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Abstract  21 

We present results from water-channel experiments on neutral turbulent flows over arrays 22 

of cubical obstacles modelling idealised urban canopies with three different plan area 23 

fractions 𝜆𝑃 (0.1, 0.25 and 0.4). Attention is concentrated on the analysis of the vertical 24 

profiles of the Eulerian (𝑇𝐸) and Lagrangian (𝑇𝐿) time scales of the turbulence above the 25 

canopy. The results show that both the streamwise and vertical components of 𝑇𝐿  increase 26 

approximately linearly with height above the obstacles, leading support to Raupach’s linear 27 

law. The comparison with the Lagrangian time scales over two-dimensional roughness in the 28 

regimes of skimming flow and wake interference shows that the three-dimensionality of the 29 

canopy increases the streamwise 𝑇𝐿  while decreasing its vertical counterpart. Furthermore, 30 

the assumption usually adopted on flat terrain that 𝑇𝐿/𝑇𝐸  is proportional to the inverse of 31 

the turbulence intensity holds true for all the three arrays. A good agreement has also been 32 

found between the eddy viscosities (𝐾𝑇) estimated by applying Taylor’s theory and the 33 

classical first order closure relating the momentum flux to the velocity gradient. The results 34 

also show that 𝐾𝑇  obeys Prandtl’s theory, particularly for 𝜆𝑃 = 0.25 and 0.4. 35 

 36 

Keywords Building • Eddy diffusivity • Feature tracking • Raupach law • Urban canopy • 37 

Water channel 38 

 39 
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1 Introduction 41 

In a previous paper (Di Bernardino et al. 2017 [1], henceforth D17), we presented 42 

detailed measurements on Lagrangian and Eulerian statistics of the velocity field 43 

obtained from a water-channel experiment mimicking the wind flow above idealised 44 

two-dimensional (2D) urban canyons. One of the objectives was to quantify the 45 

Eulerian (𝑇𝐸) and Lagrangian (𝑇𝐿) time scales of the turbulence as well as to 46 

investigate their dependence on the aspect ratio of the canyon, AR=W/H, as the latter 47 

is the ratio of the street width (W) to the height (H) of the canopy. Such a study is 48 

important since 𝑇𝐿 is one of the main parameters required by Lagrangian models of 49 

turbulent dispersion [2]. These can be easily coupled with common Reynolds-50 

averaged Navier-Stokes (RANS) models that, however, do not compute 𝑇𝐿, which is 51 

generally estimated from parametric laws applicable only over flat terrain. 52 

The Lagrangian time scale of the turbulence is defined as the time integral of the 53 

Lagrangian autocorrelation function of the velocity, 𝜌𝐿(𝜏), viz.: 54 

 55 

 𝑇𝐿 = ∫ 𝜌𝐿(𝜏)𝑑𝜏
∞

0
 (1) 56 

 57 

and gives a rough measure of the time taken by a fluid particle to become decorrelated 58 

with its initial state (here  is the time lag.). D17 found that within the inertial layer 59 

(also known as to the constant flux layer, CFL) over flat terrain, both the streamwise 60 

and vertical components of the Lagrangian time scales, 𝑇𝑢
𝐿 and 𝑇𝑤

𝐿, follow Raupach’s 61 

(1989) [3] linear law, originally derived for one-dimensional turbulent flows: 62 

 63 

                                                      
𝑇𝑤

𝐿𝑢∗,𝑟𝑒𝑓

𝛿
=

𝑘

([𝜎𝑤/𝑢∗]𝑟𝑒𝑓)2
 
𝑧

𝛿
                                                  (2) 64 

 65 

where k=0.41 is the von Karman constant, z the height, 𝛿 the boundary-layer height, 66 

𝑢∗,𝑟𝑒𝑓 and 𝜎𝑤,𝑟𝑒𝑓 the reference values (i.e. averaged within the CFL) of the friction 67 

velocity and the standard deviation of the vertical velocity component, respectively. 68 

The expression for 𝑇𝑢
𝐿𝑢∗,𝑟𝑒𝑓/𝛿 is identical to Eq. (2) but with 𝜎𝑢,𝑟𝑒𝑓 in place of 𝜎𝑤,𝑟𝑒𝑓, 69 



4 
 

where the former is the reference value of the standard deviation of the streamwise 70 

velocity component. Equation (2) was obtained by matching the expressions of the 71 

linear growth with height of the eddy diffusivity of momentum based on the Prandtl 72 

mixing-length theory, 𝐾𝑇 = 𝑘𝑢∗𝑧, and the far-field eddy diffusivity, 𝐾𝑇 = 𝜎𝑤
2𝑇𝑤

𝐿 [4]. 73 

D17 found a reasonable agreement between 𝑇𝑢
𝐿, 𝑇𝑤

𝐿 and Eq. (2) also for their two-74 

dimensional canopy flows, except for 𝑇𝑢
𝐿 when AR=2 (wake-interference regime, see 75 

below), which differed considerably from 𝑇𝑤
𝐿 for 𝑧/𝐻 ≲ 2, i.e. within the roughness 76 

sublayer (RSL) and the lower part of the CFL. The former is the portion of boundary 77 

layer immediately above the canopy where the flow is non-homogenous and strongly 78 

influenced by the roughness elements constituting the canopy (see e.g. [5]). In that 79 

case, H can be used as length scale in place of  and the distance from the bottom on 80 

the right-hand term of the equation is lowered by the displacement height, d. Note 81 

that Raupach’s law is a simple expression whose terms can be obtained from routine 82 

one-point measurements. 83 

Due to the growing interest of the scientific community in predicting wind flow and 84 

pollutant dispersion in more common, three-dimensional (3D) urban canopies – see 85 

recent experimental (e.g. [6-9]) and numerical (e.g. [10-13]) works on the subject –, 86 

we used the same water-channel apparatus described by D17 to investigate the 87 

turbulent flow above staggered arrays of cubical obstacles. Three experimental 88 

arrangements are considered for the analysis as a function of the plan area fraction, 89 

𝜆𝑃 = 𝐴𝑃/𝐴𝑇, i.e. the ratio of the plan area of roughness elements to the total surface 90 

area. In particular, the first arrangement, 𝜆𝑃 = 0.1, refers to the isolated-flow regime 91 

(𝜆𝑃 < 0.13), where the interaction between individual building wakes is weak; the 92 

second, 𝜆𝑃 = 0.25, corresponds to the wake-interference regime (0.13 < 𝜆𝑃 < 0.35), 93 

in which the spacing between buildings is close enough that the wakes strengthen 94 

each other; while the third, 𝜆𝑃 = 0.4, belongs to the skimming flow regime, i.e. when 95 

the obstacles are so packed that the outer flow skips over their tops (𝜆𝑃 > 0.35) (see 96 

e.g. [14]). 97 

Whilst the wake-interference regime has been widely studied in the literature, in 98 

particular the case 𝜆𝑃 = 0.25, which is practically assumed as an archetype for 3D 99 
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building arrays ([15-18], among others), less attention has been paid to the other two 100 

regimes (see e.g. [19-21]), even though both belong to the range of plan area fractions 101 

typically found in real cities [22]. After a brief description of the experimental setup 102 

and data analysis (Sec. 2), the paper reports Lagrangian and Eulerian statistics of the 103 

flow (Sec. 3), paying also attention to the differences or similarities with the 2D case 104 

investigated by D17. In addition, information is given on an additional parameter of 105 

interest for dispersion processes such as the turbulent diffusivity of momentum. The 106 

final remarks are drawn in Sec. 4. 107 

 108 

2 Experimental Setup and Data Analysis 109 

The experiments were conducted in the recirculating water channel of the Hydraulic 110 

Laboratory of the University of Rome – La Sapienza, Italy. Since the velocity 111 

measurement technique and data processing have already been described in D17 and 112 

[23], only the salient features of the experimental setup are briefly reviewed here. 113 

The channel (7.4 m long) has a rectangular cross section 0.35 m high and 0.25 m wide. 114 

To observe the flow visually, the lateral sides of the tank are made of transparent 115 

glass. The flume is fed by a constant head reservoir. The neutral atmospheric 116 

boundary layer is recreated increasing the roughness of the channel bottom via 117 

randomly distributed pebbles with average diameter ≈ 5 mm. The water depth and 118 

the free-stream velocity are 0.16 m and U=0.34 m s-1, respectively. The roughness 119 

length of the surface, 𝑧0, is estimated by fitting the usual logarithmic law form of the 120 

velocity, 𝑢̅ = 𝑢∗,𝑟𝑒𝑓𝑘
−1 ln [(𝑧 − 𝑑)/𝑧0], to the measurements in the constant flux 121 

region, where 𝑢∗,𝑟𝑒𝑓 = 0.017 ms−1 is the reference friction velocity and the bar 122 

indicates the time average. A satisfactory fit is found for d=0 and 𝑧0 = 0.3 mm, i.e. 123 

nearly 0.06 times the average pebble diameter (see D17 for details regarding the 124 

characteristics of the approaching flow). 125 

The roughness Reynolds number, 𝑅𝑒𝜏 = 𝑢∗,𝑟𝑒𝑓𝐻/, ranges from 300 to 360 (𝜈 =126 

10−6 m2s−1 is the kinematic viscosity of water) and it is well above the critical value, 127 

ensuring that both the large-scale turbulence and the mean flow can be assumed as 128 

being independent of Reynolds [24].  129 
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Each array of obstacles is designed by means of uniform, sharp-edged cubes with 130 

height H=15 mm glued onto the channel bottom in staggered pattern (Fig. 1). Details 131 

of the three arrays are given in Tab. 1 and Fig. 2. 132 

 133 
 𝜆𝑃 = 0.1 𝜆𝑃 = 0.25 𝜆𝑃 = 0.4 

Element distance (mm, see Fig. 2) 32 15 9 

Unit size (mm2) 47 30 24 

Table 1 Geometrical characteristics of the three building arrays 134 

 135 

In order to analyse both the Eulerian and Lagrangian characteristics of the flow, 136 

two different acquisition setups were considered. In particular, the Eulerian variables 137 

were measured on a rectangular area lying in the vertical x–z plane (0.11 m long and 138 

0.055 m high), parallel to the streamwise direction and passing through the centre of 139 

the channel (see green lines in Fig. 2). The measurement area was illuminated by a 140 

thin light sheet (2 mm thick) from a 5 W green laser and the water was seeded with 141 

neutrally buoyant particles (2 m in diameter), assumed as being transported 142 

passively by the flow. Each experiment consisted of a set of N=10,000 images acquired 143 

by means of a video camera (250 Hz, 1280x1024 pixels in resolution). 144 

Velocity fields were obtained using a feature tracking technique, which recognises 145 

particle trajectories and deduces velocities from particle displacements between 146 

successive frames. 147 

 148 

Velocity evaluation: 149 

The feature tracking algorithm is based on the assumption of the invariance of 150 

particle images (the so-called features) between successive frames (Cenedese et al., 151 

2005). As a consequence, the tracking problem can be posed as the minimization of 152 

the residue (Lucas and Kanade, 1981): 153 

𝜀 = ∫ (
𝜕𝐼(𝒙, 𝑡)

𝜕𝑡
+ ∇𝐼(𝒙, 𝑡)𝒖)

2

𝑑𝑊

𝑊

 154 

where I indicates the light intensity on the image and u the particle velocity. In 155 

order to  to be a minimum, the derivatives of the residue with respect to the velocity 156 
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components must be set to zero, thus yielding a set of two equations where the two 157 

velocity components are the unknowns: 158 

𝐺𝒖 = 𝒆 159 

where: 160 

𝐺 = ∫

[
 
 
 
 (

𝜕𝐼

𝜕𝑥
)
2

(
𝜕𝐼

𝜕𝑥

𝜕𝐼

𝜕𝑦
)

(
𝜕𝐼

𝜕𝑥

𝜕𝐼

𝜕𝑦
) (

𝜕𝐼

𝜕𝑦
)

2

]
 
 
 
 

𝑊

𝑑𝑊 161 

and 162 

𝒆 = ∫
𝜕𝐼

𝜕𝑡
[
 
 
 
𝜕𝐼

𝜕𝑥
𝜕𝐼

𝜕𝑦]
 
 
 

𝑑𝑊

𝑊

 163 

Particle recognition: 164 

The tracking problem, i.e. the above set of linear equations, can be solved reliably 165 

provided that both the eigenvalues of G, computed over the interrogation window W, 166 

are about of the same order of magnitude and not too small compared to the image 167 

noise level. In practice, we use a threshold criterion on the second (minimum) 168 

eigenvalue: firstly we compute the eigenvalues of G for every possible window over 169 

the image; secondly we look for local maxima of the minimum eigenvalue and, thirdly, 170 

we accept a window, W, as a valid particle (a "good feature to track" (Shi and Tomasi, 171 

1994)) provided the second eigenvalue, i) is a local maximum; ii) exceeds an assigned 172 

threshold value, iii) there are no other local maxima with higher value within an 173 

assigned radius, rmin (chosen to be larger than the typical particle size). As a matter of 174 

fact, high eigenvalues are found in the region of the image the where spatial gradients 175 

of the luminosity are elevated. Therefore, local maxima corresponded, in our images, 176 

to the bright spots left by the seeding particles. The third condition avoids multiple 177 

recognitions of the same particle. 178 

Trajectory recognition: 179 

The particle recognition and tracking procedures described above where 180 

combined to recognize particle trajectories using the typical strategy of PTV 181 

algorithms. At each instant, the next position of the existing trajectories was predicted 182 
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using the velocity evaluation algorithm described above. The position is validated by 183 

means of a minimum eigenvalue threshold criterion. After the existing trajectories are 184 

continued, the present image is searched for new features using the particle 185 

recognition algorithm. In order to avoid multiple recognitions of the same particle, a 186 

new feature is accepted only if the minimum distance from other validated features 187 

exceeds a given threshold, rmin. In order to minimize possible trajectory recognition 188 

errors and consequent spurious velocity samples, a trajectory is assumed valid only 189 

if the particle is tracked for at least two consecutive time instants. 190 

 191 

Eulerian statistics 192 

In order to compute the Eulerian statistics, a Gaussian interpolation algorithm was 193 

applied to the scattered data so as to obtain the instantaneous velocity fields on a 194 

regular grid [25]. The so-obtained results have a spatial resolution of 1 mm and a 195 

temporal resolution of 1/250 s. Additional experiments were also conducted framing 196 

the free surface to evaluate the free-stream velocity and the turbulent boundary-layer 197 

depth. 198 

The statistics of the Eulerian velocity fields were obtained by time averaging over 199 

the N time instants. We calculated the mean velocity components 𝑢̅(𝑚, 𝑛) and 200 

𝑤̅(𝑚, 𝑛), the variances 𝜎𝑢
2(𝑚, 𝑛) = 𝑢′2̅̅ ̅̅ (𝑚, 𝑛) and 𝜎𝑤

2(𝑚, 𝑛) = 𝑤′2̅̅ ̅̅̅(𝑚, 𝑛) as well as the 201 

vertical momentum flux 𝑢′𝑤′̅̅ ̅̅ ̅̅ (𝑚, 𝑛) at each node (𝑚, 𝑛) of the 110 (along x) x 55 202 

(along z) grid (the prime is the fluctuation around the mean). 203 

The Eulerian time scales for the velocity component along the j-th axis is: 204 

 205 

                                            𝑇𝑗
𝐸 = ∫ 𝜌𝑗

𝐸(𝜏)𝑑𝜏 =
∞

0

∫
𝑣𝑗′(𝑡)𝑣𝑗′(𝑡 + 𝜏)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

𝜎𝑗
2 𝑑𝜏

∞

0

                                (3) 206 

 207 

where 𝜌𝑗
𝐸(𝜏) is the Eulerian autocorrelation function of the j-th velocity component 208 

and t the time. 209 

 210 

Lagrangian statistics 211 
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To reconstruct the particle trajectories needed for the determination of the 212 

Lagrangian time scales of the flow, a second set of experiments were conducted in the 213 

same flow conditions but changing the acquisition setup so that the longest possible 214 

trajectories could be acquired. To this aim, the framed area was 0.30x0.15 m2 and the 215 

flow was illuminated by a light sheet 0.02 m thick generated by a 1000 W, white 216 

halogen lamp. The increased thickness of the light sheet ensures that only a negligible 217 

fraction of the trajectories was truncated because of spanwise displacement. The 218 

seeding density was correspondingly decreased in order to have a few particle at the 219 

same time in the illuminated volume and thus minimize the ambiguity due to the 220 

superimposition of particles at different depths despite of the light sheet increase. 221 

Each experiment consisted of 100,000 images, sampled at a 500 Hz frame rate. 222 

The Lagrangian time scales were calculated from the set of particle trajectories 223 

detected during the image-processing procedure that where long at least 350 instants 224 

(corresponding to 0.7 s). Results presented below show that the minimum length is 225 

significantly larger than the turbulence time scale in all the configurations. The total 226 

number of trajectories exceeding the requested length during each experiment is 227 

reported in Tab. 2.228 

 229 
 𝜆𝑃 = 0.1 𝜆𝑃 = 0.25 𝜆𝑃 = 0.4 

Number of trajectories 129,801 161,259 135,950 

    

Table 2 Number of trajectories exceeding the minimum length (350 instants) 230 

 231 

Let us assume that the tracking of the k-th particle starts at reference time 𝑡0
(𝑘)

 and 232 

reference position 𝒙0
(𝑘)

. We indicate its position and velocity at a generic time by 233 

𝑿(𝑘)(𝒙0
(𝑘)

, 𝑡0
(𝑘)

, 𝑡) and 𝑼(𝑘)(𝒙0
(𝑘)

, 𝑡0
(𝑘)

, 𝑡), respectively (letters in capital refer to 234 

Lagrangian properties, while bold indicates vector quantities). Furthermore, 235 

provided the phenomenon is statistically steady in a Eulerian sense, averages are 236 

independent of the reference time 𝑡0
(𝑘)

. However, they still depend on the time lag, 𝜏 =237 

𝑡 − 𝑡0
(𝑘)

, and reference position 𝒙0
(𝑘)

. Consequently, the Lagrangian average velocity 238 

can be written as: 239 
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 240 

                                               〈𝑼〉(𝒙0, 𝜏) =
1

𝑀𝒙0

∑ 𝑼(𝑘)

𝑘|𝒙0

(𝒙0, 𝜏)                                                (4) 241 

 242 

where the summation refers to the 𝑀𝒙0
 trajectories starting from 𝒙0. Similarly, the 243 

standard deviation of the j-th component of the velocity is computed as: 244 

 245 

                              𝜎𝑗
𝐿(𝒙0, 𝜏) = √

1

𝑀𝒙0

∑ [𝑈𝑗

(𝑘)(𝒙0, 𝜏) − 〈𝑈𝑗〉(𝒙0, 𝜏)]
2

𝑘|𝒙0

                                (5) 246 

 247 

while the auto-correlation coefficient is expressed as: 248 

 249 

       𝜌𝑗
𝐿(𝒙0, 𝜏) =

1

𝑀𝒙0

∑ {[𝑈𝑗
(𝑘)(𝒙0, 𝜏) − 〈𝑈𝑗〉(𝒙0, 𝜏)][𝑈𝑗

(𝑘)(𝒙0, 0) − 〈𝑈𝑗〉(𝒙0, 0)]}𝑘|𝒙0

𝜎𝑗
𝐿(𝒙0, 𝜏)𝜎𝑗

𝐿(𝒙0, 0)
     (6) 250 

 251 

The Lagrangian time scale of the j-th velocity component, 𝑇𝑗
𝐿, is evaluated as the 252 

integral of the corresponding Lagrangian autocorrelation function, viz.: 253 

 254 

                                                      𝑇𝑗
𝐿(𝒙0) = ∫ 𝜌𝑗

𝐿(𝒙0, 𝜏)𝑑𝜏                                                       (7)
∞

0

 255 

 256 

The ratio between the Lagrangian and the Eulerian time scales can be expressed 257 

(Corrsin 1963 [26]) as equal to a proportionality constant 𝛽 (greater than unity): 258 

 259 

                                                          𝛽 = 𝑇𝐿/𝑇𝐸 = 𝛾/𝑖                                                                (8) 260 

 261 

where i is the turbulence intensity and γ is a proportionality constant of order one. 262 

Although Eq. (8) should, in principle, be valid only for isotropic turbulence, it has also 263 

been used in inhomogeneous turbulence (see e.g. [27]). More discussion on the 264 

methods of calculation of the integral scales of the turbulence can be found in [28] 265 
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and [29]. 266 

Finally, we will also focus on the spatial autocorrelation functions of both the 267 

streamwise and vertical velocity components, viz. 268 

 269 

                                              𝑅𝑢(𝒙𝟎, 𝒓) =
𝑢′(𝒙𝟎)𝑢′(𝒙𝟎 + 𝒓)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

𝜎𝑢(𝒙𝟎)𝜎𝑢(𝒙𝟎 + 𝒓)
                                                  (9) 270 

 271 

                                              𝑅𝑤(𝒙𝟎, 𝒓) =
𝑤′(𝒙𝟎)𝑤′(𝒙𝟎 + 𝒓)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

𝜎𝑤(𝒙𝟎)𝜎𝑤(𝒙𝟎 + 𝒓)
                                                (10) 272 

 273 

where r is the displacement relative to 𝒙𝟎. The integrals of the above autocorrelations, 274 

performed along the streamwise direction, yield the integral length scales 𝐿𝑢,𝑥(𝒙𝟎) 275 

and 𝐿𝑤,𝑥(𝒙𝟎). These represent a measure of the distance along the horizontal 276 

direction over which the velocities are correlated. Turbulent length scales are useful 277 

tools for evaluating mixing properties of the boundary layer (see e.g. [30-33]), but 278 

their estimation in field campaigns is quite problematic since it requires multi-point 279 

velocity measurements [34]. 280 

 281 

3 Results and Discussion 282 

Since we are interested in getting information on the flow characteristics above the 283 

building tops and given the flow three-dimensionality, an average of the variables 284 

over a sufficiently large number of individual sections belonging to different vertical 285 

planes parallel to the streamwise direction would be necessary to obtain 286 

representative spatially-averaged properties of the flow. However, to avoid very 287 

time-consuming experiments, it was decided to consider only the vertical section 288 

passing through the centre of the obstacles (see green lines in Fig. 2). With regard to 289 

previous issue, [35] showed that for a regular array of staggered cubical obstacles 290 

with 𝜆𝑃 = 0.25, no significant errors occur by considering only measurement points 291 

belonging to the vertical plane passing through the middle section of the obstacles. 292 

Note also that, as emphasised by those authors, such a simplification may be 293 

inappropriate for other geometrical arrangements, even though the regular 294 
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dispositions of the cubes considered in our experiments might do not involve 295 

appreciable errors, particularly for 𝜆𝑃 = 0.4. 296 

The vertical profiles of the Eulerian variables were estimated by adopting the 297 

canopy approach (e.g. [36]), namely by horizontally averaging the time averaged 298 

statistics over a region including one building top and the contiguous canyon. In doing 299 

so, the results can be assumed as representative of the repeating unit constituting the 300 

canopy, keeping in mind the limitation mentioned above. 301 

 302 

3.1 Mean Velocity and Reynolds Stresses 303 

Figure 3 shows the vertical profiles of the normalised streamwise velocity component 304 

(Fig. 3a), Reynolds shear stress (Fig. 3b) and standard deviation of the horizontal (𝜎𝑢) 305 

and vertical (𝜎𝑤) velocity components (Fig. 3c) for the three arrays. For 𝜆𝑃 = 0.25 306 

(wake-interference regime), the profiles are quantitatively similar to those reported 307 

by other authors (see e.g. [35]). The Reynolds shear stress varies up to 𝑧 ≈ 1.8𝐻 (i.e. 308 

the RSL depth), then it is independent on z up to 𝑧/𝐻 ≈ 3.2𝐻 , which can be 309 

considered as the upper limit of the CFL (Fig. 3b). While the 𝜆𝑃 = 0.4 case (skimming 310 

flow) behaves similarly to 𝜆𝑃 = 0.25, for 𝜆𝑃 = 0.1 (isolated regime) the RSL is 311 

considerably deeper and the CFL forms at nearly 𝑧 ≈ 2.8𝐻. This agrees with other 312 

observations conducted in the laboratory [32] and in the real field [37]. Note also that 313 

𝜎𝑤/𝑢∗,𝑟𝑒𝑓 and 𝜎𝑢/𝑢∗,𝑟𝑒𝑓 do not change appreciably with height in the whole z/H range 314 

analysed, 𝜆𝑃 = 0.1 case showing slightly larger values, in agreement with [38]. 315 

The similarity found between 𝜆𝑃 = 0.25 and 0.4 is not surprising since in terms of 316 

classical roughness terminology the former can be considered as near the so called 317 

‘d-type’ roughness - the same one to which the latter belongs - where the cavities 318 

sustain stable recirculating vortices that isolate the upper flow from the inner one. In 319 

contrast, lower 𝜆𝑃  are typical of ‘k-type’ roughness, where the distribution of the 320 

roughness elements is sparse and vortex shedding between the elements 321 

characterises the flow (see [39-40] and [11] for more discussion on this subject). 322 

Recent wind-tunnel results by [8] on the effect of building packing density on the drag 323 

force over aligned arrays of cubes show that the shear stress increases with 324 
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increasing packing density up to 𝜆𝑃 = 0.25. The larger Reynolds shear stress we 325 

found for 𝜆𝑃 = 0.1 compared to 𝜆𝑃 = 0.25 and 0.4 therefore goes against [8]. On the 326 

other hand, direct numerical simulations by [38] conducted for staggered arrays of 327 

cubical obstacles (like those considered in our experiments) showed that the total 328 

shear stress peaks for lower packing density (𝜆𝑃 ≈ 0.13), not far from 𝜆𝑃 = 0.1. 329 

However, we must bear in mind that we considered only the vertical plane passing 330 

through the cube centre to measure the velocity field (see discussion at the beginning 331 

of the present section). 332 

 333 

3.2 Eulerian Integral Time Scales 334 

The Eulerian time scales for the streamwise and the vertical velocity components, 𝑇𝑢
𝐸  335 

and 𝑇𝑤
𝐸 , respectively, are estimated using Eq. (3) considering the time at which the 336 

autocorrelation decreases to 1/e (here, e is the Euler number). This is a very common 337 

procedure for the extraction of integral time scales since the mathematical form of 338 

the autocorrelation is generally a decaying exponential [41]. The characteristic time 339 

𝐻/𝑢∗,𝑟𝑒𝑓 is used to normalise 𝑇𝑢
𝐸  and 𝑇𝑤

𝐸 . 340 

Analysis of Fig. 4a indicates that: (i) overall, the three non-dimensional 𝑇𝑢
𝐸  341 

(continuous lines with symbols) increase approximately linearly with height within 342 

the RSL, then they remain nearly constant in the overlying CFL (ii) 𝑇𝑢
𝐸  does not change 343 

appreciably passing from 𝜆𝑃 = 0.25 to 𝜆𝑃 = 0.4, even though, in the latter case, larger 344 

𝑇𝑢
𝐸  at the top of the cavity are present (Fig. 4a) (iii) a strict resemblance between the 345 

two 𝑇𝑤
𝐸  for 𝜆𝑃 = 0.25 and 0.4 is apparent. In contrast, for 𝜆𝑃 = 0.1, 𝑇𝑤

𝐸  is everywhere 346 

larger, while 𝑇𝑢
𝐸  exceeds those found for 𝜆𝑃 = 0.25 and 𝜆𝑃 = 0.4 within the RSL. 347 

The strict similarity between 𝜆𝑃 = 0.25 and 0.4 is furtherly corroborated by 348 

looking at the non-dimensional integral spatial scales (Fig. 4b), which are obtained by 349 

integrating the autocorrelations functions (Eqs. 9 and 10). In particular, by 350 

integrating along the streamwise direction Eq. (9) (Eq. 10), we calculate the integral 351 

length scale 𝐿𝑢,𝑥  (𝐿𝑤,𝑥), which gives a measure of the distance along the horizontal 352 

direction over which the streamwise (vertical) velocity component is correlated with 353 

itself. As for the integral time scales, we obtain the vertical profiles of 𝐿𝑢,𝑥  and 𝐿𝑤,𝑥  354 
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moving 𝒙𝟎 along the vertical axis passing through the centre of the cavity and 355 

evaluating the distance where the autocorrelation decreases to 1/e. Both the scales 356 

reach an asymptotic value (𝐿𝑢,𝑥 ≈ 2.7𝐻, 𝐿𝑤,𝑥 ≈ 0.9𝐻) within the CFL (Fig. 4b) and 357 

agree reasonably well with 𝐿𝑢,𝑥 ≈ 3𝐻 and 𝐿𝑤,𝑥 ≈ 1.2𝐻 found by [42]. Unfortunately, 358 

due to technical limitations, the case 𝜆𝑃 = 0.1 was not suitable for spatial 359 

autocorrelation estimate and, therefore, the corresponding spatial scales could not be 360 

determined. 361 

The resemblance between skimming flow and wake-interference regime 362 

discernible from Eulerian scale analysis contrasts with the results of D17 for two-363 

dimensional flows, where the dissimilarities between skimming flow and wake-364 

interference regime were noticeable. For ease of comparison, Fig. 4a reports 𝑇𝑢
𝐸  and 365 

𝑇𝑤
𝐸  estimated by D17 for aspect ratios AR=1 (dashed lines) and 2 (dotted lines). We 366 

see how AR=1 (corresponding to 𝜆𝑃 = 0.5, i.e. skimming flow) resembles skimming 367 

flow and wake-interference regime for the 3D case, while AR=2 (corresponding to 368 

𝜆𝑃 = 0.33, i.e. wake-interference regime) is quite different from its 3D counterpart, 369 

showing larger 𝑇𝑢
𝐸  and 𝑇𝑤

𝐸 . This is understandable simply by considering the profound 370 

differences existing in 2D flows between those regimes both within and above the 371 

canopy [43-46]. This fact can be explained also in terms of different sizes of the 372 

coherent structures characterizing the two flows above the canopy (see [47] for a 373 

comprehensive discussion on that subject). Finally, the strict similarity between the 374 

𝑇𝑤
𝐸  calculated for AR=2 and that obtained in 3D for the isolated flow ought to be just a 375 

coincidence in that no physical reason seems to support this result. 376 

 377 

3.3 Lagrangian Integral Time Scales 378 

Two-dimensional fields of 𝜌𝑢
𝐿  and 𝜌𝑤

𝐿  can be determined using Eq. (6) and considering 379 

all the trajectories starting in the proximity of each node of the Eulerian grid. 380 

However, given the quasi-horizontal homogeneity of the flow above the canopy, 𝜌𝑢
𝐿  381 

and 𝜌𝑤
𝐿  are calculated following all the trajectories that begin in a horizontal fluid 382 

layer 1 mm thick, extended horizontally over the whole domain, passing through the 383 

nodes of the Eulerian grid. The resulting 𝑇𝑢
𝐿 and 𝑇𝑤

𝐿 are determined using Eq. (7) by 384 
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considering the time lag when the autocorrelations decrease to 1/e. As for the 385 

Eulerian scales, the characteristic time 𝐻/𝑢∗,𝑟𝑒𝑓 is used to normalise 𝑇𝑢
𝐿 and 𝑇𝑤

𝐿. 386 

Like for their Eulerian counterparts, 𝑇𝑢
𝐿 and 𝑇𝑤

𝐿 do not change considerably going 387 

from 𝜆𝑃 = 0.25 to 0.4 (Figs. 5b and 5c). It is worthwhile to note also that for those two 388 

canopies 𝑇𝑢
𝐿 ≈ (2 − 3)𝑇𝑤

𝐿 in the whole boundary layer analyzed, including the region 389 

near the top of the obstacles. The latter is a significant difference with the results of 390 

D17 for the 2D skimming flow (AR=1), where 𝑇𝑢
𝐿 ≈ 𝑇𝑤

𝐿 up to z=3H (red and blue lines 391 

in Fig. 5c). Overall, the 3D canopy tends to decrease the scale of the vertical velocity 392 

component while increasing the scale of the horizontal component as compared to 393 

the 2D case. 394 

With regard to the wake-interference regime (Fig. 5b), a question arises regarding 395 

the 𝑇𝑢
𝐿 profile found for 1.5 < 𝑧/𝐻 < 2.5  in that it is not clear how to interpret the 396 

observed nearly-constant values. However, a certain qualitative resemblance of 𝑇𝑢
𝐿 397 

with the 2D case (red line) seems to occur, even though it decreases considerably 398 

approaching the top of the obstacles. 399 

𝑇𝑢
𝐿 estimated for 𝜆𝑃 = 0.1 (Fig. 5a) differs significantly from those calculated for 400 

𝜆𝑃 = 0.25 and 0.4. Although both 𝑇𝑢
𝐿 and 𝑇𝑤

𝐿 increase roughly linearly in the whole 401 

boundary layer, their slopes are quite different and 𝑇𝑢
𝐿 increases much faster with 402 

height than 𝑇𝑤
𝐿 does. However, a reasonable agreement between 𝑇𝑤

𝐿 and Eq. (2) is 403 

found in all the three cases, in particular for 𝜆𝑃 = 0.4. The displacement heights used 404 

to test Eq. (2), i.e. d=0.56H, 0.78H and 0.93H for 𝜆𝑃 = 0.1, 0.25 and 0.4, respectively, 405 

have been calculated by means of the empirical law by [48]. 406 

It is worthwhile stressing here that Eq. (2) has been used in the past only for 407 

vegetation canopies (e.g. [49]) and 2D canopy flows [1] and, to our knowledge, this is 408 

the first time it has been tested in 3D urban canopy layers. 409 

 410 

3.4 Lagrangian to Eulerian Time Scales Ratio 411 

The vertical profiles of the Lagrangian to Eulerian integral scale ratio, , are depicted 412 

in Fig. 6. The streamwise component, 𝛽𝑢 = 𝑇𝑢
𝐿/𝑇𝑢

𝐸 (solid diamonds), is always lower 413 

than the vertical one, 𝛽𝑤 = 𝑇𝑤
𝐿/𝑇𝑤

𝐸 (open diamonds), in agreement with the LES 414 
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results of [27], who found 𝛽𝑢 = 5.09 and 𝛽𝑤 = 10.24 (values averaged over the whole 415 

boundary-layer depth in the case of flat terrain) and the 2D canopy flow by D17. 𝛽𝑢 416 

and 𝛽𝑤  are always larger than unity, as generally expected in the presence of a mean 417 

flow [50]. 418 

The agreement found between 𝑇𝑤
𝐿/𝑇𝑤

𝐸 and 𝛾/𝑖𝑤 (dashed line) and 𝑇𝑢
𝐿/𝑇𝑢

𝐸  and 𝛾/𝑖𝑢 419 

(continuous line) is quite good in all the three geometries, where 𝑖𝑢 = 𝜎𝑢/𝑢̅ and 𝑖𝑤 =420 

𝜎𝑤/𝑢̅ are the turbulence intensities and γ is a proportionality constant [26]. This is 421 

quite surprisingly given the assumption of isotropic flow field under which Corrsin 422 

(1963) [26] derived Eq. (8). This feature has not been reported in earlier vegetation 423 

or 3D urban canopy studies. In respect of the values of 𝛾 set in Eq. (8), it is worth 424 

noting that it falls in the range generally found in the literature (0.4-0.8) in the case 425 

of flows with small turbulent intensity. 426 

 427 

3.5 Turbulent Diffusivity 428 

We conclude the analysis by presenting in Fig. 7 the comparison of the vertical 429 

profiles of two estimations of the turbulent diffusivity, 𝐾𝑇 . The first is based on the 430 

first-order closure for the momentum flux, 𝐾𝑇,𝑓𝑜 = −𝑢′𝑤′̅̅ ̅̅ ̅̅ 𝑑𝑢̅/𝑑z (solid circles), while 431 

the second relies on Taylor’s theory, 𝐾𝑇,𝑇 = 𝜎𝑤
2𝑇𝑤

𝐿 (open circles). Even though the 432 

former frequently fails in the presence of large eddies, it is commonly adopted in 433 

computational fluid dynamics. The agreement between the two is good both within 434 

and above the RSL (Fig. 7). In both the cases, they grow roughly linearly with height 435 

and are not far from the eddy diffusivity based on Prandtl’s mixing-length theory, 436 

𝐾𝑇,𝑃 = 𝑘𝑢∗,𝑟𝑒𝑓(𝑧 − 𝑑) (solid line), to be assumed valid in principle only within the CFL, 437 

where local equilibrium between momentum flux and wind gradient holds. This 438 

contrasts with what D17 found for the 2D canopies, where 𝐾𝑇,𝑇  differed significantly 439 

from 𝐾𝑇,𝑓𝑜 , particularly for the wake-interference regime. The less satisfactorily 440 

agreement observed for 𝜆𝑃 = 0.25, when 𝐾𝑇,𝑇  deviates considerably from the other 441 

two determinations of 𝐾𝑇 , is presumably associated with the anomalous behaviour of 442 

𝑇𝑤
𝐿 found in the wake-interference regime. 443 
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We would have expected a better agreement of 𝐾𝑇,𝑓𝑜  and 𝐾𝑇,𝑇  with Prandtl’s 444 

mixing-length theory in the CFL rather than in the RSL since only in the former layer 445 

the logarithmic law is valid (see e.g. discussion in [51]). It should however be noted 446 

that the slopes of all the three formulations are very sensitive to values set for the von 447 

Karman constant and the reference friction velocity. For instance, by setting k=0.37 448 

(a value within the range typically reported in the literature [52]) in place of 0.41 the 449 

slopes of the three formulations match in the CFL. In light of this, it stands to reason 450 

that Prandtl’s mixing-length theory can be assumed as a realistic approximation for 451 

the eddy diffusivity of momentum above 3D canopies, at least for the skimming flow 452 

and the wake-interference regimes. 453 

 454 

4 Concluding remarks 455 

Results from water-channel experiments on the turbulent flow above arrays of 456 

staggered cubical obstacles mimicking idealised urban canopies for three different 457 

plan area fractions (𝜆𝑃 = 0.1, 0.25 and 0.4) were presented. All the experiments refer 458 

to neutral conditions. Attention is focussed on the Lagrangian and Eulerian time 459 

scales of the turbulence and on the eddy diffusivity of momentum. The main findings 460 

include the following: 461 

i) Although in the literature regular obstacle arrays with 𝜆𝑃 = 0.25 and 0.4 are 462 

considered belonging to different flow regimes (wake-interference and skimming 463 

flow, respectively), no substantial differences among all the measured quantities 464 

for the two cases appear above the top of the obstacles. This is understandable in 465 

that 𝜆𝑃 = 0.25 and 0.4 can be both classified as d-type roughness, where the 466 

exchanges of mass and momentum between inner and outer flow are small. In 467 

contrast, the case 𝜆𝑃 = 0.1 (isolated flow, classified as k-type roughness) behaves 468 

differently from the other two. 469 

ii) Both the streamwise, 𝑇𝑢
𝐿, and vertical, 𝑇𝑤

𝐿, components of the Lagrangian time 470 

scale of the turbulence increase approximately linearly with the height within the 471 

whole boundary layer analysed (1<z/H<3), including the roughness sublayer and 472 

part of the constant flux layer that form above the canopy. Especially, to the best 473 
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of our knowledge, this is the first time that experimental evidence on the 474 

agreement between 𝑇𝑤
𝐿 and Raupach’s (1999) [3] law has been presented for 3D 475 

arrays of cubical obstacles. 476 

iii) The agreement between 𝑇𝑤
𝐿/𝑇𝑤

𝐸 and 𝛾/𝑖𝑤  and 𝑇𝑢
𝐿/𝑇𝑢

𝐸 and 𝛾/𝑖𝑢  is pretty good in all 477 

the three geometries, where 𝑖𝑢 = 𝜎𝑢/𝑢̅ and 𝑖𝑤 = 𝜎𝑤/𝑢̅ are the turbulence 478 

intensities and γ is a proportionality constant. 479 

iv) A reasonable agreement between the turbulent viscosities (𝐾𝑇) calculated 480 

applying the first order closure and Taylor’s theory holds both within and above 481 

the RSL. These estimations of 𝐾𝑇  show a linear growth with height, in accordance 482 

with Prandtl’s theory. This suggests that the latter, simple expression of 𝐾𝑇  might 483 

be used with a certain degree of reliability, at least for 𝜆𝑃 = 0.25 and 0.4. 484 
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Fig. 1 Layout of the experimental setup for the Eulerian measurements (case 𝜆𝑃 = 0.25) 645 
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 654 

 655 

 656 

Fig. 2 Schematic plan view of the cube arrays for a 𝜆𝑃 = 0.1, b 𝜆𝑃 = 0.25 and c 𝜆𝑃 = 0.4. The green line 657 

is the signature along the horizontal plane of the vertical interrogation area used for the acquisition of 658 

the Eulerian variables, while the yellow line indicates that considered for the Lagrangian ones. The side 659 

of each cubical element is 15 mm. The streamwise and the spanwise directions are x and y, respectively. 660 

Measurements are in mm 661 
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 671 

Fig. 3 Vertical profiles of normalized a streamwise mean velocity, b shear stress and c standard 672 

deviation of the streamwise (continuous lines) and vertical (dashed lines) velocity components for 673 

𝜆𝑃 = 0.1 (red lines), 𝜆𝑃 = 0.25 (black) and 𝜆𝑃 = 0.4 (blue). The reference friction velocities calculated 674 

as the averages of the square root of the shear stresses in the CFL are 𝑢∗,𝑟𝑒𝑓 =0.0190 m s−1, 0.0169 675 

ms−1 and 0.0173 ms−1 for 𝜆𝑃 = 0.1, 0.25 and 0.4, respectively 676 
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 680 
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 683 

 684 

 685 

 686 

 687 

Fig. 4 a Vertical profiles of the non-dimensional Eulerian time scales of the turbulence. The vertical 688 

profiles of 𝑇𝑢
𝐸𝑢∗,𝑟𝑒𝑓 and 𝑇𝑤

𝐸𝑢∗,𝑟𝑒𝑓 found by Di Bernardino et al. (2017) [1] are also shown (dashed and 689 

dotted lines). b Vertical profiles of the Eulerian length scales 𝐿𝑢,𝑥  (lines with symbols) and 𝐿𝑤,𝑥 690 

(symbols) normalized by the obstacle height for 𝜆𝑃=0.25 and 0.4 691 
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 695 

 696 

 697 

 698 

 699 

 700 

 701 

 702 

 703 

Fig. 5 Vertical profiles of the non-dimensional Lagrangian time scales estimated for a 𝜆𝑃=0.1, b 𝜆𝑃=0.25 704 

and c 𝜆𝑃=0.4. The continuous lines refer to 𝑇𝑤
𝐿𝑢∗,𝑟𝑒𝑓/𝐻 calculated using Eq. (2) with (z-d) instead of z, 705 

where d is the displacement height. The red and blue lines indicate 𝑇𝑢
𝐿𝑢∗,𝑟𝑒𝑓/𝐻  and 𝑇𝑤

𝐿𝑢∗,𝑟𝑒𝑓/𝐻  for the 706 

2D cases [1], respectively 707 
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 716 

 717 

 718 

 719 

Fig. 6 Vertical profiles of 𝛽𝑢 = 𝑇𝑢
𝐿/𝑇𝑢

𝐸 and 𝛽𝑤 = 𝑇𝑤
𝐿/𝑇𝑤

𝐸 for a 𝜆𝑃=0.1, b 𝜆𝑃=0.25 and c 𝜆𝑃=0.4. The 720 

continuous and dashed lines show Eq. (8) for 𝛽𝑢  and 𝛽𝑤 , respectively 721 
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 734 

Fig. 7 Vertical profiles of the normalized turbulent diffusivity for a 𝜆𝑃=0.1, b 𝜆𝑃=0.25 and c 𝜆𝑃=0.4. The 735 

values of the displacement height used in Prandtl’s law are reported in Sec. 3.3 736 
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