investigated in in vitro cultures of diverse plant 

species enhancing plant resistance against both biotic and abiotic stress (Németh et al. 2002; 

Ali et al. 2006; Hussain et al. 2008; Popova et al. 2009; Sivanandhan et al. 2012; Gadzovska 

et al. 2013) making SA a cheap elicitor of plant defense responses. 

 

 

 

Fig. 12 Chemical structure of A) salicylic acid and B) methyl salicylate. SAMT: salicylic acid 

methyl transferase (Yang et al. 2006). 

 

 

1.7.1.5 Hydrogen peroxide 

 

Hydrogen peroxide (H2O2) is a ROS whose production can be either enzymatic or non-

enzymatic. There are numerous ways of H2O2 production in plant cells, such as 

photorespiration, electron transport chains (ETC), and redox reactions (Mittler 2002); in case 

A B 
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of high rates of production it is normally balanced by very efficient antioxidant systems 

which consist of both non-enzymatic and enzymatic. H2O2 scavengers include the enzymes 

catalase (CAT) (Willekens et al. 1997), peroxidase (POX) (Fan and Huang 2012), ascorbate 

peroxidase (APX) and glutathione reductase (GR) (Jahan and Anis 2014) (Fig. 13).  

H2O2 has been considered mainly as a toxic cellular metabolite for decades; however, it is 

now clear that it acts also as a signaling molecule which may move between cells through 

aquaporin channels. H2O2 plays important roles in plant developmental and physiological 

processes including seed germination (Barba-Espín et al. 2011), PCD (Cheng et al. 2015; 

Vavilala et al. 2015), senescence (Liao et al. 2012), flowering (Liu et al. 2013), root system 

development (Liao et al. 2009; Ma et al. 2014; Hernández-Barrera et al. 2015), stomatal 

aperture regulation (Ge et al. 2015). This suggests that H2O2 is involved in cellular signaling 

transduction pathways and gene expression modulations in plants. 

H2O2 is produced also through several enzymes including cell wall peroxidases (Francoz et 

al. 2015), oxalate oxidase (Hu et al. 2003), amine oxidases and flavin-containing enzymes 

(Cona et al. 2006). Moreover, nicotinamide adenine dinucleotide phosphate (NADPH) 

oxidases on the plasma membrane also increase H2O2 level through generating O2
-, which 

in turn is converted to H2O2 and OH• by superoxide dismutases (SOD) (Grivennikova and 

Vinogradov 2013; Brewer et al. 2015). 

 

 

 

Fig. 13 Hydrogen peroxide (H2O2) production and removal in plant cells (Niu and Liao 2016). 
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An oxidative burst with rapid H2O2 synthesis and its release into the apoplast, is induced by 

biotic stress such as pathogens, elicitors and wounding or abiotic stress including drought 

(Ashraf et al. 2015), low and high temperatures (Orabi et al. 2015; Wu et al. 2015), salinity 

(Mohamed et al. 2015), ultra-violet light (He et al. 2013), ozone (Oksanen et al. 2004) and 

heavy metals (Wen et al. 2013), causing rapid responses in plant cells.  

 

 

1.7.2 Abiotic stress 

 

Abiotic stress is stress caused by non-living factors such as drought (Chaves and Oliveira 

2004), salinity (Sahi et al. 2006; Munns and Tester 2008), heat (Scharf et al. 2012), cold 

(Chinnusamy et al. 2007), freezing (Sakai and Larcher 2012), nutrient (Hirel et al. 2007), 

high light intensity (Rossel et al. 2002), ozone (O3) (Welfare et al. 2002) and anaerobic 

stresses (Agarwal and Grover 2006) (Wang et al. 2003; Nakashima et al. 2014). Abiotic 

stresses represent the primary cause of crop loss worldwide with reductions in production of 

more than 50% (Alcázar et al. 2006; Hussain et al. 2011) and probably these stresses will 

become more intense because of the expected climate change. Abiotic stresses can be used 

as plant defense stimulators to produce molecules of interest or to investigate plant responses 

pathways.  

 

 

1.7.2.1 Toxic metals 

 

Pollution with toxic metals is a phenomenon that is constantly increasing since it is closely 

connected to the anthropization process and to the exponential increase of human population. 

Alarming data show that in China 2.9% of the soils for agricultural use (corresponding to 

about 4 million hectares) is heavily contaminated by the presence of heavy metals (Su 2014), 

while in Europe 58% are characterized by quantities of toxic metals above the threshold 

values recommended and applied by UNEP (Tòth et al. 2016). The presence of toxic metals 

in the soil and their absorption by plants, can give rise to phenomena of food chain 

contamination, with repercussions either on animal and human health. 

Heavy metal phytotoxicity may alter numerous physiological processes such as enzyme 

activity, metabolism of essential elements (Dong et al. 2006), and membrane integrity 
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(Gadallah 1999). Moreover, heavy metals enhance the production of reactive oxygen species 

(ROS) leading to oxidative stress.  

 Plants activate several defense mechanisms which control uptake, accumulation and 

translocation of heavy metals and detoxify them; furthermore, antioxidant systems which 

counteracts oxidative stress are activated (Srivastava et al. 2004). Although these plant 

mechanisms, heavy metals are often found in shoots, leaves, flowers, or, worse, seeds and 

fruits (Muchuweti et al. 2006; Unterbrunner et al. 2007; Shaheen et al. 2016). One common 

strategy is preventing the entrance of heavy metals into root cells by trapping them in the 

apoplast by detoxifying them via chelate complex formation (Watanabe and Osaki 2002) or 

to anionic groups of cell walls (Dalla Vecchia et al. 2005; Rascio et al. 2008). Most of the 

heavy metal amount that enters the plant is then kept in root cells, where it is detoxified by 

complexation with amino acids, organic acids or metal-binding peptides (e.g. 

phytochelatins) and/or sequestered into vacuoles (Salt and Rauser 1995; Piechalak et al. 

2002). These trapping strategies protect the leaf tissues from damage.  

The effects of high concentrations of heavy metals on plants are various and different 

depending on the pollutant, they include the reduction in photosynthesis, water and nutrient 

uptake, chlorosis, growth inhibition, browning of root tips, and death (Yadav 2010 and 

literature cited therein). Roots, being in direct contact with soils, are the most and first 

affected organ which show alterations both in their normal hormonal metabolism and in the 

development and morpho-anatomical differentiation, with damage that affects the growth of 

the entire plant. 

In Arabidopsis thaliana and Oryza sativa it has been shown that both cadmium (Cd) and 

arsenic (As), respectively metal and half-metal toxic elements, frequently present in polluted 

soils, express their toxicity by altering both biosynthesis and transport of auxins, 

fundamental phytohormones for plant organogenesis (Ronzan et al. 2018; Fattorini et al. 

2017). The correct distribution, carried out both through transport and conversion of the 

specific indole-3-butyric acid precursor (IBA) into its chemically active form indol-3-acetic 

acid (IAA), is required in various processes such as the genesis, development and 

maintenance over time of a functional root system (Strader et al. 2010). Moreover, effects 

of Cd on secondary metabolism were demonstrated in several species such as Catharanthus 

roseus (Zheng and Wu 2004), Phyllanthus amarus (Rai et al. 2005), Brassica juncea 

(Ahmad et al. 2016); otherwise, little is known about As effect on secondary metabolism. 

Many species that survive in soils characterized by high heavy metal concentrations behave 

as “excluders”, they retain and detoxify most of the heavy metals in the root tissues, with a 

minimized translocation to the leaves (Hall 2002).  Otherwise, the term “hyperaccumulator” 
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is used for plants which actively accumulate large amounts of one or more heavy metals 

from the soil and which translocate and accumulate them in aerial organs at concentrations 

hundreds-fold higher than non-hyperaccumulating species. These plants show no symptoms 

of phytotoxicity (Reeves 2006 and literature cited therein), and due to this, they could be 

more dangerous for human health especially in case of crops and medicinal plants. Among 

hyperaccumulating plants, there are species of numerous families such as Brassicaceae, 

Poaceae, Asteraceae, Fabaceae (Reeves et al 2006 and literature cited therein) and 

Hypericaceae including H. perforatum (Pavlova et al. 2015). 

 

 

1.8 Research objectives 

 

This work aims to elucidate the effect of biotic and abiotic stress on H. perforatum roots, 

administering chitosan oligosaccharides (COS), methyl jasmonate (MeJA), salicylic acid 

(SA), hydrogen peroxide (H2O2), cadmium (Cd) and arsenic (As). This project has both 

applicative and basic purposes: biotic elicitors may be used in order to stimulate secondary 

bioactive metabolite biosynthesis for drug production and to elucidate the influence of 

shoot/root interaction on elicitor perception in H. perforatum. Moreover, the treatment with 

toxic metals could help in understanding the processes that occurs when H. perforatum 

grows on polluted soils. 
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Abstract 

Key message Water-soluble chitosan oligosaccharides (COS) affect xanthone and 

volatile organic compound content, as well as antifungal activity against human 

pathogenic fungi of extracts obtained from Hypericum perforatum root cultures. 

Several studies have demonstrated the elicitor power of chitosan on xanthone biosynthesis 

in root cultures of H. perforatum. One of the major limitations to the use of chitosan, both 

for basic and applied research, is the need to use acidified water for solubilization. To 

overcome this problem, the elicitor effect of water-soluble COS on the biosynthesis of both 

xanthones and volatile organic compounds (VOCs) was evaluated in the present study. The 

analysis of xanthones and VOCs was performed by HPLC and GC-MS headspace analysis. 

The obtained results showed that COS are very effective in enhancing xanthone biosynthesis. 

With 400 mg L−1 COS, a xanthone content of about 30 mg g−1 DW was obtained. The 
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antifungal activity of extracts obtained with 400 mg L−1 COS was the highest, with MIC50 

of 32 μg mL−1 against Candida albicans and 32-64 μg mL−1 against dermatophytes, 

depending on the microorganism. Histochemical investigations suggested the accumulation 

of isoprenoids in the secretory ducts of H. perforatum roots. The presence of monoterpenes 

and sesquiterpenes was confirmed by the headspace analysis. Other volatile hydrocarbons 

have been identified. The biosynthesis of most VOCs showed significant changes in 

response to COS, suggesting their involvement in plant-fungus interactions. 

 

Keywords Hypericum perforatum · Root cultures · Chitooligosaccharides · Xanthones · 

Volatile organic compounds 

 

 

Introduction 

Hypericum perforatum L. (Hypericaceae), popularly known as St. John’s wort, has been one 

of the most investigated medicinal plants during the past two decades (Wölfle et al. 2014). 

The interest of scientific community towards H. perforatum mainly resides in its 

antidepressant activity (Russo et al. 2014), although it is being studied for a broad range of 

other biological activities (Marrelli et al. 2016). 

Research on St. John’s wort has focused primarily on metabolites accumulated in the aerial 

part of the plant, such as hypericins (naphthodianthrones) and hyperforins (phloroglucinols), 

that are believed to be responsible for the antidepressant activity (Russo et al. 2014). A large 

number of volatile organic compounds (VOCs) such as monoterpenes and sesquiterpenes 

with antibacterial and antifungal activities have also been detected in the shoot organs of 

wild plants and in in vitro shoot cultures of H. perforatum (Schwob et al. 2004; Pintore et 

al. 2005; Maggi et al. 2010; Guedes 2009). The root has not been recognized as a valuable 

source of bioactive compounds of pharmacological interest until last years, when several 

studies revealed the presence of bioactive polyphenols in the root of the plant and in in vitro 

regenerated roots (Bertoli et al. 2008; Cui et al. 2010a, b, c, 2011; Tocci et al. 2011, 2012, 

2013a, b; Tusevski et al. 2013; Brasili et al. 2014; Zubrická et al. 2015; Simonetti et al. 2016; 

Valletta et al. 2016).  

We have demonstrated that in vitro root cultures of St. John’s wort produce xanthones at 

higher levels than the root of the plant (Tocci et al. 2011, 2012, 2013a; Simonetti et al. 2016; 

Valletta et al. 2016). Xanthones are a large and diverse group of non-flavonoid polyphenols 

produced by certain plants, fungi, lichens and bacteria (El-Seedi et al. 2009; Masters and 

Bräse 2012). These metabolites arouse great interest in the research community because of 
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their numerous pharmacological properties (for a review, see Negi et al. 2013). Xanthone 

rich extracts obtained from H. perforatum in vitro root cultures exhibited antifungal activity 

against several common human pathogenic fungi, such as Candida spp., Cryptococcus 

neoformans, dermatophytes and Malassezia furfur (Tocci et al. 2011, 2012, 2013a; Zubrická 

et al. 2015; Simonetti et al. 2016). In a recent study it has been demonstrated that root 

endodermis and exodermis are the cellular sites of xanthone biosynthesis in H. perforatum 

in vitro cultured roots (Tocci et al. 2018). 

Chitosan (CHIT) is a natural non-toxic biopolymer, composed of randomly distributed β-

(1→ 4)-linked d-glucosamine (deacetylated unit) and N-acetyl-d-glucosamine (acetylated 

unit), produced by the partial deacetylation of chitin, a major component of arthropod 

exoskeleton and fungal cell wall. Among elicitors, CHIT is one of the most commonly used 

to increase the biosynthesis of plant secondary metabolites of pharmacological interest. 

Several studies have shown the high effectiveness of CHIT in enhancing xanthone 

production in H. perforatum root cultures (Tocci et al. 2011, 2012, 2013a; Brasili et al. 2014; 

Simonetti et al. 2016); however, no studies on the impact of this elicitor on the production 

of VOCs are currently available. 

Chitosan is poorly soluble in neutral water as well as in most organic solvents; therefore, it 

is commonly dissolved in water acidified with acetic acid, which greatly limits its application 

(Kim and Rajapakse 2005). In this regard, we have recently found that short-chain 

monocarboxylic acids, as acetic acid, could alter the xanthone profile, masking the effect of 

CHIT (Valletta et al. 2016). This problem could be overcome using water-soluble CHIT 

derivatives, also known as chitosan oligosaccharides or chitooligosaccharides (COS), which 

can be obtained by enzymatic and/or chemical hydrolysis of CHIT (Kim and Rajapakse 

2005; Yin et al. 2010). 

COS have been commercialized as low-calorie bulking agents since the 1980s and, more 

recently, they have gained interest in different fields, including food, agriculture, and 

medicine-related industries. As regards their application in the agri-food sector, most of the 

available studies focus on the administration of COS in vivo, in the field or in post-harvest, 

to fight microorganisms responsible for plant diseases, as well as for biodeterioration and 

mycotoxin contamination of food (Yin et al. 2010 and literature cited therein). 

To date, only a few studies are available on the use of COS as elicitors to enhance the 

production of phytochemicals in plant in vitro cultures, and most of them have been 

performed on cell cultures (Cabrera et al. 2006; Wang et al. 2008). To the best of our 

knowledge, no studies have been published on in vitro root cultures. 
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The main objective of this study was to evaluate the elicitor power of COS on the 

biosynthesis of xanthones and VOCs in root cultures of H. perforatum. HPLC was used for 

the identification and quantification of six different xanthones, while GC-MS headspace 

analysis was adopted to determine the VOC profile. To compare the effect of COS with that 

of CHIT, COS were initially administered to the root cultures by following the same 

experimental design used in the previous studies for CHIT elicitation; subsequently, time- 

and concentration-dependent effects of COS on xanthone biosynthesis was investigated. The 

methanol extracts obtained from control and elicited roots were tested for their antifungal 

activity against human pathogens i.e. Candida albicans, Trichophyton mentagrophytes, and 

Microsporum gypseum. 

 

 

Materials and methods 

Plant material and root cultures 

In vitro-regenerated roots of H. perforatum were obtained as previously described by 

Valletta et al. (2016). Liquid cultures were established as described by Valletta et al. (2016) 

with slight modifications. Briefly, 0.250 g fresh weight (FW) of roots was inoculated in 100 

mL flasks containing 50 mL half-strength MS basal salts and vitamins (Murashige and 

Skoog 1962), supplemented with 1 mg L−1 IBA and 1.5% (w/v) sucrose. The MS medium 

and sucrose were purchased from Duchefa (Haarlem, The Netherlands), while the growth 

regulators were obtained from Sigma-Aldrich (Milan, Italy). The cultures were shaken at 

100 rpm at 26 ± 1 °C and maintained in continuous darkness. 

 

Chitosan oligosaccharides (COS) preparation and identification 

Chitosan (molecular weight 300-500 kDa, minimum 95% deacetylated) was purchased from 

Jinan Haidebei Marine Bioengineering Co., Ltd. (Shandong, China). COS with a degree of 

polymerization (DP) of 2-10 were prepared through enzymatic hydrolysis of CHIT 

according to Zhang et al. (1999). In brief, chitosan was dissolved in 2% acetic acid. Enzyme 

mixture in 0.05 mol L−1 acetate buffer was added and the mixture was incubated for 30 min 

at 40 °C. The hydrolyzates were filtered on a hollow-fiber membrane. These crude COS 

were added to ethanol and the mixture was stirred, thus forming a supersaturated solution, 

and stored at 4 °C overnight. The insoluble precipitate was removed using filter paper. The 

received COS solution was vacuum dried to obtain COS powder. The degree of 

polymerization (DP) of the obtained COS was analyzed using hydrophilic interaction liquid 
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chromatography combined with CAD detector. The DP of the COS was from 2 to 10, the 

mean molecular weight was around 1 kDa, and the acetylation was less than 5%. 

 

Elicitation 

Elicitation with COS 

The roots were elicited using COS dissolved in deionized water. Different COS 

concentrations (50-400 mg L−1) were applied to the root cultures. The stock solutions were 

prepared with COS concentrations ranging from 10 to 80 g L−1 to add 250 μL to each flask. 

Elicitation was always carried out on day 8 of culture. The stock solutions were sterilized 

with a 0.2 μm syringe filter before being added to the liquid culture medium. Control samples 

were added with 250 μL deionized sterile water. Three different elicitation protocols were 

carried out, as described below and in Fig. 1.  

 

Time‑dependent xanthone biosynthesis. To investigate the xanthone biosynthesis in 

response to COS elicitation over time, the roots were elicited with 200 mg L−1 COS. Root 

samples were harvested by vacuum filtration on days 5, 10, 15, 20, and 25 post-elicitation, 

corresponding to days 13, 18, 23, 28, and 33 of culture (Fig. 1a). 

 

Concentration‑dependent xanthone biosynthesis. To determine the optimal elicitor 

concentration, the roots were elicited with 50, 100, 200, and 400 mg L−1 COS, and then 

harvested by vacuum filtration on day 25 post-elicitation, corresponding to day 33 of culture 

(Fig. 1b). 
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Fig. 1 Diagram representing protocols used to elicit H. perforatum root cultures 

 

 

Concentration‑dependent VOC biosynthesis. To investigate the effect of different COS 

concentrations on the volatile compounds profile, the roots were elicited with 200 and 400 

mg L−1 COS. Root samples were harvested on day 15 after the elicitation (Fig. 1c). 

 

Determination of root biomass 

Growth curve of the H. perforatum roots, elicited with different COS concentrations (200 or 

400 mg L−1) and not elicited, was determined gravimetrically by measuring dry weight 

increases on days 5, 10, 15, 20, and 25 after the elicitation. The initial weight of all samples 

was 0.250 g FW of roots. The growth index (GI) was calculated as follows: 

GI = Final weight – initial weight. 

 

Xanthone quantification 

The roots were dried in an oven at 70 °C until a constant weight was obtained; then, they 

were powdered with pestle and mortar and extracted three times (each 24 h) with methanol 

at room temperature. The ratio root dry biomass/methanol was 100/5 (mg:mL). The extracts 

were dried with a rotavapor (Buchi, Milan, Italy) at 35 °C and redissolved in HPLC-grade 

methanol (Carlo Erba, Milan, Italy) at the ratio initial biomass DW/methanol of 100/1 

(mg:mL). The extracts were analyzed by high-performance liquid chromatography (HPLC), 

as described by Tocci et al. (2013a) and Valletta et al. (2016). Different xanthones were 

identified and quantified: (1) mangiferin; (2) 1,3,6,7-tetrahydroxyxanthone; (3) 1,3,5,6-
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tetrahydroxyxanthone; (4) kielcorin; (5) cadensin G; (6) 1,7-dihydroxyxanthone; (7) 

toxiloxanthone, (8) paxanthone; and (9) 5-O-methyl-2-deprenylrheediaxanthone. 

 

Histochemical detection of isoprenoids 

Fresh sections (thickness ≈ 30 μm) of control roots and roots treated with 50, 100, 200, 400, 

and 800 mg L−1 COS and collected on day 18 of culture (corresponding to day 10 post-

elicitation) (Fig. 1a), and were obtained by microtome (Vibratome Series 1000). The 

histochemical test with Nadi reagent was performed as previously reported by Monacelli et 

al. (2005). 

 

Viability test 

To assess the cytotoxicity of COS, a viability test with fluorescein diacetate (FDA) was 

carried out as previously reported by Santamaria et al. (2011) on H. perforatum cultured 

roots treated with 50, 100, 200, 400, and 800 mg L−1 COS on day 8 and collected on day 33 

of culture. Non-treated roots were used as positive control and roots killed with liquid 

nitrogen were used as negative control. Roots were analyzed with a Zeiss microscope 

(Axioscop 2 Plus) fitted with a digital camera (Zeiss AxioCam MRc5) and a blue filter 

(λexcitation 386 nm; λemission 490 nm). Roots that emitted a green fluorescence under blue light 

were considered viable. 

 

Analysis of volatile organic compounds (VOCs) 

The VOCs of roots treated with 200 or 400 mg L−1 COS and harvested on day 15 of culture 

were determined by solidphase- micro-extraction (SPME) that consists in catching the VOCs 

contained in the headspace above a sample in an SPME vial with a fiber coated with adapted 

stationary phases and inject them into a gas chromatograph mass spectrometer (GC-MS) 

with posterior data analyses. 

 

SPME procedure 

A divinylbenzene/carboxen/polydimethylsiloxane (DVB/ CAR/PDMS, 50 μm) fiber with 

manual holder from Supelco (Bellefonte, PA, USA) was used for the extraction of volatile 

compounds. The SPME fiber was preconditioned before the analyses, according to the 

instructions of the manufacturer. 

The samples were ground using pestle and mortar under liquid nitrogen. A total of 3 g of 

roots was homogenized with 30% sodium chloride solution (Merck) and placed (10 g) into 
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a headspace vial sealed with a septum. The samples were kept under agitation with a 

magnetic stir bar and heated to 40 °C. The headspace equilibrium time was 30 min. Volatiles 

were extracted by exposing the SPME fiber to the headspace of the sample vial that was 

maintained at 40 °C for 60 min. For thermal adsorption, the SPME fiber was immediately 

inserted into the GC-MS injector and held for 2 min at 250 °C in splitless mode. 

 

GC-MS conditions 

Chromatographic analysis was performed in a Hewlett- Packard 6890 (Agilent Technologies 

Inc., Santa Clara, USA) GC-MS. 

The injector temperature was 200 °C. Components were then separated using a capillary 

column Supelcowax 10 (30 m × 0.25 mm × 0.25 μm) and the oven temperature was 

programmed to ramp from 40 to 150 °C at 2 °C min−1 and hold for 5 min. Helium was used 

as a carrier gas with a constant column flow rate of 1 mL min−1. The mass detector operated 

in electron impact (EI)-mode at 70 eV in a range of 15-210 amu. Volatile compounds were 

identified by comparison with the NIST database (NIST11, version 2.0, Gaithersburg, USA) 

and then confirmed with the Kovats retention indexes (RI). Further identification was carried 

out by calculating non-isothermal retention indices. The RI values were obtained by injecting 

saturated n-alkane standard solution (C7-C30 1,000 μg mL−1 in hexane, Supelco, Belgium) 

under the same chromatographic conditions and compared with those described in the 

literature determined under the same conditions for matching the compounds. The mass 

spectra data of all volatiles were also confirmed by comparison with the spectral data 

available at the MassBank of North America (MoNA—http://mona.fiehn lab.ucdav is.edu/). 

 

Antifungal susceptibility testing 

The evaluation of the antifungal activity was carried out on C. albicans ATCC 10231 coming 

from American-Type Culture Collection (ATCC, Manassas, VA, USA), T. mentagrophytes 

DSM 4870, and M. gypseum DSM 3824 coming from German Collection of Microorganisms 

(DSMZ, Braunschweig, Germany). To evaluate the minimal inhibitory concentration (MIC), 

the susceptibility in vitro assay was performed on C. albicans according to standardized 

methods for yeast using the broth microdilution method (CLSI M27-A3 2008b; CLSI 2012) 

and on dermatophytes according to standardized methods for filamentous fungi (CLSI M38-

A2 2008a). Dermatophytes were grown on potato dextrose agar (Sigma-Aldrich, St. Louis, 

MO, USA) at 28-30 °C until good conidial growth was present. The conidia suspension was 

prepared at the final concentration of 1 × 103 to 3 × 103 CFU mL−1 (CLSI M38-A2 2008a). 

C. albicans was grown on Sabouraud dextrose agar at 35 °C for 24 h. The final concentration 
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of the inoculum was 0.5 × 103-2.5 × 103 CFU mL−1. The in vitro antifungal susceptibility 

was evaluated using extracts. The concentration of extracts ranged from 512 to 0.5 μg mL−1. 

The MIC50 was the lowest concentration of extracts or reference drugs that caused ≥ 50% 

growth inhibition and the MIC100 was the lowest concentration that inhibited 100% of 

growth. Results were expressed as median of three experiments performed in duplicate. 

 

Statistical analysis 

All measurements were made at least in triplicate and the results were expressed as means ± 

SD. Statistical analysis was carried out using SigmaPlot 13.0. Two-way analysis of variance 

(ANOVA), followed by Holm-Sidak tests, was applied to test differences between groups. 

Statistical significance of the results was also evaluated, also by paired Student’s t test, and 

differences with a p value ≤ 0.05 were considered significant. A total of six biological 

replicates of samples for each treatment were analyzed by GC-MS. Volatile organic data set 

was imported into Metaboanalyst 3.0 (http://www.metaboanal yst.ca) for multivariate 

statistical analysis. All imported data were Pareto-scaled. A principal component analysis 

(PCA) was conducted on GC-MS data to discern inherent similarities in volatiles profiles. 

Next, a PLS-DA model was used to maximize covariance between the measured data 

(concentrations in GC-MS spectra, X matrix) and the response variable (predictive 

classifications, Y matrix). The variable importance in the projection (VIP) plot was then 

used to identify which volatile compound contributes most to clustering or trends observed 

in the data. 

 

Results 

Elicitation with COS 

Root biomass growth 

The increase in root biomass growth was monitored on days 0 and 8 of culture and every 5 

days after elicitation with different COS concentrations (Fig. 2). During the first 8 days, a 

doubling of root biomass was observed in all analyzed roots. In control roots, the exponential 

growth phase began on day 8 and continued until day 18; a decrease in biomass growth was 

observed from day 18 to day 23 (non-significant differences); starting from day 23 to day 

28, a plateau was recorded (non-significant differences); another exponential growth phase 

took place from day 28; and the elicitation on day 8 causes a remarkable decrease of growth 

in treated roots. The main difference between roots elicited with 200 and 400 mg L−1 took 

place at day 33, after which, the roots treated with the lower COS concentration slowly 

started to grow again. 
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Fig. 2 Growth curves of H. perforatum root cultures elicited with 200 and 400 mg L−1 COS. Control 

roots (black dashed line); treated roots with 200 mg L−1 COS (black line); treated roots with 400 mg 

L−1 COS (grey line). Mean values were based on three replicates from two separate experiments. 

Bars represent standard deviations of the means. Different letters represent significant differences 

between samples (p ≤ 0.05); asterisk represents significant differences between samples compared 

with control at the same day of culture; black up-pointing triangle represents significant differences 

between samples compared with 400 mg L−1 COS at the same day of culture 

 

 

Time‑dependent xanthone biosynthesis 

The HPLC analysis showed that the addition of 200 mg L−1 COS to H. perforatum root 

cultures significantly enhances xanthone biosynthesis. All extracts obtained from COS-

elicited roots and collected at different times post-elicitation (days 5, 10, 15, 20, and 25) 

(Fig. 1a) showed a significant increase in total xanthones compared to their respective 

controls (Fig. 3). In the control roots, total xanthone content increased with an increasing 

culture time from about 3.42 to 7.87 mg g−1 DW. In COS-elicited roots, the highest xanthone 

levels were observed after a short time (day 5) and after a long-time (day 25) post-elicitation, 

with 13.25 e 14.31 mg g−1 DW of total xanthones, respectively. On days 10, 15, and 20, 

xanthone content remained almost constant with an average value of about 9.8 mg g−1 DW. 



65 
 

The levels of individual xanthones were measured at all experimental times (supplementary 

material), and in Fig. 4, the data acquired at times of maximum production (days 5 and 25) 

are shown. On day 5 (Fig. 4a), all the analyzed xanthones were present in control roots, with 

the exception of kielcorin (Kiel) and 1,7-dihydroxyxanthone (Dihydroxy). Mangiferin 

(Mang) and toxyloxanthone (Toxy) were accumulated at relatively low levels (0.22-0.18 mg 

g−1 DW). Other xanthones were accumulated at levels ranging from 0.55 for paxanthone 

(Pax) to 1.02 mg g−1 DW for 5-O-methyl-2-deprenylrheediaxanthone (Rheedia). The levels 

of all xanthones significantly increased in response to COS elicitation, with the exception of 

mangiferin (Mang) and cadensin G (Cad). The highest increases were observed for 

tetrahydroxixanthones (Tetra), Toxy, Pax, and Rheedia (4.6-, 17.0-, 5.6-, and 2.8-fold 

increase, respectively). On day 25 (Fig. 4b), all analyzed xanthones were detected in control 

roots, with the exception of Kiel and Dihydroxy. Mang, Tetra, and Cad were accumulated at 

relatively low levels (0.31, 0.29, and 0.51 mg g−1 DW). Toxy, Pax, and Rheedia were 

accumulated at higher levels (1.02, 1.04, and 4.7 mg g−1 DW). 

In response to COS, the levels of all analyzed xanthones increased, with the exception of the 

Mang, the level of which decreased significantly. These increases were statistically 

significant for Tetra, Cad, Pax, and Rheedia (3.8-, 0.22-, 4.2-, and 1.3-fold increase, 

respectively). 
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Fig. 3 Time-dependent xanthone production in H. perforatum root cultures in response to elicitation 

with 200 mg L−1 COS. The numbers next to the bars represent the exact concentration of total 

xanthones (mg g−1 DW). The data shown are mean of three replicates from two separate experiments. 

Bars represent standard deviations of the means. Different letters represent significant differences 

between samples (p ≤ 0.05) 
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Fig. 4 Xanthone production in H. perforatum root cultures on days 5 (a) and 25 (b) after elicitation 

with 200 mg L−1 COS. The numbers next to the bars represent the concentration of xanthones (mg 

g−1 DW). The data shown are mean of three replicates from two separate experiments. Bars represent 

standard deviations of the means. Asterisks indicate statistically significant differences (p ≤ 0.05) 

between COS-elicited roots and control roots. Mang mangiferin, Tetra 1,3,5,6-tetrahydroxyxanthone 

and 1,3,6,7-tetrahydroxyxanthone, Cad cadensin G, Toxy toxyloxanthone, Pax paxanthone, Rheedia 

5-O-methyl-2-deprenylrheediaxanthone 

 

 

Concentration‑dependent xanthone biosynthesis 

COS at different concentrations were tested on H. perforatum root cultures. Chemical 

analyses were performed on roots collected on day 25 post-elicitation, which gave the best 

results in the previous experiments. The roots treated with 400 mg L−1 COS were the most 

productive in term of total xanthones (Fig. 5), the content of which was about 12 times higher 

than in control roots (30.8 and 2.5 mg g−1 DW, respectively). At higher concentrations, the 

xanthone content significantly decreased (data not shown) and the roots showed symptoms 

of necrosis (Fig. 8). In the roots elicited with 400 mg L−1 COS, all analyzed xanthones were 

produced at much higher levels than roots treated with lower COS concentrations, with the 

exception of Mang (Fig. 6). 

The highest levels of Mang were detected in roots treated with 50 e 100 mg L−1 COS (1.95-

1.71 mg g−1 DW). As regards Tetra, Cad, Pax, and Rheedia levels in elicited roots, it was 

15.4-, 23.4-, 41.3-, and 15.4-fold higher than in control roots. Toxy was not detected in 

untreated roots, while it was produced at relatively high levels (7.06 mg g−1 DW) in roots 

treated with 400 mg L−1 COS. 
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Fig. 5 Total xanthone content in H. perforatum root cultures not subjected to COS elicitation 

(control) or elicited with different COS concentrations. The numbers next to the bars represent the 

exact xanthone content (mg g−1 DW). Each value is the mean of three independent determinations ± 

SD. Different letters represent significant differences between samples (p ≤ 0.05) 

 

 

 

Fig. 6 Xanthone content in H. perforatum root cultures not subjected to COS elicitation (control) or 

elicited with different COS concentrations. The numbers next to the bars represent the exact xanthone 

content (mg g−1 DW). Each value is the mean of three independent determinations ± SD. Asterisks 

indicate that the differences between COS-elicited roots and the corresponding control roots are 
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statistically significant (p < 0.05). Mang mangiferin, Tetra 1,3,5,6-tetrahydroxyxanthone and 1,3,6,7-

tetrahydroxyxanthone, Cad cadensin G, Toxy toxyloxanthone, Pax paxanthone, Rheedia 5-O-

methyl-2-deprenylrheediaxanthone, N.d. non-detected 

 

 

Histochemical detection of isoprenoids 

The treatment with Nadi reagent revealed secretory ducts in both control and COS-treated 

roots, each delimited by four secretory cells (Fig. 7). Both the secretory cells and the lumen 

of the ducts reacted positively with Nadi reagent, which revealed the presence of isoprenoid 

compounds. As regards the signal intensity, no differences were observed between control 

roots and roots treated with different concentrations of COS (Fig. S1). 

 

 

 

Fig. 7 In vitro roots of H. perforatum elicited with 200 mg L−1 COS, treated with Nadi reagent and 

observed under bright field. Intact root at different magnifications (A, B); root cross section (C); 

detail of the root section in which two close secretory ducts are visible (D). Er root epidermis, C 

cortex, En endodermis, P pericycle, Vc vascular cylinder. Bars represent 500 (A), 200 (B), 100 (C) 

and 25 μm (D) 

 

 

Viability test 

H. perforatum cultured roots subjected to COS concentrations ≤ 200 mg L−1 (Fig. 8A) 

showed a macroscopic appearance similar to non-treated roots (Fig. 8b, c). Symptoms of 

suffering in the form of tissue darkening and morphological alterations were observed in 

roots treated with COS concentrations > 200 mg L−1 (Fig. 8D-F). The viability of non-treated 

roots and roots elicited with COS concentrations ranging from 50 to 800 mg L−1 was 

investigated through FDA-viability test. The cells of non-treated roots and roots treated with 

50-800 mg L−1 COS emitted a green fluorescence when observed with a microscope under 

blue light (Fig. 8H-M). No fluorescent signal has been observed in roots treated with liquid 
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nitrogen (Fig. 8N). These results indicate that COS does not cause cell death at the tested 

concentrations. 

 

 

 

Fig. 8 Fluorescein diacetate (FDA) viability test on H. perforatum roots collected on day 33 of culture 

(corresponding to day 25 post-elicitation). Macroscopic appearance of non-treated roots (A) and 

roots subjected to different COS concentrations (B-F). Roots observed through epifluorescent 

microscopy under blue light to reveal the green signal generated by FDA (H-N). Positive control (Pc) 

represented by non-treated roots (A, H) and negative control (Nc) represented by roots killed with 

liquid nitrogen (G, N). Bars represent 300 μm 

 

 

Antifungal activity of extracts obtained from H. perforatum cultured roots elicited with 

COS 

The antifungal activity of extracts obtained from H. perforatum cultured roots elicited with 

different COS concentrations and collected on different days post-elicitation has been 

evaluated against C. albicans, T. mentagrophytes and M. gypseum. As regards MIC50 and 

MIC100 of C. albicans and MIC50 of M. gypseum, the best activity was exhibited by extracts 

of roots collected on days 20 and 25 post-elicitation (32, 64, and 16 μg mL−1, respectively). 

As regards MIC100 of M. gypseum, the best activity was exhibited by extracts of roots 

collected on days 15 and 20 post-elicitation (32 μg mL−1). Antifungal tests performed against 

T. mentagrophytes with extracts obtained from roots collected at different experimental 

times, yielded similar MIC values (MIC50 16 μg mL−1; MIC100 32 μg mL−1) (Tables 1 and 

S1). 

Moreover, the antifungal activity increased by increasing the COS concentration (Tables 2 

and S2). COS did not show any antifungal activity on the investigated fungal strains. 
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Table 1. Antifungal activity of methanol extracts of H. perforatum root cultures collected at different 

days after elicitation with 200 mg L−1 COS against Candida albicans, Trichophyton mentagrophytes 

and Microsporum gypseum. 

Extracts C. albicans ATCC 10231 T. mentagrophytes DSM 4870 M. gypseum DSM 3824 

 MIC50  

(μg mL−1) 

MIC100  

(μg mL−1) 

MIC50  

(μg mL−1) 

MIC100  

(μg mL−1) 

MIC50  

(μg mL−1) 

MIC100  

(μg mL−1) 

Control day 5 256 256  64  128  128  256  

EL day 5 64 (*a) 256 (a) 16 (*a) 32 (*a) 32 (*a) 64 (*a) 

EL day 10 64 (*a) 128 (*b) 16 (*a) 32 (*a) 32 (*a) 64 (*a) 

EL day 15 32 (*b) 128 (*bc) 16 (*a) 32 (*a) 32 (*a) 32 (*b) 

EL day 20 32 (*b) 64 (*c) 16 (*a) 32 (*a) 16 (*b) 32 (*b) 

EL day 25 32 (*b) 64 (*cd) 16 (*a) 32 (*a) 16 (*b) 64 (*a) 

Fluconazole 2 (*c) 64 (*d) 16 (*a) 32 (*a) 16 (*b) 32 (*b) 

MIC50 and MIC100 are the lowest concentration of extracts or reference drugs that caused growth 

inhibition ≥ 50% and 100%, respectively. Results are expressed as median of three experiments 

performed in duplicate. Asterisks represent significant differences (p ≤ 0.05) between MIC values 

obtained with extracts from COS-elicited roots (EL) and from non-treated roots (control). Different 

letters represent significant differences (p ≤ 0.05) between MIC values reported in each column. 

 

 

Table 2. Antifungal activity of methanol extracts of H. perforatum root cultures elicited with COS 

at different concentrations and collected at day 25 post-elicitation against Candida albicans, 

Trichophyton mentagrophytes and Microsporum gypseum. 

Extracts C. albicans ATCC 10231 T. mentagrophtyes DSM 4870 M. gypseum DSM 3824 

 
MIC50  

(μg mL−1) 

MIC100  

(μg mL−1) 

MIC50  

(μg mL−1) 

MIC100  

(μg mL−1) 

MIC50  

(μg mL−1) 

MIC100  

(μg mL−1) 

Control 256  512  128  512  128  256  

EL (50  

mg L−1) 
256 (a) 512 (a) 128 (a) 256 (*a) 128 (a) 256 (a) 

EL (100  

mg L−1) 
64 (*b) 256 (*b) 64 (*b) 256 (*a) 64 (*b) 128 (*b) 

EL (200 

mg L−1) 
32 (*c) 128 (*c) 64 (*b) 128 (*b) 64 (*b) 128 (*b) 

EL (400  

mg L−1) 
32 (*c) 128 (*c) 64 (*b) 64 (*c) 32 (*b) 64 (*b) 

Fluconazole 2 (*d) 64 (*d) 16 (*c) 32 (*d) 16 (*c) 32 (*c) 

MIC50 and MIC100 are the lowest concentration of extracts or reference drugs that caused growth 

inhibition ≥ 50% and 100%, respectively. Results are expressed as median of three experiments 
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performed in duplicate. Asterisks represent significant differences (p ≤ 0.05) between MIC values 

obtained with extracts from COS-elicited roots (EL) and from non-treated roots (control). Different 

letters represent significant differences (p ≤ 0.05) between MIC values reported in each column. 

 

 

Concentration‑dependent volatile organic compounds (VOCs) biosynthesis 

As shown in Table S3, VOCs were identified and listed according to their biosynthetic 

origin. A total of 43 volatile compounds were identified, including fatty acid derived 

volatiles, phenylpropanoid/benzenoid compounds, acyclic, monocyclic and bicyclic 

monoterpenes, and sesquiterpenes. The values of relative peak areas (median normalized) 

obtained by SPME-GC-MS for each compound constitute an estimate and do not reflect the 

actual value of volatile compounds in root samples, but are merely a parameter to compare 

the effect of different COS concentrations on the volatile profile of H. perforatum roots. 

Primarily, a PCA was applied to explore the volatile data set and to highlight the differences. 

The first two principal components (PC1 and PC2) explained 44.1% of total variability 

among the samples and showed a separation between root samples (Fig. S2). PC1 separated 

200 mg L−1 COS-treated roots from 400 mg L−1 COS-treated and control roots due to their 

characteristic volatile profile. Interestingly, roots treated with 400 mg L−1 of COS and 

control roots were not distinguished by PC1. 

Next, PLS-DA was applied to minimize the possible contribution of intergroup variability 

and to improve the separation between the samples. The PLS-DA score plot (R2Y = 0.89, 

Q2 = 0.80) showed a clear differentiation between control, the roots treated with COS 200 

and 400 mg L−1 (Fig. 9). 

According to the results obtained by PLS-DA, 15 volatile organic compounds were 

statistically significant as showed by VIP values (VIP > 1.0) in Table 3. Samples treated 

with COS 200 mg L−1 presented a characteristic volatile profile containing sesquiterpenes 

such as seychellene, cis-β- farnesene and (+)-α-chamigrene that were not identified in CTRL 

and COS 400 mg L−1 treated roots. Estimations of VOCs content in the roots indicated that 

only two sesquiterpenes (+)-δ-cadinene and (+)-epi-bicyclo-sesquiphellandrene increased 

after elicitation with the increasing COS concentration. 

Interestingly, the majority of VOCs decreased or increased after elicitation with COS 200 

mg L−1 and then returned to similar levels as CTRL roots. In particular, α-copaene, α-

patchoulene, and cadina-3,5-diene increased after COS 200 mg L−1 and decreased after COS 

400 mg L−1 treatment, while myrtenal, myrtanol, and limonene decreased after COS 200 mg 

L−1 and increased after COS 400 mg L−1 treatment. (−)-Zingiberene and 1,2,4-



74 
 

trimethylbenzene were not detected after COS 200 mg L−1 treatment, but a decrease of them 

was observed after COS 400 mg L−1 compared to CTRL roots. 

Conversely, naphthalene and α-terpineol were reduced after elicitation with COS 200 mg 

L−1, but were not detected after elicitation with COS 400 mg L−1. 

 

 

 

Fig. 9 PLS-DA score plot of the H. perforatum roots analyzed by SPME-GC-MS methodology. 

Control samples (CTRL) are represented in blue; COS-treated samples are represented in red (200 

mg L−1) and in green (400 mg L−1). 

 

 

Table 3 Volatile organic compounds statistically significant after COS treatment 

Compounds Control 200 mg L−1 COS 400 mg L−1 COS VIP 

Seychellene - 18.29 ± 7.31 - 2.01 

Naphthalene 3.16 ± 2.26 3.13 ± 1.94 - 1.99 

(−)-Zingiberene 2.42 ± 0.62 - 1.53 ± 0.27 1.87 

α-Terpineol 2.21 ± 1.69 0.42 ± 0.06 - 1.73 

Cis-β-farnesene - 2.87 ± 1.12 - 1.67 

α-Copaene 8.70 ± 0.05 11.59 ± 3.65 9.37 ± 2.98 1.64 

1,2,4-Trimethylbenzene 0.33 ± 0.19 - 0.21 ± 0.07 1.52 

(+)-α-Chamigrene - 0.45 ± 0.30 - 1.25 

Myrtenal 4.31 ± 3.92 0.66 ± 0.21 0.97 ± 0.36 1.20 

Limonene 0.46 ± 0.25 0.15 ± 0.02 0.38 ± 0.11 1.19 

α-Patchoulene 2.77 ± 0.32 3.87 ± 1.12 2.11 ± 0.78 1.19 

(+)-δ-Cadinene 0.54 ± 0.03 1.30 ± 0.51 2.06 ± 0.66 1.17 

Myrtanol 6.64 ± 4.38 1.29 ± 0.26 4.64 ± 1.79 1.05 

(+)-Epi-bicyclo-sesquiphellandrene 1.03 ± 0.09 1.51 ± 0.53 2.10 ± 2.22 1.00 

Cadina-3,5-diene 1.29 ± 0.16 1.79 ± 0.59 1.34 ± 0.32 1.00 

All the values are the mean of three independent analyses ± SD VIP variable importance in the 

projection 
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Discussion 

Several studies have demonstrated the elicitor effect of CHIT on plant cells (Vasconsuelo et 

al. 2003; Fan et al. 2010) and organ cultures (Putalun et al. 2007; Sivanandhan et al. 2012). 

A limitation to the use of CHIT in in vitro cultures, as well as in field and in post-harvest, is 

the poor solubility in neutral water and organic solvents, which makes it necessary to use 

acidified water for solubilization. In most of the elicitation studies, CHIT is dissolved in 

acetic acid-water solutions. However, we recently demonstrated that monocarboxylic acids 

could affect the xanthone profile of H. perforatum in vitro-cultured roots and this makes it 

difficult to discriminate the effect of CHIT to that of solvent (Valletta et al. 2016). For this 

reason, we evaluated the effect of water-soluble derivatives of CHIT, named 

chitooligosaccharides (COS), obtained through enzymatic digestion of CHIT in this study. 

At present, only few studies are available on the impact of COS on secondary metabolite 

production in plant cell cultures (Linden and Phisalaphong 2000), and to the best of our 

knowledge, no studies have been performed on root cultures. 

In this context, an issue we addressed in the present study was whether COS have an elicitor 

power comparable to that of CHIT on xanthone biosynthesis in H. perforatum root cultures. 

This is not a trivial query, since it is well known that the effect of CHITs on plant cells is 

strongly affected by their structural properties, e.g., molecular weight and degree of 

acetylation (Iriti and Faoro 2009 and literature therein reported). In a previous study we 

tested different CHITs on H. perforatum root cultures and we found significant differences 

in the elicitor power related to different molecular structures (Tocci et al. 2013a). To 

compare the effect of COS with those of CHIT, the first elicitation experiment (Fig. 1a) was 

conducted by treating the roots with the same concentration of COS that was used in previous 

studies on CHIT elicitation (Tocci et al. 2011, 2013a; Brasili et al. 2014, 2016). By recording 

the xanthone content over time, two accumulation peaks were detected (Fig. 3), the first one 

at an early stage and the second one at a later stage, i.e., on days 5 and 25 post-elicitation. 

Brasili et al. (2014, 2016) investigated the combined effect of CHIT and overcrowding stress 

on both primary and secondary metabolism in H. perforatum root cultures and through an 

NMR-based metabolomics approach and ANOVA simultaneous component analysis 

(ASCA), they demonstrated that early responses are mainly caused by the elicitor, while the 

late responses are generated by the combined effect of the elicitor and the overcrowding 

stress due to the high root biomass growth in a confined environment. The impact of 

overcrowding stress clearly emerges by the observation of control roots, the xanthonic 

content of which progressively increases with culture duration (Fig. 3). The early response 
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leads to neosynthesis of almost all the analyzed xanthones, while in the xanthone profile 

corresponding to the late response, the dominant compound is paxanthone. In future 

applications of H. perforatum root cultures for the biotechnological production of xanthones, 

the choice of collecting the roots at a short- or long-time post-elicitation will have to be made 

on the basis of the molecules of interest. 

In the second experiment (Fig. 1b), the effect of different COS concentrations on the 

xanthone content was investigated. The best results in terms of the total xanthone content 

were obtained with the highest COS concentration tested in this study (400 mg L−1). This 

concentration is much higher than those used in most CHIT elicitation experiments, both on 

cell (Wiktorowska et al. 2010; Chakraborty et al. 2009; Ferri et al. 2009) and root cultures 

(Udomsuk et al. 2011; Sivanandhan et al. 2012; Shinde et al. 2009; Putalun et al. 2007). 

With 400 mg L−1 COS, the xanthone content reached very high levels (over 30 mg g−1 DW), 

which has never been obtained with CHIT in the previous studies (Tocci et al. 2011, 2012, 

2013a; Brasili et al. 2014; Simonetti et al. 2016). It should be emphasized that FDA test 

showed that these COS concentrations, while causing visible symptoms of suffering to roots 

(Fig. 8), do not cause death, as opposed to CHIT, which even at lower concentrations cause 

PCD or necrosis in plant cells (Zuppini et al. 2004; Iriti et al. 2006) and in H. perforatum 

cultured roots (personal observation). Cytotoxicity of CHIT represents a limitation for 

biotechnological purposes, due to the dramatic morpho-anatomical alterations caused by this 

elicitor (Brasili et al. 2016) which make in vitro-cultured cells and organs non-reusable for 

subsequent production cycles. From the analysis of the individual xanthones, it appears that 

the administration of 400 mg L−1 COS stimulates the biosynthesis of all the analyzed 

xanthones, except mangiferin. 

The effect of COS on H. perforatum cultured roots has been also investigated in terms of 

volatile organic compound (VOC) biosynthesis. In a previous study, we observed a 

remarkable increase in dimethylallyl-pyrophosphate (DMAPP) levels in H. perforatum 

CHIT-treated roots (Brasili et al. 2014). Since the 1H-NMR analysis failed to reveal the 

presence of terpenoids, we performed both histochemical and headspace VOCs analysis of 

H. perforatum roots in this study, with the aim to investigate the presence of isoprenoids in 

root biomass after COS elicitation. 

First, the histochemical analysis with Nadi reagent suggested the presence of isoprenoid 

compounds localized in secretory ducts of both control and treated roots. The presence of 

essential oils in secretory ducts was previously demonstrated only in the aerial parts of H. 

perforatum, including sepals, petals, stamens, leaf, and stem, but never in roots (Ciccarelli 

et al. 2001). Second, the GC-MS headspace analysis confirmed the presence of a wide 
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spectrum of isoprenoids in cultured roots. The lack of isoprenoids in the extracts previously 

analyzed by 1H-NMR (Brasili et al. 2014) was probably due to their volatilization during 

the Bligh-Dyer extraction, as the identified isoprenoids (mono- and sesqui-terpenes) have a 

low molecular weight corresponding to a high volatility. 

It is well-documented that roots are able to synthesize and release VOCs in the rhizosphere, 

where act as key mediators in belowground biotic interactions (Delory et al. 2016). In this 

scenario, VOCs can have negative (phytotoxins, autoinhibition, and development of 

associations with parasitic plants) or positive effects (resistance to herbivores and root 

detection) on neighbouring plants, but also can affect plant growth directly (phytotoxin 

biosynthesis) or indirectly (alteration of soil chemistry, microbial populations, and nutrient 

availability) (Weston et al. 2012; Zeng 2014). The majority of the studies published so far 

focus on root VOC biosynthesis by three major plant models as Zea mays, Citrus spp., and 

Brassica spp. in response to nematodes and parasites (Delory et al. 2016). To our knowledge, 

it is the first study that deals with the biosynthesis of VOCs by H. perforatum roots in 

response to COS elicitation. The obtained results suggest that VOCs play a key role in 

mediating the interactions between H. perforatum root and soil organisms, especially fungi, 

since their biosynthesis resulted affected by COS, which are fungal elicitors. 

As reported in our previous studies, xanthone-rich crude extracts obtained from H. 

perforatum in vitro-cultured roots elicited with CHIT exhibit a high antifungal activity 

(Tocci et al. 2011, 2012, 2013; Simonetti et al. 2016). In the present study, we observed that 

elicitation with 200 mg L−1 COS leads to a total xanthone content comparable to that 

obtained using CHIT at the same concentration; however, a higher antifungal activity was 

observed compared to the previous results. These results suggest that the extracts contain 

other metabolites with antifungal activity induced by COS, which may act additively or 

synergistically with xanthones. An antifungal activity of certain VOCs such as 

monoterpenes, monoterpenes hydrocarbons, sesquiterpenes, and diterpenes was previously 

demonstrated in other plant species (Badawy et al. 2017; Fraternale et al. 2016) and against 

other fungi such as Fusarium verticillioides, the major producer of mycotoxin in 

contaminated aliments (Dambolena et al. 2008). 

 

 

Conclusions 

For the first time in the present study, the elicitor effect of COS was tested on St. John’s wort 

in vitro root cultures. The obtained results showed that COS are very effective elicitors, more 



78 
 

powerful of CHIT in stimulating the biosynthesis of xanthones in H. perforatum root 

cultures. They also showed a lower phytotoxicity that allows its usage at high concentrations. 

In addition to enhancing xanthone biosynthesis, COS caused significant changes in the 

production of VOCs. The obtained results suggest that xanthones and VOCs are involved in 

regulating the relationships between root and edaphic microorganisms, especially fungi. 
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Supplementary 

 

Fig. S1 In vitro roots of H. perforatum treated with Nadi reagent and observed under bright field. 

Control root (A) and roots elicited with 50 (B), 100 (C), 200 (D), 400 (E) and 800 (F) mg L–1 COS. 

Bars represent 200 µm. 
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Fig. S2 PCA score plot of the H. perforatum roots analyzed by SPME-GC-MS methodology. Control 

samples (CTRL) are represented in blue; chitosan-treated samples are represented in red (200 mg L–

1) and in green (400 mg L–1). 
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Abbreviations chapter 3 
 

CHIT  chitosan 

COS  chitosan oligosaccharides 

DW   dry weight 

FW   fresh weight 

HPLC  high performance liquid chromatography  

IBA   indole butyric acid 

MeJA  methyl jasmonate 

ROS  reactive oxygen species 

SA  salicylic acid 
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3. Response of Hypericum perforatum root cultures and in vitro-

grown plantlets to chitosan oligosaccharides (COS), 

methyljasmonate (MeJA), salicylic acid (SA) and hydrogen 

peroxide (H2O2) 
 

Badiali C · Brasili E · Iozia LM · Petruccelli V · Caparra MV · Di Giovenale A · Pasqua 

G · Valletta A 

Department of Environmental Biology, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 

Rome, Italy 

 

Introduction 

Being sessile and relatively immobile organisms, plants are unable to simply escape adverse 

environmental conditions. These organisms had to evolve around life’s adversities instead, 

setting up reliable stress sensing mechanisms and adequate threat-specific responses, such 

as the synthesis of defensive secondary metabolites (Mazid et al. 2011). 

Plants are sensible to both abiotic and biotic stress. The perception of a potential pathogen 

can involve signal molecules which can either be exogenous or endogenous (Namdeo et al. 

2007; Petrov et al. 2012). A plant can perceive the attack of a fungus through sensing a broad 

range of molecules of fungal origin (lipids, proteins, nucleic acids, polysaccharides) called 

MAMPs (microbe-associated molecular patterns). Chitin derivatives coming from fungal 

cell walls activate plant responses. On the other hand, oligosaccharides generated by the 

fungal-mediated lysis of plant cell wall polysaccharides can also signal the pathogen’s 

presence to the plant (Namdeo et al. 2007; Gadzovska Simic et al. 2014, 2015).  

Molecules capable of inducing defense responses are known as “elicitors” (Namdeo et al. 

2007). The discovery of the biological role of these molecules has had a high impact on both 

basic and applied research. Regarding biotechnological applications, elicitors can be 

exploited to induce or enhance the neosynthesis of secondary metabolites of human interest 

from cell and organ cultures (Namdeo et al. 2007; Gadzovska Simic et al. 2014).  

After the stimulus is perceived, it needs to be transduced and amplified in order to influence 

gene expression and thus stimulate an array of responses, including the biosynthesis of 

defenses secondary metabolites. Different signalling molecules are involved in biotic stress 

responses such as oxygen peroxide (H2O2), salicylic acid (SA) and jasmonates (JAs) 

(Namdeo et al. 2007; Petrov et al. 2012; Yan et al. 2014; Goossens et al. 2016). SA and JAs 

are involved in distinct pathways (Bennett et al. 1994; Yan et al. 2014; Goossens et al. 2016). 

Systemic acquired resistance (SAR), which is due to biotrophic and virus infection, is 
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associated with SA accumulation and the upregulation of genes encoding for pathogenesis-

related (PR) proteins. In contrast, induced systemic response (ISR), which is due to 

necrotrophic infection and pest attack, is dependent on JA and ethylene (ET) pathways and 

is not associated with PR gene expression. Otherwise, H2O2 plays a key role in the early 

stages of most stress-related routes, concurrently oxidizing the pathogen during the early 

response oxidative burst, acting as a signaling molecule activating genes involved in defense 

responses and reinforcing the plant cell wall (Apostol et al. 1989; Petrov et al. 2012). 

Recent studies mainly focused on biosynthesis, transport and accumulation of defensive 

secondary metabolites in Solanaceae. They showed complex interactions between different 

organs of the plants (De Luca et al. 2000). Interestingly, certain metabolites such as nicotine 

have been proven to be induced at the leaf, produced at the root and then transported and 

accumulated in the leaves (Erb et al. 2009 and literature cited therein). The root / bud 

interactions implicated in the biosynthesis of secondary metabolites in response to 

environmental stimuli is a field of study of great interest and still largely unexplored. Among 

medicinal species St. John’s wort (Hypericum perforatum L.) is one of the most studied, 

mainly because it produces bioactive metabolites of pharmaceutical interest that accumulate 

in its shoots (naphthodianthrones  and  phloroglucinols) (Gadzovska Simic et al. 2014). 

Recently, interest has also aimed at xanthones, secondary metabolites that proved to possess 

several interesting medicinal properties (Pinto et al. 2005). H. perforatum xanthones, which 

specifically accumulate in the root, showed a remarkable antifungal activity against certain 

human fungal pathogens, such as Cryptococcus neoformans (Tocci et al. 2011), Malassezia 

furfur (Simonetti et al. 2015), Candida albicans, Trichophyton mentagrophytes, and 

Microsporum gypseum (Badiali et al. 2018). The antimicrobial activity of xanthones from 

H. perforatum suggest their involvement in plant’s defense mechanisms (Tocci et al. 2013a-

b; Badiali et al. 2018). 

Recent studies have also shown that xanthone production in root cultures of St. John’s wort 

can be induced or amplified by fungal elicitors such as chitosan (Brasili et al. 2016; Badiali 

et al. 2018). Conversely, the effects of other molecules known to act as elicitors in other 

species (SA, JA and H2O2) have not been thoroughly investigated yet. 

In this context, H. perforatum root cultures and seedlings obtained in vitro were employed 

as a model system to study the interaction between roots and shoots in the biosynthesis of 

bioactive secondary metabolites. Xanthone and hypericin content was investigated in roots 

and shoots respectively. 
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Materials and methods 

Root cultures 

Adventitious roots of H. perforatum were obtained as previously described in Valletta et al. 

(2016). Liquid root cultures were established inoculating 0.250 g fresh weight (FW) of roots 

in 100 mL flasks containing 50 mL half-strength MS basal salts and vitamins medium 

(Murashige and Skoog 1962) supplemented with 1 mg L-1 Indole-3-butyric acid (IBA) and 

15 g L-1 sucrose. Flasks were shaken at 100 rpm at 26 ± 1 °C and maintained in continuous 

dark until harvest. MS medium and sucrose were purchased from Duchefa Biochemie 

(Haarlem, The Netherlands) and IBA from Sigma-Aldrich (Milan, Italy). 

 

Source, preparation and in vitro germination of seeds 

H. perforatum capsules were harvested in June 2016 and 2017 from the same population 

located in Marcigliana Natural Park (Rome). They were dried at room temperature and the 

seeds were collected and stored at room temperature until use. Before the sowing under in 

vitro conditions, seeds were enclosed in bags of filtration tissue and soaked in distilled water 

for 3 hours at room temperature. Then, they were sterilized in 70% ethanol for 3 min, rinsed 

in distilled water and sterilized again in commercial sodium 15% hypochlorite (active 

chlorine 4.9%) containing 0.1% Tween (Sigma-Aldrich, Milan, Italy) for 20 min. At the end 

three rinses with sterile water were performed. After the sterilization, seeds were inoculated 

in 100 mL flasks containing 50 mL half-strength MS basal salts and vitamins medium 

supplemented with 15 g L-1 sucrose. Flasks were shaken at 100 rpm at 26 ± 1 °C and 

maintained in 16/8 hours light/dark condition; plantlets where subcultured every 20 days 

until a sufficient amount of biomass was obtained. Liquid plantlet cultures for the experiment 

were established inoculating 2 g FW of biomass (roots and shoots) and cultured in the same 

medium and conditions described above. 

 

Priming and elicitation protocols 

Root and plantlet cultures were primed with methyl jasmonate (MeJA) (Sigma-Aldrich, 

Milan, Italy), salicylic acid (SA) or H2O2 on day 7 of culture using a final concentration of 

100 μM, 25 μM and 100 mM, respectively. A 4.5 mg L-1 stock solution of MeJA and a 1.7 

g L-1 stock solution of SA were prepared to add 250 μL to each flask. A 30% commercial 

solution of H2O2 was used to obtain a final concentration of 100 mM. Roots and plantlets 

were elicited on day 8 of culture with 400 and 200 mg L-1 chitosan oligosaccharides (COS) 

obtained as described in Badiali et al. (2018) and dissolved in deionized water. In the 
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experiments on the combined effect of H2O2 and COS, the latter were used at a concentration 

of 200 mg L-1. Regarding H2O2 experiment, the final COS concentration used for both root 

cultures and plant roots was 200 mg L-1. An 80 g L-1 stock solution was prepared to add 250 

μL to each flask (Fig. 1). The stock solutions were sterilized with a 0.2 µm syringe filter 

before addition to the liquid culture medium. Control samples were added with 250 µL of 

deionized sterile water. Control and roots treated with COS, MeJA and SA were collected 

25 days after the elicitation with COS (day 33 of culture). Control and roots treated with 

COS and H2O2 were collected 7 days after COS elicitation (day 15 of culture) as well as 

control and plantlets treated with COS, MeJA, SA and H2O2. 

 

 

 

Fig. 1 Diagram representing the elicitation protocols. A) Root elicitation protocol and B) plantlets 

elicitation protocol. 

 

 

Xanthone quantification 

The roots were dried in an oven at 70 °C for 48 hours and then powdered with pestle and 

mortar. Three consecutive extractions were performed (each 24 h) with methanol at a ratio 

biomass/solvent of 100:5 (mg/mL). The extracts were dried with a rotary evaporator (Buchi, 

Milan, Italy) at 35 °C and re-dissolved in HPLC-grade methanol (Carlo Erba, Milan, Italy) 

at the ratio initial biomass/solvent of 100:1 (mg/mL). The extracts were analyzed by high-

performance liquid chromatography (HPLC), as described by Tocci et al. (2013a) and 

Valletta et al. (2016). Following xanthones were identified and quantified: mangiferin; 

1,3,6,7-tetrahydroxyxanthone; 1,3,5,6-tetrahydroxyxanthone; cadensin G; 1,7-
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dihydroxyxanthone; toxyloxanthone; paxanthone and 5-O-methyl-2-

deprenylrheediaxanthone. 

 

 

Statistical analysis 

A total of 3 biological replicates of samples for each treatment were analyzed by HPLC. All 

measurements were made at least in triplicate and the results were expressed as means ± SD. 

Statistical analysis was carried out using SigmaPlot 13.0. One-way analysis of variance 

(ANOVA), followed by Holm-Sidak test, was applied to test differences between groups. 

Statistical significance of the results was also evaluated by paired Student’s t test, and 

differences with a p value ≤ 0.05 were considered significant.  

 

 

Results 

Elicitation of root cultures with COS, MeJA, SA or H2O2 used alone or in combination 

COS, MeJA, SA and H2O2 were used to treat root cultures of H. perforatum. HPLC analysis 

performed on roots collected on day 33 of culture showed that the elicitation with COS 

significantly enhances xanthone production in terms of total xanthones compared with the 

control (27.5 and 6.2 mg g-1 DW, respectively). COS treatment also induced the highest 

increase compared with MeJA and SA both used alone or in combination with COS (Fig. 2). 

Among treatments, COS used alone caused the highest increase in xanthone production 

(+343% in comparison with control). MeJA and SA used alone caused significant but very 

low increases in xanthone biosynthesis (+27 and +18% in comparison with control, 

respectively) and when used in combination with COS they seem to largely reduce the COS 

effect (+87 and + 37% in comparison with control, and -58 and -46% in comparison with 

COS-treated, respectively). In the roots elicited with COS, all analyzed xanthones were 

produced at much higher levels than roots treated with MeJA or SA, except for Mang and 

Dihydroxy. The highest amounts of Mang were detected in control roots and in samples 

treated with MeJA and SA used alone. The highest production of Rheedia was detected in 

samples treated with SA used in combination with COS. Toxy was detected in each sample 

except for SA+COS treated ones. Dihydroxy was detected only in samples treated with 

MeJA used in combination with COS only (Fig. 3). 
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Fig. 2 Total xanthone concentration in root cultures of H. perforatum not subjected to priming and 

elicitation (control) or treated with COS, MeJA or SA used alone or in combination. The eliciting 

concentrations used are the same for both single and combined administration. The numbers next to 

the bars represent the exact xanthone content (mg g−1 DW). Results are means (±SD) of three 

independent biological replicates. Different letters represent significant differences between samples 

(p ≤ 0.05). 

 

 

 

Fig. 3 Xanthone content in H. perforatum root cultures not subjected to priming and elicitation 

(control) or treated with COS, MeJA or SA used alone or in combination. The eliciting concentrations 

used are the same for both single and combined administration. The numbers next to the bars 
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represent the exact xanthone content (mg g−1 DW). Results are means (±SD) of three independent 

biological replicates. Asterisks indicate that the differences between roots and control roots are 

statistically significant (p < 0.05). Mang: mangiferin; Tetra: 1,3,5,6-tetrahydroxyxanthone and 

1,3,6,7-tetrahydroxyxanthone; Cad: cadensin G; Dihydroxy: 1,7-dihydroxyxanthone; Toxy: 

toxyloxanthone; Pax: paxanthone; Rheedia: 5-O-methyl-2-deprenylrheediaxanthone; N.d.: non-

detected. 

 

 

In H2O2-COS experiment, H2O2 used alone showed a significantly lower effect in eliciting 

xanthone production compared to COS (2.5 and 3.2 mg g-1 DW, respectively). However, 

when used in combination the effect on xanthone production was higher than those of COS 

and H2O2 used alone (5.0 mg g-1 DW) (Fig. 4). In the roots elicited with COS, all analyzed 

xanthones were produced at much higher levels than roots treated with H2O2 and control 

roots. H2O2 used alone induced a higher production of Mang and Pax compared with control 

samples. The highest amounts of Mang were detected in samples treated with H2O2 used 

alone and in roots treated with H2O2 and COS used in combination (1.44 and 1.37 mg g-1 

DW, respectively). The highest production of all xanthones was detected in samples treated 

with H2O2 used in combination with COS except for Rheedia which was higher in COS 

treated roots (0.47 mg g-1 DW). 

 

 

Fig 4. Total xanthone concentration in root cultures of H. perforatum not subjected to priming and 

elicitation (control) or treated with COS or H2O2 used alone or in combination. The eliciting 

concentrations used are the same for both single and combined administration. The numbers next to 

the bars represent the exact xanthone content (mg g−1 DW). Results are means (±SD) of three 



94 
 

independent biological replicates. Different letters represent significant differences between samples 

(p ≤ 0.05). 

 

 

 

Fig. 5 Xanthone content in H. perforatum root cultures not subjected to priming and elicitation 

(control) or treated with COS or H2O2 used alone or in combination. The eliciting concentrations 

used are the same for both single and combined administration. The numbers next to the bars 

represent the exact xanthone content (mg g−1 DW). Results are means (±SD) of three independent 

biological replicates. Asterisks indicate that the differences between elicited roots and the 

corresponding control roots are statistically significant (p < 0.05). Mang mangiferin; Tetra 1,3,5,6-

tetrahydroxyxanthone and 1,3,6,7-tetrahydroxyxanthone; Cad cadensin G; Dihydroxy 1,7-

dihydroxyxanthone; Toxy toxyloxanthone; Pax paxanthone; Rheedia 5-O-methyl-2-

deprenylrheediaxanthone; N.d. non-detected. 

 

 

Elicitation of in vitro-grown plantlets with COS, MeJA, SA or H2O2 used alone or in 

combination 

COS, MeJA, SA and H2O2 were used to treat H. perforatum in vitro-grown plantlets. 

Chemical analysis was performed on roots collected on day 15 of culture. HPLC analysis 

showed that MeJA elicitation significantly enhanced xanthone production in terms of total 

xanthones compared with the control (3.3 and 1.7 mg g-1 DW, respectively) and induced the 

highest increase compared with COS and SA used alone or in combination with COS (Fig. 

6). In the roots elicited with MeJA used alone, all analyzed xanthones were produced at 
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higher levels than roots treated with COS or SA, except for Toxy and Pax. The highest 

amount of Toxy was detected in samples treated with MeJA used in combination with COS. 

The highest production of Pax was detected in samples treated with MeJA used in 

combination with COS. Tetra was detected in each sample except for the ones treated with 

SA. Dihydroxy was detected in samples treated with MeJA used in combination with COS 

only (Fig. 7).  

 

 

 

Fig. 6 Total xanthone concentration in roots of in vitro-grown plantlets of H. perforatum not 

subjected to priming or elicitation (control) or treated with COS, MeJA or SA. The eliciting 

concentrations used are the same for both single and combined administration. The numbers next to 

the bars represent the exact xanthone content (mg g−1 DW). Results are means (±SD) of three 

independent biological replicates. Different letters represent significant differences between samples 

(p ≤ 0.05). 
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Fig. 7 Xanthone content in roots of in vitro-grown plantlets of H. perforatum not subjected to priming 

or elicitation (control) or treated with COS, MeJA or SA used alone or in combination. The eliciting 

concentrations used are the same for both single and combined administration. The numbers next to 

the bars represent the exact xanthone content (mg g−1 DW). Results are means (±SD) of three 

independent biological replicates. Asterisks indicate that the differences between elicited roots and 

the corresponding control roots are statistically significant (p < 0.05). Mang mangiferin; Tetra 

1,3,5,6-tetrahydroxyxanthone and 1,3,6,7-tetrahydroxyxanthone; Cad cadensin G; Dihydroxy 1,7-

dihydroxyxanthone; Toxy toxyloxanthone; Pax paxanthone; Rheedia 5-O-methyl-2-

deprenylrheediaxanthone. 

 

 

The diagram in Fig. 8 shows the hypothetical interactions between rott and shoot in the 

perception of the elicitor. 
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Fig. 8 Putative interaction between shoot and root in elicitor perception. The presence of the shoot 

seems to be necessary for MeJA perception, causing then xanthone production in the roots in a cross-

talk between the shoot and the root. 

 

 

The treatment with H2O2 enhanced COS eliciting effect when they were used in 

combination, causing a significant increase in xanthone content compared to control (2.22 

and 1.77 mg g-1 DW, respectively) (Fig. 9). When used alone, H2O2 caused a significant 

decrease compared to control (1.31 and 1.77 mg g-1 DW, respectively).  In the roots elicited 
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with H2O2 used in combination with COS, Mang, Cad, Pax and Biyou were produced at 

higher levels than in roots treated with COS or H2O2 alone. Toxy production was the lowest 

in COS+H2O2 samples. Kielc was detected in each sample, although at low levels, except 

for those treated with COS+H2O2 (Fig. 10). 

 

 

 

Fig. 9 Total xanthone concentration in roots of in vitro-grown plantlets of H. perforatum not 

subjected to priming and elicitation (control) or treated with COS or H2O2 used alone or in 

combination. The eliciting concentrations used are the same for both single and combined 

administration. The numbers next to the bars represent the exact xanthone content (mg g−1 DW). 

Results are means (±SD) of three independent biological replicates. Different letters represent 

significant differences between samples (p ≤ 0.05). 
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Fig. 10 Xanthone content in roots of in vitro-grown plantlets of H. perforatum not subjected to 

priming and elicitation (control) or treated with COS or H2O2 used alone or in combination. The 

eliciting concentrations used are the same for both single and combined administration. The numbers 

next to the bars represent the exact xanthone content (mg g−1 DW). Results are means (±SD) of three 

independent biological replicates. Asterisks indicate that the differences between elicited roots and 

the corresponding control roots are statistically significant (p < 0.05). Mang mangiferin; Cad 

cadensin G; Dihydroxy 1,7-dihydroxyxanthone; Toxy toxyloxanthone; Pax paxanthone; Rheedia 5-

O-methyl-2-deprenylrheediaxanthone. 

 

 

Discussion 

H. perforatum is a medicinal plant spread and cultivated all over the world. Its use in 

medicine has an antique tradition and nowadays it is mainly used as remedy against 

depression, anxiety and neurovegetative disorders (Gadzovska Simic et al. 2014). Clinical 

studies have demonstrated that the bioactive secondary metabolites mainly responsible for 

the antidepressant activity of H. perforatum are naphthodianthrones (hypericins) and 

phloroglucinols (hyperforins), which are specifically biosynthesised and accumulated in the 

aerial organs of the plant (Gadzovska Simic et al. 2014; Russo et al. 2014). It has been 

proposed that the antidepressant activity of these metabolites is due to their ability to inhibit 

the reuptake of some neurotransmitters, including serotonin, dopamine, glutamate, 

noradrenalin and GABA (Tian et al. 2014). Although the research has mainly focused on 

these compounds (Kasper et al. 2010), in recent years attention has also been paid to other 

bioactive metabolites such as volatile compounds including essential oils, flavonoids, 
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tannins, xanthones and other phenylpropanoids. We recently demonstrated a remarkable 

antifungal activity of xanthones against several human pathogenic fungi (Tocci et al. 2011, 

2013a-b; Simonetti et al. 2016). This finding is particularly interesting in the context of the 

increasing demand for new antifungals due to the alarming emergence of drug resistance 

caused by the intensive use of the conventional antifungals as azoles (Price et al. 2015). 

This work had both application and basic purposes. The first objective was to investigate the 

effect of various biotic elicitors (COS, MeJA, SA and H2O2) in order to increase the 

production of xanthone in H. perforatum. The second objective was to elucidate the 

influence of shoot/root interaction on elicitor perception already reported in other species 

but not observed in Hypericum spp. yet (Erb et al 2009 and literature cited therein). The 

tested elicitors and their concentration have been chosen due to their involvement in plant 

stress responses and to their established effect as elicitors on a number of plant species (León 

et al 1995; Shin and Schachtman 2004; Gadzovska et al. 2013; Wang et al. 2015; Badiali et 

al. 2018). 

Results showed that COS were the most effective in stimulating xanthone production in root 

cultures of H. perforatum compared to other biotic elicitors tested in this work. The best 

results were obtained with 400 mg L-1 COS, which caused a 343% increase over the control; 

lower but significant increase were induced by MeJA, SA and H2O2 used alone. When used 

in combination on root cultures these elicitors behaved differently. Both MeJA and SA 

reduced the COS effect, probably due to the activation of other metabolic pathways or due 

to a higher response. Correspondingly, also a more extended oxidative burst could be 

associated with a higher consumption of xanthones. Franklin and co-workers (2009) showed 

that in H. perforatum xanthones could act as antioxidants against reactive oxygen species 

generated during the first steps of plant defense responses (Fig. 2). The treatment with H2O2 

enhanced the effect COS, inducing an increase in the xanthone concentration. This shows an 

additive effect, which was determined by the highest xanthone levels, and determining the 

highest xanthone biosynthesis obtained in this experiment. H2O2 exogenously administered 

in combination with COS, may induce in the cell a higher xanthone production (compared 

to COS alone) to counteract the negative effects of both endogenous (induced by COS) and 

exogenous (administered H2O2) ROS. It should be stressed that H2O2 was administred at a 

concentration (100 mM) remarkably higher compared to the physiological levels (from 0.07 

to 130 μmol g-1 FW) (Cheesman 2006 and literature cited therein). Non-physiological high 

concentrations of H2O2 have been previously used to induce defense responses (León et al 

1995). When used alone it induced a low but significant increase in xanthone production 

(Fig. 4).  
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In the first experiment, the analysis of the individual xanthones showed that COS 

administration stimulated the highest biosynthesis of all analyzed xanthones except for 

Mang, Dihydroxy (obtained in MeJA+COS-elicited cultures only) and Rheedia (Fig. 3). In 

the second experiment, H2O2+COS-treated samples showed the largest increase of all 

analyzed xanthones except for Mang and Rheedia (Fig. 5). 

In regard to the in vitro experiments with plantlets, MeJA showed to be effective in eliciting 

the xanthone production in plant roots. Contrarily to its effect on root cultures, xanthone 

content was +99% compared to control. The presence of the shoot seems to be necessary for 

MeJA perception, causing then xanthone production in the roots in a cross-talk between the 

shoot and the root. Little information is available about the organ responsible for MeJA 

perception although, being a volatile molecule, involved in organ-to-organ and plant-to-plant 

signaling, it has been hypothesized that aerial organs are the main sites of perception (Erb et 

al. 2009 and literature cited therein). It was also argued that after perception in aerial organs, 

the signal is transferred to other plant districts including the root, where the defense response 

is activated. Another model considers a positive feedback loop of jasmonates (Sasaki et al. 

2001; Wasternack and Hause 2013): the hypothesis is that both shoots and roots can perceive 

jasmonates but shoots only are able to amplify the signal needed for a defense response; this 

could explain why root cultures did not respond to MeJA elicitation. 

MeJA was the most effective elicitor to induce xanthone biosynthesis in the root of in vitro 

plants, while COS have proved the least effective causing even a compared to control (-

88%). When used in combination, COS and MeJA appeared to be antagonists also in plant 

roots. Interestingly, comparing MeJA+COS effect in root cultures and in in vitro-grown, a 

specular behaviour has been observed: in root cultures the most effective elicitors were COS, 

and their effect was lowered by MeJA, while in plants the best elicitor was MeJA, whose 

effectiveness was reduced by COS. A simplified diagram of the putative shoot-root 

interaction in elicitor perception and xanthone biosynthesis induction is proposed in Fig. 8. 

SA used alone induced a non-significant increase in xanthone production. Xanthone 

production obtained with SA+COS was significantly lower than that obtained wits SA alone 

(Fig. 6), differently to what observed in root cultures, but showing again an antagonistic 

effect. From individual xanthone analysis, MeJA resulted as the most effective elicitor in 

stimulating the biosynthesis of all xanthones except for Toxy and Pax (Fig. 7). Results of 

H2O2 treatment on plant roots showed that when used alone it caused a significant decrease 

in the xanthone biosynthesis. When used in combination with COS they had an additive 

effect (Fig. 9) as showed in experiments on root cultures (Fig.4). From individual xanthone 

analysis H2O2+COS samples resulted as the most effective treatment in stimulating Mang, 
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Cad, Pax and Biyou biosynthesis (Fig. 10). The obtained results seem to show the strongest 

response to COS in root cultures and to the other tested elicitors in plant roots. H2O2 showed 

a similar behaviour either in root cultures and plant roots. 

 

 

Conclusions 

In the present study, the effect of four biotic elicitors was evaluated on St. John’s wort root 

cultures and in vitro-grown plants. The results showed that COS are the most effective 

elicitors in stimulating the biosynthesis of xanthones in H. perforatum root cultures while 

MeJA is the most effective in stimulating the biosynthesis of xanthones in roots of in vitro-

grown plants. This work gives interesting hints for further investigations on plant 

physiology, and its results are in addition to only few others available on the interaction 

between plant organs.  The road ahead is still long to clarify the signaling mechanisms 

underlying these interactions. to clarify the signaling mechanisms underlying these 

interactions. 
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Abbreviations chapter 4 
 

COS  chitosan oligosaccharides 

DW   dry weight 

FW   fresh weight 

HPLC  high performance liquid chromatography  

IAA   indole acetic acid 

IBA   indole butyric acid 

ROS  reactive oxygen species 
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4. Effect of cadmium and arsenic on xanthone production in 

Hypericum perforatum root cultures 

 

Introduction 

The rapid growth of the world population and the intensification of anthropogenic activities 

has led to an increase in environmental contamination with a wide range of chemicals. 

Particularly worrying is the contamination by toxic metals, which can be absorbed by plants 

and then spread through trophic networks, with negative repercussions on both animal and 

human health. 

In China 2.9% of the agricultural land (corresponding to about 4 million hectares) was found 

to be highly contaminated by heavy metals (Su 2014). Soil contamination is also widespread 

in Europe, covering 58% of the cultivated land, with concentration values of toxic metals 

above the thresholds recommended and applied by UNEP (Tòth et al. 2016). Although plants 

activate several defense mechanisms which control uptake, accumulation and translocation 

of heavy metals in order to detoxify them (Srivastava et al. 2004), heavy metals are often 

found in shoots, leaves, flowers, or, worse, seeds and fruits (Muchuweti et al. 2006; 

Unterbrunner et al. 2007; Shaheen et al. 2016). One common strategy is preventing the 

entrance of heavy metals into root cells by trapping them in the apoplast by detoxifying them 

via chelate complex formation (Watanabe and Osaki 2002) or to anionic groups of cell walls 

(Dalla Vecchia et al. 2005; Rascio et al. 2008). Most of the heavy metal amount that enters 

the plant is then kept in root cells, where it is detoxified by complexation with amino acids, 

organic acids or metal-binding peptides (e.g. phytochelatins) and/or sequestered into 

vacuoles (Salt and Rauser 1995; Piechalak et al. 2002). These trapping strategies protect the 

leaf tissues from damage.  

High toxic metal concentrations cause various and different effects on plants both 

physiological and morpho-anatomical. They interfere with enzyme activity, metabolism of 

essential elements (Dong et al. 2006), and membrane integrity (Gadallah 1999); reduce 

photosynthesis, water and nutrient uptake; cause chlorosis, growth inhibition, browning of 

root tips, and death (Yadav 2010 and literature cited therein). Roots, being in direct contact 

with soils, are the most and first affected organ which show alterations both in their normal 

hormonal metabolism and in the development and morpho-anatomical differentiation, with 

damage that affects the growth of the entire plant. 

In Arabidopsis thaliana and Oryza sativa it has been shown that both cadmium (Cd) and 

arsenic (As), toxic elements frequently present in polluted soils, express their toxicity by 
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altering both biosynthesis and transport of auxins, fundamental phytohormones for plant 

organogenesis (Ronzan et al. 2018; Fattorini et al. 2017). The correct distribution, carried 

out both through transport and conversion of the specific indole-3-butyric acid precursor 

(IBA) into its chemically active form indol-3-acetic acid (IAA), is required in various 

processes such as the genesis, development and maintenance over time of a functional root 

system (Strader et al. 2010). Moreover, effects of Cd on secondary metabolism were 

demonstrated in several species such as Catharanthus roseus (Zheng and Wu 2004), 

Phyllanthus amarus (Rai et al. 2005), Brassica juncea (Ahmad et al. 2016). To date, little is 

known about the impact of As on plant secondary metabolism. 

Many species that survive in soils characterized by high heavy metal concentrations behave 

as “excluders”, they retain and detoxify most of the heavy metals in the root tissues, with a 

minimized translocation to the leaves (Hall 2002).  Otherwise, the term “hyperaccumulator” 

is used for plants which actively accumulate large amounts of one or more heavy metals 

from the soil and which translocate and accumulate them in aerial organs at concentrations 

hundreds-fold higher than non-hyperaccumulating species. These plants show no symptoms 

of phytotoxicity (Reeves 2006 and literature cited therein), and due to this, they could be 

more dangerous for human health especially in case of crops and medicinal plants. Among 

hyperaccumulating plants, there are species of numerous families such as Brassicaceae, 

Poaceae, Asteraceae, Fabaceae (Reeves et al 2006 and literature cited therein) and 

Hypericaceae including H. perforatum (Pavlova et al. 2015). 

 

 

Materials and methods 

Root cultures 

Adventitious roots of H. perforatum were obtained as described in Valletta et al. (2016). 

Liquid root cultures were established inoculating 0.250 g fresh weight (FW) of roots in 100 

mL flasks containing 50 mL half-strength MS basal salts and vitamins medium (Murashige 

and Skoog 1962) (Duchefa Biochemie, Haarlem, The Netherlands) supplemented with 15 g 

L-1 sucrose (Duchefa Biochemie). Flasks were shaken at 100 rpm at 26 ± 1 °C and 

maintained in continuous dark until harvest.  

 

Treatment with Cd and As 

Root cultures were treated with cadmium (Cd) and arsenic (As) on day 8 of culture using a 

final concentration of 50, 100 and 200 μM (Fig. 1). The stock solutions were sterilized with 

a 0.2 µm syringe filter before being added to the liquid culture medium. Control samples 
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were added with 500 µL of deionized sterile water (the same volume as treatment solution). 

Control and roots treated with toxic metals were collected 7 days after the treatment (day 15 

of culture). 

 

 

Fig. 1 Diagram representing the protocol of heavy metal treatment experiment. 

 

 

Xanthone quantification 

The root samples were dried at 70 °C for 48 hours and then powdered. Three consecutive 

extractions were carried out, one every 24 h, with methanol 100% (100 mg of dried root 

biomass in 5 mL). The raw extracts were dried with a rotary evaporator (Buchi, Milan, Italy) 

at 35 °C and re-dissolved in HPLC-grade methanol (Carlo Erba, Milan, Italy) (100 mg initial 

biomass in 1 mL). The chemical analyses were performed by high-performance liquid 

chromatography (HPLC), as described by Tocci et al. (2013) and Valletta et al. (2016). Eight 

xanthones were identified and quantified: mangiferin; 1,3,6,7-tetrahydroxyxanthone; 

1,3,5,6-tetrahydroxyxanthone; kielcorin; cadensin G; toxyloxanthone; paxanthone; 5-O-

methyl-2-deprenylrheediaxanthone and biyouxanthone. 

 

 

Statistical analysis 

Three biological replicates for each treatment were analyzed by HPLC. All measurements 

were made at least in triplicate and the results were expressed as means ± SD. Statistical 

analysis was carried out using SigmaPlot 13.0. One-way analysis of variance (ANOVA), 

followed by Holm-Sidak test, was applied to test differences between groups. Statistical 

significance of the results was also evaluated by paired Student’s t test, and differences with 

a p value ≤ 0.05 were considered significant. 
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Results 

Administration of different Cd and As concentrations to root cultures  

Cd and As were used to treat root cultures of H. perforatum. HPLC analysis performed on 

roots collected on day 15 of culture showed that all Cd treatments (50, 100 and 200 μM) 

induced a decrease in the xanthone content compared to control (1.67, 1.40, 1.25 versus 1.75 

mg g-1 DW, respectively) (Fig. 2).  Samples treated with 50 μM Cd differences in xanthone 

content were no significant, while significant differences were caused by 100 and 200 μM 

Cd. Only the highest concentration of As (200 μM) caused a significant increase in xanthone 

production (+46% in comparison with control), while lower concentrations (50 and 100 mM) 

did not cause significant effects (Fig. 2). Significant decreases in xanthone content were 

caused by 100 and 200 mM Cd (-20 and -29%, respectively). In the roots treated with Cd, 

all analyzed xanthones were produced at equal or lower levels than non-treated roots except 

for Biyou in samples treated with Cd 50 μM. The differences between non-treated and 

treated samples as regards Mang production were non-significant in each sample. Tetra was 

detected in each sample except for As 100 μM. Kielc was detected in control, As 100 μM 

and As 200 μM samples. The highest production of Rheedia was detected in control samples 

only. (Fig. 3). 

 

 

 

Fig. 2 Total xanthone concentration in root cultures of H. perforatum not subjected to any treatment 

(control) or treated with Cd or As. The numbers next to the bars represent the exact xanthone content 
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(mg g−1 DW). Results are means (±SD) of three independent biological replicates. Different letters 

represent significant differences between samples (p ≤ 0.05). 

 

 

 

Fig. 3 Xanthone content in H. perforatum root cultures not subjected to any treatment (control) or 

treated with Cd or As. The numbers next to the bars represent the exact xanthone content (mg g−1 

DW). Results are means (±SD) of three independent biological replicates. Asterisks indicate that the 

differences between roots and control roots are statistically significant (p < 0.05). Mang: mangiferin; 

Tetra: 1,3,5,6-tetrahydroxyxanthone and 1,3,6,7-tetrahydroxyxanthone; Kielc: kielcorin; Cad: 

cadensin G; Toxy: toxyloxanthone; Pax: paxanthone; Rheedia: 5-O-methyl-2-

deprenylrheediaxanthone; Biyou: biyouxanthone; N.d.: non-detected. 

 

 

Discussion 

The increasing presence of toxic metals and metalloids in the soil due to pollution caused by 

anthropogenic factors and their consequent absorption by plants, can lead to food chain 

contamination and to potential poisoning of animals and humans (Su 2014). In Arabidopsis 

thaliana and Oryza sativa it has been shown that both cadmium (Cd) and arsenic (As) alter 

both biosynthesis and transport of auxins (Ronzan et al. 2018; Fattorini et al. 2017). The 

impact of Cd on secondary metabolism was demonstrated in several species (Zheng and Wu 

2004; Rai et al. 2005; Ahmad et al. 2016), while little information is available regarding the 

relationship between Cd and plant secondary metabolism. Several papers are available on 

the effect of various toxic metals on Hypericum perforatum. It was reported the 
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accumulation of toxic metals in St. John’s wort aerial organs such as chromium, iron, nickel, 

copper, lead, manganese and zinc (often in very high amounts) and their effect on several 

parameters such as growth and secondary metabolite production (Murch et al. 2003; Ayan 

et al. 2006; Obratov-Petković et al. 2008) and the Cd hyperaccumulation (Radanovic et al. 

2002; Pavlova et al. 2015). 

The purpose of this work was to study the effect of Cd and As on root cultures of H. 

perforatum in terms of xanthone biosynthesis and auxin metabolism to evaluate the root 

response to toxic metals. 

The results obtained showed that xanthone levels were significantly increased in response to 

200 mM As. This result emphasizes the non-specificity of plant stress responses compared 

to animals. Either biotic and abiotic stress can cause the same effect since the first step of 

both involves ROS production. The studies about growth and morphological alteration of 

the entire plant should be conducted since was established that As alter these parameters in 

other species (Rahman et al. 2007; Mokgalaka-Matlala et al. 2008). Contrarily, Cd induced 

a decrease in xanthone content compared to control (Fig. 2). This result could be read as a 

consequence of the fact that H. perforatum is an hyperaccumulator of Cd (as already reported 

by Pavlova et al. 2015). It could show lower suffering signs and responses, and a higher 

resistance to Cd toxicity; although a lower concentration than control suggest a xanthone 

consumption, probably due to their scavenging effect. 

 

Conclusions 

In the present study, the effect of cadmium (Cd) and arsenic (As) was evaluated on St. John’s 

wort root cultures. The results showed that As had a significant effect in stimulating the 

biosynthesis of xanthones while samples treated with Cd showed a decrement in xanthone 

production compared to control. 
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5. Conclusions 

 

In the present work the effect of biotic and abiotic stress on Hypericum perforatum roots was 

evaluated, administering chitosan oligosaccharides (COS), methyl jasmonate (MeJA), 

salicylic acid (SA), hydrogen peroxide (H2O2), cadmium (Cd) and arsenic (As). This project 

had both applicative and basic purposes: biotic elicitors may be used in order to stimulate 
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secondary bioactive metabolite biosynthesis for drug production and to elucidate the 

influence of shoot/root interaction on elicitor perception in H. perforatum; the treatment with 

toxic metals could help in understanding the processes that occurs when H. perforatum 

grows on polluted soils. 

Regarding biotic elicitors, COS allow to discriminate the effect of the elicitor from those of 

the solvent, being soluble in neutral water, so they are more useful elicitors for basic research 

than chitosan that requires acidulated water to be solved; they are effective elicitors in 

enhancing xanthone production in root cultures, with a lower cytotoxic effect on plant cells 

(than chitosan); xanthone production increased with increasing COS concentration with a 

maximum production in samples treated with 400 mg L-1 COS. Moreover, extracts obtained 

from COS-elicited roots showed a high antifungal activity against Candida albicans and 

dermatophytes, and the antifungal activity increased with increasing xanthone concentration. 

COS affected also VOCs biosynthesis in H. perforatum root cultures. Regarding other biotic 

elicitors, MeJA was the most effective elicitor in inducing xanthone biosynthesis in plant 

roots, while it had no effect on root cultures, the presence of the shoot seems to be necessary 

for MeJA perception. When used in combination, COS – MeJA and COS – SA appeared to 

be antagonists in inducing xanthone biosynthesis both in root cultures and plant roots. 

Contrarily, H2O2 enhanced COS effect, showing an additive activity both in root cultures 

and plant roots.  

The experiments with toxic metals showed that the treatment with As significantly enhance 

xanthone production, contrarily, Cd induced a decrease in xanthone content compared to 

control, probably because H. perforatum is a Cd hyperaccumulator as reported in literature. 

Bioreactor cultivation tests of H. perforatum roots will be necessary in the future in order to 

obtain a massive xanthone production for pharmaceutical use. Regarding toxic metals, 

further morphoanatomical, histochemical and biochemical investigations are required to 

clarify their effect on H. perforatum physiology; in the last six months a collaboration with 

Leibniz Institute of Plant Biochemistry (Halle, Germany) has started in order to evaluate the 

effect toxic metals on the whole spectrum of endogenous phytohormones. 
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