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Abstract

Spectral techniques have proved amongst the most effective approaches to graph clus-
tering. However, in general they require explicit computation of the main eigenvectors of a
suitable matrix (usually the Laplacian matrix of the graph).

Recent work (e.g., Becchetti et al., SODA 2017) suggests that observing the temporal
evolution of the power method applied to an initial random vector may, at least in some
cases, provide enough information on the space spanned by the first two eigenvectors, so as
to allow recovery of a hidden partition without explicit eigenvector computations. While the
results of Becchetti et al. apply to perfectly balanced partitions and/or graphs that exhibit
very strong forms of regularity, we extend their approach to graphs containing a hidden
k partition and characterized by a milder form of volume-regularity. We show that the
class of k-volume regular graphs is the largest class of undirected (possibly weighted) graphs
whose transition matrix admits k “stepwise” eigenvectors (i.e., vectors that are constant over
each set of the hidden partition). To obtain this result, we highlight a connection between
volume regularity and lumpability of Markov chains. Moreover, we prove that if the stepwise
eigenvectors are those associated to the first k eigenvalues and the gap between the k-th
and the (k+1)-th eigenvalues is sufficiently large, the Averaging dynamics of Becchetti et
al. recovers the underlying community structure of the graph in logarithmic time, with high
probability.
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1 Introduction

Clustering a graph in a way that reflects underlying community structure is a very impor-
tant mining task [For10]. Informally speaking, in the classical setting, we are given a possibly
weighted graph G and an integer k. Our goal is to partition the vertex set of G = (V,E)
into k disjoint subsets, so that the k induced subgraphs have high inner and low outer ex-
pansion. Spectral techniques have proved amongst the most effective approaches to graph
clustering [NJW02, SM00, VL07]. The general approach to spectral graph clustering [VL07]
normally implies embedding the vertices of G into the k-dimensional subspace spanned by the
main k eigenvectors of a matrix defined in terms of G’s adjacency matrix, typically its (normal-
ized) Laplacian. Intuitively, one expects that, for a well-clustered graph with k communities,
the profiles of the first k eigenvectors are correlated with the underlying community structure
of G. Recent work has provided theoretical support to this approach. In particular, [LGT14]
showed that, given the first k orthonormal eigenvectors of the normalized Laplacian, it is pos-
sible to produce a k-partition of the vertex set, corresponding to k suitably-defined indicator
vectors, such that the associated values of the Rayleigh quotient are relatively small. More re-
cently, [PSZ17] proved that, under suitable hypotheses on the spectral gap between the k-th and
(k+1)-th eigenvalue of the normalized Laplacian of G, the span of the first k eigenvectors largely

overlaps with the span of {D 1
2g1, . . . ,D

1
2gk}, where D is the diagonal degree matrix of G, while

the gi’s are indicator vectors describing a k-way partition {Si}ki=1 of V such that, for every i,
the conductance of Si is at most the k-way expansion constant ρ(k) [LGT14]. Note that, if v

is an eigenvector associated to the i-th smallest eigenvalue of the normalized Laplacian, D− 1
2v

is an eigenvector corresponding to the i-th largest eigenvalue of the random walk’s transition
matrix associated to G. Hence, when G is well-clustered, one might reasonably expect the first
k eigenvectors of P to exhibit almost-“stepwise” profiles reflecting G’s underlying community
structure. The aforementioned spectral approaches require explicit computation of the k main
eigenvectors of a (generally symmetric) matrix.

In [BCN+17], the authors considered the case k = 2 for which they proposed the following
distributed algorithm (Averaging dynamics, Algorithm 1): “At the outset, every node picks
an initial value, independently and uniformly at random in {−1, 1}; then, in each synchronous
round, every node updates its value to the average of those held by its neighbors. A node also
tags itself blue if the last update increased its value, red otherwise” [BCN+17]. The authors
showed that, under a variety of graph models exhibiting sparse balanced cuts, including the
stochastic block model [HLL83], the process resulting from the above simple local rule converges,
in logarithmic time, to a coloring that, depending on the model, exactly or approximately
reflects the underlying cut. They further elaborated on how to extend the proposed approach
to the case of multiple communities, providing an analysis for a strongly regular version of the
stochastic block model with multiple communities. While results like those presented in [LGT14,
PSZ17] provide further theoretical justification for spectral clustering, the approach proposed
in [BCN+17] suggests that observing the temporal evolution of the power method applied to
an initial random vector may, at least in some cases, provide equivalent information, without
requiring explicit eigenvector computations.

1.1 Our contributions

The goal of this work is to take a further step in this direction by considering a more general
class of graphs, even if still relatively “regular”, than the one considered in [BCN+17]. The
analysis of the Averaging dynamics on this class is considerably harder, but it is likely to
provide insights into the challenges of analyzing the general case, without all the intricacies of
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the latter. Our contribution is as follows:

• We define the class of k-volume-regular graphs. This class of edge-weighted graphs in-
cludes those considered in [BCN+17] and it is the largest class of undirected, possibly
weighted graphs that admit k “stepwise” eigenvectors (i.e., having constant values over
the k steps that identify the hidden partition). This result uses a connection between
volume regularity and lumpability of Markov chains [KS60, TK06].

• If the stepwise eigenvectors are those associated to the first k eigenvalues and the gap
between the k-th and the (k+1)-th eigenvalues is sufficiently large, we show that running
the Averaging dynamics for a suitable number of steps allows recovery of the underlying
community structure of the graph, with high probability.1 To prove this, we provide a
family of mutually orthonormal vectors which, when the graph is volume-regular, span the
eigenspace of the main k eigenvectors of the normalized adjacency matrix of the graph.
It should be noted that the first and second of these vectors are respectively the main
eigenvector and the Fiedler vector [Fie89] associated to the normalized adjacency matrix.

• While the results of [BCN+17] apply when the underlying communities are of the same
size, our results do not require this assumption and they apply to weighted graphs. It
should also be noted that volume regularity is a weaker notion than regularity of the
graph.

• We further show that variants of the Averaging dynamics (and/or its labeling rule) can
address different problems (e.g., identifying bipartiteness) and/or other graph classes.

We further note that the overall algorithm we consider can be viewed as a fully decentralized,
synchronous algorithm that works in anonymous networks,2 with a completely local clustering
criterion, though it cannot be considered a dynamics in the sense of [BCN+17] since it requires
a bound on the number of nodes in the underlying network.

Finally, this paper extends a preliminary version [BCPR19] in several ways. To begin, the
main result presented in [BCPR19] was weaker, in the sense that the constraints imposed on
the eigenvalues in [BCPR19, Theorem 9] polynomially depend on network parameters like the
maximum degree and the number of vertices. In this respect, they are substantially stronger
than those imposed to prove Theorem 4.1, where results (in particular, the time window in
which recovery of the hidden partition is possible) are expressed in terms of the spectrum of
the graph, while constraints imposed on the second eigenvalue only logarithmically depend on
the aforementioned network parameters. In reframing these results, we also realized that the
presence of a window in which recovery is possible is something that is hardly avoidable in
general using the simple averaging heuristic of [BCN+17]. This is something we remark right
after Theorem 4.1 (see Remark 1), while we also observe (see Remarks 3 and 4) that the analysis
presented here also encompasses the class of regular graphs considered in [BCN+17] as a special
case, something that was not obvious in [BCPR19]. Finally, the result given in [BCPR19] for
bipartite graphs assumed volume regularity, an assumption that is not necessary as we show in
Section 5.

1.2 Further related work

We briefly discuss further work that bears some relationship to this paper, either because it
adopts simple and/or decentralized heuristics to uncover community structure, or because it
relies on the use of spectral techniques.

1An event En holds with high probability (w.h.p.) if P (En) = 1−O(n−γ), for some constant γ > 0.
2Nodes do not possess distinguished identities.
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Decentralized heuristics for block reconstruction. Label propagation algorithms [RAK07]
are dynamics based on majority updating rules [AAE08] and have been applied for detecting
communities in complex networks. Several papers present experimental results for such proto-
cols on specific classes of clustered graphs [BC09, LM10, RAK07]. The only available rigorous
analysis of a label propagation algorithm on planted partition graphs is the one presented
in [KPS13], where the authors analyze a label propagation algorithm on G2n,p,q graphs in the

case of dense topologies. In particular, their analysis considers the case where p = Ω(1/n
1
4
−ε)

and q = O(p2), a parameter range in which very dense clusters of constant diameter separated
by a sparse cut occur w.h.p. In this setting, characterized by a polynomial gap between p and q,
simple combinatorial and concentration arguments show that the protocol converges in constant
expected time. A logarithmic bound for sparser topologies is conjectured in [KPS13].

Following [BCN+17], a number of recent papers analyze simple distributed algorithms for
community detection that rely on elementary dynamics. In the Averaging dynamics consid-
ered in this paper, every node communicates in parallel with all its neighbors in each round.
While this might be too expensive in scenarios characterized by dense topologies, it is simply
infeasible in other settings (for instance, when links represent opportunistic meetings that occur
asynchronously). Motivated by similar considerations, a first line of follow-up work considered
“sparsified”, asynchronous variants of the Averaging dynamics [BCM+18, MMM18, SZ17].

Another interesting direction is the rigorous analysis of well-known (non-linear) dynamics
based on majority rules on graphs that exhibit community structure. In [CNNS18], Cruciani
et al. consider the 2-Choices dynamics where, in each round, every node picks two random
neighbors and updates its value to the most frequent among its value and those held by its
sampled neighbors. They show that if the underlying graph has a suitable core-periphery
structure and the process starts in a configuration where nodes in core and periphery have
different states, the system either rapidly converges to the core’s state or reaches a metastable
regime that reflects the underlying graph structure. Similar results have been also obtained for
clustered regular graphs with dense communities in [CNS19], where the 2-Choices dynamics is
proposed as a distributed algorithm for community detection.

Although based on the Averaging dynamics and thus extremely simple and fully decen-
tralized, the algorithm we consider in this paper is not itself a dynamics in the sense proposed
in [BCN+17], since its clustering criterion is applied within a time window, which in turn re-
quires (at least approximate) knowledge of the network size.

Because of their relevance for the reconstruction problem, we also briefly discuss the class of
belief propagation algorithms, best known as message-passing algorithms for performing infer-
ence in graphical models [Mac03]. Though not a dynamics, belief propagation is still a simple
approach. Moreover, there is non-rigorous, strong supporting evidence that some belief prop-
agation algorithms might be optimal for the reconstruction problem [DKMZ11]. A rigorous
analysis is a major challenge; in particular, convergence to the correct value of belief propaga-
tion is far from being fully-understood on graphs which are not trees [MK07, Wei00]. As we
discuss in the next subsection, more complex algorithms inspired by belief propagation have
been rigorously shown to perform reconstruction optimally.

General algorithms for block reconstruction. Several algorithms for community detec-
tion are spectral : They typically consider the eigenvector associated to the second largest eigen-
value of the adjacency matrix A of G, or the eigenvector corresponding to the largest eigenvalue
of the matrix A − d

nJ [Bop87, CO05, CO10, McS01],3 since these are correlated with the hid-

3A is the adjacency matrix of G, J is the matrix having all entries equal to 1, d is the average degree, and n

is the number of vertices.
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den partition. More recently spectral algorithms have been proposed [AS15, BLM15, CO10,
KMM+13, MNS13, PSZ17] that find a weak reconstruction even in the sparse, tight regime.

Interestingly, spectral algorithms turn out to be a feasible approach also in distributed
settings. In particular, Kempe and McSherry [KM04] show that eigenvalue computations can
be performed in a distributed fashion, yielding distributed algorithms for community detection
under various models, including the stochastic block model. However, their algorithm does
not match any simple decentralized computing model. In particular, the algorithm of Kempe
and McSherry as well as any distributed version of the above mentioned centralized algorithms
are neither dynamics, nor do they correspond to the notion of light-weight algorithm of Hassin
and Peleg [HP01]. Moreover, the mixing time of the simple random walk on the graph is a
bottleneck for the distributed algorithm of Kempe and McSherry and for any algorithm that
performs community detection in a graph G by employing the power method or the Lanczos
method [Lan50] as a subroutine. This is not the case for the Averaging dynamics, since it
removes the component of the state in the span of the main eigenvector.

In general, the reconstruction problem has been studied extensively using a multiplicity of
techniques, which include combinatorial algorithms [DF89], belief propagation [DKMZ11] and
variants of it [MNS16], spectral-based techniques [CO10, McS01], Metropolis approaches [JS98],
and semidefinite programming [ABH14], among others.

1.3 Roadmap

The rest of this paper is organized as follows. In Section 2, we formally define the Averaging

dynamics and briefly recall how it is connected with the transition matrix of a random walk on
the underlying graph. We also define the notion of community-sensitive algorithm and the class
of clustered volume-regular graphs. In Section 3 we show the relation between lumpability of
Markov chains and volume-regular graphs. In Section 4 we state the main result of the paper
(see Theorem 4.1) on the analysis of the Averaging for clustered volume-regular graphs: We
give the two main technical lemmas and show how the main theorem derives from them. In
Section 5, we show how slightly modified versions of the Averaging dynamics can be used
to identify the hidden partition of other non-clustered volume-regular graphs, e.g., bipartite
graphs. In Section 6 we briefly show how our approach can be extended to slightly more general
graph classes than the ones considered in this paper. We finally highlight some open problems
and directions for further research on the topic.

2 Preliminaries

Notation. Consider an undirected edge-weighted graph G = (V,E,w) with nonnegative
weights. For each node u ∈ V , we denote by δ(u) the volume, or weighted degree, of node
u, namely δ(u) =

∑
v:(u,v)∈E w(u, v). Similarly, we denote the volume of a set of nodes T ⊆ V

as vol(T ) :=
∑

u∈T δ(u). D denotes the diagonal matrix, such that Duu = δ(u) for each u ∈ V .
Without loss of generality we assume minu δ(u) = 1, since the behavior of the Averaging

dynamics (and the corresponding analysis) is not affected by a normalization of the weights.
We refer to the maximum volume of a node as ∆ := maxu δ(u).

In the remainder, W denotes the weighted adjacency matrix of G, while P = D−1W is
the transition matrix of a random walk on G, in which a transition from node u to node v
occurs with probability proportional to w(u, v). We call λ1, . . . , λn the eigenvalues of P , in
non-increasing order, and v1, . . . ,vn a family of eigenvectors of P , such that Pvi = λivi. We
let N = D− 1

2WD− 1
2 = D

1
2PD− 1

2 denote the normalized weighted adjacency matrix of G. Note
that N is real and symmetric (thus, the eigenvectors of N are orthogonal) and that its spectrum
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is the same as that of P . We denote by w1, . . . ,wn a family of eigenvectors of N , such that
Nwi = λiwi. It is important to note that wi is an eigenvector of N if and only if D− 1

2wi is an
eigenvector of P .

We use the Bachmann–Landau asymptotic notation (i.e., ω,Ω,Θ,O, o) to describe the lim-
iting behavior of functions depending on n. In this sense, our results only hold for large n. We
say that an event En holds with high probability (w.h.p., in short) if P (En) = 1 − O(n−γ), for
any positive constant γ.

2.1 Averaging dynamics

The simple algorithm we consider in this paper, named Averaging dynamics (Algorithm 1)
after [BCN+17] in which the algorithm was first proposed, can be seen as an application of the
power method, augmented with a Rademacher initialization and a suitable labeling scheme. In
this form, it is best described as a distributed process, executed by the nodes of an underlying
edge-weighted graph. The Averaging dynamics can be used as a building-block to achieve
“community detection” in some classes of “regular” and “almost regular” graphs. Herein, we
extend its use and analysis to broader graph classes and, in one case, to a different problem.

Algorithm 1 Averaging dynamics

Rademacher initialization: At round t = 0, every node v ∈ V independently samples
its value x(0)(v) from {−1,+1} uniformly at random.

Update rule: At each subsequent round t > 1, every node v ∈ V :

1. Averaging : updates its value x(t)(v) to the weighted average of the values of its
neighbors at the end of the previous round.

2. Labeling : if x(t)(v) > x(t−1)(v) then v sets label(t)(v) = 1; otherwise v sets
label(t)(v) = 0.

Spectral decomposition of the transition matrix. Let x(t) denote the state vector at
time t, i.e., the vector whose u-th entry is the value held by node u at time t. We let x(0) = x

denote the initial state vector. Globally, the averaging update rule of Algorithm 1 corresponds
to one iteration of the power method, in this case an application of the transition matrix P to
the current state vector, i.e., x(t) = Px(t−1). We can write

x(t) = P tx = D− 1
2N tD

1
2x

(a)
= D− 1

2

n∑

i=1

λtiwiw
⊺

i

n∑

i=1

βiwi
(b)
=

n∑

i=1

λtiβiD
− 1

2wi,

where in (a) we spectrally decomposed the matrix N t and expressed the vector D
1
2x as a linear

combination of the eigenvectors of N , i.e., D
1
2x =

∑n
i=1 βiwi, with βi = 〈D 1

2x,wi〉; in (b) we
used that the eigenvectors of N are orthonormal, i.e., that w

⊺

iwi = 1 for every i ∈ {1, . . . , n}
and that w⊺

iwj = 0 for every i, j ∈ {1, . . . , n} and such that i 6= j. By explicitly writing the βis

and by noting that wi =
D

1
2 vi

‖D
1
2 vi‖

we conclude that

x(t) =
n∑

i=1

λti
〈D 1

2x,D
1
2vi〉

‖D 1
2vi‖

D− 1
2
D

1
2vi

‖D 1
2vi‖

=
n∑

i=1

λtiαivi, (1)
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where αi :=
〈D

1
2x,D

1
2 vi〉

‖D
1
2 vi‖2

= x⊺Dvi

‖D
1
2 vi‖2

is the length of the projection of D
1
2x on D

1
2vi.

Note that λ1 = 1 and v1 = 1,4 since P is stochastic, and λi ∈ (−1, 1) for every i > 1, if G
is connected and non bipartite. The long term behavior of the dynamics can be written as

lim
t→∞

x(t) = lim
t→∞

n∑

i=1

λtiαivi = α11, with α1 =

∑
u∈V δ(u)x(u)∑

u∈V δ(u)
=
∑

u∈V

δ(u)

vol(V )
x(u),

i.e., each node converges to the initial global weighted average of the network.

2.2 Community-sensitive algorithms

We give the following definition of community-sensitive algorithm, that closely resembles that
of locality-sensitive hashing (see, e.g., [LRU14]).

Definition 2.1 (Community-sensitive algorithm). Let A be a randomized algorithm that takes
in input a (possibly weighted) graph G = (V,E) with a hidden partition V = {V1, . . . , Vk} and
assigns a Boolean value A(G)[v] ∈ {0, 1} to each node v ∈ V . We say A is an (ε, δ)-community-
sensitive algorithm, for some ε, δ > 0, if the following two conditions hold:

1. For each set Vi of the partition and for each pair of nodes u, v ∈ Vi in that set, the
probability that the algorithm assigns the same Boolean value to u and v is at least 1− ε:

∀i ∈ [k], ∀u, v ∈ Vi, P (A(G)[u] = A(G)[v]) > 1− ε.

2. For each pair Vi, Vj of distinct sets of the partition and for each pair of nodes u ∈ Vi and
v ∈ Vj, the probability that the algorithm assigns the same value to u and v is at most δ:

∀i, j ∈ [k] with i 6= j, ∀u ∈ Vi,∀v ∈ Vj , P (A(G)[u] = A(G)[v]) 6 δ.

For example, for (ε, δ) = (1/n, 1/2), an algorithm that simply assigns the same value to all
nodes would satisfy the first condition but not the second one, while an algorithm assigning
0 or 1 to each node with probability 1/2, independently of the other nodes, would satisfy the
second condition but not the first one.

Note that Algorithm 1 is a distributed algorithm that, at each round t, assigns one out of
two labels to each node of a graph. In the next section (see Theorem 4.1) we prove that a time
window [T1, T2] exists, such that for all rounds t ∈ [T1, T2], the assignment of the Averaging

dynamics satisfies both conditions in Definition 2.1: The first condition with ε = ε(n) = O(n−
1
2 ),

the second with δ = δ(n) = 1− Ω(1).

Community-sensitive labeling. We here generalize the concept of community-sensitive la-
beling (appeared in [BCM+18, Definition 3]), given only for the case of two communities, to
the case of multiple communities. If we execute ℓ = Θ(log n) independent runs of an (ε, δ)-
community-sensitive algorithm A, each node is assigned a signature of ℓ binary values, with pair-
wise Hamming distances probabilistically reflecting community membership of the nodes. More
precisely, letA be an (ε, δ)-community-sensitive algorithm and letA1, . . . ,Aℓ be ℓ = Θ(log n) in-
dependent runs of A. For each node u ∈ V , let s(u) = (s1(u), . . . , sℓ(u)) denote the signature of
node u, where si(u) = Ai(G)[u]. For each pair nodes u, v, let h(u, v) = |{i ∈ [ℓ] : si(u) 6= si(v)}|
be the Hamming distance between s(u) and s(v).

4Here and in the remainder, 1 denotes the vector whose entries are 1.
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Lemma 2.2 (Community-sensitive labeling). Let A be an (ε, δ)-community-sensitive algorithm
with ε = O( 1

nγ ) for any arbitrarily small positive constant γ, and δ = 1−Ω(1). Let ℓ = Θ(log n),
α = Ω( 1

nγ−c ) with c ∈ (0, γ], and β = b(1 − δ) for any constant b ∈ (0, 1) and such that
0 6 α 6 β 6 1. Then, for each pair of nodes u, v ∈ V it holds that:

1. If u and v belong to the same community then h(u, v) < αℓ, w.h.p.

2. If u and v belong to different communities then h(u, v) > βℓ, w.h.p.

Proof. From the definition of (ε, δ)-community-sensitive algorithm we have that, if u and v
belong to the same community, then E [h(u, v)] =

∑ℓ
i=1 P (si(u) 6= si(v)) 6 εℓ . Similarly, if

they belong to different communities, then E [h(u, v)] =
∑ℓ

i=1 P (si(u) 6= si(v)) > (1− δ)ℓ. If u
and v belong to the same community, we compute P (h(u, v) > αℓ) and by Markov inequality
we get that

P (h(u, v) > αℓ) 6
E [h(u, v)]

αℓ
6
ε

α
= O

(
1

nc

)
, (2)

where in the last inequality we use the hypothesis ε = O( 1
nγ ) and α = Ω( 1

nγ−c ). On the other
hand, if u and v belong to different communities, we apply Theorem A.1 to h(u, v) by using the
lower bound on the expected value of h(u, v) and the hypothesis ℓ = Θ(log n). Thus,

P (h(u, v) < b(1− δ)ℓ) 6 exp

(
−(1− b)2

2
(1− δ)ℓ

)
= O

(
1

nd

)
, (3)

where d is a positive constant. The thesis follows by combing Eqs. (2) and (3).

2.3 Volume-regular graphs

Recall that, for an undirected edge-weighted graph G = (V,E,w), we denote by δ(u) the volume
a node u ∈ V , i.e., δ(u) =

∑
v:(u,v)∈E w(u, v). Note that the transition matrix P of a random

walk on G is such that Puv = w (u, v) /δ(u). Given a partition V = {V1, . . . , Vk} of the set of
nodes V , for a node u ∈ V and a partition index i ∈ [k], δi(u) denotes the overall weight of
edges connecting u to nodes in Vi, δi(u) =

∑
v∈Vi :u,v∈E w (u, v) . Hence, δ(u) =

∑k
i=1 δi(u).

Definition 2.3 (Volume-regular graph). Let G = (V,E,w) be an undirected edge-weighted graph
with |V | = n nodes and let V = {V1, . . . , Vk} be a k-partition of the nodes, for some k ∈ [n]. We
say that G is volume regular with respect to V if, for every pair of partition indexes i, j ∈ [k]

and for every pair of nodes u, v ∈ Vi,
δj(u)
δ(u) =

δj(v)
δ(v) . We say that G is k-volume regular if there

exists a k-partition V of the nodes such that G is volume regular with respect to V.
In other words, G is volume regular if there exists a partition of the nodes such that the

fraction of a node’s volume toward a set of the partition is constant across nodes of the same
set. Note that all graphs with n nodes are trivially 1- and n-volume regular.

Let G = (V,E,w) be a k-volume regular graph and let P be the transition matrix of a
random walk on G. In the next lemma we prove that the span of k linearly independent
eigenvectors of P equals the span of the indicator vectors of the k communities of G. The
proof makes use of the correspondence between random walks on volume regular graphs and
ordinary lumpable Markov chains [KS60]; in particular the result follows from Lemma 3.2 and
Lemma 3.3, that we prove in Section 3.

Lemma 2.4. Let P be the transition matrix of a random walk on a k-volume regular graph
G = (V,E,w) with k-partition V = {V1, . . . , Vk}. There exists a family {v1, . . . ,vk} of linearly
independent eigenvectors of P such that Span ({v1, . . . ,vk}) = Span ({1V1 , . . . ,1Vk

}) , with 1Vi

the indicator vector of the i-th set of the partition, for i ∈ [k].
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In the rest of the paper we call “stepwise” the eigenvectors of P that can be written as
linear combinations of the indicator vectors of the communities. In the next definition, we
formalize the fact that a k-volume regular graph is clustered if the k linearly independent
stepwise eigenvectors of P , whose existence is guaranteed by the above lemma, are associated
to the k largest eigenvalues of P .

Definition 2.5 (Clustered volume regular graph). Let G = (V,E,w) be a k-volume regular
graph and let P be the transition matrix of a random walk on G. We say that G is a clustered
k-volume regular graph if the k stepwise eigenvectors of P are associated to the first k largest
eigenvalues of P .

3 Volume-regular graphs and lumpable Markov chains

The class of volume-regular graphs is deeply connected with the definition of lumpability [KS60]
of Markov chains. We here first recall the definition of lumpable Markov chain and then show
that a graph G is volume-regular if and only if the associated weighted random walk is a
lumpable Markov chain.

Definition 3.1 (Ordinary lumpability of Markov Chains). Let {Xt}t be a finite Markov chain
with state space V and transition matrix P = (Puv)u,v∈V and let V = {V1, . . . , Vk} be a partition
of the state space. Markov chain {Xt}t is ordinary lumpable with respect to V if, for every
pair of partition indexes i, j ∈ [k] and for every pair of nodes in the same set of the partition
u, v ∈ Vi, it holds that ∑

w∈Vi

Puw =
∑

w∈Vi

Pvw, ∀ u, v ∈ Vj. (4)

We define the lumped matrix P̂ of the Markov Chain as the matrix such that P̂ij =
∑

w∈Vi
Puw,

for any u ∈ Vj.

We first prove that random walks on Volume-regular graphs define exactly the subset of
reversible and ordinary lumpable Markov chains.

Lemma 3.2. A reversible Markov chain {Xt}t is ordinary lumpable if and only if it is a random
walk on a volume-regular graph.

Proof. Assume first that {Xt}t is ordinary lumpable and let P be the corresponding transition
matrix. Consider the weighted graph G = (V,E,w) obtained from P as follows: V corresponds
to the set of states in P , while w(u, v) = π(u)Puv , for every u, v ∈ V , with π the stationary

distribution of P . Note that G is an undirected graph, i.e., w(u, v) = π(u)Puv
(a)
= π(v)Pvu =

w(v, u), where (a) holds because P is reversible. Moreover

δ(u) =
∑

z∈V
w(u, v) =

∑

z∈V
π(u)Puv = π(u)

∑

z∈V
Puv

(a)
= π(u),

where (a) holds because P is stochastic. Thus G meets Definition 2.3 because, for any u, v ∈ Vi,

δj(u)

δ(u)
=

1

π(u)

∑

z∈Vj

w(u, z) =
∑

z∈Vj

Puz =
∑

z∈Vj

Pvz =
1

π(v)

∑

z∈Vj

w(v, z) =
δj(v)

δ(v)
.

Next, assume G is k-volume-regular with respect to the partition V = {V1, . . . , Vk}. Let P
be the transition matrix of the corresponding random walk. For every i, j ∈ [k] and for every

9



u, v ∈ Vi we have:

∑

z∈Vj

Puz =
∑

z∈Vj

w(u, z)

δ(u)
=
δj(u)

δ(u)

(a)
=
δj(v)

δ(v)
=
∑

z∈Vj

w(v, z)

δ(v)
=
∑

z∈Vj

Pvz ,

where (a) follows from Definition 2.3. Moreover note that P is reversible with respect to

distribution π, where π(u) = δ(u)
vol(G) .

Note that infinitely many k-volume-regular graphs have the same k-ordinary lumpable ran-
dom walk chain.

We next show that a Markov chain is k-ordinary lumpable if and only if the corresponding
transition matrix P has k stepwise, linearly independent eigenvectors.

Lemma 3.3. Let P be the transition matrix of a Markov chain. Then P has k stepwise linearly
independent eigenvectors if and only if P is ordinary lumpable.

Proof. We divide the proof in two parts. First, we assume that P is ordinary lumpable and
show that P has k stepwise linearly independent eigenvectors. Second, we assume that P has
k stepwise linearly independent eigenvectors and show that P is ordinary lumpable.

1. Let P be ordinary lumpable and P̂ its lumped matrix. Let λi,vi be the eigenvalues and
eigenvectors of P̂ , for each i ∈ [k]. Let wi ∈ R

n be a stepwise vector defined as

wi = (vi(1), . . . ,vi(1)︸ ︷︷ ︸
|V1| times

, vi(2), . . . ,vi(2)︸ ︷︷ ︸
|V2| times

, . . . , vi(k), . . . ,vi(k)︸ ︷︷ ︸
|Vk| times

)⊺,

where vi(j) indicates the j-th component of vi, and then the |Vj | components relative to Vj are
all equal to vi(j).

Since the eigenvectors vi of P̂ are linearly independent, the vectors wi are also linearly
independent. Moreover, it is easy to see that Pwi = λiwi by just verifying the equation for
every i ∈ [k].

2. Assume P has k stepwise linearly independent eigenvectors wi, associated to k eigenvalues
λi, for each i ∈ [k]. Let vi ∈ R

k the vector that has as components the k constant values in the
steps of wi. Since the wi are linearly independent, the vi also are.

For every eigenvector wi and for every two states x, y ∈ Vl, for every l ∈ [k], we have that
λiwi(x) = λiwi(y) since wi is stepwise. Then, since Pwi = λiwi, we have that

k∑

j=1

∑

z∈Vj

Pxzvi(j) = (Pwi)(x) = (Pwi)(y) =

k∑

j=1

∑

z∈Vj

Pyzvi(j).

Thus
∑k

j=1 vi(j)
∑

z∈Vj
(Pxz − Pyz) = 0 and then it follows that

k∑

j=1

vi(j)uxy(j) = 〈uxy,vi〉 = 0,

where uxy(j) :=
∑

z∈Vj
(Pxz − Pyz). Since the vi are k linearly independent vectors in a k-

dimensional space, uxy cannot be orthogonal to all of them and then it has to be the null vector,
i.e., uxy(j) = 0 for all j ∈ [k]. This implies that P is ordinary lumpable, i.e.,

∑
z∈Vj

Pxz =
∑

z∈Vj
Pyz. It is easy to verify that the eigenvalues and eigenvectors of P̂ are exactly λi,vi,

with i ∈ [k].
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4 Averaging dynamics on clustered volume regular graphs

Let n
min

:= mini∈[k] |Vi| and nmax := maxi∈[k] |Vi| be the maximum and minimum sizes of
the communities of a volume-regular graph G = (V,E,w) with n nodes and k-partition V =
{V1, . . . , Vk}. Recall also that ∆ is the maximum weighted degree of the nodes of G and
λ1, . . . , λn are the eigenvalues of the transition matrix of a random walk on G (see Section 2).
In this section we prove the following result.

Theorem 4.1. Let G = (V,E,w) be a connected clustered k-volume-regular graph with n nodes

and k-partition V = {V1, . . . , Vk}, such that ∆ 6
√
nmin

25 and 2∆(nmax/nmin) < k 6
√
n. Assume

further that 1− λ2 6
λk log(λk/λk+1)

7 log(2∆n) and λk > 7λ2−5
2 . A non-empty time interval [T1, T2] exists,

with T1 = O
(

logn
log(λk/λk+1)

)
and T2 = Ω

(
λk

1−λ2

)
, such that for each t ∈ [T1, T2], the Averaging

dynamics truncated at round t is a (O(n−1/2), 1− Ω(1))-community-sensitive algorithm.

Remark 1 (The extent of the time-window). Notice that the time window cannot be too long:

by Cheeger’s inequality 1− λ2 >
h2
G

2 > 1/(2∆2n2),5 thus T2 = O(∆2n2).

Remark 2 (The extent of non-regularity). Notice that the condition k > 2∆(nmax/nmin) implies

max
i∈[k]

{vol(Vi)} 6 ∆nmax <
k

2
nmin 6

k

2
min
i∈[k]

{vol(Vi)}.

In other words, the Averaging dynamics gives a good community-sensitive labeling when the
communities are not too unbalanced in terms of their volumes. Moreover, the smaller the number
of communities the more the volume-balance requirement is tight.

In the remainder of this section, we first introduce further notation and then state the main
technical lemmas (Lemmas 4.2 to 4.4), that will be used in the proof of Theorem 4.1, which
concludes this section.

Let G = (V,E,w) be a clustered k-volume regular graph and, without loss of generality,
let V1, . . . , Vk be an arbitrary ordering of its communities. We introduce a family of stepwise
vectors that generalize Fiedler vector [Fie89], namely

{
χi =

√
m̂i

mi
1Vi

−
√
mi

m̂i
1V̂i

: i ∈ [k − 1]

}
, (5)

where 1Vi
is the indicator vector of the set Vi and, for convenience sake, we denoted by mi the

volume of the i-th community, V̂i the set of all nodes in communities i + 1, . . . , k, and m̂i the
volume of V̂i, i.e., mi :=

∑
u∈Vi

δ(u), V̂i :=
⋃k

h=i+1 Vh, and m̂i :=
∑k

h=i+1mh. Note that vectors
χis are “stepwise” with respect to the communities of G (i.e., for every i ∈ [k−1], χi(u) = χi(v)
whenever u and v belong to the same community).

Recall from Eq. (1) that the initial state vector can be written as x =
∑n

i=1 αivi. Let

z :=
∑k

i=1 αivi and note that z = α11 +
∑k−1

i=1 γiχi by applying Lemma 2.4 and because
Span ({1,χ1, . . . ,χk−1}) = Span ({1V1 , . . . ,1Vk

}). Let us now define the vector y := z − α11

or, equivalently,

y =

k−1∑

i=1

γiχi, where γi =
x⊺Dχi∥∥D1/2χi

∥∥2 . (6)

5This can be seen by observing that: i) the minimum volume of a cut must be at least half the minimum
degree of the graph, which we normalize to 1, and ii) in computing hG, we restrict to subsets of volume at most
vol(G), which is at most ∆n.
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Note that the coefficients γis are proportional to the length of the projection of the (inhomo-

geneously) contracted state vector on the (inhomogeneously) contracted D
1
2χis; the previous

expression is valid since the vectors in {D 1
21} ∪ {D 1

2χi : i ∈ [k − 1]} are mutually orthogonal.6

In Lemma 4.2 we show that every component of y, i.e., the projection of the (inhomo-

geneously) contracted initial state vector D
1
2x on the (inhomogeneously) contracted vectors

D
1
2χis, is not too small, w.h.p.

Lemma 4.2 (Length of the projection of the state vector). Let G = (V,E,w) be a connected
clustered k-volume-regular graph with n nodes and k-partitions V = {V1, . . . , Vk}. Under the
hypotheses of Theorem 4.1, for every u ∈ V ,

P

(
|y(u)| > 1

∆n

)
> 1−O

(
1√
n

)
.

Proof. Without loss of generality, we assume u ∈ V1, which possibly just amounts to a relabeling
of the nodes. With this assumption, we have

y(u) = γ1χ1(u) = γ1

√
m̂1

m1
,

where the second equality follows from the definitions of the χi’s (Eq. (5)) and the fact that
u ∈ V1. Next, observe that we have:

∥∥∥D1/2χ1

∥∥∥
2
=
m̂1

m1

∑

v∈V1

δ(v) +
m1

m̂1

∑

v∈V̂1

δ(v) = m̂1 +m1 = m,

where m := vol(V ). We now bound

|γ1| =
|x⊺Dχ1|∥∥D1/2χ1

∥∥2 =
|x⊺Dχ1|

m
.

More precisely, we prove that it is at least 1/m with probability 1−O
(

1√
n

)
, where probability

is computed over the randomness of x.
Assume for the moment that m̂1 > m1. From the definition of χ1 we have:

x⊺Dχ1 = x⊺D

(√
m̂1

m1
1V1 −

√
m1

m̂1
1V̂1

)
=

√
m1

m̂1
x⊺D

(
m̂1

m1
1V1 − 1V̂1

)
.

Now, set w = D
(
m̂1
m1

1V1 − 1V̂1

)
and note that |w(u)| > 1 from the hypothesis that m̂1 > m1

and since δ(v) > 1, for every v ∈ V . We can thus apply Theorem A.5 to w with r = 0, so that
we can write:

P

(
|x⊺Dχ1| <

√
m1

m̂1

)
= P

(
|xTw| < 1

)
6 O

(
1√
n

)
,

where the equality follows since x⊺Dχ1 =
√

m1
m̂1

xTw. Hence, with probability 1−O
(

1√
n

)
we

have |γ1| >
√

m1
m̂1

· 1
m and thus, with the same probability:

|y(u)| = |γ1|
√
m̂1

m1
>

1

m
>

1

∆n
.

6The mutual orthogonality of the vectors, including D
1

2 1, is also one of the reasons why other “simpler”
families of stepwise vectors, e.g., the indicator vectors of the communities, are not used instead.
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Assume now that m1 > m̂1. This time we write:

x⊺Dχ1 =

√
m̂1

m1
x⊺D

(
1V1 −

m1

m̂1
1V̂1

)

and we set w = D
(
1V1 − m1

m̂1
1V̂1

)
. Note that, again, |w(v)| > 1 for every v ∈ V . Proceeding

as in the previous case we obtain |γ1| >
√

m̂1
m1

· 1
m with probability 1−O

(
1√
n

)
and thus, with

the same probability:

|y(u)| = |γ1|
√
m̂1

m1
>

m̂1

mm1
=
m−m1

mm1

(a)

>
1

m
>

1

∆n
,

where in (a) we used that mi <
m
2 (see Remark 2). This concludes the proof.

In Lemma 4.3 we show that given any “pair of steps” of the vector y (defined in Eq. (6)),
the two steps have different signs, with constant probability.

Lemma 4.3 (Different communities, different signs). Let G = (V,E,w) be a clustered k-volume

regular graph with maximum weighted degree ∆ 6
√
n
min

25 and with k > 2∆(nmax/nmin
). For each

pair of nodes u ∈ Vi and v ∈ Vj, with i 6= j, it holds that

P ( sgn(y(u)) 6= sgn(y(v)) ) = Ω(1).

Proof. Since the ordering of the communities (and consequent definition of the χi’s, given in
Eq. (5)) is completely arbitrary, we can assume i = 1 and j = 2, without loss of generality. Let
us define X(Vi) :=

∑
w∈Vi

δ(w)x(w), where x = x(0) is the initial state vector.
Note that y(u) = γ1χ1(u) and y(v) = γ1χ1(v) + γ2χ2(v), since the other terms of the χis

are equal to 0 on the components relative to u and v. Thus, with some algebra, we get

y(u) =
1

m

[
m̂1

m1
X(V1)−X(V2)−X(V̂2)

]
,

y(v) =
1

m

[
m1m2 +mm̂2

m̂1m2
X(V2)−X(V1)−X(V̂2)

]
,

where V̂i :=
⋃k

h=i+1 Vh. Note that, by linearity of expectation, E [X(Vi)] = 0. Moreover, since
the terms x(w)s are independent Rademacher random variables, we can write the standard
deviation of X(Vi) as

σ(X(Vi)) =

√∑

w∈Vi

σ2(δ(w)x(w)) =

√∑

w∈Vi

(
E [δ(w)2x(w)2]−E [δ(w)x(w)]2

)
=

√∑

w∈Vi

δ(w)2.

Then we can upper and lower bound the standard deviation σ(X(Vi)) getting
mi√
ni

6 σ(X(Vi)) 6

∆
√
ni, where the lower bound follows from ‖d‖2 > ‖d‖1 /

√
ni, where di is the vector of weighted

degrees of nodes in community Vi, and for the upper bound we used that δ(w) 6 ∆, for each
w ∈ V .

Let us now define the following three events:

1. E1: X(V1) > σ(X(V1)) =⇒ X(V1) >
m1√
n1

>
mini mi√

nmax
;

2. E2: X(V2) < −σ(X(V2)) =⇒ X(V2) < − m2√
n2

6 −mini mi√
nmax

;

13



3. E3: 0 6 X(V̂2) <
(
2/
√
k
)
σ(X(V̂2)) =⇒ 0 6 X(V̂2) < 2∆

√
(1/k)

∑k
i=3 ni 6 2∆

√
nmax ,

When E1, E2, E3 are true it follows directly that y(v) < 0. As for y(u) > 0 we have

m̂1

m1
X(V1)−X(V2)−X(V̂2) >

m̂1

m1
σ(X(V1)) + σ(X(V2))− (2/

√
k) · σ(X(V̂2))

>
knmin√
nmax

− 2∆
√
nmax > 0,

since, for the last inequality, k > 2∆(nmax/nmin) by hypothesis.
Note that all three events E1, E2, E3 have probability at least constant and, being the events

independent, also P (E1 ∩ E2 ∩ E3) is constant. Indeed, it is possible to prove the constant lower
bounds on the probabilities by approximating the random variables with Gaussian ones using
Berry-Esseen’s theorem (Theorem A.4). Note that X(V1),X(V2),X(V̂2) all are of the form
Z =

∑
w∈T Zw, for some T ⊆ V and where Zw = δ(w)x(w). Recall that E [Zw] = 0 and

that σ2(Zw) = δ(w)2. Moreover, note that the third absolute moment of Zw is E
[
|Zw|3

]
=

δ(w)3E
[
|x(w)|3

]
= δ(w)3. Therefore we can apply Theorem A.4 which claims that there exists

a positive constant C 6 1.88 [Ber41] such that, for every z ∈ R,

|P (Z 6 z · σ(Z))− Φ(z)| 6 C

σ(Z)
max
w∈T

δ(w)3

δ(w)2
6
C ·∆
σ(Z)

,

where Φ is the cumulative distribution function of the standardized normal distribution. Thus

P (Z > z · σ(Z)) > 1− Φ(z)− C ·∆
σ(Z)

. (7)

Since ∆ 6
√
n
min
25 by hypothesis and σ(Z) >

√
|T | for every T ⊆ V , taking z = 1 it follows

from Eq. (7) that

P (E1) = P (X(V1) > σ(X(V1))) > 1− Φ(1)− C ·∆
√
nmin

> 1− Φ(1)− C

25
>

1− Φ(1)

2
≈ 0.08,

since 1
25 <

1−Φ(1)
2C ≈ 0.042. Since the distribution of Z is symmetric for every T ⊆ V , it holds

that P (E2) > 1− Φ(1)− C
25 ≈ 0.08. Similarly, it also holds that

P (E3) =
1

2
−P

(
X(V̂2) >

(
2/
√
k
)
σ(X(V̂2))

)
> Φ(2/

√
k) +

C

25
− 1

2
>
C

25
≈ 0.075.

Recall that the binary labeling of each node only depends on the difference of its state in two
consecutive rounds (see Algorithm 1). In Lemma 4.4 we show that, under suitable assumptions
on the transition matrix of a random walk on G, a large enough time window exists where,
for each node u, the sign of the difference x(t)(u) − x(t+1)(u) of the state vector across two
consecutive rounds equals the sign of y(u), w.h.p. Since y (defined in Eq. (6)) is a stepwise
vector, this implies that two nodes in the same community have the same label, w.h.p. For
the sake of readability, in the proof of Lemma 4.4 we use two technical lemmas as black boxes,
postponing their proofs to Subsection 4.1.

Lemma 4.4 (Sign of the difference). Let G = (V,E,w) be a clustered k-volume regular graph

with maximum weighted degree ∆ 6
√
n
min
25 . If λk > 7λ2−5

2 , 1− λ2 6
λk log(λk/λk+1)

7 log(2∆n) , |y(u)| > 1
∆n

for every u ∈ V , then a non-empty time interval [T1, T2] exists, with T1 = O
(

logn
log(λk/λk+1)

)
and

T2 = Ω
(

λk

1−λ2

)
, such that, for every u ∈ V and every t ∈ [T1, T2] of the Averaging dynamics,

sgn(x(t)(u)− x(t+1)(u) ) = sgn(y(u)).
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Proof. Recall from Eq. (1) that the state vector at time t, i.e., x(t), can be written as the sum
of the first k stepwise vectors of P and of the remaining ones, namely

x(t) = α11+

k∑

i=2

λtiαivi +

n∑

i=k+1

λtiαivi = α11+ c(t) + e(t) .

In what follows we call c(t) :=
∑k

i=2 λ
t
iαivi the core contribution and e(t) :=

∑n
i=k+1 λ

t
iαivi the

error contribution. If we look at the difference of the state vector in two consecutive rounds,
the first term cancels out being constant over time, so that

x(t)(u)− x(t+1)(u) = c(t)(u)− c(t+1)(u) + e(t)(u)− e(t+1)(u)

for each node u ∈ V . Note that the sign of the difference between two consecutive rounds is
determined by the difference of the core contributions, c(t)(u)− c(t+1)(u), whenever

∣∣∣c(t)(u)− c(t+1)(u)
∣∣∣ >

∣∣∣e(t)(u)− e(t+1)(u)
∣∣∣ . (8)

To identify conditions on t for which Eq. (8) holds, we give suitable bounds on both hand sides
of the inequality. In more detail:

1. In Lemma 4.5 we prove that |e(t)(u)| 6 λtk+1

√
∆n, for every u ∈ V , so that

∣∣∣e(t)(u)− e(t+1)(u)
∣∣∣ 6

∣∣∣e(t)(u)
∣∣∣ +
∣∣∣e(t+1)(u)

∣∣∣ 6 2λtk+1

√
∆n.

2. In Lemma 4.6 we prove that
∣∣c(t)(u)− c(t+1)(u)

∣∣ > λtk(1 − λ2) |y(u)| for every u ∈ V

and for every time t < T2, where T2 >
λk

2(1−λ2)
; note that the hypotheses on 1 − λ2

imply T2 = Ω
(

logn
log(λk/λk+1)

)
. Moreover, the assumptions of Lemma 4.6 are satisfied, since

y(u) 6= 0 and λk > 7λ2−5
2 .

Combining Lemma 4.5 and Lemma 4.6, we see that Eq. (8) holds whenever

λtk(1− λ2) |y(u)| > 2λtk+1

√
∆n, (9)

An easy calculation shows that this happens for all t > T1, where

T1 :=
log
(

2
√
∆n

(1−λ2)|y(u)|

)

log (λk/λk+1)
.

Note that T1 = O
(

logn
log(λk/λk+1)

)
and, e.g., T1 = O(log n) whenever λk

λk+1
= 1 + Ω(1).

We next show that, under the assumptions of the lemma, the window [T1, T2] is not empty
and, actually, it has a width that depends on the magnitude of λ2 and the ratio λk/λk+1. To
this purpose, we first observe that Cheeger’s inequality for weighted graphs (Theorem A.3)

implies 1 − λ2 >
h2
G

2 > 1
2(∆n)2

(recall the footnote in Remark 1). Moreover, recalling that we

are assuming |y(u)| > 1
∆n ,

7 we have:

T1 =
log
(

2
√
∆n

(1−λ2)|y(u)|

)

log (λk/λk+1)

(a)

6
log
(
4∆3n3

√
∆n
)

log (λk/λk+1)
<

7 log(2∆n)

2 log (λk/λk+1)

(b)

6
λk

2(1− λ2)

(c)

6 T2, (10)

7It may be worth recalling that our hypothesis on |y(u)| holds with high probability from Lemma 4.2.
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where: in (a) we used Cheeger’s inequality (Theorem A.3) in the way described above and our
assumptions on |y(u)|, in (b) we used the hypothesis on 1 − λ2, which implies log(λk/λk+1) >
7(1−λ2) log(2∆n)

λk
, and in (c) the lower bound on T2 given by Lemma 4.6.

From Lemma 4.6 we also know that = sgn(c(t)(u) − c(t+1)(u)) = sgn(y(u)) for every time
t < T2; therefore we conclude that

sgn(x(t)(u)− x(t+1)(u)) = sgn(c(t)(u)− c(t+1)(u)) = sgn(y(u)) ,

for every node u ∈ V and for every round t ∈ [T1, T2] of the Averaging dynamics.

Proof of Theorem 4.1. The binary labeling of the nodes of G produced by the Averaging

dynamics during the time window [T1, T2] is such that the two conditions required by the
definition of (ε, δ)-community-sensitive algorithm (Definition 2.1) are met, with ε = O(n−1/2)
and δ = 1 − Ω(1). Indeed, the first condition follows directly from Lemma 4.4 together with

the fact that y is a “stepwise” vector, while Lemma 4.2 implies that ε = O(n−
1
2 ), since y(u)

is not too small with probability at least 1 −O(n−1/2). The second condition, instead, follows
directly from the combination of Lemmas 4.3 and 4.4.

Remark 3 (Equal-sized communities). If λk = λ2, then an alternative version of Lemma 4.6
would tell us that, for every node u ∈ V , c(t)(u) − c(t+1)(u) = λtk(1 − λ2)y(u) and thus
sgn(c(t)(u) − c(t+1)(u)) = sgn(y(u)), in every round (with no need of T2); this would imply
an infinite time window starting at the first round t > T1 (where the “error contribution” be-
comes small). In this sense our result also covers the case of multiple communities analyzed
in [BCN+17], with k equal-sized communities in an unweighted graph and then λk = λ2.

Remark 4 (Two communities). Our result also generalizes that of [BCN+17] in the simpler
case of two communities. In fact we don’t require the graph to be regular, but only volume-
regular, thus taking into account communities that are potentially unbalanced. Ideed, for k = 2,
the Averaging dynamics truncated at round t is a (O(n−

1
2 ), O(n−

1
2 ))-community-sensitive

algorithm for every round t > T1, with T1 = O
(

logn
log(λ2/λ3)

)
. Therefore, a single run of the

dynamics highlights the community structure, i.e., the sign of the difference x(t) − x(t) is equal
for nodes in the same communities and different for nodes in different communities, w.h.p.

4.1 Proofs for Lemma 4.4

In this section we prove the two lemmas used in the proof of Lemma 4.4: the upper bound on
the “error contribution” and the lower bound on the “core contribution.”

Lemma 4.5 (Upper bound on the error contribution). Let e(t) :=
∑n

i=k+1 λ
t
iαivi. For every

u ∈ V , it holds that
|e(t)(u)| 6 λtk+1

√
∆n.

Proof. To bound all components of vector e(t) we use its ℓ∞ norm, defined for any vector x as
‖x‖∞ := supi |x(i)|. In particular

‖e(t)‖2∞ 6 ‖e(t)‖2 =
∥∥∥∥∥

n∑

i=k+1

λtiαivi

∥∥∥∥∥

2

=

∥∥∥∥∥

n∑

i=k+1

λtiβiD
− 1

2wi

∥∥∥∥∥

2

.
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By using Cauchy-Schwarz inequality (Theorem A.2) and applying the definition of spectral
norm of an operator, i.e., ‖A‖ := supx:‖x=1‖ ‖Ax‖, we get that

∥∥∥∥∥

n∑

i=k+1

λtiβiD
− 1

2wi

∥∥∥∥∥

2

6

∥∥∥D− 1
2

∥∥∥
2
∥∥∥∥∥

n∑

i=k+1

λtiβiwi

∥∥∥∥∥

2

=
∥∥∥D− 1

2

∥∥∥
2

n∑

i=k+1

λ2ti β
2
i ,

since the wis are orthonormal. With some additional simple bounds it follows that

∥∥∥D− 1
2

∥∥∥
2

n∑

i=k+1

λ2ti β
2
i 6

∥∥∥D− 1
2

∥∥∥
2
λ2tk+1

n∑

i=k+1

β2i 6

∥∥∥D− 1
2

∥∥∥
2
λ2tk+1

n∑

i=1

β2i

=
∥∥∥D− 1

2

∥∥∥
2
λ2tk+1

∥∥∥D
1
2x

∥∥∥
2
6

∥∥∥D− 1
2

∥∥∥
2
λ2tk+1

∥∥∥D
1
2

∥∥∥
2
‖x‖2 .

By using the fact that the spectral norm of a diagonal matrix is equal to its maximum value,
we conclude that

∥∥∥D− 1
2

∥∥∥
2
λ2tk+1

∥∥∥D
1
2

∥∥∥
2
‖x‖2 = maxu δ(u)

minu δ(u)
λ2tk+1 ‖x‖2 6 λ2tk+1∆n.

Thus, for every u ∈ V it holds that |e(t)(u)| 6
√

‖e(t)‖2∞ 6 λtk+1

√
∆n.

In Lemma 4.6 we show that the difference of the core contribution in consecutive rounds can
be approximated, for our purposes in Lemma 4.4, with y.

Lemma 4.6 (Lower bound on the core contribution). Let c(t) :=
∑k

i=2 λ
t
iαivi and let y(u) 6= 0

for every u ∈ V . If λk > 7λ2−5
2 , then, for every u ∈ V and for every t 6 T2, with T2 >

λk

2(1−λ2)
,

the following holds:

• sgn(c(t)(u)− c(t+1)(u)) = sgn(y(u));

•
∣∣c(t)(u)− c(t+1)(u)

∣∣ > λtk(1− λ2) |y(u)|.

Proof. Let us define di,j := λi − λj . Note that

c(t) − c(t+1) =

k∑

i=2

λti(1− λi)αivi =

k∑

i=2

(λk + di,k)
t(1− λ2 + d2,i)αivi

=

k∑

i=2

[λtk + (λk + di,k)
t − λtk](1 − λ2 + d2,i)αivi =

k∑

i=2

[λtk(1− λ2) + ci]αivi

= λtk(1− λ2)
k∑

i=2

αivi +
k∑

i=2

ciαivi = λtk(1− λ2)y +
k∑

i=2

ciαivi,

where in the last equality we applied Lemma 2.4 to get
∑k

i=2 αivi = y, and where we defined
ci := λtkd2,i + [(λk + di,k)

t − λtk](1− λ2 + d2,i). Using the definition of di,j, we get

ci = λtkd2,i + [(λk + di,k)
t − λtk](1− λ2 + d2,i)

= λtk(λ2 − λi) + [(λk + (λi − λk))
t − λtk](1− λ2 + (λ2 − λi))

= λtk(λ2 − λi) + (λti − λtk)(1− λi)

= λti(1− λi)− λtk(1− λ2).
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Note that mini[λ
t
i(1−λi)]−λtk(1−λ2) 6 ci 6 maxi[λ

t
i(1−λi)]−λtk(1−λ2), for every i ∈ {2, . . . , k}.

Since the minimum and the maximum are obtained for i = k and i = 2 respectively, we have
λtk(λ2 − λk) 6 ci 6 (λt2 − λtk)(1 − λ2). Let us call the positive and negative terms of y(u) as

y+(u) :=
∑

i:αivi(u)>0

αivi(u) and y−(u) := −
∑

i:αivi(u)<0

αivi(u).

Therefore, for each u ∈ V , it holds that

c(t)(u)− c(t+1)(u) > λtk(1− λ2)y(u) + λtk(λ2 − λk)y
+(u)− (λt2 − λtk)(1 − λ2)y

−(u), (11)

c(t)(u)− c(t+1)(u) 6 λtk(1− λ2)y(u) + (λt2 − λtk)(1− λ2)y
+(u)− λtk(λ2 − λk)y

−(u). (12)

In the following we look for a time T2 such that, for every t 6 T2 it holds that
∣∣∣c(t)(u)− c(t+1)(u)

∣∣∣ > λtk(1− λ2) |y(u)| .

Note that y(u) = y+(u)− y−(u). We consider two cases: y(u) > 0 and y(u) < 0.

Case y(u) > 0: We look for a time T2 such that, for every time t 6 T2, it holds that

λtk(λ2 − λk)y
+(u) > (λt2 − λtk)(1− λ2)y

−(u). (13)

Indeed, since y(u) > 0, we can use y+(u) > y−(u) to upper bound the right hand side of the
previous equation, so that Eq. (13) holds for every t that satisfies:

λtk(λ2 − λk) > (λt2 − λtk)(1− λ2) ⇐⇒
(
λ2
λk

)t

<
1− λk
1− λ2

,

i.e., for every t 6 T2, where

T2 :=
ln
(
1−λk

1−λ2

)

ln
(
λ2
λk

) =
ln
(
1 + λ2−λk

1−λ2

)

ln
(
1 + λ2−λk

λk

) .

Next, note that λ2−λk

1−λ2
6 5

2 whenever λk > 7λ2−5
2 . Hence, under the hypotheses of the lemma,

we can use that 1 + x > e
x
2 for every x ∈ [0, 52 ] and 1 + x 6 ex for every x. Thus:

T2 =
ln
(
1 + λ2−λk

1−λ2

)

ln
(
1 + λ2−λk

λk

) >

(
λ2−λk

2(1−λ2)

)

(
λ2−λk

λk

) =
λk

2(1 − λ2)
.

Plugging Eq. (13) into Eq. (11) we finally get

c(t)(u)− c(t+1)(u) > λtk(1− λ2)y(u) > 0. (14)

Case y(u) < 0: Proceeding along the same lines we obtain:

(λt2 − λtk)(1− λ2)y
+(u) < λtk(λ2 − λk)y

−(u) (15)

for every t 6 T2. Therefore, by combining Eq. (15) and Eq. (12) we obtain

c(t)(u)− c(t+1)(u) < λtk(1− λ2)y(u) < 0. (16)

Finally, by combining Eq. (14) and Eq. (16):

• sgn(c(t)(u)− c(t+1)(u)) = sgn(y(u));

•
∣∣c(t)(u)− c(t+1)(u)

∣∣ > λtk(1− λ2) |y(u)|.

18



5 Bipartite graphs

Assume G = (V,E,w) is an edge-weighted bipartite graph with V = V1 ∪ V2 and E ⊆ V1 × V2,
i.e. a graph with hidden partition identified by the bipartition. In this case, basic properties of
random walks imply that the Averaging dynamics does not converge to the global (weighted)
average of the values, but it periodically oscillates. In fact, in this case the transition matrix
P has an eigenvector χ = 1V1 − 1V2 with eigenvalue λn = −1 (as implied by Lemma 5.1).
Thus, the state vector is mainly affected by the eigenvectors associated to the two eigenvalues
of absolute value 1 (i.e., λ1 and λn). After a number of rounds of the dynamics that depends
on 1/λ2, we have that, in even rounds, all nodes in Vi (i = 1, 2) have a state that is close to
some local average µi; in odd rounds, these values are swapped (as shown in Eq. (17)).

If one were observing the process in even rounds,8 however, the states of nodes in V1 would
converge to µ1 and those of nodes in V2 would converge to µ2. Unfortunately, convergence
to the local average for nodes belonging to the same community does not eventually become
monotone (i.e., increasing or decreasing). This follows since the eigenvector associated to λ2
is no longer stepwise in general. However, we can easily modify the labeling scheme of the
Averaging dynamics to perform bipartiteness detection as follows: Nodes apply the labeling
rule every two time steps and they do it between the states of two consecutive rounds, i.e., each
node v ∈ V sets label(2t)(v) = 1 if x(2t)(v) > x(2t−1)(v) and label(2t)(v) = 0 otherwise. We
call this new protocol Averaging Bipartite dynamics.

We now show how Averaging Bipartite dynamics can perform bipartiteness detection.
Recall that we denote withW ∈ R

n×n the weighted adjacency matrix ofG. SinceG is undirected
and bipartite, the matrix W can be written as

W =

(
0 W1

W2 0

)
=

(
0 W1

W ⊺
1 0

)
.

Thus, the transition matrix of a random walk on G, i.e., P = D−1W where D−1 is a diagonal
matrix and Dii =

1
δ(i) , has the form

P =

(
0 P1

P ⊺
1 0

)
.

Lemma 5.1 shows that the spectrum of P is symmetric and it gives a relation between the
eigenvectors of symmetric eigenvalues.

Lemma 5.1. Let G = (V1 ∪V2, E,w) be an edge-weighted undirected bipartite graph with bipar-
tition (V1, V2) and such that |Vi| = ni. If v = (v1,v2)

T , with vi ∈ R
ni, is an eigenvector of P

with eigenvalue λ, then v′ = (v1,−v2)
⊺ is an eigenvector of P with eigenvalue −λ.

Proof. If Pv = λv then we have that P1v2 = λv1 and P ⊺
1 v2 = λv2. Using these two equalities

we get that Pv′ = −λv′. Indeed,

Pv′ =

(
0 P1

P ⊺
1 0

)(
v1
−v2

)
=

(
−P1v2
P ⊺
1 v1

)
= −λ

(
v1
−v2

)
.

The transition matrix P is stochastic, thus the vector 1 (i.e., the vector of all ones) is an
eigenvector associated to λ1 = 1, that is the first largest eigenvalue of P . Lemma 5.1 implies
that χ = 1V1 − 1V2 is an eigenvector of P with eigenvalue λn = −1.

As in Section 2, we write the state vector at time t using the spectral decomposition of P .
Let 1 = λ1 > λ2 > . . . > λn = −1 be the eigenvalues of P . We denote by 1 = v1,v2, . . . ,vn = χ

8Or, equivalently, in odd rounds.
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a family of n linearly independent eigenvectors of P , where each vi is the eigenvector associated
to λi. Thus, we have that

x(t) = P tx =

n∑

i=1

λtiαivi = α11+ (−1)tαnχ+

n−1∑

i=2

λtiαivi (17)

where αi =
〈D

1
2 x,D

1
2 vi〉

‖D
1
2 vi‖2

. The last equation implies that x(t) = P tx does not converge to some

value as t tends to infinity, but oscillates. In particular, nodes in V1 on even rounds and nodes
in V2 on odd rounds, converge to α1 + αn. Instead in the symmetric case, i.e., odd rounds for
nodes in V1 and even rounds for nodes in V2, the process converges to α1−αn. These quantities
are proportional to the weighted average of the initial values in the first and in the second
partition, respectively.

Theorem 5.2, whose proof follows, shows that Averaging Bipartite dynamics performs
bipartiteness detection in O(log n / log(1/λ2)) rounds. Note that, as in the case of volume-
regular graphs with two communities (see Remark 4), one single run of the dynamics identifies
the bipartition. Moreover, if log(1/λ2) = Ω(1), then the Averaging Bipartite dynamics
takes logarithmic time to find the bipartition.

Theorem 5.2. Let G = (V,E,w) be an edge-weighted bipartite graph with bipartition (V1, V2)
and maximum weighted degree ∆ = O(nK), for any arbitrary positive constant K. Then for ev-
ery time t > T , with T = O(log n / log(1/λ2)), the Averaging Bipartite dynamics truncated

at round t is a (O(n−
1
2 ), O(n−

1
2 ))-community-sensitive algorithm.

Proof. We assume that the labeling rule is applied between every even and every odd round
(conversely, the signs of the nodes in the analysis are swapped). Recall the definition of the
error contribution, namely e(t)(u) =

∑n−1
i=2 λ

t
iαivi(u). We compute the difference between the

state vectors of two consecutive steps by using Eq. (17), namely

x(2t) − x(2t+1) = α11+ (−1)2tαnχ+ e(2t) − α11− (−1)2t+1αnχ− e(2t+1)

= 2αnχ+ e(2t) − e(2t+1).

We want to find a time T such that for every t > T the sign of a node u ∈ V depends only on
χ(u), i.e., sgn(x(2t)(u) − x(2t+1)(u)) = sgn(αnχ(u)). Since |χ(u)| = 1, the last equation holds
whenever

2|αn| > |e(2t)(u)− e(2t+1)(u)|. (18)

We upper bound |e(2t)(u)−e(2t+1)(u)| by using Lemma 4.5, getting that |e(2t)(u)−e(2t+1)(u)| 6
2λ2t2

√
∆n. Therefore, with some algebra we get that Eq. (18) holds in every round t > T , where

T is defined as

T :=
log
(√

∆n/|αn|
)

2 log(1/λ2)
.

To conclude the proof, we provide a lower bound on |αn| showing that it is not too small, w.h.p.

Recall that αi =
〈D

1
2x,D

1
2 vi〉

‖D
1
2 vi‖2

and thus

αn =
〈D 1

2x,D
1
2χ〉

‖D 1
2χ‖2

=
1

vol(V )

∑

v∈V
δ(v)x(v)χ(v). (19)
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The lower bound then follows, with high probability. Indeed,

P

(
|αn| 6

1

∆n

)
6 P

(
|αn| 6

1

vol(V )

)
(a)
= P

(∣∣∣∣∣
∑

v∈V
δ(v)x(v)χ(v)

∣∣∣∣∣ 6 1

)
(b)
= O

(
1√
n

)
,

where in (a) we used Eq. (19) and in (b) we applied Theorem A.5. The thesis then follows from
the above bound on |αn| and from the hypothesis on ∆ = O(nK), for any arbitrary positive
constant K.

6 Discussion and Outlook

The focus of this work is on heuristics that implicitely perform spectral graph clustering, with-
out explicitely computing the main eigenvectors of a matrix describing connectivity properties
of the underlying network (typically, its Laplacian or a related matrix). In this perspective, we
extended the work of Becchetti et al. [BCN+17] in several ways. In particular, for k commu-
nities, [BCN+17] considered an extremely regular case, in which the second eigenvalue of the
(normalized) Laplacian has algebraic and geometric multiplicities k − 1 and the corresponding
eigenspace is spanned by a basis of indicator vectors. We considered a more general case in
which the first k eigenvalues are in general different, but the span of the corresponding eigenvec-
tors again admits a base of indicator vectors. We also made a connection between this stepwise
property and lumpability properties of the underlying random walk, which results in a class of
volume-regular graphs, that may not have constant degree, nor exhibit balanced communities.
We further showed that our approach naturally lends itself to addressing related, yet different
problems, such as identifying bipartiteness. Finally, in the paragraphs that follow we discuss
extensions to slightly more general classes than the ones considered in this work.

Other graph classes. Consider k-volume regular graphs whose k stepwise eigenvectors are
associated to the k largest eigenvalues, in absolute value. These graphs include many k-partite
graphs (e.g., regular ones), graphs that are “close” to being k-partite (i.e., ones that would be-
come k-partite upon removal of a few edges). Differently from the clustered case (Theorem 4.1)
some of the k eigenvalues can in general be negative.

Consider the following variant of the labeling scheme of the Averaging dynamics, in which
nodes apply their labeling rule only on even rounds, comparing their value with the one they
held at the end of the last even round, i.e., each node v ∈ V sets label(2t)(v) = 1 if x(2t)(v) >
x(2t−2)(v) and label(2t)(v) = 0 otherwise. Since the above protocol amounts to only taking
even powers of eigenvalues, the analysis of this modified protocol proceeds along the same lines
as the clustered case, while the results of Theorem 4.1 seamlessly extend to this class of graphs.

Outlook. Though far from conclusive, we believe our results point to potentially interesting
directions for future research. In general, our analysis sheds further light on the connections
between temporal evolution of the power method and spectral-related clustering properties of
the underlying network. At the same time, we showed that variants of the Averaging dynamics
(and/or its labeling rule) might be useful in addressing different problems and/or other graph
classes, as the examples given in Section 5 suggest. On the other hand, identifying k hidden
partitions using the algorithm presented in [BCN+17] requires relatively strong assumptions on
the k main eigenvalues and knowledge of an upper bound to the graph size,9 while the analysis

9As anecdotal experimental evidence suggests, the presence of a time window to perform labeling is not an
artifact of our analysis.
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becomes considerably more intricate than the perfectly regular and completely balanced case
addressed in [BCN+17]. Some aspects of our analysis (e.g., the aforementioned presence of a
size-dependent time window in which the labeling rule has to be applied) suggest that more
sophisticated variants of the Averaging dynamics might be needed to express the full power of
a spectral method that explicitely computes the k main eigenvectors of a graph-related matrix.
While we believe this goal can be achieved, designing and analyzing such an algorithm might
prove a challenging task.

Appendix

A Useful inequalities

Theorem A.1 (Extension of Chernoff Bounds [DP09]). Let X =
∑n

i=1Xi where Xi are inde-
pendent distributed random variables taking values in {0, 1} and let µ = E [X]. Suppose that
µL 6 µ 6 µH . Then, for 0 < δ < 1,

P (X > (1 + δ)µH) 6 exp

(
−δ

2

3
µH

)
,

P (X < (1− δ)µL) 6 exp

(
−δ

2

2
µL

)
.

Theorem A.2 (Cauchy-Schwarz’s inequality). For all vectors u,v of an inner product space
it holds that |〈u,v〉|2 6 〈u,u〉 · 〈v,v〉, where 〈·, ·〉 is the inner product.

Theorem A.3 (Cheeger’s inequality [Chu96]). Let P be the transition matrix of a connected
edge-weighted graph G = (V,E,w) and let λ2 be its second largest eigenvalue. Let |E(S, V \S)| =∑

u∈S, v∈V \S w(u, v) and hG = min
S:vol(S)6

vol(V )
2

|E(S,V \S)|
vol(S) . Then

1− λ2
2

6 hG 6
√

2(1− λ2).

Theorem A.4 (Berry-Esseen’s theorem [Ber41]). Let X1, . . . ,Xn be independent random vari-
ables with mean µi = 0, variance σ2i > 0, and third absolute moment ρi < ∞, for every

i = 1, . . . , n. Let Sn =
∑n

i=1Xi and let σ =
√∑n

i=1 σ
2
i be the standard deviation of Sn; let Fn

be the cumulative distribution function of Sn

σ ; let Φ the cumulative distribution function of the
standard normal distribution. Then, there exists a positive constant C such that, for all x and
for all n,

|Fn(x)− Φ(x)| 6 Cψ

σ
,

where ψ := maxi∈{1,...,n}
ρi
σ2
i

.

Theorem A.5 (Littlewood-Offord’s small ball [Erd45]). Let a1, . . . , an ∈ R be real numbers
with |ai| > 1 for every i = 1, . . . , n and let r ∈ R be any real number. Let {Xi : i = 1, . . . , n} be
a family of independent Rademacher random variables (taking values ±1 with probability 1/2)
and let X be their sum weighted with the ais, i.e., X =

∑n
i=1 aiXi, then

P(|X − r| < 1) = O
(

1√
n

)
.
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