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Abstract
We analyze the relationship between codon usage bias and residue aggregation propensity in the
genomes of four model organisms, E. coli, yeast, fly, and mouse, as well as the archaeon
Halobacterium species NRC-1. Using the Mantel-Haenszel procedure, we find that translationally
optimal codons associate with aggregation-prone residues. Our results are qualitatively and
quantitatively similar to those of an earlier study where we found an association between
translationally optimal codons and buried residues. We also combine the aggregation-propensity
data with solvent-accessibility data. Even though the resulting data set is small, and hence
statistical power low, results indicate that the association between optimal codons and
aggregation-prone residues exists both at buried and at exposed sites. By comparing codon usage
at different combinations of sites (exposed, aggregation-prone sites vs. buried, non-aggregation-
prone sites; buried, aggregation-prone sites vs. exposed, non-aggregation-prone sites), we find that
aggregation propensity and solvent accessibility seem to have independent effects of (on average)
comparable magnitude on codon usage. Finally, in fly, we assess whether optimal codons
associate with sites at which amino-acid substitutions lead to an increase in aggregation
propensity, and find only a very weak effect. These results suggest that optimal codons may be
required to reduce the frequency of translation errors at aggregation-prone sites that coincide with
certain functional sites, such as protein–protein interfaces. Alternatively, optimal codons may be
required for rapid translation of aggregation-prone regions.
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1 Introduction
Translation is an error-prone process [1]. Translation errors occur at frequencies of several
misincorporations per 10,000 codons translated; precise error rates vary over nearly an order
of magnitude among codons [2]. Selection for correct protein structure and function should
cause codons with reduced error rates to be used more frequently at sites at which translation
errors would be particularly disruptive. This selection pressure is called selection for
translational accuracy [3].

To identify a signal of accuracy selection in a genome, one needs a measure of how
disruptive translation errors are at specific sites. Early studies used as such measure
evolutionary conservation [3–5] and, to a very limited extent, specific functional sites [3].
By testing for an association between codon usage and evolutionary conservation, Akashi
found evidence for translational accuracy selection in Drosophila [3]. Later, others found
similar results in Escherichia coli, yeast, worm, and mammals [4,5]. More recently, Zhou et
al. considered solvent accessibility and change in free energy upon mutation as measures of
a site’s sensitivity to translation errors [6]. They found in E. coli, yeast, fly, and mouse that
translationally optimal codons associate both with buried residues and with residues that are
required for protein stability. This finding supports the hypothesis that translational accuracy
selection minimizes the misfolding of mistranslated proteins [5], likely to avoid protein
aggregation.

However, selection for translational accuracy is not the only mechanism that can lead to an
association of codon-usage bias with certain structural features of the expressed protein.
Codons corresponding to rare tRNAs can stall the ribosome, and these translational pauses
may either facilitate co-translational folding or, as in the case of translation errors, lead to
misfolding and aggregation [7–12].

Under protein aggregation, misfolded proteins can adopt amyloid or amorphous structure
[13,14]. Thus, aggregation primarily arises from the improper interactions between
misfolded proteins, leading to gain-of-toxicity or loss-of-function of the protein [15,16].
Because protein aggregation tends to incur fitness costs, a gene’s amino-acid sequence is
under selection pressure to minimize aggregation [16–19].

Here, we investigate whether codon-usage bias is linked to sites with specific aggregation
propensity. Residue aggregation propensities are predicted by the Zyggregator method [20].
The Zyggregator algorithm predicts aggregation propensity on the basis of several intrinsic
properties of amino-acid sequences, including amino acid scales for secondary structure
formation, hydrophobicity, and charge, and the presence of hydrophobic patterns and of
gatekeeper residues. We consider four model organisms, Escherichia coli, Saccharomyces
cerevisiae, Drosophila melanogaster, and Mus musculus, as well as the archaeon
Halobacterium species NRC-1. Our analysis makes extensive use of both concepts and data
sets previously developed in [6].

We test whether translationally optimal codons associate with aggregation-prone sites, i.e.,
sites that are particularly likely to be involved in protein-protein aggregation. We also test
whether optimal codons associate with sites at which translation errors are expected to cause
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an increase in the protein’s aggregation propensity. Surprisingly, we find that optimal
codons associate much more strongly with sites of high aggregation propensity than with
sites at which aggregation propensity is expected to increase upon amino-acid substitution.
The observed association may reflect the kinetic requirement to translate aggregation-prone
regions rapidly to avoid protein misfolding. Alternatively, the codon usage might actually be
determined by a correlation of the aggregation propensity with other factors, such as the
propensity to form protein-protein interfaces [21,22], rather than by aggregation propensity
itself. We elaborate on these possibilities in the Discussion.

2 Materials and Methods
We obtained genomic sequences from the following sources: the Comprehensive Microbial
Resource (http://cmr.tigr.org/) for E. coli, the Saccharomyces Genome Database
(ftp://genome-ftp.stanford.edu/) for S. cerevisiae, the Eisen Lab
(http://rana.lbl.gov/drosophila/) for D. melanogaster, Ensembl (http://www.ensembl.org/)
for M. musculus, and GenBank (accession number AE004437) for Halobacterium species
NRC-1.

We used a previously published computational algorithm (Zyggregator method, [20]) to
predict the aggregation propensity for each residue. In the Zyggregator method, the
aggregation propensity at each site i is measured as a Z-score . This Z-score measures
how likely site i is to be involved in protein aggregation relative to a site in a randomly
generated protein sequence. We considered residues with Zagg > 1 as aggregation-prone and
others as non-aggregation-prone, unless otherwise specified.

We calculated  scores for all residues in organisms’ proteomes, as given by UniProt
(http://www.uniprot.org/). We retained only those gene sequences for which the UniProt
sequence exactly matched the translated version of the genomic DNA sequence. Our final
data set contained 2,983 E. coli genes, 3,253 S. cerevisiae genes, 2,624 D. melanogaster
genes, 11,419 M. musculus genes, and 1,604 genes for Halobacterium sp. NRC-1.

We obtained optimal codons for E. coli, yeast, mouse, and fly from [6]. In [6], codons were
defined as optimal if they showed a statistically significant increase in frequency in the 5%
most highly expressed genes compared to the 5% of genes with the lowest expression level.
For Halobacterium sp. NRC-1, we determined optimal codons on the basis codon usage bias
as measured by the adjusted effective number of codons (ENC′) [23]. See caption to Table
S1 for details.

We also obtained residue solvent accessibilities for proteins with known 3D structure from
[6]. After combining the aggregation data with the structural data, our data set contained 588
E. coli genes, 132 S. cerevisiae genes, 208 D. melanogaster genes, and 570 M. musculus
genes. For Halobacterium sp. NRC-1, we repeated the procedures of [6] to match genes to
protein structures but found too few structures to carry out a meaningful analysis.

To estimate to what extent translation errors at a site would affect aggregation propensity,
we defined a sensitivity Si. Si measures the mean change in the protein’s aggregation
propensity Zagg upon mutation at site i. Zagg is defined as [20]

(1)
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where L is the length of the protein and θ(x) is the Heaviside step function, θ (x) = 1 for x ≥

0 and θ(x) = 0 otherwise. Upon mutation at a site i, the values  change at several sites
surrounding site i. We refer to the protein’s aggregation propensity upon mutation at site i to
amino acid a as Zagg(σi → a) and calculate it according to Eq. (1) but with appropriately

modified  values. The sensitivity Si is then

(2)

where the sum runs over all amino acids but the one originally at site i. Values of Si > 0
mean that mutations at site i tend to increase the protein’s aggregation propensity, whereas
values Si ≤ 0 mean that mutations at site i tend to decrease the protein’s aggregation
propensity. Because calculation of Si is computationally expensive, we carried it out only for
an arbitrary selection of 845 genes from fly.

Statistical analysis was done as described [6]. In brief, we stratified the data by gene and
synonymous codon family within each gene and constructed a separate 2×2 contingency
table for each stratum. We then combined either the tables for all genes and a given codon
family or the tables for all genes and all codon families into an overall analysis, using the
Mantel-Haenszel procedure [24,25]. We excluded contingency tables whose sum of all four
entries was 0 or 1.

We carried out all statistical analyses using the software R [26]. In the analyses of individual
amino acids, we corrected for multiple testing using the false-discovery-rate method of
Benjamini and Hochberg [27], as implemented in the R function p. adjust().

3 Results
3.1 Association between codon optimality and aggregation propensity

We first tested for an association between codon usage and protein aggregation propensity.
Our analysis was based on contingency tables. For all amino acids with more than one
codon, we classified the corresponding codons into optimal and not optimal (see Materials
and Methods; in some cases, we could not identify optimal codons for specific amino acids;
we excluded those amino acids from the analysis). Similarly, we classified all sites in a
genome at which a particular amino acid occurred as either aggregation-prone or not
aggregation prone (see Materials and Methods). For each amino acid in each gene, we then
constructed a 2 × 2 contingency table, counting how often optimal or non-optimal codons
coincided with either aggregation-prone or non-aggregation-prone sites (Table 1). For each
amino acid, we then combined the individual tables for each gene into an overall analysis,
using the Mantel-Haenszel procedure, and calculated a joint odds ratio (Ojoint). A value of
Ojoint greater than 1 signifies a preference for optimal codons at aggregation-prone sites.

We found that 16 of 18 amino acids showed, in at least one species, a significant preference
for optimal codons at aggregation-prone residues (Tables 2 and S1 and Figure 1). One amino
acid (Val) in E. coli, one (Lys) in yeast, three (Leu, Pro, and Val) in mouse, and two (Asp,
Lys) in Halobacterium sp. NRC-1 showed a significant preference for optimal codons at
non-aggregation-prone sites. Of a total of 84 association tests, 42 showed a significant
preference for aggregation-prone optimal codons, while only 7 showed a significant
preference for non-aggregation-prone optimal codons.
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For each species, we also used the Mantel-Haenszel procedure to combine all 2×2
contingency tables for all genes and all amino acids into a single overall odds ratio. We
found a statistically significant association between optimal codons and aggregation-prone
sites in all species (odds ratio 1.07, P = 5.9 ×10−29 for E. coli; 1.03, P = 5.3 × 10−14 for S.
cerevisiae; 1.17, P < 10−100 for D. melanogaster; 1.08, P < 10−100 for M. musculus; 1.22, P
= 1.2 × 10−43 for Halobacterium sp. NRC-1; see also Tables 2 and S1).

3.2 Relative importance of aggregation propensity and solvent accessibility
Tartaglia and coworkers [20,21] suggested that even though particular regions in a protein
may have a high aggregation propensity, these regions are unlikely to be promote
aggregation from the folded state if they are buried after protein folding. That is, the
effective aggregation propensity is altered depending on protein structure. In line of this
reasoning, we asked whether the association between optimal codons and aggregation-prone
sites was affected by solvent accessibility.

First, we investigated exposed sites and buried sites separately. The exposed sites were
divided into two groups, aggregation-prone and non-aggregation-prone (Figure 2). We
found that, although the significance for most amino acids disappeared using the Mantel-
Haenszel procedure, the joint odds ratio of optimal codon usage between aggregation-prone
and non-aggregation-prone sites remained larger than 1 for more than half of the amino
acids (Table 3). We repeated the same analysis for buried sites and found similar results
(Table 3). It seems that the loss of statistical significance for most amino acids was primarily
due to the reduction in data-set size when incorporating protein structural information. By
incorporating solvent accessibility data, gene numbers decreased from 2,983 to 588 in E.
coli, from 3,253 to 132 in yeast, from 2,624 to 208 in fly, and from 11,419 to 570 in mouse.
We found that the odds ratios for data sets with structural information were quantitatively
similar to odds ratios in data sets of similar size obtained by randomly sampling from the
data sets without structural information (data not shown).

Second, we assessed whether solvent accessibility or aggregation propensity exerted the
stronger selection pressure on codon usage. We considered the odds ratio of optimal codon
usage between exposed-aggregation-prone and buried-non-aggregation-prone sites (Figure
2d). Assuming that optimal codons associate with both buried and aggregation-prone sites,
an odds ratio > 1 in this test indicates that aggregation propensity dominates while an odds
ratio < 1 indicates that solvent accessibility dominates. Our results indicated that either
factor can be more important, depending on species and amino acid (Table 3, columns
labeled “EA-BN”, i.e., exposed and aggregation-prone vs. buried and non-aggregation-
prone). Considering all odds ratios, regardless of significance level, we found that the odds
ratios of at least 6 amino acids in each species were smaller than 1 while the odds ratios of at
least 8 amino acids in each species were larger than 1 (Table 3). Therefore, neither factor
clearly dominated in all species.

Finally, we asked to what extent aggregation propensity and solvent accessibility
independently shape codon usage. To address this question, we computed the odds ratio of
optimal codon usage between buried-aggregation-prone and exposed-non-aggregation-prone
sites (Figure 2e). We found that the overall odds ratio in each species is larger than 1 and
statistically significant (odds ratio 1.13, P = 7.0×10−9 for E. coli; 1.15, P = 7.1×10−4 for S.
cerevisiae; 1.15, P = 2.5 ×10−5 for D. melanogaster; 1.19, P = 1.8 ×10−15 for M. musculus;
see also Table 3, columns labeled “BA-EN”, i.e., buried and aggregation-prone vs. exposed
and non-aggregation-prone). More importantly, when comparing the odds ratios for
individual amino acids to those where we considered aggregation-propensity or solvent
accessibility individually (Table S2), we found that the BA-EN odds ratios minus 1 are
roughly the sum of the individual odds ratios minus 1. For example, in E. coli, for Asn, A-N
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odds are 1.21, B-E odds are 1.34, BA-EN odds are 1.46. Likewise, for Ser, A-N odds are
1.26, B-E odds are 1.42, BA-EN odds are 1.70; for Thr, A-N odds are 1.26, B-E odds are
1.22, BA-EN odds are 1.55. And, consistent with this pattern, for Val, A-N odds are 0.85, B-
E odds are 0.88, BA-EN odds are 0.75. Similar patterns exist in the other species. Thus,
residue aggregation propensity and solvent accessibility seem to affect synonymous codon
usage independently of each other.

All results reported so far were carried out with a cutoff of Zagg > 1 to classify aggregation-
prone sites. We also considered a cutoff of Zagg > 0, which is more lenient but at the same
time provides for a more powerful statistical analysis because aggregation-prone sites are
more common under this definition. We found that our results were not strongly sensitive to
the specific cutoff used (Tables S3 and S4).

3.3 Sensitivity to translation errors
If selection for codon usage is driven by the cost of translation errors, then we might assume
that the change in aggregation propensity upon amino-acid substitution at a site i is more
strongly correlated with codon usage than the site’s aggregation propensity itself. To
evaluate this hypothesis, we defined a sensitivity Si to amino-acid substitution at site i. Si is
the mean change between the aggregation propensity of a mutated protein and the one of the
wild-type protein (see Materials and Methods).

We calculated Si for all sites in an arbitrary selection of 845 fly genes. We defined sites with
Si > 0 as sensitive to amino-acid substitution and all other sites as not sensitive. We
constructed 2×2 contingency tables of the number of optimal/non-optimal codons coinciding
with sensitive or not-sensitive sites. We stratified by gene and amino acid, as before, and
used the Mantel-Haenszel procedure to calculate joint odds ratios. An odds ratio > 1 means
that optimal codons associate with sensitive sites.

We found very little evidence for an association between optimal codons and sensitive sites
(Table S5). The overall odds ratio was 1.03 (P = 0.03). Over half of the amino acids tested
showed no significant association whatsoever. Only Ala, Arg, and Pro showed a positive
association between optimal codons and sensitive sites, while Lys and Thr showed a
negative association (after correction for multiple testing). This result is in stark contrast to
the association between optimal codons and the raw aggregation propensity, which for fly
was positive and highly significant for nearly all amino acids (Table 2). Thus we conclude
that, at least for fly, the raw aggregation propensity rather than the sensitivity to amino-acid
substitutions drives codon usage. We provide some potential explanations for this result in
the Discussion.

4 Discussion
We have found that translationally optimal codons associate with aggregation-prone sites in
a bacterium, an archaeon, and three eukaryotes. With the exception of the archaeon, where
we had insufficient data, we have found that this association occurs both at buried and at
exposed sites. We have also found that our results are not merely caused by the tendency of
optimal codons to associate with buried sites. Instead, buriedness and aggregation propensity
seem to influence codon usage independently of each other. Finally, for fly we have found
that sensitivity, a measure of how much the aggregation propensity of a protein increases
upon mutation of a site, associates much more weakly with optimal codons than the
aggregation propensity itself does.

Our results add to a growing list of mechanisms by which synonymous codons are under
selective pressure. Selection on synonymous sites has been found to be linked to
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transcription [28], splicing [29–31], thermodynamic stability of DNA and RNA secondary
structure [32–37], efficient and accurate translation [3–6,12,38–49], protein co-translational
folding [7–11,50], and translation initiation [51–53].

We obtained translationally optimal codons from [6]. In that study, optimal codons were
identified as those codons that were significantly more frequent in highly expressed genes
than in genes with low expression level. (For Halobacterium sp. NRC-1, we determined
optimal codons using a similar method as in [6] but comparing genes with high and low
codon bias instead of expression level.) This method of identifying optimal codons can go
wrong in specific cases. If there are speed-accuracy tradeoffs so that the faster codon is less
accurate and vice versa, the method of [6] may identify the faster rather than the more
accurate codon. If an organism experiences both selection for translation speed and
translational accuracy, then it is possible that the most rapidly translated codon is the most
abundant one in highly expressed genes but that the most accurately translated codon is
preferred at sites at which translation errors need to be avoided. As an example, the odds
ratios for Val in E. coli are always significantly below 1, regardless of whether we correlate
codon usage with aggregation propensity or with solvent accessibility. We used as optimal
codons for Val in E. coli the two codons GUA and GUU. On the basis of tRNA-abundance
measurements [54] and modeling of the translation process [55], we expect that these two
codons are optimal for translation speed. Therefore, we suspect that the codons for Val that
are the most rapidly translated in E. coli are not the most accurately translated ones for Val
in this species.

As we had seen in previous work [6], there is no consistent pattern among organisms of
which amino acids show a significant signal of translational accuracy selection. We could
not identify any specific biophysical property of amino acids (such as volume,
hydrophobicity, or charge) that would explain either the observed odds ratios or the
associated P values. In previous work [6], the best predictor for P values was amino-acid
frequency, indicating that much of the variation in the observed results may simply be due to
lack of statistical power for rarer amino acids. It is also possible that different amino acids
are under selection for translational accuracy in different protein structures, so that the
Mantel-Haenszel results for a given organism may be partially driven by the specific
composition of that organism’s proteome.

It is intriguing to discuss possible mechanisms that cause optimal codons to associate with
aggregation-prone sites but not with sites that show an increase of aggregation propensity
upon mutation. A first possibility is that, since the Zyggregator aggregation propensities are
correlated with other physico-chemical properties [20], the features that we use to predict
aggregation propensity do not only identify regions that have a high tendency to form
aberrant inter-molecular contacts but also predict segments that are involved in the
formation of functional contacts [21,22]. Indeed, the location of interfaces in molecular
complexes correlates strongly with the presence of peaks in the aggregation profiles [22].
Thus, optimal codons may be protecting protein–protein interfaces rather than aggregation-
prone sites per se. Moreover, we have found that aggregation-prone sites tend to evolve
slower than sites that are not aggregation prone (Zhou, unpublished). Thus, the same
mechanism that selects against genetic mutations at aggregation prone sites—this
mechanism may or may not be related to functional contacts—may also be sensitive to
translation errors and thus select for optimal codons at aggregation-prone sites.

An alternative possibility is that optimal codons might be selected for rapid rather than
accurate translation, because slow-folding regions could be particularly susceptible to mis-
folding in case the ribosome stalls. In favor of this type of explanation, we have found that
regions characterized by high aggregation propensities are associated with slow folding rates
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(Tartaglia and Vendruscolo, unpublished). Aggregation-prone regions of the nascent chain
already outside the ribosome would remain available for a prolonged time to form
dysfunctional inter-molecular interactions, since they would not be protected from
aggregation by the folding process. In this case, it would be the necessity to prevent
aggregation during the co-translational folding process, rather than the protection in the
native state, that would primarily cause the selective pressure. This view is consistent with
the very weak correlation that we found between optimal codon usage and solvent exposure
of aggregation-prone regions. On the other hand, if translation speed rather than accuracy
was under selection, we would expect the rapidly translated codons for Val in E. coli to
associate with aggregation-prone sites, not with sites that are not aggregation prone. In this
context, it would be interesting to investigate whether aggregation-prone regions are more
frequent in C-terminal regions rather than in N-terminal regions, which are the first to
emerge during biosynthesis. Future studies will have to disentangle these various
possibilities to determine why optimal codons associate with aggregation-prone sites.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Joint odds ratio of optimal codon usage between aggregation-prone and non-aggregation-
prone sites for each amino acid. The odds ratios were calculated by the Mantel-Haenszel
procedure. The y-axis represents odds ratio and the axis was transformed into the log-2
scale. The x-axis represents amino acids that are ordered according to the amino acid
property (Hydrophilic: N, C, Q, G, S, T, Y; Charged: R, D, E, H, K; Hydrophobic: F, I, V,
L, P, A) [56].
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Figure 2.
Venn diagram illustrating the various analyses reported in Table 3. (a) We classify all sites
in an organism’s coding sequences as either aggregation-prone (A) or non-aggregation-
prone (N). For a subset of sites, we have structural information. We classify these sites as
either buried (B) or exposed (E). (b) Analysis of codon usage by aggregation propensity for
exposed sites only. (c) Analysis of codon usage by aggregation propensity for buried sites
only. (d) Comparison of codon usage among exposed, aggregation-prone and buried, non-
aggregation-prone sites. (e) Comparison of codon usage among buried, aggregation-prone
and exposed, non-aggregation-prone sites.

Lee et al. Page 12

Proteomics. Author manuscript; available in PMC 2011 December 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Lee et al. Page 13

Table 1

Example of a 2×2 contigency table for amino acid Gly in one particular gene of E. coli.

Codon Aggregation-prone sites Non-aggregation-prone sites

Optimal GGU, GGC 6 23

Not-optimal GGA, GGG 3 14

Note.—Codons GGU and GGC are optimal codons for amino acid Gly in E. coli. The odds ratio of optimal codon usage between aggregation-
prone and non-aggregation-prone sites is  for this contigency table. Because there is one table of Gly per one gene, we applied the

Mantel-Haenszel procedure to calculate the joint odds ratio for all tables of Gly across all genes.
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Table 2

Odds ratio of optimal codon usage between aggregation-prone and non-aggregation-prone sites for each amino
acid

AA E. coli S. cerevisiae D. melanogaster M. musculus

Ala 0.99 0.99 1.43*** –

Arg 1.11(*) 1.06 1.37*** 1.26***

Asn 1.10**(*) 1.05*(*) 1.20*** 1.10***

Asp 1.09** 0.98 1.31*** 1.17***

Cys 1.04 0.94(*) 1.17*** –

Gln 1.04 1.04 0.95 1.13***

Glu 1.06 1.00 1.01 1.02

Gly 1.24*** 1.10*** 1.20*** 1.20***

His 1.18*** 1.04 1.34*** 1.10***

Ile 1.07*** 1.03 1.08*** 1.14***

Leu 0.98 1.00 1.05** 0.91***

Lys – 0.90*** 0.94 0.99

Phe 1.03 1.02 1.06** 1.15***

Pro 1.10 1.20 1.71*** 0.89*

Ser 1.17*** 1.10*** 1.20*** 1.23***

Thr 1.29*** 1.06*** 1.35*** 1.19***

Tyr 1.22*** 1.03 1.18*** –

Val 0.86*** 1.08*** 1.04* 0.96***

Overall 1.07*** 1.03*** 1.17*** 1.08***

Note. —AA: amino acid; -: no optimal codon. Significance levels:

***
P < 0.001;

**
P < 0.01;

*
P < 0.05.

Significance levels in parentheses disappear after correction for multiple testing.
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