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Abstract

Background: The conversion of soluble peptides and proteins into polymeric amyloid structures is a hallmark of many age-
related degenerative disorders, including Alzheimer’s disease, type II diabetes and a variety of systemic amyloidoses. We
report here that amyloid formation is linked to another major age-related phenomenon 2 prostate tissue remodelling in
middle-aged and elderly men.

Methodology/Principal Findings: By using multidisciplinary analysis of corpora amylacea inclusions in prostate glands of
patients diagnosed with prostate cancer we have revealed that their major components are the amyloid forms of S100A8
and S100A9 proteins associated with numerous inflammatory conditions and types of cancer. In prostate protease rich
environment the amyloids are stabilized by dystrophic calcification and lateral thickening. We have demonstrated that
material closely resembling CA can be produced from S100A8/A9 in vitro under native and acidic conditions and shows the
characters of amyloids. This process is facilitated by calcium or zinc, both of which are abundant in ex vivo inclusions. These
observations were supported by computational analysis of the S100A8/A9 calcium-dependent aggregation propensity
profiles. We found DNA and proteins from Escherichia coli in CA bodies, suggesting that their formation is likely to be
associated with bacterial infection. CA inclusions were also accompanied by the activation of macrophages and by an
increase in the concentration of S100A8/A9 in the surrounding tissues, indicating inflammatory reactions.

Conclusions/Significance: These findings, taken together, suggest a link between bacterial infection, inflammation and
amyloid deposition of pro-inflammatory proteins S100A8/A9 in the prostate gland, such that a self-perpetuating cycle can
be triggered and may increase the risk of malignancy in the ageing prostate. The results provide strong support for the
prediction that the generic ability of polypeptide chains to convert into amyloids could lead to their involvement in an
increasing number of otherwise apparently unrelated diseases, particularly those associated with ageing.
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Introduction

The reproductive role of the prostate gland decreases with

increasing age, leading to prostate tissue remodelling. This can be

accompanied by serious problems such as benign prostatic

hyperplasia, observed in 70% of men in their 60 s [1], and

prostate cancer [2]. The latter is the most common non-cutaneous

malignant neoplasm in men in Western countries [2]. The

incidence of prostate cancer is rising rapidly with ageing

population and now affects several millions men in Western

world. In USA alone ca. 190 000 new cases are reported yearly

and ca. 29 000 deaths have occurred from prostate cancer in 2008

according to the surveillance of the National Cancer Institute. In

Europe mortality rates from prostate cancer varies significantly

among different countries [3,4]. There is a marked contrast

between Mediterranean regions with below-average mortality and

the other states, where there are several canters of excess mortality,

including Sweden, Denmark, West of Germany, North of France,

Ireland and Netherlands. There is a lack of understanding of the

factors which may affect the increasing incidence of disease and its

obvious geographic pattern. It appears that prostate pathologies

may be a cost of longevity in the post-reproductive period. In

order to provide an insight into the potential causes of prostate

pathologies, we have carried out systematic and multidisciplinary

studies of common prostate inclusions denoted as corpora

amylacea [4], which are found in a significant proportion of

males over the age of 50.

There is a growing body of evidence indicating that inflammation

plays a crucial role in prostate pathogenesis, as it is found to be

associated with 40–90% of benign prostatic hyperplasia [1] as well
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as with 20% of all human cancers [2,5]. CAs are thought to be

linked clinically to asymptomatic prostate inflammation and are

often observed adjacent to the damaged epithelium and focal

inflammatory infiltrates [2,6,7]. CAs have been also detected in

55% of cases in a study of high-grade prostatic intraepithelial

neoplasia in specimens derived from radical prostatectomies [8].

The prostate CA depositions are often of a few millimetres in

diameter, but their bulk weight can in some instances constitute up

to a third of the weight of the prostate gland. The inclusions bodies

coined as CA have been also found in the brain [9], lung [10], ovary

[11] and uterus [10]. Their incidence is commonly associated with

ageing and they may be of a very diversified origin [9–13]. Brain

CAs have been observed much more frequently in patients suffering

from Alzheimer’s disease and other neurodegenerative conditions

rather then in normal ageing [9,14,15]. Indeed, it has been

suggested that in the development of CA in the brain, the initiating

process is most probably degenerative in nature, following the

synthesis of stress proteins [13,16].

Despite the high prevalence of the prostate CAs in later life [17],

this is still a highly disputed area with regard to their nature and

pathological significance in normal ageing and in prostate

pathologies resulting from benign or malignant changes. In

several early studies it was reported that prostatic CAs could

contain amyloid structures [17–19]; however CAs were also

viewed as calcified bodies, prostatic concretion or calculi, resulting

from calcification of precipitated prostatic secretion [20,21] or

arising from simple precipitation of salts normally presented in

prostatic fluid [22]. Localized amyloid deposits, which were not

defined as CA, have been also described in prostate, seminal

vesicles and in the lower urinary tract in some case studies on

human patients by using clinical, radiological, MRI and

immunohistopathological techniques [6,23,24]. The protein con-

tent of some prostate CA inclusions was investigated by

immunohistochemical staining using a panel of antibodies against

the major known in 1990s amyloidogenic proteins [10,17]; b2-

microglobulin was identified, but the antibodies to other proteins,

which were not known as amyloidogenic thus far, have not been

subjected to this examination. Besides this, the application of

immunostaining as a sole method to detect proteins proved to be

unreliable, especially if potential candidates may be present not in

the native state, but in their amyloid form [25].

In the present work we have characterized CA inclusions

extracted from seven radical prostatectomy specimens from

human patients diagnosed with prostate cancer. By using a range

of modern biochemical and biophysical techniques we have shown

that the pro-inflammatory calcium-binding proteins S100A8 and

S100A9, also known as calgranulin A and calgranulin B,

respectively, play an important role in their formation. The

S100A8 and S100A9 belong to a multigenic and multifunctional

family of about 20 members of calcium-binding S100 proteins

[26,27]. A heterodimer of S100A8/A9 has emerged as an

important pro-inflammatory mediator in acute and chronic

inflammation [28–30]. Increased levels of S100A8 and S100A9

have been detected in various human cancers, being abundantly

expressed in neoplastic cells and also in infiltrating immune cells

[29,31–33]. In particular, the enhanced secretion of S100A8 and

S100A9 was found in human prostate cancer cells [34,35].

Altogether, their expression patterns, potential cytokine-like

functions, up-regulation and regulation via signalling pathways,

including tumor-promoting RAGE receptor, suggest that

S100A8/A9 may play a key role in inflammation-associated

cancers [35,36]. Moreover, emerging evidence revealed a general

role for the S100A9 protein in the phenomenon of dystrophic

calcification, specifically in calcifying matrix vesicles and athero-

sclerotic plaques in the arterial wall [37]. It is interesting to note,

that nine out of ten immunohistochemically analyzed S100

proteins of the S100 family were also found in CA deposits in

normal human brain tissue [9]. The S100A8 and S100A9

molecules are characterized by a conformational variability,

adopting hetero and homo-dimeric, trimeric as well as tetrameric

complexes, that can also contribute to their multiple functionality

[38–41]. Although many functions have been identified and

proposed for S100A8/A9, their roles in various biological

processes still remain to be defined. For the first time we report

that S100A8/A9 proteins readily form amyloid structures both in

vivo and in vitro and they are present in the prostate CA inclusions

in their amyloid form.

Results

Protein identification in CA inclusions by mass-
spectrometry

In order to identify the specific proteins within CA, the samples

were solubilized in ice cold TE buffer and analyzed by liquid

chromatography coupled with electrospray ionization mass-

spectrometry (Table 1). In all the specimens examined the data

reveal the presence of 3 major proteins, S100A8, S100A9 and

human serum albumin. A several auxiliary and bacterial proteins

were also identified (Table 1 and 2), but these proteins varied

substantially from patient to patient and their quantities were too

low to be detected by subsequent gel electrophoresis with silver

staining.

Presence of bacteria in CA inclusions.
The CA samples from 5 patients were further analyzed for the

presence of bacterial DNA by the polymerase chain reaction

(PCR) method [42]. Bacterial 16s rDNA was detected in all

specimens (Figure S1). The PCR products were cloned and 5

clones from each specimen were sequenced. Altogether, 13 distinct

sequences (323–338 bps) were identified, 8 of which shared .98%

homology with Escherichia coli sequences, 3 corresponded to

uncultured bacterial clones and 2 showed ,98% homology to

published sequences. 4 out of 5 Escherichia coli rDNA positive

samples have been shown also to contain bacterial proteins

(Table 2).

Amyloid nature of the major proteinaceous components
of CA

The extracts from the CA samples were subjected to SDS-

PAGE electrophoresis and then to Western blot analysis with

polyclonal antibodies towards S100A8, S100A9 and human serum

albumin (Figure 1A). The S100A9 antibodies recognized 14 kDa

monomeric and 28 kDa dimeric species [38–40], the S100A8

antibodies recognized 10 kDa monomeric S100A8 (Figure 1A) in

3 out of 7 specimens analyzed. Both the S100A8 and S100A9

antibodies recognized a 48 kDa species, suggesting the presence of

hetero-tetramers of S100A8/A9 [38–40]. Human serum albumin

antibodies interacted with a ca. 50 kDa molecular species,

indicating the presence of truncated serum albumin (the molecular

weight of the intact protein is 67 kDa). However, aggregated

species with a high molecular weight, and which remained in the

stacking gels, did not interact with anti-serum albumin antibodies.

They were stained by both S100A8 and S100A9 antibodies,

indicating that these aggregates are composed of both these

proteins (Figure 1A).

The CA samples were also subjected to immunohistochemical

analysis, which revealed that they are stained positively with both

S100A8 and S100A9 antibodies (Figure 1B–1D). In the tissues
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adjacent to CA inclusions we observed positive foci of S100A8 and

S100A9, including the S100A8 and S100A9 positively stained

glandular epithelial cells and tissue macrophages, which infiltrate

inflamed glands (Figure 1B and 1C). The co-immunostaining of

CA inclusions with both antibodies towards S100A8 and S100A9

proteins is shown in Figure 1D with higher magnification. By

contrast, only weak staining with serum albumin antibodies was

observed at the edges of the CA inclusions and in the surrounding

tissues (Figure 1E), indicating that serum albumin, detected by

mass-spectrometry and Western blot analysis, came from the

surrounding tissues, and not from the CA bodies. All CA

specimens were also stained with anti-amyloid fibril antibodies

[43] (Figure 1F and 1G) and with Congo red dye, used as a marker

for the presence of the amyloid form of proteins (Figure S2). These

results demonstrate that the amyloid material constitutes a

significant mass of the CA specimens.

Structural characterisation of S100A8/A9 amyloid
formation

Atomic force microscopy (AFM) and transmission electron

(TEM) microscopy were used to examine the ex vivo CA extracts,

and they revealed the presence of a variety of highly heteroge-

neous aggregates (Figure 2). These aggregates include spherical

species of ca. 2–3 nm in height (Figure 2A), some of them

arranged into chain-like sequences, which were closely similar to

the oligomeric precursors of amyloid fibrils described for

numerous peptides and proteins [44–46]. Extensive networks of

fibrillar species of 4–8 nm in height and several microns in length

were observed (Figure 2B and 2O), characteristic of mature

amyloid fibrils. Assemblies of straight and rigid fibrils a few

hundred nanometres in length (Figure 2C) were present in all CA

specimens, as well as there were larger scale super-molecular

assemblies, reaching a few microns in length and up to ca. 500 nm

in thickness (Figure 2D).

In order to examine further the amyloidogenic properties of the

S100A8/A9 proteins we set out to produce their amyloid forms in

vitro. The S100A8/A9 complexes, extracted from granulocytes and

produced recombinantly from Escherichia coli, were each incubated

under the native conditions of pH 7.4 and 37uC with agitation and

at pH 2.0 and 57uC without agitation. The aliquots were collected

regularly for further examination during the period of 2 months;

the sub-millimolar concentrations of metal ions were present in the

samples after the purification procedure [40,47]. Under both

conditions the proteins were found to assemble into heterogeneous

fibrillar species. At pH 7.4, species resembling ex vivo oligomers

and short protofilaments were observed after 2 weeks of

incubation (Figure 2E). Upon further incubation for up to 8

weeks, thick bundles of fibrils with heights of 15–20 nm and a few

microns in length constituted the major population of fibrillar

aggregates (Figure 2F, 2G and 2P).

Table 1. Proteins identified in CA samples from the selected group of patients by liquid chromatography-electrospray ionization
mass spectrometry.

Protein
Accession
number

{Protein
size (kDa)

Number of identified unique peptides ({sequence coverage %) in following
patients (P).

P1 P2 P3 P4 P5 P6 P7

S100A8 IPI00007047 10 2 (24) 1 (11) 1 (11) 2 (24) 2 (24) 3 (31) 3 (31)

S100A9 IPI00027462 13 3 (36) 2 (25) 1 (13) 1 (13) 1 (13) 4 (31) 3 (26)

Human serum albumin IPI00745872 67 10 (24) 6 (14) 24 (60) 16 (38) 13 (31) # 5 (10)

a-1-acid glycoprotein 1 IPI00022429 21 # 1 (8) 2 (13) 2 (24) 1 (8) # #

Zinc-a-2-glycoprotein IPI00166729 32 # # 3 (16) 5 (21) 3 (12) # #

Hemoglobin subunit a IPI00410714 15 2 (14) # 1 (11) # # 1 (11) #

Hemoglobin subunit b IPI00654755 16 1 (9) # # # # # #

Cathepsin G IPI00028064 27 2 (9) # # # # 3 (11) #

Neutrophil defensin 1 IPI00005721 8 1 (12) # # # # # #

Myeloperoxidase IPI00007244 79 1 (2) # # # # 12 (10) #

Prostate-specific antigen IPI00010858 27 # # # # 1 (5) # #

Haptoglobin IPI00431645 31 # # 5 (25) # # # #

{Calculated after removing signal peptide from their precursor sequence. # No significant identification.
doi:10.1371/journal.pone.0005562.t001

Table 2. Escherichia coli (E. coli) proteins identified in CA samples by liquid chromatography-electrospray ionization mass
spectrometry.

Protein Accession number Organism Protein size (kDa)

Co-chaperonin GroES NP_290775 E. coli 10

Heat shock protein GrpE NP_289166 E. coli 22

ATP-dependent protease regulatory subunit CAA40846 E. coli 66

A single peptide from each protein was identified.
doi:10.1371/journal.pone.0005562.t002
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Figure 1. Immunoassays of CA proteinaceous components. (A) Western blots of CA extracts from three representative specimens with
S100A9, S100A8 and human serum albumin antibodies; the staining of aggregates in stacking gel with corresponding antibodies is shown in the right
column. (B and C) Immunostaining of CA and surrounding tissues with S100A8 and S100A9 antibodies, respectively, shown in brown; the positive
S100A8/A9-staining of CA (1), macrophages in stroma (2), macrophages in epithelium tissues (3) and the focal epithelial staining (4) are indicated by
numbers and arrows. (D) Co-immunostaining of CA inclusions with anti-S100A8 (shown in purple) and anti-S100A9 antibodies (shown in brown). (E)
Lack of CA immunostaining by human serum albumin antibodies (CA body does not display purple colour). (F and G) Immunostaining of the prostate
CA inclusions by antibodies towards amyloid fibrils shown in purple with low and high magnification. The magnification is indicated in left lower
corner of each image.
doi:10.1371/journal.pone.0005562.g001
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In the S100A8/A9 samples incubated at pH 2.0 without

agitation the spherical species and protofilaments also emerged

in 2 weeks (Figure 2H), and after 4 weeks the flexible fibrils with

height of ca. 4–5 nm and microns in length (Figure 2I and 2Q)

were observed together with straight and rigid fibrillar structures a

few hundred nanometres in length (Figure 2K), which resembled

the ex vivo species shown in Figure 2C. Large fibrillar bundles,

reaching ca. 80 nm in diameter (Figure 2J) and resembling the

superstructures shown in Figure 2D, were also regularly found in

specimens incubated for 4–6 weeks.

As ex vivo CA deposits were found to be calcified and to contain

zinc salts, we examined the effect of these ions on amyloid

formation by S100A8/A9. The S100A8/A9 amyloid protofila-

ments of ca. 2 nm height were assembled in the presence of ZnCl2
and in a suspension of Ca3(PO4)2 (Figure 2L and 2M), but not

when EDTA was added in solution even during 2 weeks of

incubation (Figure 2N). These species converted into the fibrillar

assemblies described above upon prolonged incubation, and again

no filamentous structures developed in the presence of EDTA.

Aggregation propensity profiles of S100A8/A9
The identification of the regions of peptide and protein

sequences, that are likely to be most important in promoting

amyloid formation, enables us to predict the behaviour of these

two proteins under given conditions. Intrinsic aggregation

propensity profiles [48,49] of monomeric S100A8 and S100A9

at pH 7.0 and pH 2.0, the conditions which we have used for in

vitro amyloid formation, and in their natively folded S100A8/A9

oligomeric complex were calculated (Figure 3). The overall

aggregation scores for S100A8 are 0.76 at pH 7.0 and 0.77 at

pH 2.0 and for S100A9, 1.04 and 0.65, respectively; the

aggregation score of S100A9 in particular is similar to the

aggregation scores of Ab(1–40) and Ab(1–42) peptides at pH 7.0,

which are equal to 0.97 and 0.94, respectively [48]. In the

S100A8/A9 oligomeric complex (references for the structures: pdb

1xk4 for S100A8 and pdb 1irj for S100A9) the aggregation profiles

(Figure 3) and the scores of 0.18 and 0.32 for S100A8 and

S100A9, respectively, are significantly reduced, indicating that

most of the aggregation-prone sequences are involved in the

oligomeric interactions. In both proteins the calcium-binding sites

with low affinity (amino acid residues 20–33 for S100A8 and 23–

36 for S100A9) and high affinity (amino acid residues 59–70 for

S100A8 and 67–78 for S100A9) are located in close proximity to

the segments that are highly aggregation-prone. As S100A8 and

S100A9 at neutral pH undergo a calcium-dependent oligomeri-

zation rather than amyloid formation [39] and as the intermolec-

ular interactions responsible for native state oligomerization and

aggregation can overlap, calcium-binding is likely to generate

conformational changes that, in addition to promoting native state

oligomerization, increase the aggregation process as demonstrated

above. Hence, we surmise that the evolution of a calcium-

dependent oligomerization required to generate the native

functional state, has come at the cost of a higher calcium-

dependent aggregation propensity.

Analysis of the mineral phases of CA
In order to determine the mineral components of CA inclusions,

the powdered CA samples were subjected to x-ray photoelectron

spectroscopy (XPS) analysis. A typical XPS spectrum of CA

(Figure 4A) reveals the presence of C, N, O, P, Ca, K, Zn and Mg

atoms. The binding energies derived from the Ca 2p3/2 (347.4 eV)

and P 2p3/2 (133.2 eV) lines and the Ca/P atomic ratio

(1.3:1.060.2) indicate the presence of calcium phosphate phases

as a major inorganic component of CAs. The existence of

hydroxylapatite (Ca5(PO4)3OH) (Figure 5A) and whitlockite

(Ca2(PO4)3) (Figure 5B) crystalline phases in various CA samples

was also confirmed by x-ray powder diffraction measurement. The

atomic concentrations of Zn (ca. 0.3 atomic %) and Mg (1.5–2.0

atomic %) indicate that these ions are incorporated into the

calcium phosphate phases to form crystalline compounds, in which

up to 20% of Ca cations are substituted by Zn or Mg. The atomic

concentrations and binding energies corresponding to the

photoelectron lines of N 1 s (NH, 400.0 eV, atomic concentration

5–6%), C 1 s (C2(C,H), 285.0 eV, atomic concentration ca.

13.5%; C2(O,N), 286.4 eV, atomic concentration ca. 5.7%;

COOH, 288.1 eV, atomic concentration ca. 5.6%) and O 1 s

(532.5 eV, atomic concentration ca. 6.9%) indicate that the

remaining component of CA is proteinaceous in nature (NIST

Standard Reference Database 20). A sample of CA was also

probed at 350uC in an ashing furnace, which resulted in a 32%

weight loss; this observation indicates that 30–40% of CA is

organic in nature. XPS spectra recorded for the CA sample from

different patients showed that the variation in the weight of

mineral and organic compounds was within 10–20% and the

variations in Zn content were within 0.1–0.5 atomic %. Consistent

with the XPS analysis, the Fourier transform infrared spectrum of

CA powder shows characteristic amide I–III bands of 1700–

1359 cm21, corresponding to peptide bonds in the proteinaceous

phase, and the broad bands at 1100–900 cm21 and 650–

500 cm21, which can be attributed to the vibration mode of the

phosphate group in calcium phosphate (Figure 4B).

Discussion

The results described in this study demonstrate that the prostate

CA inclusions are primarily composed of calcified amyloid forms

of the pro-inflammatory S100A8/A9 proteins. As prostatic fluid is

very rich in protein content [50,51], it is not unexpected that small

quantities of a range of other proteins were also found in the CA

inclusions, presumably being trapped in the aggregating and

growing deposits (Table 1 and 2). We have not detected b2-

microglobulin reported previously in CA deposits by immunohis-

tochemical analysis [17], even through we were able to detect

small traces of bacterial proteins due to the high sensitivity of the

liquid chromatography-electrospray ionization mass spectrometry

technique, utilized in this study. We have investigated here the CA

inclusions from the Scandinavian population; although probability

cannot be excluded that prostate CA deposits can be diversified in

their origin, depending on ethnic and geographical factors as well

as their clinical history. Extended epidemiological studies on the

Figure 2. AFM and TEM imaging of ex vivo and in vitro S100A8/A9 amyloid structures. (A) AFM images of ex vivo amyloid oligomers, chain-
like sequences are indicated by blue arrow; (B) ex vivo amyloid fibrillar network; (C,D) TEM images of ex vivo amyloid superstructures; (E) AFM images
of S100A8/A9 oligomeric assemblies produced at pH 7.4, 37uC with agitation after 2 week of incubation, (F,G) fibrillar bundles produced at pH 7.4,
37uC with agitation after 8 weeks; (H–K) heterogeneous types of S100A8/A9 amyloids produced at pH 2.0 and 57uC after 4 weeks of incubation with
residual content of Ca and Zn. S100A8/A9 amyloids produced at pH 2.0 and 57uC after 2 weeks of incubation in the presence of (L) 1 mg/ml
powdered Ca3(PO4)2 and (M) 10 mM ZnCl2; (N) aggregates observed in the presence of 50 mM EDTA. AFM cross-section analysis of amyloid
structures indicated by red lines in corresponding images (O from B; P from F and Q from I). Scale bars are shown in white and equal to 250 nm in all
AFM images.
doi:10.1371/journal.pone.0005562.g002
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male populations from different geographical and climate zones

would be of significance in addressing this issue as well as in

revealing the causative factors affecting the geographic pattern of

prostate cancer incidence discussed above [3,4].

In inflamed tissues adjacent to the CA inclusions we have

commonly observed S100A8 and S100A9 positive focal epithelial

cells and macrophages (Figure 1B and 1C). These activated cells

may contribute to the rise in the concentrations of S100A8 and

S100A9 at the sites of inflammation. As amyloid formation is a

concentration-dependent process, the increasing concentration of

aggregation-prone proteins in the sites of inflammation would

favour their amyloid assembly and deposition in the CA (Figure 6).

The finding of Escherichia coli DNA (Figure S1) and Escherichia coli

proteins (Table 2), in the CA deposits makes it possible to

hypothesize that CA formation may be associated with bacterial

infection, taking place in the prostate during the prolonged course

of their initiation and growth. Indeed, we and others have detected

Escherichia coli in the prostate tissues [52–54] Therefore the CA,

entrapping biological molecules such as Escherichia coli DNA and

proteins, may represent a snapshot of the prostate history with

regards to bacterial infection affecting the prostate gland during

their formation. As a CA grows and the inflammatory process

spreads, neighbouring acini are obstructed and the cycle can

continue.

Figure 3. Intrinsic aggregation propensity profiles. (A) S100A8 and (B) S100A9 aggregation propensity profiles denoted at pH 7.0 by red, at
pH 2.0 – by turquoise and in the natively folded S100A8/A9 complex – by blue lines, respectively. Calcium-binding sites are indicated by green, a-
helices – by black and b-strands – by blue bars, respectively.
doi:10.1371/journal.pone.0005562.g003
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Other amyloid diseases are known to be associated with chronic

inflammation, including Alzheimer’s and Parkinson’s diseases,

although it is far from clear, which role multifunctional

inflammatory mediators play in different pathophysiological

situations [55–59]. Growing evidence indicates that an abnormal

deposition of fibrillar Ab peptide in the brain can be accompanied

by inflammatory responses and increasing production of pro-

inflammatory cytokines in microglia. Amyloid formation by the

pro-inflammatory S100A8/A9 proteins, their deposition in the

ageing prostate and their association with local inflammatory

reactions, all emphasise the role of persistent inflammation in the

prostate pathogenesis. Growing CA deposits may induce further

degradation of epithelial tissue in the prostate gland, exacerbating

inflammation and, therefore, potentially contributing to neoplastic

transformation [2,5,7]. Studies on a larger number of prostate

samples, including both neoplastic and non-cancerous prostate,

would further clarify this issue and should generate a link between

the pathological cascade including infection, inflammatory

response and amyloid deposition with benign and malignant

transformations in the prostate gland.

The identification of bacterial DNA and proteins in CA,

including the highly amyloidogenic co-chaperonin GroES [60],

can be related not only to the fact that bacterial infection is a

contributory factor to inflammation, but suggests the potential role

of bacterial infection in amyloid depositions (Figure 6). Currently,

the link between amyloid formation and bacterial and viral

infections receives growing attention [61–63]. In particular, it has

been shown that semen-derived amyloid fibrils of the fragments of

prostatic acidic phosphatase drastically enhance HIV infection in

humans [64]. It would be important to examine whether the

amyloid structures of S100A8/A9 proteins in prostate may act as a

seed, promoting the amyloid formation of prostatic acidic

phosphatase fragments in prostatic fluid. It is not excluded that

the amyloid structures of bacterial origin such as amyloidogenic

chaperonin GroES may also contribute to amyloid seeding of

S100A8/A9 proteins themselves. Indeed, it has been demonstrat-

ed that curli from Escherichia coli and Sup35 from Saccharomyces

cerevisiae can exert amyloid-accelerating properties in the murine

serum AA amyloidosis [65]. The biochemical link between viral

infection and the development of the Alzheimer’s disease

pathological features has also been examined [62,63] and the

authors suggested that herpes simplex virus type 1 can directly

contribute to the development of senile plaques. While the amyloid

fibrils in bacteria, fungi insects and in de novo design were found to

fulfil useful functions [66,67], amyloidogenesis in general still

requires tight regulation to avoid amyloid toxicity. In most cases

amyloid fibrils are detrimental in the host, leading to pathologies.

Due to their high potency in seeding and cross-seeding, the

misfolding of proteins into an amyloid state can be a general origin

of infectivity, which was highlighted in the phenomenon of

amyloid formation and propagation by prion proteins [68].

The hetero-oligomeric complexes of S100A8/A9 are charac-

terised by significant stability and protease resistance comparable

to these of prions [41]. In the protease rich environment of

prostate gland, and especially at sites of inflammation, proteases

are present at even higher levels than in other tissues. Protease

resistance of the S100A8/A9 proteins could favour their

accumulation and conversion into amyloid structures in prostate

tissue. The bundles of amyloid fibrils of S100A8/A9 proteins, that

are formed both in vivo and in vitro (Figure 2), are amongst the

largest super-molecular species reported for amyloid assemblies

[69]. The lateral association or thickening of the fibrils is likely to

be a contributory factor to their stability in the prostate gland.

Indeed, it has been suggested that the various functions of the

S100A8/A9 hetero and homo-oligomers may be regulated by

their differential protease sensitivity [41]. If so, the amyloid

structures formed by the S100A8/A9 will be at the extreme end of

the scale of resistance to proteolysis.

A recently reported function of S100A9 is associated with the

promoting calcification [37], suggesting that this protein may also

play a role in dystrophic calcification of CA deposits. The mineral

content of CA was rather uniform in all the patients we studied

(Figure 4A), suggesting that calcification is a regulated process and

therefore could be influenced by the activities of S100A8/A9. In

our in vitro studies we have shown that the formation of the

amyloid structures of the S100A8/A9 proteins is promoted by the

presence of calcium and zinc. The experimental observations were

also supported by computational analysis of aggregation propen-

sity profiles, demonstrating that the aggregation-prone regions are

located in close proximity to the calcium- binding sites in both

proteins. In the case of the S100A8/A9 proteins calcium-binding

affects the competitive processes of protein folding and aggrega-

Figure 4. Chemical content of CA inclusions. (A) XPS survey and (B) FTIR spectra of powdered prostate CA material.
doi:10.1371/journal.pone.0005562.g004
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Figure 5. X-ray powder diffraction patterns of CA inclusions. (A) Hydroxylapatite 2 (Ca5(PO4)3OH) and (B) whitlockite 2 (Ca2(PO4)3)
crystalline phases of CA.
doi:10.1371/journal.pone.0005562.g005
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tion, while proteins themselves influence the process of calcifica-

tion, which together may produce a synergistic effect, leading to

the further enlargement of CA deposits (Figure 6).

Thus, the direct involvement of pro-inflammatory S100A8/A9

proteins in CA biogenesis, which we reported here for the first

time, emphasizes their role in the age-dependent prostate

remodelling and accompanied ailments (Figure 6). The discovery

of the link between amyloid formation and prostate pathogenesis

supports the paradigm that the generic ability of polypeptides to

assembly into this stable form as an alternative to the native state

[70,71] is likely to result in its involvement in an increasing

number of age-related diseases. The disorders as apparently

unrelated as Alzheimer’s and Parkinson’s diseases and prostate

pathologies can all be linked by the common phenomenon of

amyloid formation. In all these diversified diseases inflammation

can be an important causative factor in amyloid depositions. This

Figure 6. Inflammation-dependent pathways of the prostate CA formation. Infection, inflammation and amyloid self-assembly of S100A8/
A9 proteins in the presence of calcium or/and zinc are important factors leading to CA depositions in the prostate gland.
doi:10.1371/journal.pone.0005562.g006

Amyloidosis in Prostate

PLoS ONE | www.plosone.org 10 May 2009 | Volume 4 | Issue 5 | e5562



conclusion gives further support to the strategies aiming at

averting inflammation in order to treat and possibly prevent

amyloid formation and also potential neoplastic developments in

prostate.

Materials and Methods

CA specimens
CA specimens were dissected from the prostate tissue from

seven patients undergoing radical prostatectomy due to prostate

cancer. All patients gave their written informed consent and the

collection of human tissues was approved by the Umeå research

ethics board. The specimens were washed in sterile PBS and

stored at 280uC.

Protein samples
Human S100A8/A9 proteins were isolated from granulocytes as

a heterodimer and stored in 20 mM Tris, 1 mM DTT, pH 7.2

[47]. Recombinant human S100A8 and S100A9 were expressed in

Escherichia coli, their complex was produced as described previously

[40] and they were kept in 20 mM Hepes, 140 mM NaCl, pH 7.4.

The amyloid was produced by incubation of both purified from

granulocytes S100A8/A9 complexes at 3.5 mg /ml and recom-

binant S100A8/A9 complexes at 2.3 mg/ml in 50 mM HCl,

pH 2.0, 57uC without agitation and in the original buffers at

pH 7.2 (pH 7.4), 37uC with agitation. All reagents were purchased

from Sigma, unless stated otherwise.

CA extractions
CA specimens were incubated in undiluted methanol at 4uC

overnight, washed 3 times and ground in a glass homogenizer,

adding ice cold TE buffer (20 mM Tris-HCl, 10 mM EDTA,

pH 7.5) [72]. The homogenized material was centrifuged at

15000 g in a mini-centrifuge (Eppendorf). The pellet was re-

suspended 3–4 times in TE buffer, homogenized through a

21gauge needle of 2 ml syringe and centrifuged again. TE buffer

was sterilized and only sterile needles and syringes were used

during the extraction procedures. All supernatants containing

proteins were collected and stored at 220uC.

CA extract tryptic digestion and peptide analysis by
liquid chromatography-electrospray ionization mass
spectrometry

CA extracts in 0.2 M NH4HCO3, 15 mM DTT were incubated

at 95uC for 15 min, cooled to room temperature, mixed with 8 M

urea and incubated for 1 h. Subsequently, the alkylation reaction

was carried out at 37uC for 30 min in darkness in the presence of

80 mM iodoacetamide. Urea concentration was reduced to 0.8 M

by diluting with 0.2 M NH4HCO3. Trypsin was added at 1:40

enzyme-to-substrate ratio and tryptic digestion was carried out

overnight at 37uC. It was stopped by adding formic acid to the

final concentration of 0.5%. The resulting peptides were

lyophilized and re-suspended in 1% TFA. Then they were

desalted by using a Poros 50 reverse-phase R2 material

(PerSeptive Biosystems) prepared in a GELoader tip (Eppendorf)

as described previously [73]. The peptides were eluted from the

R2 micro-column by using 80% acetonitrile with 0.1% TFA,

lyophilized and re-suspended in 0.1% formic acid.

Subsequently, the tryptic peptides were subjected to a reversed-

phase ultra-performance nano ACQUITY UPLCTM system

(Waters). Each peptide sample was concentrated in a C18 trap

column with symmetry of 180 mm620 mm, 5 mm and washed

with 5% acetonitrile and 0.1% formic acid at 15 ml/min speed for

1 min. The samples eluted from the trap column were subjected to

a C18 analytical column (75 mm6100 mm, 1.7 mm) at 600 nl/

min flow speed, using 0.1% formic acid as a solvent A and 0.1%

formic acid in acetonitrile as a solvent B in a gradient. The

following gradients were applied: linear from 0 to 40% B in

25 min, linear from 40 to 80% B in 1 min, isocratic at 80% B in

1 min, linear from 80 to 5% B in 1 min and isocratic at 5% B for

7 min.

The eluting analytes were sprayed into a Q-Tof UltimaTM mass

spectrometer (Waters) with the capillary voltage set to 2.6 kV and

cone voltage to 40 V. The instrument was calibrated using MS/

MS fragments of GluFib peptide (Sigma Aldrich) and the samples

offset calibration was performed as described previously [74]. The

acquisition of MS/MS spectra was performed with an automated

data-directed switching between the MS and MS/MS modes

using the instrument software (MassLynx V4.0 SP4). The three

most abundant signals of a survey scan (400–1300 m/z range,

0.87 s scan time and 0.13 s inter-delay) were selected by charge

state, and collision energy was applied accordingly for sequential

MS/MS fragmentation scanning (50–2000 m/z range, 0.9 s scan

time, 0.1 s inter-delay). ProteinLynx Global Server software

(V2.2.5) was used to convert raw data to peak lists for database

searching.

The negative control measurements with the ice cold TE buffer

and 0.2 M NH4HCO3, 15 mM DTT buffer used for dissolving

CA material were performed. These solutions were subjected to

the same procedures as the CA samples to exclude the general

background level of contaminations.

Protein identification by database analysis
Proteins were identified by a local version of Mascot search

program V2.1.04 and Mascot Daemon application V2.1.6 (Matrix

Science Limited, http://www.matrixscience.com), using human

sequence library in the International Protein Index (IPI) database

(IPI_human_20080409, 72,340 sequences). The following settings

were used for the database search: trypsin-specific digestion with

one missed cleavage allowed, carbamidomethylated cysteine set as

fixed modification, oxidized methionine and deamidation in

variable mode, peptide tolerance of 60 ppm and fragment

tolerance of 0.1 Da. Peptides with Mascot ion scores exceeding

the threshold for statistical significance of p,0.05 were selected

and also re-processed manually to validate their significance.

Western blot analysis
Gel electrophoreses were performed under reducing conditions

by using 8–25% Phast gradient gels. Pre-stained molecular weight

‘‘SeeBlue’’ standards (Invitrogen) were included in each experiment.

In Western blots, proteins were electro-transferred to nitrocellulose

membranes by a Phast-system equipment (GE Healthcare). Non-

specific reactivity was blocked by 5% non-fat milk in Tris-buffered

saline, containing 0.05% Tween 20 (TBS-T) at 37uC for 1 h,

washed 365 min with TBS-T and incubated with polyclonal rabbit

anti-human S100A8, S100A9 (Santa Cruz) and serum albumin

(Sigma) antibodies at 4uC overnight. The membranes were washed

365 min with TBS-T and incubated in the presence of horseradish

peroxidase conjugated with anti-rabbit IgGs (GE Healthcare) at

1:5000 dilution in TBS-T containing 5% non-fat milk at 37uC for

1 h. The blots were washed 3615 min with TBS-T and the

immuno-reactive proteins were detected by using the enhanced

chemiluminescence kit (GE Healthcare).

Immunohistochemistry
Archival prostate samples from patients with prostate cancer

were dewaxed in xylene and dehydrated in ethanol series. After
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antigen retrieval in 10 mM Tris, pH 9.0 they were incubated with

rabbit polyclonal anti-human S100A8, S100A9 (Santa Cruz) and

serum albumin antibodies (Sigma). The CA samples were also

stained with anti-amyloid fibril antibodies [43]. The immune

reactivity was detected by an anti-rabbit IgG peroxidase Immpress

reagent kit, followed by a Vector VIP or Vector DAB peroxidase

substrate kits (Vector Laboratories Inc.). Negative controls were

performed by substituting the primary antibodies with PBS or

irrelevant antibody.

16s rDNA PCR and sequencing
CA aseptically removed from fresh prostatectomy samples were

washed in sterile PBS prior to DNA extraction. DNA was purified

by using E.Z.N.A. Blood DNA kit 11 (Omega Bio-TEK). 16s

rDNA PCR and cloning were performed as described previously

[42]. Plasmids were purified by using the QIAprep Spin miniprep

kit (Qiagen) and sequenced by using the T3 primer (MWG

Biotech AG). Database sequence matches to listed organisms were

used to define a phenotype, if the closest match shared .98%

similarity.

Sensitivity of the PCR corresponded to 200 colony forming

units/reaction, which is significantly higher than the general

background level. Stringent anti-contamination precautions to

control PCR contamination were undertaken in the laboratory

environment. The PCR laboratory space has complied or

exceeded standard recommendations for PCR research, including

isolated setup areas with dedicated pipettes, small reagent and

primer aliquots, and use of aerosol-resistant pipette tips. The

buffer solutions involved in the study were subjected to PCR

analysis as negative controls to exclude potential reagent or

laboratory contamination.

Atomic force and electron microscopy
AFM measurements were performed on a PICO PLUS 5500

microscope (Agilent) as described previously [75]. The structural

dimensions were determined by cross-section analysis in height

images. TEM samples were applied to Formvar-coated nickel

grids (400 mesh), stained with 2% uranyl acetate and viewed in a

Philips CEM 100 (FEI) microscope. Fibrillar dimensions were

obtained directly from the micrographs.

Optical microscopy
The CA samples were stained with Congo red as described

previously [76]. The samples were analysed under polarised light

in an Olympus SZX10 stereo microscope (Olympus America Inc.)

equipped with 206 GSWH20X eyepieces under 402fold

magnification.

Protein aggregation propensity profiles
Intrinsic aggregation propensity profiles of S100A8/A9 proteins

were calculated as described previously [48,49] by using the pdb

files of 1xk4 for S100A8 and 1irj for S100A9 from the Protein

Data Bank.

XPS spectrometry
XPS spectra were recorded using a Kratos Axis Ultra DLD

electron spectrometer (Kratos Analytical) equipped with a

monochromated Al Ka x-ray source operating at 150 W, a hybrid

lens system including magnetic lenses and with a charge

neutraliser [77]. The CA samples were instantly frozen and

transferred to the analysis chamber with 2–461027 Pa base-

vacuum, 2150uC. The wide-scan spectra (160 eV pass energy)

and high resolution spectra of all elements (20 eV pass energy)

were acquired. The binding energy scale was referenced to the C

1 s line of aliphatic carbon set at 285.0 eV. The spectra were

processed by using a Kratos software. X-ray powder diffraction

measurements were conducted on a D8 Advance powder

diffractometer (Bruker).

Fourier transform infrared spectroscopy
The infrared spectra of solid samples were collected using a

diffuse reflectance cell (Harrick Scientific) and a IFS-66V/S

spectrometer (Bruker). 300 spectra at a resolution of 4 cm21 were

averaged over 4000–370 cm21 range.

Thermogravimetry
Prior to burning the CA sample was subjected to UV/ozone

radiation for 10 min and then was burned at 350uC in an ashing

furnace (Carbolite) for 4630 min. The gradually decreasing

weight of CA was measured by using AE100 microbalances

(Mettler Toledo) with an accuracy of six digits after each time

interval until the weight remained constant.

Supporting Information

Figure S1 PCR analysis of CA inclusions. Escherichia coli 16s

rDNA detected in five patient specimens are shown in lines (1–5),

negative control - in line (6), wX174 RF DNA marker - in line (7).

Found at: doi:10.1371/journal.pone.0005562.s001 (0.14 MB JPG)

Figure S2 Congo red staining of CA. CA inclusions were stained

with Congo red and observed in polarized microscope with 40-fold

magnification.

Found at: doi:10.1371/journal.pone.0005562.s002 (0.09 MB JPG)
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