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How does the brain monitor performances? Does expertise modulate this process? How 

does an observer’s error related activity differ from a performers own error related activity? How 

does ambiguity change the markers of error monitoring? In this thesis, I present two EEG studies 

and a commentary that sought to answer these questions. Both empirical studies concern 

performance monitoring in two different contexts and from two different personal perspectives, i.e. 

investigating the effects of expertise on electroencephalographic (EEG) neuromarkers of 

performance monitoring and in terms of monitoring own and others’ errors during actions and 

language processing. My first study focused on characterizing the electrophysiological responses in 

experts and control individuals while they are observing domain-specific actions in wheelchair 

basketball with correct and wrong outcomes (Chapter II). The aim of the commentary in the following 

chapter was to highlight the role of Virtual Reality approaches to error prediction during one’s own 

actions (Chapter III). The fourth chapter hypothesised that the error monitoring markers are present 

during both one’s own performance errors in a lexical decision task, and the observation of others’ 

performance errors (Chapter IV), however, the results suggested a further modulation of uncertainty 

created by our task design. The final chapter presents a general discussion that provides an 

overview of the results of my PhD work (Chapter V). The present chapter consists of a literature 

review in the leading frameworks of performance monitoring, action observation, visuo-motor 

expertise and language processing. 
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1.1 Performance Monitoring 

The vast majority of human activity is goal-directed (Locke 1969). To ensure the success of the 

goal, one must continuously monitor their performance. This process involves being able to detect 

when a performance fails, and that the outcome is worse than expected. Performance monitoring 

mechanisms is not isolated only to the monitoring of one’s own performance, but also external factors 

that might affect the outcome of the goal (Ullsperger et al 2014a). For example, an expert basketball 

player might shoot a free throw and succeed in making the ball go through the hoop almost every 

time, but during a match, players have to monitor also the potential interference from other’s actions 

to advance in the game. A critical aspect of the environment is represented by the outcomes of the 

actions of people around us. Seminal studies have shown that similar behavioural and neural 

responses apply to errors that individual commit on their own, as well as to errors observed in others’ 

actions. Thus, performance monitoring is thought to work in a way that allows learning from observed 

errors.   

One benefit of research that focuses on neural mechanisms of performance monitoring is that it 

leads to tailoring better treatments for patients with a variety of motor and cognitive disabilities (Cools 

2006). For example, in individuals with Attention Deficit and Hyperactivity Disorder (ADHD), a 

specific neural signal of performance monitoring might appear altered compared to healthy 

individuals (Ehlis et al 2018). This result carries the potential to be used as proof of success for a 

new ADHD medication, supporting behavioural improvements. Embedded in a broader social 

context, the ability to learn by monitoring own and other’s performances is relevant in developing 

correct social interactions (Tomasello et al 1993). This is dependent on performance monitoring 

mechanisms that allow one to learn from the consequences of actions, because if the mistakes can 

be detected (through monitoring), then the future performance can be improved (Holroyd & Coles 

2002; Bellebaum & Colosio 2014). The more neural markers of performance monitoring are known, 

the better learning environments can be created to promote such cognitive skills (e.g. video game-

based trainings; Olfers & Band 2018). Last but not least, the daily human-machine interactions 

require its own stream of performance monitoring research. Automatization of processes such as 
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driving, piloting or supervising systems draw attention to how better train people for these roles, as 

well as how better to design systems to work well with our cognitive structures (Somon et al 2017). 

1.1.1 What is performance monitoring?  

 The ability to change ones’ behaviour upon the detection of an error is crucial to human and 

other animals’ social lives. Performance monitoring can be described as a mechanism in which a 

goal directed action is continuously monitored. It is closely tied to other cognitive processes such as 

attention (Alexander & Brown 2010; Nelson et al 2017) and the integration of multimodal sensory 

information to recruit muscles, to carry out a goal, namely motor control (Rushworth et al 2004). This 

ability to monitor ongoing performance (e.g. action) is necessary for efficient goal completion and it 

is essential for adaptation when the goal is compromised (e.g. when an error occurs). Several 

cognitive models have been used to study performance monitoring such as reinforcement learning 

(Holroyd & Coles 2002; Bellebaum & Colosio 2014) error monitoring and response conflict 

monitoring (Ullsperger & von Cramon 2004) and predicted response outcome (Ullsperger 2014a). 

Error detection, or the detection of a discrepancy between the intended response versus the 

performed response are suggested to have similar computational demands but potentially varied 

consequences (Ullsperger & von Cramon 2004). For instance, the detection of errors can result in 

online corrections via further engagement of cognitive control processes, as well as resulting in 

adjustments of behaviour in situations with similar demands in the future, which is a prerequisite for 

learning. For the learning to be achieved, not only monitoring of own performance is used but also 

external feedback of that performance (Holroyd & Coles 2002; Bellebaum & Colosio 2014). 

Regardless of the model, it has been demonstrated that attention (Kok et al 2006; van Veen & Carter 

2006; Alexander & Brown 2010), error awareness (Nieuwenhuis et al 2001; Shalgi et al 2009; Wessel 

2012; di Gregorio et al 2016), on-line sensorimotor processes (i.e. visuo-motor transformations and 

continuous observed and performed action anticipation) affect the neural correlates of performance 

monitoring (Aglioti et al 2008; Avenanti et al 2012; Amoruso et al 2014; Bansal et al 2018).  
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1.1.2 Neural signatures of performance monitoring 

Performance monitoring is one of the key processes of cognitive control. Evidence from 

studies in humans have identified a neural network comprised of frontal regions for cognitive control 

mechanisms (Ullsperger et al 2014b; Ridderinkhof et al 2004). This wide network of frontal regions 

includes posterior medial frontal cortex (pMFC) and dorsal prefrontal cortex (dlPFC) (Ridderinkhof 

et al 2004; Cohen 2011a; Ullsperger et al 2014b). Furthermore, the anterior cingulate cortex (ACC) 

has been consistently reported as a crucial area for performance monitoring, and been defined as 

critical in error monitoring processes (Carter et al 1998; Swick & Turken 2002; van Boxtel et al 2005; 

Oliveira et al 2007; Jessup et al 2010; van Noordt & Segalowitz 2012; Foti et al 2015). In detail, 

prediction error signals that stem from the mismatch between prior prediction and perceptual input 

is thought to be projected from the frontal areas to ACC via dopaminergic structures originating from 

subcortical structures such as the striatum and the basal ganglia (Schultz 2002; Bloom et al 2009). 

In electrophysiology and neuroimaging studies, the ACC has been reported to be involved in error 

monitoring (Carter et al 1998; Swick & Turken 2002; Brown & Braver 2005). ACC is also thought to 

be the source of the Error-Related Negativity that is reported in EEG studies during performance 

errors and error prediction (see below; Carter et al 1998; Oliveira et al 2007; Keil et al 2010). 

Performance monitoring has been studied extensively using time-restricted choice tasks (Luu 

et al 2004; Trujillo & Allen 2007; Cavanagh et al 2009; Cohen 2011b). EEG studies have identified 

several event related potentials (ERP) that are thought to be correlates of performance monitoring 

(Falkenstein et al 1990; Nieuwenhuis et al 2004; Shalgi et al 2009; Wessel 2012). Among 

performance related ERPs, the error related negativity (ERN), as a mid-frontal negative peaking 

potential was first found to be an initial and automatic response to error commissions during a 

speeded choice reaction task (Falkenstein et al 1990). The ERN following erroneous responses has 

been consistently shown to operate on internal monitoring of performance slips (Falkenstein et al 

1990; Gehring et al 1992; Gehring et al 1993). Crucially, its peak amplitude is larger during errors 

compared to correct responses, with maximal amplitude in the mid-frontal region (Gehring et al 

1993). Moreover, in motor tasks the ERN has been suggested to index the prediction of errors, 

namely, the ERN may arise before errors even occur (Joch et al 2017). The ERN is typically followed 
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by the Error Positivity (Pe) (Shalgi et al 2009), a positive deflection that is thought to be a marker of 

error awareness (Nieuwenhuis et al 2001; Wessel 2012). Furthermore, following feedback upon error 

commissions, another EEG marker is observed (e.g. the FRN, Feedback Related Negativity; Walsh 

& Andersen 2012; Luft 2014). The FRN is larger for negative than positive feedback (Nieuwenhuis 

et al 2004) and for unexpected rather than expected feedback (Von Borries et al 2013). The ERN, 

Pe and FRN have been linked to general top-down monitoring mechanisms (Holroyd & Coles 2002; 

Cavanagh et al 2010; Ullsperger et al 2014b; Ozkan & Pezzetta 2017). These ERPs have also been 

reported to be present in observation of others’ performances. For example, the ERN was present 

following the observation of others’ errors (van Schie et al 2004; de Bruin et al 2007; Pezzetta 2018), 

though with smaller amplitude and later latency. Similarly, the FRN was also present for the negative 

feedback of others’ observed responses (Yu & Zhou 2006; Kobza et al 2011; Koban et al 2012). 

Also, a slow wave called the Contingent Negative Variation (CNV; van Rijn et al 2011) in the central 

electrodes is thought to reflect sensory anticipation and movement preparation (Bender et al 2004). 

Initially thought to reflect the temporal preparation after a cue stimulus and maximal at the moment 

of response, it was later related to planning processes (Zaepffel & Brochier 2012) and the error 

correction performance during the delay period between a cue stimulus and an imperative stimulus, 

peaking at the action onset (Jang et al 2015). The CNV was further suggested to reflect anticipatory 

motor simulation of an observed partner’s action (Kourtis et al 2013). It should be noted that the 

specific features of these performance related ERPs (i.e. magnitude and latency) are affected by 

factors such as probability (Pezzetta et al 2018), learning (Bultena et al 2017), valence (Weismüller 

& Bellebaum 2016), and awareness (Nieuwenhuis et al 2001). 

While the components described above are performance-dependent (e.g. larger when an 

error is occurring), electrophysiological studies have also identified performance-independent (i.e. 

stimulus related) markers associated with monitoring. Errors may refer to motor processes and their 

outcomes, but also deviations from expected sensory events (in the absence of any performed or 

observed motor errors), as well as a combination of the two. For instance, in auditory and visual 

modalities, Mismatch Negativity (MMN; Pazo-Alvarez et al 2003; Ylinen et al 2017; Stefanics et al 

2018) has been identified over central electrodes, elicited 150-250 ms following rare, deviant (but 
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not wrong) stimuli (Wacongne et al 2012; Näätänen et al 2007). MMN is suggested to reflect an 

incorrect prediction of the sensory input (Garrido et al 2009). Similarly, N400 is a negative deflection 

maximal at parietal electrodes and peaks at around 350-400 ms after target onset that is sensitive 

to semantic violations such as an incongruent word in a sentence (Federmeier 2007; Kutas & Hillyard 

1980). N400 is suggested to reflect a higher-level semantic prediction error (Jack et al 2019). Both 

MMN and N400 are found to be weighted by the precision level of predictions, which means less 

weight is given to bottom-up signal if the predictions are reliable, and therefore the amplitude of the 

component is reduced (Bornkessel-Schlesewsky & Schlesewsky 2019). These ERPs help to 

understand to what extent the performance monitoring mechanism is shared in its processing of 

events that are due to both performance and stimulus, and in booth yes/no discrete responses 

(Holroyd & Coles 2002; Cavanagh et al 2010) and continuous events such as actions’ kinematics 

(Pavone et al 2016; Panasiti et al 2016; Pezzetta et al 2017). This can be studied by segmenting 

actions into smaller chunks where significant events occur (i.e. the moment of missing to grasp a 

cup). 

1.1.3 Role of anticipation in performance monitoring    

When one performs a movement, it is argued that there are predictive mechanisms that help 

form perception of our own actions as well as when we observe other’s actions (Kilner et al 2007). 

During movements, motor system sends a copy of the motor command back to the sensory brain 

areas as an internal feedback (Bansal et al 2018). These internal feedbacks are then compared to 

external signals which are the brain’s monitoring of action consequences. This mechanism monitors 

whether the motor commands (i.e. speech or body movements) have occurred as intended, or 

whether they should be modified upon errors (Bansal et al 2018). Without exception, the detection 

of errors during continuous monitoring of behaviour helps to adjust actions in all kinds of natural 

interactions with others and with objects (Vogt & Thomaschke 2007; Constantini et al 2010; de Bruijn 

et al 2011; Cavanagh & Frank 2014). The continuous nature of performance monitoring also affords 

anticipation of deviations in order to ensure goal success during movement execution (Ullsperger et 

al 2014a, Ullsperger et al 2014b) and supports anticipation during the observation of other’s actions 

(Aglioti et al 2008). The integration of sensory information with the motor output supports the 
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prediction of consequences of actions (Bastian et al 2006). This can be illustrated with a recent 

action observation paradigm where a virtual agent throws a ball, with various combinations of the 

action preferences of an agent (i.e. the probability of action or contextual information), and the 

movement kinematics (Helm et al 2020). Observers optimize the anticipatory process for the 

consequence of actions by integrating these two sources of information. Integration of both top-down 

and bottom-up signals are modulated by factors such as expectation and attention (Gordon et al 

2019).  

Performance monitoring can be viewed as the process of continuous comparison of outcome 

expectation and the actual outcome (Ullsperger et al 2014a) that is sensitive to violations in 

predictions (Oliveira et al 2007). Performance errors elicit well-established neural signals in the brain 

(Ullsperger et al 2014b). These signals have been widely studied using tasks that require discrete 

responses such as yes/no responses on Flanker type tasks (Ullsperger et al 2014a), but also tasks 

that are dependent on the continued monitoring of action sequences, such as movements’ 

kinematics (Aglioti et al 2008; Urgesi et al 2010; Amoruso 2014). In other words, some of the signals 

defined on performance errors are shared also during the prediction of motor errors, even before 

they occur (Maidhof et al 2009, Ruiz et al 2009, Joch et al 2017). These error signals provide us with 

the opportunity to test monitoring of our own task performances, monitoring of deviations in external 

stimuli as well as monitoring of the performance of others (Kok 2014; Ylinen et al 2017: Maurer et al 

2019). Both empirical studies presented in this thesis use performance monitoring, but from different 

approaches; one from the modulation of anticipatory processes involved in expert action observation, 

and the other from the context of monitoring own and others’ errors during lexical decision 

performances. The commentary on Chapter III on the other hand, highlights a research paper that 

used a paradigm that required to anticipate the consequences of own actions. 

1.2. Action observation   

Studies have shown that the fundamental neurophysiological mechanisms that are involved 

in action execution are also involved in action observation (Rizzolatti & Craighero 2004; de Bruijn et 

al 2007; Kilner et al 2007a; Kilner et al 2007b). It was proposed that the actions are simulated 
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internally during planning, control, and learning (Wolpert et al 1995, Kawato 1999). From passively 

observing others’ movements and actions, it has been proposed that through these internal 

simulations, humans are able to infer intentions (Kilner et al 2007b; Blake & Shiffrar 2007) and learn 

from their peers (Vogt & Thomaschke 2007; Hodges et al 2007; Harris et al 2018).  

In the past two decades, studies have identified a large-scale network of brain regions 

including occipito-temporal, frontal and parietal cortex that activated by action observation: The 

Action Observation Network (AON). Theories trying to understand the cognitive and 

neurophysiological architecture of the systems activated by action observation are largely influenced 

by the evidence from mirror neuron research (Rizzolatti et al 1996), which lead to the idea that the 

system that is involved in action execution is also activated during action observation. Supporters of 

a role of these shared mechanisms during action execution and observation propose that 

reactivating the sensorimotor system during action observation is the functional mechanism that 

allows humans to infer intentions from observed actions, and that the neural activity in these 

networks reflects the simulation of the observed action (Gallese & Goldman, 1998; Rizzolatti & 

Craighero, 2004). The activity of the AON has been proposed in predictive coding accounts of action 

understanding as supporting the communication between areas where visual, action-related, inputs 

are matched against simulation of predicted actions based on models of inferred intentions (Neal & 

Kilner 2010). This suggests that the activity in the motor system is linked to activity in the visual 

system during action observation (Kilner et al 2007b; Neal & Kilner 2010). These motor 

representations of intentions are used to create a model to predict the visual and somatosensory 

representations of action kinematics via the backward connections, where they are compared with 

sensory input (in the predictive coding framework a mismatch between predictions and sensory 

inflow produces a prediction error that is used to update the predictions). In this framework, actions 

are not only monitored but also anticipated (Umiltà et al 2001; Amoruso et al 2014; Denis et al. 2017; 

Abreu et al. 2017). Anticipation can be crucial in interacting with others, as the predictions that are 

generated of others’ observed actions can be used to coordinate with them. Anticipation is also 

useful in competitive sports to avoid being fooled by deceptive movements. An observer tries to 

anticipate the consequences of an agent’s movements based on an anticipatory simulation of the 
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observed movement.  To advance in a match, players try to trigger a wrong anticipatory action 

simulation to cause the opponent to be misled in understanding the real goals (Tomeo et al 2012). 

1.2.1 Neural evidence of action observation and anticipation 

A large number of studies have provided evidence on sensorimotor brain regions’ 

involvement in action observation (Fadiga et al 1995; Cochin et al 1999; Babiloni et al 2002; Pineda, 

2005; Hari 2006; Orgs et al 2008; Perry & Bentin, 2009; Press et al 2011). Evidence on AON 

emerged from studying motor facilitation during implied action observation (Urgesi et al 2010; 

Avenanti et al 2012) and highlighted the anticipatory nature of motor simulation which was originally 

proposed from studies on monkeys (Umiltà et al 2001). The main brain regions of AON are identified 

as the occipitotemporal regions which are activated during action observation, premotor cortex and 

inferior parietal lobule (di Pellegrino et al 1992: Gallese et al 1996: Rizzolatti et al 2001: Umiltà et al 

2001; Fogassi et al., 2005).  

Action observation has been shown to be related to central electrodes/primary motor cortex 

mu rhythm suppression in the time-frequency domain (8-13 Hz; Arnstein, et al 2011; Denis et al. 

2017; Dumas et al 2012), as well as to modulation of several fronto-parietal observed motor error 

ERPs’ amplitude in the time domain (oERN, van Schie et al 2004; oPe, Panasiti et al 2016; oFRN, 

Koban et al 2012). However, the properties of these markers may vary depending on which aspect 

of action observation we consider. Observational ERPs related to performance monitoring (e.g. not 

related to a performed action, but to the observed performance) are typically smaller in amplitude 

and delayed in latency, compared to the ones elicited by performed errors (Koban 2012; Panasiti et 

al 2016). Observation of action errors from a first-person perspective avatar (e.g. when a virtual arm 

reaches to grasp a cup and fails) can elicit oERN and observational Pe (oPe) (Pezzetta et al 2018). 

Likewise, observed Pe (oPe) a positive deflection that is topographically similar to the response 

related Pe was present after the observation of erroneous piano finger movements (Panasiti et al 

2016). Similarly, CNV can be present both for performed motor responses and for observed 

movement planning of a partner (Kourtis et al 2010; Kourtis et al 2013). Altogether, performance 

monitoring mechanisms seem to extend to the observed actions. 
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1.2.2 Expertise and Action Observation 

 Motor practice can shape prediction and action simulation mechanisms and their neural 

underpinnings (Brass et al 2007; Aglioti et al 2008; Sebanz and Shiffrar 2009; Abreu et al 2012; 

Badino 2014; Huberth et al 2018; Novembre et al 2013; Novembre & Keller 2014; Makris & Urgesi 

2014). Arguably, with physical expertise comes also the expert eye meaning that motor expertise is 

often associated to perceptual expertise too. Expert basketball players (visuo-motor experts) are 

able to predict the outcome of basket shots earlier and more accurately from body kinematics 

compared to expert watchers (visual experts) and novices (Aglioti et al 2008); expert watchers, while 

also good at predicting the outcome of basket shots, they use cues from the ball trajectory instead 

of body kinematics. This suggests that the motor expertise improves the perceptual expertise 

through the motor simulation of observed body kinematics. Similarly, sport expertise equips the 

players with the ability to detect deception from body kinematics (Sebanz and Shiffrar 2009; Fujii et 

al. 2014; Aglioti et al 2008). ERP results have supported this claim by detecting modulation in several 

neuromarkers. For instance, observing others’ erroneous piano fingering movements, Pe was 

elicited in expert piano players EEG signal (Panasiti et al 2016). Similar results have been found in 

expert tango dancers; the dancers differ in their anticipatory activity in the fronto-parieto-occipital 

network in the observation of realistic tango steps compared to naïve observers (Amoruso et al 2014, 

2017). Larger N400 responses are present during the perception of incorrect movement executions 

in expert basketball players (Proverbio et al 2012) and dancers (Orlandi et al 2017) compared to 

naive controls. The above-mentioned ERP studies suggest that the observed-error related signals 

might reflect the modulation of expertise that can be detected during incorrect motor execution. 

Echoing the tendency of the brain to change due to physical expertise, motor and auditory expertise 

in musical instruments can lead to enhancement of auditory-evoked potentials (Bauman et al 2008). 

To study the EEG correlated for anticipation of action outcomes, it was shown that ERN related to 

the execution of piano errors anticipates the mistake by about ~ 100 ms in experts (Maidhof et al 

2009), regardless of the presence of auditory feedback (Ruiz et al 2009). This suggests that the error 

signal of self-monitoring system can be indexed before the errors even occur. In sum, it can be 

argued that the motor expertise and contextual information contribute in allowing the simulation of 
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observed actions to be used in anticipation of the actions to follow (Kilner et al 2007b). The chapter 

II of the thesis focuses on the neural activity of domain-specific action observation for motor 

expertise.  

1.3 Links between performance monitoring in language comprehension and action 

observation 

Language comprehension is a complex cognitive function which consists of a set of cognitive 

processes such as semantic knowledge (e.g. meaning of words) and cognitive control (for a review, 

see Ralph et al 2017). Semantic cognition relies on both representations of non-verbal behavior 

through the encoding of the sensory, motor, linguistic and affective contexts, and on cognitive 

control. Most of the contemporary theories of language comprehension and production include 

executive control mechanisms, which contribute to the processes of lexico-semantic selection and 

retrieval (Walker & Hickok 2016; Nozari et al 2016). Previous research highlighted similar neural 

markers (ERPs) for action and language processing in the context of semantic violations (Amoruso 

et al 2013; Zachau et al 2014). Others have argued that language comprehension does not share 

computational demands with action observation or execution (Pritchett et al 2018), that the domain-

general sensorimotor processes for language comprehension are organized differently than for 

understanding actions (Tremblay & Small 2010; Zhang et al 2017). The neural signatures of 

performance monitoring, however, have been shown to be present both for tasks that make use of 

language semantics (Kutas & Hillyard 1980; Butterfield & Mangels 2003) and actions that form a 

meaningful sequence (or rather the violation of it; Reid & Striano 2008; Balconi & Caldiroli 2011; 

Amoruso et al 2013). An example of an action chain semantics and its violation is given by the 

observation of a cup full of water being grasped and brought to the mouth to drink from it. If the cup 

is dropped and the water is spilled, or if the grasping fails, the expectation will have been violated, 

much like a semantically unexpected word at the end of an otherwise meaningful sentence. In 

particular, the N400, which is considered a marker of semantic violations (Kutas & Hillyard 1980) 

has been found to be present also for violations of the semantics of observed actions (action-N400; 

Amoruso et al 2013). Further evidence on the shared mechanisms between actions and language 

processing comes from the finding that the N400 marks violations in both spoken and sign language 
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processing (Zachau et al 2014). Moreover, lexical decision errors (Bultena 2017; Sebastian-Gallés 

et al 2006), just like error commissions in Flanker tasks (Eriksen 1974) elicit the ERN. Based on the 

above-mentioned evidence, one of the core questions addressed in this thesis: are error monitoring 

ERPs present in observed and performed actions (Gehring et al 1993; van Schie et al 2004) in the 

context of lexico-semantic processing? 

When we hear sounds that form words, perception is formed by comparing the speech input 

with the context dependent predictions for phonological rules (Norris & McQueen 2008; Ylinen et al 

2017). For instance, Ylinen et al (2017) have found that phonologically incorrect pseudowords that 

violate predictions elicit larger MMN response than pseudowords that do not violate phonological 

rules (does not violate predictions), supporting the idea that incorrect phonological predictions are 

coded as a prediction error and reflected in the MMN signal. As a result of the predictive nature of 

lexical perception in such tasks word ambiguity can lead to sub-optimal lexical integration (Strauß et 

al 2014; Proverbio & Adorni 2008). Ambiguity in this example refers to the difficulty in which a non-

word can be classified as a non-word. In order to study the effects of ambiguity in spoken word 

recognition, Strauß et al (2014) have used an auditory lexical decision task (LDT), in which subjects 

were presented with real German words (‘Banane’ Banana) and ambiguous words (‘Banene’)  and 

pseudowords (‘Bapossner’) and were expected to respond with a button press to indicate whether 

the stimulus word is a real word or not. In order to address the question of whether the performance 

monitoring ERPs are present for both observation of lexical processing, we have adapted this task 

with a similar manipulation (Chapter IV). 

1.4. Outline of the thesis 

 The presented evidence suggests that adaptive behaviors depend on own and others’ 

performance monitoring. This thesis encapsulates two of the main projects I have worked on during 

my PhD, with the binding framework being the ERP correlates underlying performance monitoring. 

In the empirical chapters, the main points investigated were: 

• Can we specify an ERP that marks the prediction of action outcome? What are the EEG 

correlates of the prediction of an action outcome from the body kinematics of a wheelchair 
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basketball player by individuals who do or do not share the same motor expertise? This 

question focuses on the prediction of an action outcome by processing the body kinematics 

of a wheelchair basketball player. 

• Is the ERN-Pe pattern during erroneous responses in lexical decision tasks comparable to 

the classical ERN-Pe pattern that are typically found in speeded-choice tasks? This question 

is embedded in performance monitoring in two-fold; (i) monitoring of the word meaning - 

mismatch between what was predicted and what happens at the end of pseudowords, (ii) 

monitoring of own performance on the response to task due to this manipulation. 

• Is there an oERN even when the action of an observed partner violates a lexico-semantic 

prediction? 

The first point is based on the idea that becoming a motor expert modulates performance monitoring 

processes in the domain of expertise. This is explored in Chapter II that includes the first empirical 

project I have conducted within my PhD, by using an action observation task presented to an elite 

team of Wheelchair Basketball players. In this study, the players had to predict the outcome of free-

throw, and the results show an effect of expertise in the ERP waveform when compared to non-

experts. Chapter III includes a commentary in response to a research article about the ERP activity 

to action related errors, discussing its implications of the predictive monitoring of actions. In this 

commentary we consider different approaches to explore this topic, while also making use of virtual 

reality techniques. Chapter IV presents an experiment that aims to study error processing when the 

errors are due to the incorrect prediction of whether a word is real or not during an auditory lexical 

decision task, both for performance and for the observation of other persons’ lexical error 

performance. All three chapters specifically make use of anticipatory processes in performance 

monitoring, first from an expert action observation standpoint, second from a general prediction of 

own action’s outcomes perspective, and third for performance errors on incorrect prediction of 

language-based stimuli. The difference between the two empirical studies is that while one focuses 

on the prediction of an action outcome and the potential differences from the kinematics of the 

observed actions, the other one focuses on the observed response to a word stimulus that may be 

incorrect. While the shared point of origin is the broader umbrella of performance monitoring, they 
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differ in terms of the type of monitoring required (prediction from observed action kinematic vs 

observation of lexical decision errors). This prohibits an integrated interpretation of results. While the 

first study provides further discussion on the modulation of shared motor expertise on the prediction 

of action from the observed kinematics, the second study attempts to clarify whether the so-called 

domain-general error monitoring mechanism can be identified by the typical markers for also lexical-

decision errors. Chapter V discusses the general findings of the experiments presented in this thesis. 

In the Appendix, two additional studies I’ve worked on during my PhD are presented. Appendix A 

consists of an error observation study in the immersive Virtual Reality Cave, in which Parkinson’s 

patients were tested on and off dopamine medication, in order to examine the role of dopamine 

network in error processing. Appendix B includes a tACS study that investigated the potential effect 

of theta stimulation in an action adaptation task, by targeting the individual theta frequency in each 

participant, obtained from the analysis of resting state EEG data. Overall, the presented results aim 

to further the knowledge regarding performance monitoring processes, and to create new 

experimental designs to have a deeper insight into our interaction with the others.  
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Chapter II. Predicting the fate of basketball throws: an EEG study on expert 

action prediction in Wheelchair Basketball Players 
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Abstract 
The ability to anticipate and detect changes in human movement helps people to modify their 

behaviors in ever changing environments. Studies indicate that expertise modulates observation of domain-

specific actions in sports - a process that is crucial for adapting rapidly to a new situation, often before 

awareness of environmental changes is achieved. Here, we explored the electrophysiological underpinnings 

of wheelchair basketball players predicting the fate of free throws performed by wheelchair basketball athletes. 

We performed electroencephalography (EEG) in semi-professional wheelchair players with different degrees 

of expertise (Players) and in ambulant, non-expert people (Controls) while they observed movie stimuli of a 

free throw that could land inside or outside the basket.  On each trial participants were asked to predict the 

outcome of the throw. For each group, Event-related Potentials (ERPs) were averaged as a function of 

condition, using only the trials that were correctly predicted. Results show that compared to controls, expert 

players exhibit a greater negative amplitude of oCNV over Pz (an observational Contingent Negative Variation-

like waveform which is considered a marker of action effect prediction) during the wrist movement preceding 

the ball release (the last 100 ms of the shot), which carries the most crucial kinematic information regarding 

the fate of the throw. Our data provide further support to the view that functional modulation of the Action 

Observation Network is associated with expertise.  
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2.1 Introduction 

People invent games to advance their physical and mental abilities, just as much as sheer 

enjoyment. To succeed is many sports one has to efficiently use available information and predict 

what can happen next. Will the rival player in a basketball match go for a shot or make a pass to his 

teammate? The outcome of the game depends on how efficiently we can make decisions, or how 

good and fast we are at predicting the action outcomes (of other people’s/players actions). For 

instance, experienced basketball players might focus on body kinematics in order to successfully 

predict the next event, whereas beginners tend to make uninformed predictions based solely on ball 

trajectory (Aglioti et al. 2008). For experts in sports and music, body kinematics can be even more 

informative than other environmental factors that unfold around them. In this study, we explore the 

electrophysiological signatures of domain-specific action observation in wheelchair basketball 

athletes. In particular, we focused on the event related potential (ERP) waveform during the 

kinematically informative moments of a free throw.  

When we observe actions the Action Observation Network (AON) becomes involved 

(Hardwick et al. 2017). This network is comprised of premotor and inferior parietal regions that are 

also activated during action execution. Findings suggest that action observation is supported by our 

own motor capacities; for instance, TMS studies show corticospinal facilitation of the hand muscles 

measured via motor evoked potentials when observing grasping pictures with implied motion (Urgesi 

et al. 2006). It has also been suggested that anticipating the actions of another person might rely on 

a finely tuned and partially implicit perceptual mechanism (i.e. an inner motor simulation process) 

supported by embodiment and predictive coding (Abreu et al. 2017). At the electrophysiological level, 

ERP evidence from the parietal electrodes, specifically a negative deflection, has been associated 

with action effect prediction (Hughes and Waszak 2011; Jin et al. 2011; Savoie et al. 2018). Related 

to this, a slow negative deflection over fronto-central regions, the so-called Contingent Negative 

Variation (CNV) has been proposed to reflect cue-initiated motor response preparation (Gomez et 

al. 2003), with variations in amplitude and topography due to task requirements (Rohrbaugh et al. 

1976). CNV has been generally proposed to reflect the retrieval of a motor program from memory, 

and the late CNV (lCNV) to reflect sensory anticipation as well as movement preparation (Bender et 
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al. 2004). The lCNV is thought to be involved in both low- and high-level motor (movement) planning 

(higher order motor planning would refer to the shaping of a motor program, while lower level refers 

to the overt release of the motor command: Leuthold et al 2004; Zaepffel and Brochier 2012). Kourtis 

et al (2010; 2013) showed that the CNV waveform pattern corresponds to the planning period of a 

partners’ action in a joint action task, suggesting that motor simulation might occur for observation 

and anticipation of an action. Overall, the evidence suggests that our own movement capacities 

influence action anticipation and that it might be reflected in the CNV waveform. For ballet dancers, 

experience-dependent modulation of alpha power can be shown while they watch dance moves 

compared to novice groups (during action observation and motor imagery; Di Nota et al. 2017). 

Crucially, for the present study, there is evidence that elite basketball players can predict successful 

free throws more rapidly and accurately based on cues from body kinematics, as reflected by a 

difference in corticospinal facilitation between experts and novice groups during the observation of 

successful and unsuccessful basket shots (Aglioti et al. 2008). Unlike amateurs, expert basketball 

players can detect deception from kinematics and postural cues (Fujii et al. 2014; Sebanz and 

Shiffrar 2009), and when a part of the body kinematics is disguised, it reduces the experts’ accuracy 

to the level of amateurs (Rowe et al. 2009). Furthermore, studies on ERPs show a larger N400 during 

the perception of incorrect execution in basketball players but not in naïve controls (Proverbio et al. 

2012), with similar results found in expert dancers (Orlandi et al. 2017). Complementary findings 

suggest that differences in neural activity related to experience can be unique to sensorimotor areas: 

expert tennis players have a greater accuracy in anticipating the outcome of tennis related actions 

and greater event related desynchronization in Mu rhythm (8-13 Hz) and beta (14-30 Hz) frequency 

bands, associated with activation of the AON (Denis et al. 2017). In a sport-specific attentional cueing 

task, CNV has also been found during action observation in the context of expertise (Wang and Tu 

2017). Accumulating information from different samples of population and expertise converges 

towards the evidence that AON processes are imperative to understanding how predictive 

processing works. In the current study, we focused on wheelchair basketball athletes.  

Wheelchair basketball, just like standard basketball, is an open-skill sport where the 

environment changes constantly and it requires rapid adaption and response flexibility in disabled 
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athletes (Di Russo et al. 2010). In wheelchair basketball, athletes are functionally classified from 1 

(most severe disability) to 4 (least severe disability) according to the level of trunk movement and 

stability (De Lira et al. 2010; Maynard et al. 1997). During competition, the functional classification 

of the players is balanced in order to achieve comparable levels of physical ability across the 

competing teams, as the ability to throw a ball from a wider range of distances and upper arm 

circumference are related to success in scoring (Cavedon et al. 2015; Maloneet al. 2002). Players 

are required to be exceptionally strong and able to recover from harsh falls as well as to adapt quickly 

to the demands of the game. Their expertise moves beyond their respective injuries, especially for 

an action such as a free throw (which requires movement mainly from the upper body). 

Our paradigm focused on action prediction from body kinematics and investigated the 

electrophysiological correlates of action anticipation in expert wheelchair athletes. We expected the 

neurophysiological signals of action observation to be modulated by basketball expertise, specifically 

at the most informative moments of a basketball free throw kinematics, as shown by previous 

research (Abreu et al. 2012). Moreover, we expected the signals to be modulated by the fate of the 

basketball shot (i.e., whether it was successful or unsuccessful). To test this, we asked players from 

the Santa Lucia wheelchair basketball team to observe movies of another player and predict the 

outcome. We tested expert wheelchair basketball players, amateur wheelchair basketball players 

and naïve walking controls to investigate how specific motor handicap and motor expertise might 

impact motor prediction and the electrophysiological markers that accompany expertise. We 

attempted to investigate how motor expertise might impact prediction of the consequences of a motor 

action and the electrophysiological markers that accompany such expertise. 

2.2 Methods and Analysis 

2.2.1 Participants 

The study was approved by the local Ethics Committee at the Fondazione Santa Lucia 

Research Hospital (Rome, Italy), and followed the ethical standards of the 1964 Declaration of 

Helsinki. The sample consisted of 16 players, recruited from the Santa Lucia Wheelchair Basketball 

Team in Rome. Sixteen Expert players (Male, age: mean=28.94, ± SD=9.51; expertise: mean= 9.14, 

± SD=9.59; years since injury: mean= 18.86, ± SD=10.11) were tested. 
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The Players were comprised of athletes who actively took part in matches of the “Serie A1”, 

the highest level of the Italian Wheelchair Basketball Championship, within the Italian Wheelchair 

Basketball Federation (FIPIC), and athletes within the “Serie B”, with less years of experience 

compared to “Serie A1”. 

All players had deambulation issues and were full-time wheelchair users with reasons 

ranging from thoracic-back injury, paralysis, or amputation of two limbs. The only exception was one 

participant who could walk short distances with the aid of crutches, and another who could walk with 

prosthetic legs.  

24 control participants were recruited from La Sapienza, University of Rome. Three 

participants were excluded due to an accuracy below 55%, and four more were excluded due to 

technical failure to send triggers; therefore, EEG analyses were conducted on a total sample of 17 

basketball naïve Control participants (7 Male, 10 Female; Age = 26.4, SD = 5.99) and 16 Wheelchair 

Basketball players. One player was left handed. All participants had normal or corrected-to-normal 

vision and did not report head traumas or psychiatric disorders.  

2.2.2 Stimulus selection 

The movie stimuli consisted of movie recordings of a wheelchair basketball player (Point 1) 

of the Santa Lucia Wheelchair Basketball Team (Figure 1b). The movie stimuli were recorded from 

a sagittal viewpoint and displayed the shooting execution up to the first frame of the ball leaving the 

hand. In these stimuli, it was possible to observe and discriminate clearly between a shot that would 

or would not be successful for both experts and completely naïve participants. 

The movement of the actor started, on average, 789 ms before the movie stimulus ended 

(SD = 170.9). The videos started by a preparation of the player sitting still and holding the ball in 

preparation. Preparation lasts until approximately 80 ms (SD = 22.6) before the video offset, when 

the player extended the arm, closed the wrist and let go of the ball. In the “IN” shots, this extension 

ends on a higher point compared to the “OUT” shots. During the baseline part of the movie stimuli 

(mean = 1105.5 ms, SD = 185 ms), the player was seated on a wheelchair with the ball at hand with 

a slight rocking movement. The baseline part of the movie stimuli was validated to make sure that 
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the kinematics were uninformative by asking 8 naïve participants to try to guess the outcome of the 

actions. The pilot participants performed at chance level and with no significant difference between 

the likelihood of correct response for either condition (MeanIN = 42.3%, SDIN = 22.3; MeanOUT = 51%, 

SDOUT = 24.4; χ(1) = .989, p = .320). These participants were not included in the actual study. 

According to the Pearson Chi Squared likelihood ratio tests, the accuracy rates did not change from 

the first block to the last during piloting, which indicated that feedback did not result in learning effects 

(Accuracy per block from 1 to 4: 82.8%, 78.2%, 85.7%, 83.5%; χ(3) = 5.043, p = .169). This pilot 

helped to ensure the neutrality of the baseline part of the stimuli, as well as confirming the absence 

of a learning effect.  

2.2.3 Procedure  

Participants were seated comfortably in front of a computer in a well-lit room. Before the 

experiment, the participants completed the practice phase and became familiar with the task (6 trials: 

3 IN, 3 OUT). The movie stimulus was classified as IN when the ball went in the basket, and OUT 

when it failed. A total of 208 trials were delivered in 4 blocks with 3 breaks, lasting 35 to 40 minutes. 

Each block included 52 movie stimuli comprised of 26 free throws repeated twice. The movie stimuli 

had a proportion of 30% "IN" and 70% "OUT", in order to obtain the maximum amount of trials where 

there was an error in prediction. The stimuli included two players, however, 5 of the elite players 

recognized and reacted to one of the players of the movie, and we were forced to discard the data 

obtained from that stimulus. Data from 104 movie stimuli were considered during the analysis. 

Participants were required to predict whether the ball was going to be “IN” or “OUT”, which they 

expressed by pressing the left or right arrow buttons for “IN” and “OUT” respectively. On average, 

each trial lasted 8 seconds. Each movie stimulus started with the wheelchair basketball player, 

holding the ball for 1895 ms on average (SD = 63.2). One session was approximately 10 minutes, 

and the full task duration was approximately 40 minutes.  

Participants were instructed to keep their muscles relaxed as they watched the movies. They 

started the task by pressing the space bar. Each trial began with a fixation cross on the location 

where the player would then appear, and participants were instructed to fix their gaze on this cross, 

and the player’s body, throughout the trial. The movie stimuli were delivered in a pseudo-random 
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order (i.e. more than two clips belonging to the same condition (IN/OUT) were not presented 

consecutively). After each movie clip, there was a black screen (range: 500-1500 ms), followed by 

the response screen (Please see Figure 1a for the trial sequence, and Figure 1b for the movie 

properties). After their response, the participants rated how confident they were with their response 

in a Visual Analog Scale (VAS) from “Not Confident at All” to “Very Confident”. Each trial ended with 

the feedback (correct or incorrect). Figure 1 describes the timeline of one trial.  

2.2.4 EEG recording  

The triggers containing timing information for EEG recordings were sent via a photodiode, a 

device that delivers triggers activated by a white patch placed on the bottom right corner of each 

movie at the last frame. Time 0 was fixed at the end of the movies, since it was the same movement 

within each movie, presenting a mutual event in time. EEG signals were recorded by using a 

Neuroscan SynAmpsRT amplifier system (Compumedics, ltd) with a 60-electrode elastic headband 

(Electro-Cap, International, Eaton, OH) positioned according to the international 10-10 system. The 

signals were acquired from the channels: Fp1, Fpz, Fp2, AF3, AF4, F7, F5, F3, F1, Fz, F2, F4, F6, 

VAS 
(Up to 2000 

ms) 

Movement 

13 Videos 

(Repeated 8 times)

4 ‘IN’

9 ‘OUT’

Response 
(Up to 2000 

ms) 

Feedback 
(Correct/ 
Incorrect) 

Random  
(500 - 

1500 ms) 

Video 
(1500 - 

2200 ms) 

Baseline 

(A) 

(B) 

771 –1400 ms  Approx. 600ms 

Fig. 1  (A) Timeline (B) Procedure: A representation of the movie progression, first, middle and last 

frames of the movie (1st frame – the player sits still; 2nd frame – the player initiates the movement; 3rd 

and 4th frames – the player moves to execute the throw: 5th frame – the movement is completed when 

the player`s wrist is closed and the ball is let go) 
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F8, FC5, FC3, FC1, FCz, FC2, FC4, FC6, T7, C5, C3, C1, Cz, C2, C4, C6, T8, TP7, CP5, CP3, CP1, 

CPz, CP2, CP4, CP6, TP8, P7, P5, P3, P1, Pz, P2, P4, P6, P8, PO7, PO3, PO1, POz, PO2, PO4, 

PO8, O1, Oz, O2. The ground electrode was positioned on the scalp for ALF derivation, while the 

reference electrodes were applied to the left (digital reference) and right (physical reference) 

earlobes. A Horizontal Electro-Oculogram (HEOG) was recorded bilaterally, and a Vertical (VOEG) 

was recorded with electrodes positioned under the left eye. The signal was recorded with an online 

low-band filter 0.01-200 Hz and digitized at a sampling rate of 1000 Hz. Impedances were maintained 

under 5 KΩ by applying gel (ElectroGel) to all electrodes. After the data collection, the raw files were 

down sampled to the rate of 500 Hz. Independent components were calculated for each participant 

using continuous EEG data to identify and remove eye movement and muscular artifacts (ICA; Jung 

et al 2000) a mean of 3.6 components (range 1:6) were removed, using the MATLAB toolbox 

EEGLab (Delorme and Makeig 2004). 

 

2.2.5 Behavioral Analyses 

Statistical analyses for the behavioral data were performed with SPSS (IBM SPSS Statistics 

for Windows, Version 20.0. Armonk, NY: IBM Corp.). The mean accuracy rates were calculated for 

each group. We ran a mixed ANOVA design with Condition and Group as the within and between 

groups factors, respectively. The accuracy of the data guided our trial selection in our EEG analysis 

(See Figure 2 for the error frequencies of each group). Trials that were not correctly identified as “IN” 

or “OUT” by the participant were removed. A mean of 86.3% of the trials was kept for the EEG 

analysis. 

 We also determined that the accuracy rates were free from perceptual bias: to assess 

whether the participants might have a bias towards giving the “IN” or “OUT” responses more often, 

we ran a signal detection analysis (McFall and Treat 1999). We also controlled for the learning effect 

and measured the accuracy rates throughout each block of trials. We determined that performance 

did not improve with time.  
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We ran a Spearman's rank-order correlation to determine the relationship between the 

Confidence Ratings and Accuracy of each group. 

2.2.6 ERP Analysis  

Preprocessing of the EEG data in the time domain was performed using the Brain Vision 

Analyzer 1.05 software (Brain-Products, GmbH). The data were band-pass filtered to 0.5-30 Hz. 

Epochs were time locked to the end of the players’ movements, meaning that the signal was epoched 

in wide windows of 2200 ms, from -1500 to +700 ms relative to stimulus offset and were baseline 

corrected with a chosen interval of 200 ms during the baseline period of the movie stimulus, when 

the player in the video sat still (from -1400 to -1200 ms relative to stimulus offset). Only correctly 

predicted trials were included in the analysis. Each epoch was visually inspected for artifacts and 

residual epochs with eye blinks or epochs exceeding -100/+100 μV amplitude were manually 

removed. Overall, 86.7% of the correctly classified trials were analyzed (~2560 trials in total). Bad 

channels were interpolated only when necessary (Perrin et al. 1989). ERPs were calculated with the 

erpR package (Arcara and Petrova 2014) in R Studio (R Core Team 2014).  

In line with previous literature, we focused our analyses on the parietal area (Amoruso et al. 

2013; Jin et al. 2011; Proverbio and Riva 2009) and mainly on the electrode Pz. We chose the 

window for analysis according to the part of the movie stimulus that carried the most information 

about the fate of the throws occurring in the last 100 ms of each movie, where the player bends his 

wrist and lets the ball go. Our focus on this window stems from research on how visuo-motor 

expertise provides advantage in reading kinematic cues (Ridderinkhof and Brass 2015; Savelsbergh 

et al. 2002), and that the release of the basketball is informative for experts and not novices (Abreu 

et al. 2012). 

 We used a 2X2 factorial design to analyze EEG amplitude over Pz with (i) Condition: “IN” 

and “OUT”, and (ii) Group: “Players”, “Controls” as factors. ANOVA was conducted with the ez 

package (ez: Easy analysis and visualization of factorial experiments, version 4.2–2; Lawrence 

2013). We also ran a Spearman correlation analysis only on the Player group’s amplitudes for both 

“IN” and “OUT” conditions with their years of expertise. 
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2.3 Results 

2.3.1 Behavioral Results 

Figure 2 shows the mean accuracy rates for each group and each condition. The mean 

accuracy of the “IN” movies was 88.25% for the Players and 80.76% for the Controls (SD = .09, .10; 

respectively). In the “OUT” movies, the Players were accurate in 92% of the trials and Controls were 

85.59% accurate (SD = .09, .12; respectively). There was a significant main effect of group on 

accuracy rates F(1,31)=5.61 p=.024, with no surviving effects on the post-hoc tests.  

No significant main effect of the condition (“IN” or “OUT”), or a significant interaction between 

the condition and group (p=.153 and .479; respectively) was found.  

According to the t tests that were run on signal detection analysis values, the overall 

perceptual sensitivity of the Players was significantly higher than the Controls, t(31) = 2.866, p = .007 

(d’Players= 2.95, SE = .25; d’Controls = 2.09, SE = .17). Analysis of the C values for bias showed 
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that neither group had any bias towards either the “IN” or “OUT” responses, due to the stimulus 

frequency, t(31) = -.04, p = .970. 

 There was a positive and statistically significant correlation between the VAS Scores and 

Accuracy Rates, in Players (rs (16) = .630, p = .009) and Controls (rs (17) = .554, p = .021). The 

Players had VAS scores of 69.40% (SD = 10.33), whereas Controls had 60.76% (SD = 13.57). 

 

 

Fig. 2 Accuracy rates of each group in each condition. Players were significantly 

better than Controls (p<.001), but no other main effect or interaction was observed. 
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Fig. 3 Scatterplots for correlations between VAS scores and Accuracy rates of each 

group  
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2.3.2 ERP Results 

A repeated measures ANOVA on the ERP waveform from electrode Pz, with the factors 

Group (Players, Controls) and Condition (“IN”, “OUT”), revealed a significant main effect of group on 

the mean amplitude of the signal F(1,31)=6.17, p=.019 during the last 100 ms of the movie stimuli 

(which carried the crucial kinematic information about the basketball throw). The main effect of 

condition (F(1,31)=3.58, p=.069) and interaction of group X condition (F(1,31)=2.28, p=.141) did not 

reach significance. FDR corrected post-hoc tests showed that Players had significantly more 

negative in amplitude than the Controls in the “IN” movies (MeanDifference=-3.35, p=.035), but not in 

the “OUT” movies (MeanDifference=-2.62, p=.056). Figure 3 (B) shows the topography of the average 

signal (-100 ms to 0); Figure 3 (D) shows the scalp distribution of the ERP waveforms from the 

electrodes around the midline. In neither the “IN” nor the “OUT” conditions were amplitudes 

significantly correlated with expertise (rIN = - .366, pIN = .082; rOUT = - .246, pOUT = .179). 



33 
 

 

-8

-4

0

-1500 -1200 -900 -600 -300 0

Pz

PLAYERS    "IN"

PLAYERS     "OUT"

CONTROLS "IN"

CONTROLS  "OUT"

(C) 

(A) 

(B) 

I

N 

OU

T 

EXPERTS CONTROLS 

lCNV 

(D) 

Fz 

FC2 FCz FC1 

C4 Cz C3 

CP2 
CPz CP1 

P4 Pz P3 

PO4 POz PO3 

Oz 

A
m

p
litu

d
e

 (μ
V

) Time (ms) 

-8

-4

0

-1500 -1200 -900 -600 -300 0

Pz

PLAYERS    "IN"

PLAYERS     "OUT"

CONTROLS "IN"

CONTROLS  "OUT"

A
m

p
litu

d
e

 (μ
V

) 

5 

2 

0 

-

2 

-5 

1 μV 

-8 μV 

Fig. 4 (A) ERP waveform between Players and Controls – The area marked in red specifies the 100 

ms time window in our analysis. The waveform starts from -1500 ms before the end of the video and 
stops 100 ms afterwards. (B) Topographic view. (C) The mean amplitudes of each group in each 
condition (D) ERP waveforms recorded in the electrodes, Fz, FC1, FCz, FC2, C3, Cz, C4, CP1, CPz, 
CP2, P3, Pz, P4, PO3, POz, PO4, Oz. 
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2.4 Discussion  

Experts differ from amateurs since they rely on more refined sources of information when it 

comes to navigating within their domain of expertise (Aglioti et al, 2008; Abreu et al. 2012). 

Consequently, they are better able to predict and adapt to sudden changes in the environment. In 

the present study, we aimed at identifying ERPs during action observation in an expert population. 

To do this, we tested elite athletes from the Santa Lucia Wheelchair Basketball team (Players) and 

walking novice controls. All subjects were asked to predict the outcome of free throws presented in 

movie stimuli. This task allowed us to examine the neural activity with respect to domain-specific 

actions, as well as to record behavioral responses. Indeed, our data shows a different 

neurophysiological pattern for Expert athletes in comparison to Controls.  

2.4.1 Accuracy rates 

As expected, the Players (with a mean of 9 years of expertise) were significantly more 

accurate than the Controls. It should be noted that the success rate across both groups of 

participants is 86.3%, suggesting that the shot outcome was relatively easy to predict, as was the 

aim of the task. However, expertise did play a significant role in the accuracy of the prediction of the 

fate of the basketball shots.  

2.4.2 ERP signals 

Our main hypothesis was that the neurophysiological correlates of predicting the outcome of 

an action through observation of kinematics are modulated due to motor expertise. Our analysis 

shows that the Players had a significantly larger parietal EEG negative amplitude compared to 

Controls during the key point of the observed throw: when the wrist closed to complete the shot. This 

may be reminiscent of the results that expert basketball players focused on the kinematics of the 

shot while the expert watchers (i.e. non-players) used later cues like the ball trajectory in order to 

reach successful predictions (Aglioti et al. 2008). Upon visual inspection of the topography and the 

scalp distribution of the waveform (Figure 4) we have found similarities with the analyzed waveform 

and the oCNV.  

Action effect prediction has been associated with a negative deflection over the parietal 

electrodes (Hughes and Waszak 2011; Jin et al. 2011; Savoie et al. 2018). Our task had some 
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similarities and some differences with respect to the traditional set up that elicits a CNV. In our task, 

the cue (the beginning of each clip) was uninformative as to the required response and it only 

indicated that there was going to be a response from the participant in roughly 1.5 seconds. Then 

the actual information regarding the response was carried within the last ~100 ms of each clip. 

Nevertheless, the slow negative waveform is present for both groups. The oCNV amplitude in 

experts is significantly more negative compared to the controls. This result aligns well with the idea 

that a CNV is elicited not only during the observation of a partner’s action (Kourtis et al 2010; 2013), 

but also during the observation of an expert’s domain of expertise (Wang and Tu 2017). Wang and 

Tu (2017) found that CNV was smaller in badminton players compared to controls when predicting 

the height of badminton shots with a high uncertainty. Increased CNV amplitudes in controls has 

been interpreted as a greater need for attentional control. While this finding seems in contradiction 

with our results, in our task we aimed to have a ceiling effect, which meant that for the players, there 

was little uncertainty. Although, a stronger argument for this might be possible with further analysis 

on selecting the trials in which the participants had high confidence as well as being accurate versus 

the ones that they had low confidence while being accurate. Overall, we believe that the parietal 

negativity we report has similarities with CNV, in terms of its occurrence during action prediction and 

latency.  

Contrary to our prediction, our results did not show a difference in the ERP waveform 

regarding “IN” and “OUT” shots within groups. However, there was a main effect of group in the 

amplitudes, which survived the post-hoc tests for the “IN” condition. In other words, the Players had 

greater negative parietal activity compared to the Controls in the “IN” condition. We speculate that 

the difference revealed in the oCNV might be due to the observed domain-specific activity (i.e. 

observational lCNV). We suggest that this negative amplitude is associated with higher activity in 

sensorimotor areas associated with expertise during the observation of a domain-of-expertise action 

(Hughes and Waszak 2011; Jin et al. 2011; Savoie et al. 2018), but further investigation is required 

to validate this claim. The correlation analysis regarding expertise and ERP amplitude was not 

significant for either “IN” or “OUT” conditions. This is likely due to the small sample size, as 

differences in amplitude are very small, and would require a greater sample of experts. 
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By occluding the ball trajectory, the present study builds on Aglioti and collaborators’ previous 

findings (Aglioti et al. 2008) and highlights the EEG correlates associated with action outcome 

prediction based on movement kinematics (i.e. arm and wrist movements). When compared to the 

Controls, the Players show significantly more negative deflection in parietal regions during the 

observation of the kinematics of a basketball shot for the “IN” condition compared to the ‘OUT’ shots, 

but the significance does not survive the post-hoc tests. The significant difference between these 

two groups in the “IN” shots may stem from the uncertainty that exists for non-players, especially in 

the ‘IN’ shots. Once the decision for the ‘OUT’ shot has been made, the observer will no longer have 

any uncertainty, whereas for the ‘IN’ shots, even for mere milliseconds, there may be more attention 

necessary until later in the movie. Thus, a scenario where Players -who do not seem to experience 

uncertainty in either condition- compared to Controls have a more negative ERP signal regarding 

the ‘IN’ shots can be tentatively interpreted as occurring due to the continued uncertainty which the 

Controls might experience. However, a stronger claim for this point would if such effect existed for 

feedback. It has to be listed as a limitation in statistical strength for this study that the difference for 

‘IN’ and ‘OUT’ shots might have been effected by the more extensive action simulation of the 

basketball players. We did not observe any clear peak that could be considered an error-specific 

component such as a frontal observed error-related negativity (oERN) for the “OUT” shots (where 

an error in kinematics occurs for the shot to fail). This may stem from the overlap of other components 

such as error positivity (Pe) over ERN, dependent on specific task features (e.g. Panasiti et al. 2016). 

It may also be due to the continuous nature of our task, making a clear event-related potential difficult 

to extract. Furthermore, the timing of the movements building up to the shot varied across our movie 

stimulus.  

It has been shown that visual and motor training have different implications in action 

observation (Casile and Giese 2006; Inuggi et al. 2018). In the seminal research from Aglioti et al 

(2008), expert basketball commentators who had much visual familiarity with basketball were found 

to focus on the ball kinematics, whereas players were reading the body kinematics with comparable 

success in outcome prediction. Furthermore, basketball players use both visual and proprioceptive 

cues when it comes to their own movements. Maglott et al. (2019) tested basketball players from a 
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university team (experts) and recreational basketball players (non-experts) and asked them to 

predict the fate of their own shots (verbally indicating “in” or “out”) without seeing the actual outcome. 

Their results showed that university team players – compared to recreational ones - were more 

accurate in predicting their own correct throws, but worse in predicting their missed shots (i.e. worse 

than chance level). Performance advantage of experts can be considered in terms of better 

prediction to unexpected which may be visible already in the neural markers of known monitoring 

processes. Furthermore, action anticipation based on biological kinematics can have an impact on 

neural activation; experts are able to simulate the observed domain specific action (Senna et al. 

2014; Tomasino et al. 2012). Amoruso et al. (2014) demonstrated, in expert tango dancers, that 

anticipatory neural activity regarding movement recognition differed between groups of experts and 

novices, and that semantic neural responses such as N400 predicted motor expertise. In our study, 

we investigated how the level of expertise might impact a specific domain of action observation. An 

alternative mechanism for the effects of expertise may be efficient visuo-motor integration. In expert 

dancers, the parietal region was shown to contribute to integrating kinesthetic perception with the 

representation of the dance syntax during the observation of the moving body (Bachrach et al. 2016). 

In this study, we have shown a parietal negativity (on electrode level) during the crucial 

moments of action cues for anticipation during a basketball shot. While it is true that we are not able 

to directly compare our results to neuroimaging studies that specify the parietal region in the context 

of expertise (due to sensor-level analysis), we find it important to acknowledge that source 

localization should be performed in the future. For instance, it has been shown that subtle intention-

specific kinematic information can be decoded from a network that involves parietal regions (Koul et 

al. 2018). In our study, we focused our analyses on the electrode-level, which prevents direct 

comparison to neuroimaging studies that specify the parietal region in the context of expertise. 

Nevertheless, our results are in line with those of other studies that have shown different brain 

activation for experts with various imaging techniques and tasks. Successful action integration and 

prediction allows expert players to more rapidly and more effectively adjust in situations that require 

their expertise (Hack et al. 2009; Wu et al. 2013). Experts are therefore better in action execution 

during unexpected situations that may arise in the domain of their expertise, and show different AON 



38 
 

activation during action perception tasks (Wang and Tu 2017; Wang et al. 2017). However, in studies 

that use tasks such as the Flanker task (not directly relevant to the particular domain of expertise), 

the neurophysiological signals from expert athletes do not always display differentiating patterns 

compared to non-athletes, even in the presence of better reaction times or performance (Di Russo 

et al. 2010; Wang et al. 2017). Moreover, the type of expertise (e.g. in the kind of sport that is the 

focus of a study) drives which cognitive skills are enhanced, such as cognitive control or spatial 

abilities (Chan et al. 2011; Yamashiro et al. 2015), and a better understanding of these measures 

might lead to better skill specific training.  

Finally, while the heterogeneity of the athletes’ physical ability impedes addressing 

straightforward questions regarding the effects of actual physical ability/disability on the AON as well 

as the necessity for source analysis, it still provides a setting in which physical expertise can be 

studied. Wheelchair basketball requires skills acquired with more difficulty than regular basketball, 

and perceptual-motor training (obtained by a visual constraint that forced participants to use target 

information as late as possible) has a positive impact on future successful shooting percentages 

(Oudejans et al. 2012). There is a lot of interest in how expertise affects not just the behavior but 

also plasticity in the brain, and research focusing on the effects of many hours of practice has had a 

valuable impact on the understanding of the mechanisms underlying learning, skill acquisition, and 

the rewiring of the brain after an acquired motor disability.  

3.4.3 Future directions and conclusions 

The relationship between expertise and AON engagement has been modelled within different 

frameworks. Recently, a quadratic relationship between increasing familiarity and the accuracy of 

predictions was proposed (Gardner et al. 2017). Gardner and his colleagues trained participants in 

guitar movements. They demonstrated that BOLD activity in the AON is present during both highly 

familiar and highly unfamiliar observed actions, either due to more accurate predictions in the former, 

or due to continuous updating in the latter. It may be beneficial for future EEG/MEG studies to 

examine how parietal negativity during domain-specific action observation due to sports expertise 

might be affected with a manipulation that could result in a quadratic relationship. In our study, we 

compared subjects that were expert Players and completely naïve Controls. We aimed to describe 
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expertise-related observational properties, but we did not induce expertise acquisition (e.g. through 

learning) within our paradigm. It is necessary for future studies to assess how motor skill learning 

occurs, or more specifically, how motor expertise acquisition induces changes in the brain (Ossmy 

and Mukamel 2018), in order to have on-line information about training-induced brain plasticity. The 

timing of the crucial wrist movement for the basket shot that determines the fate of a shot in our 

videos were not positioned at the same moment in each video down to the millisecond. Instead, they 

varied within the same 100 ms window. This has limited our ability to take full advantage of the 

temporal properties of ERP data. However, in other action observation tasks that are done using 

virtual avatars has the benefit of pinpointing the event (in our case) movement of interest with 

complete sensitivity. Furthermore, with a virtual arm that executes a basket shot from the first person 

perspective instead of the third person perspective there would be the possibility to detect prediction 

related activity with higher precision (Pavone et al 2016; Spinelli et al 2018; Pezzetta et al 2018), 

targeting specific features of action observation in expert groups with certain physical abilities, with 

the aim of making effective comparisons. 

Overall, we report ERP signals evoked by action observation in wheelchair basketball 

expertise. While we acknowledge that the sample of athletes in this study is comparatively small, our 

data supports and extends the literature by demonstrating more negative activity in elite athletes, 

especially when the expert players focus on crucial information. Crucially, our data also further 

supports the relation between motor experience and anticipation expertise via embodiment 

mechanisms and raises new questions regarding the acquisition of motor skills after injury and the 

different levels of expertise. 
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Chapter III. Predictive monitoring of actions, EEG recordings in virtual reality 
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A commentary on: Brain negativity as an indicator of predictive error processing – The 

contribution of visual action effect monitoring  

By Michael Joch, Mathias Hegele, Heiko Maurer, Hermann Müller and Lisa Katharina Maurer  

 

 

Abstract  
Error-related Negativity (ERN) is a signal that is associated with error detection. Joch and colleagues (Journal 

of Neurophysiology 118:486-495, 2017) successfully separated the ERN as a response to online prediction 

error from feedback updates. We discuss the role of ERN in action, and suggest insights from VR techniques; 

we consider the potential benefit of self-evaluation in determining the mechanisms of ERN amplitude; finally, 

we review the oscillatory activity that has been claimed to accompany ERN.  
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3.1 A commentary on the role of virtual reality for the study of the predictive 

monitoring of one’s own actions 

Error detection is a crucial ability for learning and implementing adaptive behavior. Several 

MEG/EEG studies have investigated the cortical signatures of error monitoring in a variety of tasks, 

ranging from the widely known speed-response tasks (i.e. Flanker task, go no-go) to more finely-

tuned motor tasks such as grasping an object or hitting a target (Maier, Di Pellegrino, & Steinhauser, 

2012; Meyer, Braukmann, Stapel, Bekkering, & Hunnius, 2016). EEG studies indicate that execution 

errors as well as errors of observed action are indexed by specific electro-cortical markers in the 

time and time-frequency domains. Specifically, in the time domain, when an error is detected but the 

result of an action is still explicitly unknown, an ERN is observed in the mid-frontal regions. Moreover, 

when the external feedback about the performance is provided, a so-called Feedback-related 

Negativity (FRN) is elicited. As the ERN appears before the feedback, it may represent a signal of 

prediction error. However, this conclusion becomes less straightforward in complex tasks where 

many other “low level” - action execution related - factors can contribute to the generation of this 

negative event-related potential. In fact, despite the error prediction process itself, in many studies 

the participants could still execute corrections while the action is in progress, or they could visually 

observe the trajectory that leads to the goal, which makes the contribution of these later factors to 

the ERN generation unclear. Furthermore, the temporal proximity of any external feedback 

overlapping with the error detection itself makes it difficult to pinpoint the neural bases of action 

outcome prediction.  

In a recent issue of Journal of Neurophysiology Joch and colleagues (2016) addressed some 

of these issues by recording EEG from healthy individuals while they performed a complex motor 

task. Their aim was to investigate whether the ERN represents a high-level (action outcome related) 

prediction error or whether this signal is generated by the detection of low-level (i.e. kinematics) 

discrepancies. The task they proposed was a quasi-virtual ball-throwing task inspired by the pub 

game called Skittles. In this game, a ball was attached to a rope on the top of a stick; the participants 

were instructed to decide when to pick up and release the ball by simply pressing and letting go of a 

virtual lever that controls it, with the aim to hit an external target. In the current paradigm, the ERN 
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signal is elicited by missing the target. By preventing the knowledge of the result (namely the 

feedback), movement correction and action effect monitoring, the authors excluded three possible 

confounds of the ERN generation that were observed in previous research (Maurer, Maurer, & 

Müller, 2015). Specifically, in the target study, Joch and colleagues prevent the effects of online 

feedback of the action itself by occluding the vision of the ball trajectory once the movement has 

been executed (namely when the subject lets go of the lever). As a consequence, movement 

corrections were avoided as well as action effect monitoring due to ball flight visibility.  

In the target article, when they compared the mean amplitude in both the hit and error trials 

on electrode FCz, they detected a negative deflection between 200 and 350 ms following the ball 

release for the erroneous trials (ERN). They also found another deflection occurring between 1000 

and 1200ms as a reaction to feedback (FRN), also in the mid-frontal regions. While in their previous 

study, Maurer and colleagues (2015), found a broad negative event-related potential (that was 

interpreted as the neural response to action effect monitoring of the ball flight trajectory, in the target 

article, they observed no significant broad negative deflection in the interval between the ERN and 

the FRN unlike in Maurer et al (2015). Therefore, the aforementioned confound was eliminated in 

the present work by Joch and colleagues (2016).  

This efficiently verifies that the previously observed negativity was related to the action effect 

monitoring of the ball flight trajectory. The findings are important because they center upon an issue 

in the error field that focuses on the action observation network (AON), since it involves both visual 

and proprioceptive information. As this study clarifies, the error signals can indeed continue to be 

generated due to action effect monitoring; by focusing on what happens in the brain when an action 

is produced before any immediate external feedback (as the ball trajectory represents), one is able 

to focus on the prediction of an error based on the pure action kinematics. When an action is 

observed (visual), the pre-existing sensorimotor network (AON) is engaged, especially more robustly 

when the observed action is familiar. In a way, this resembles the information from the “memory” of 

a proprioceptive component of the very same action. Thus, if an individual is executing an action 

while observing the consequence visually, but not observing the outcome, it is possible to narrow 



44 
 

the window in which the error signal occurs. Below we discuss how this quasi-virtual paradigm and 

the results pave the way to find out the fine nuances of error detection, and even the prediction of 

an error.  

We have three points to make about the implications of this study, and the further 

opportunities it presents. Firstly, the target article paradigm emphasizes the distinction on whether 

the error signal codes the error prediction itself, the knowledge that an error has happened, or it is a 

more general signal that occurs in both types of situations. Tellingly, the study is embedded in the 

context of the forward model of action prediction, which comprises the efferent information derived 

from the muscles and the afferent information from the action trajectory. According to the forward 

model, a prediction is generated by integrating available sources. In this paradigm, the informative 

sources are: i) the throwing movement, which produces an efference copy and ii) the visual and 

proprioceptive online information about the very same movement (Aglioti, Cesari, Romani, & Urgesi, 

2008). Specifically, in the target article, the efferent copy is represented by the lever press (release 

of the ball), but it is still coupled with the observed trajectory until the movement of the press ends, 

even though the following observation is prevented. Therefore, as mentioned by the authors 

themselves, the online sensory information here is both visual and proprioceptive. There are several 

ways to approach the issue, building upon the target article. The intention to separate the efferent 

and afferent copies of error prediction lead us to propose an alternative use of the augmented reality 

techniques, coupled with motion tracking (for a similar paradigm, see Yazmir & Reiner, 2016). With 

a motion tracking system (e.g., cyber gloves), it is possible to carry the movement of hands to the 

virtual environment without the need to utilize a lever as an intermediary apparatus. If the real-time 

movement can be translated into a virtual environment in another sensory prediction task, the visual 

cues from the virtual environment can be manipulated to create a scenario in which sensory 

information can be congruent with visual information and where the visual information is unavailable 

after the movement itself is learned by heart (similarly applications on animal studies, Schwartz, 

2004). In the unavailable visual information condition, it would be possible to observe whether there 

is a point in which the participants can detect their executed error. Thus, the pure effect of 

proprioceptive information on error detection can be separated from the visual information that 
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relates to the AON. By means of virtual reality, strong control over the environment and reliable 

sensory information can be obtained and new discoveries can be made regarding cortical signatures 

of error prediction in adaptation, such as in the cases of expertise, where the absence of efference 

copy (by means of a paradigm similar to the target article’s) is easily compensated due to the 

simulated action based on the learned domain-specific kinematics (Aglioti et al 2008).  

Secondly, the ERN reported by Joch et al (2016) had a later latency and smaller amplitude 

compared to choice-reaction time tasks. The authors explain that task complexity leads to less 

accurate predictions. Collecting confidence ratings prior to the external feedback could also help 

address this issue. Di Gregorio, Steinhauser, & Maier (2016) proposed a paradigm in which 

participants respond with one of the three options in a visual-color matching task. Each response 

was followed by a self-evaluation of performance: participants judged whether the response provided 

was correct or incorrect and, if incorrect, to indicate which of the wrong targets they responded to. 

This allowed the authors to sort trials by the level of confidence on error commission and disentangle 

implicit and explicit correctness of the predictions. From the neuro-electrical point of view, this 

confidence about the prediction and thus, the level of awareness about the performed action, was 

previously linked to the error positivity (Pe – a positive signal that peaks ∼100–200 ms after an error; 

Ridderinkhof et al 2009). We think in future research, findings regarding a late positivity after ERN 

or FRN would clarify this point. This can create an informative picture of predictive processes, and 

confirm whether the certainty of error prediction and the amplitude of ERN co-vary with the Pe, or, 

whether the two mechanisms underlying the two cortical potentials are independent.  

Lastly, aside from the evidence based on ERPs, a growing literature based on time-frequency 

domain analyses reveal interesting results on the link between error prediction processes and brain 

oscillatory activity. For future research, we think that the current paradigm is well suited for analysis 

that aims to separate the phase-locked and non-phase locked features of the theta-band activity, 

which may be related to the on-going events after an action. It is important to recognize that ERP 

components have a complex heterogeneous structure composed of frequency-specific oscillations 

(Yordanova, Kolev, & Kirov, 2012). In the time-frequency domain, delta (< 4Hz) and frontal midline 
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theta (4–8Hz) has been considered a key mechanism in the generation of ERN and FRN. Moreover, 

an extensive literature support theta involvement in behavioral and cognitive control (Luu, Tucker, & 

Makeig, 2004; Cavanagh, Cohen, & Allen, 2009), so the oscillatory theta activity may be a consistent 

neurophysiologic marker of the mismatch (error) information by the monitoring system.  

To conclude, the elegant paradigm in the target paper temporally localizes the action related 

ERN by obscuring the visual action effect monitoring and delaying the feedback. The authors’ 

paradigm and similar motor tasks could provide fruitful opportunities to disentangle the neuro-

electrical patterns of error prediction processes in controlled virtual environments. The mentioned 

ERPs and the related oscillatory activity are useful to understand the neuropsychological 

mechanisms for coordinating different cognitive processes involved in predictive processes.  
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Chapter IV. Observed and performed error signals in auditory lexical 

decisions 
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Abstract 

This study investigates the observation of errors using a speeded auditory lexical decision task, on 

pairs of participants (performer and observer), using language processing as a realistic setting. 

Monitoring one’s own errors yields a response-locked EEG component for errors relative to correct 

responses, known as the Error Related Negativity (ERN), that is followed by an error positivity (Pe). 

Similar components have been shown for the observation of errors. While these effects have been 

widely studied for performance errors in speeded decision tasks, relatively little is known about the 

performance monitoring signatures in language comprehension observation. Some recent studies 

indicate a similar ERN effect for errors in linguistic performance, but so far, the observed ERN and 

Pe have not been examined during lexical decision tasks. In our task, native speakers listened to 

Dutch words, obvious non-words, and crucially, long pseudowords that resembled words until the 

final syllable, which were shown to be error-prone in a pilot study because they were responded to 

too soon. In this paradigm, we manipulated the length and deviation point of non-words in order to 

prevent the participants from forming a strategy based on timing expectations. Consequently, errors 

can be (i) obvious upon response (expected for real words and obvious non-words), or (ii) revealed 

upon the completion of the word, after response (expected for long pseudowords). We hypothesised 

that the errors on an auditory lexical decision task would result in a response locked ERN-Pe pattern 

both for the performer and for the observer.   

 

 

 

 

 

 

 

 



49 
 

4.1 Introduction 

Performance monitoring lies at the base of many processes including adaptation and learning 

(Cavanagh & Frank, 2014; Koban et al 2012; Luu et al 2004; Ullsperger et al 2014b). Specifically, 

fast error detection in own and others’ actions are fundamental for subsequent adaptation, flexible 

behaviours and learning of goal directed actions (de Bruijn et al 2007; de Bruijn et al 2011; Navarro-

Cebrian et al 2016). Although much of the error monitoring research focuses on speeded choice 

tasks or performed motor errors, similar electrophysiological markers in the brain during observation 

of others’ motor errors have also been found (van Schie et al 2004; Pezzetta et al 2018; Moreau et 

al 2019 in press). Furthermore, these markers of the error monitoring system have been shown to 

be present both in action errors (Joch et al 2017; van Schie et al 2004) and in language 

comprehension (Sebastian-Galles et al 2006; Ylinen et al 2017). The present study brings together 

the well-established literature of error monitoring during action observation with the brain responses 

associated to auditory language comprehension, with the aim of exploring the extent of how much 

the monitoring mechanisms are shared or specialized. 

Subprocesses of performance monitoring have been studied extensively using EEG (de 

Bruijn & von Rhein 2012; Luu et al 2004; Ullsperger et al 2014a). In the time domain, two event 

related potentials (ERPs) have been identified to be related to error monitoring processes (Luck & 

Kappenman 2011): The Error Related Negativity (ERN) and Error Positivity (Pe). ERN is a negative 

deflection peaking fronto-centrally around ~100 ms after an error is committed. It is thought to be 

generated in the anterior cingulate cortex (ACC) which is involved in cognitive control and adaptive 

functions (Holroyd & Coles 2002). The Pe is a positive deflection that usually follows ERN, with 

maximal amplitude over central-parietal area (Shalgi 2009; Wessel 2012), and is thought to reflect 

error awareness, and context updating (Nieuwenhuis et al 2001). Typically, ERN seems to be 

present during speeded choice tasks such as Flanker, Stroop and Go-No Go, time-locked to errors 

(Riesel et al 2013). 

In the past two decades, the action observation literature has been mainly based on motor 

simulation hypothesis, in which the basis of action understanding relies on our own motor capabilities 
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(Keysers & Perret, 2004; Rizolatti & Craighero 2004; Kilner et al 2007b). Namely, action 

understanding relies on the individual’s ability to predictively simulate the observed movements by 

reactivating the same neural machinery that would be used in case the observer performs the 

observed action themselves. In keeping with this account, during from the observation of motor 

errors from first- and third-person perspective has been shown to elicit similar activation in neural 

activity (Pavone et al 2016, Pezzetta et al 2018). For instance, the errors that are not our own, but 

are observed have been reported to elicit the so-called observational ERN (oERN) as well as the 

observational Pe (oPe; Bediou et al 2012; Koban & Pourtois, 2014; Panasiti et al 2016). Seminal 

research from van Schie et al (2004) demonstrated the presence of oERN, with longer latency and 

smaller amplitude compared to classical ERN, during the observation of a Flanker task performance. 

In their task, a participant had to choose whether the presented arrowhead in between distractors 

were pointing left or right by using the joysticks on each side. In the observation condition, the 

observer was presented the correct response on a screen separate from the actors, who were 

performing the task without any feedback. In the last decade, error monitoring signals such as the 

oPE have been shown to be present in various tasks such as observation of incorrect piano 

movements (Panasiti et al 2016), a virtual avatar committing errors in a game (Kobza & Bellebaum, 

2013), of key presses for oERN (Weller et al 2018), or even of a computer alghoritm performing a 

Flanker task for oERN and oPe (de Visser et al 2018). While some error observation studies did not 

find oERN possibly due to the same frequency of error and correct trials (de Bruijn et al. 2007; 

Panasiti et al. 2016), recent findings show the oERN to be present for erroneous trials regardless of 

frequency (e.g. same amount of (Kobza & Bellebaum, 2013) or more erroneous trials than correct 

ones (Pezzetta et al 2018)). oERN was found in patients with schizophrenia while ERN was absent, 

suggesting these patients might be sensitive to others errors while monitoring of own errors was 

compromised (de la Asuncion et al 2015). Furthermore, it has been recently shown that being 

observed increases the amplitude difference in the ERN between errors and correct responses 

(Huang & Yu 2018). Overall, ERN that is elicited by both erroneously performed and observed 

actions has been shown to be affected by task characteristics and requirements as well as individual 

differences. Crucially, the literature calls for testing performance monitoring in more realistic settings 
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(Wessel, 2014) (e.g. not guiding the observer in the monitoring process such as in van Schie et al), 

while also being mindful of the effect of various task manipulations. In the present study, we have 

aimed to create a realistic setting to address the performance monitoring processes involved in 

observation of language processing. 

In EEG studies in the auditory domain, several response and stimulus related monitoring 

ERPs have been found that seems to be shared with the language comprehension processes. The 

ERN was elicited by erroneous responses to an auditory lexical decision task with words and non-

words in Catalan, in Catalan-dominant bilinguals (Sebastian-Gallés et al 2006). In their paradigm, 

the non-words were created by changing one vowel from existing words in Catalan. When Spanish-

dominant bilinguals performed the task in Catalan, they did not show any ERN effect between error 

and correct trials despite having committed many errors. This was interpreted as due to the Spanish-

dominant bilinguals’ unfamiliarity with the vowel contrast, as such, being unable to ‘hear the error’. 

Recently ERN was found in also errors of language switching tasks (Zheng et al 2018 Furthermore, 

manipulated vowel harmony can result in MMN, depending on task requirements (Ylinen et al 2017). 

Ylinen et al demonstrated that MMN was elicited 340 ms after the presentation of an auditory 

stimulus comprised of words that violated Finnish vowel harmony, such as in oddball paradigms, 

highlighting the presence of mismatch monitoring markers specialized for language processing. 

Their task did not involve response to stimuli, only passive listening. Overall, evidence suggests that 

the auditory stimuli can elicit several ERPs due to performance related effects. In other words, just 

hearing different types of words, such as a deviant word in a sequence of other words can elicit MMN 

(Li et al 2019; Ylinen et al 2017).  

 Based on the presented evidence, the current study hypothesised that the mechanism for 

error monitoring is shared throughout modalities during observation of even the performance on a 

lexical decision task. This mechanism might not be only shared with performed errors in speed 

choice tasks, motor actions, and verbal error commissions, but also with the process of making 

lexico-semantic decisions. To investigate this hypothesis we have created an auditory lexical 

decision task that requires the listener to make a speeded decision on whether the stimuli they hear 
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are words or non-words, and the observer to be attentive to this procedure. The non-words were 

purposefully created to either be obvious (obvious non-words; e.g. blij/blooi – happy/heppee), or to 

be revealed to be non-words once the listener has predicted the stimulus to be a real word 

(pseudowords; e.g. universiteitsbibliotheek/universiteitsbibliotheekui – university library + ui). The 

rationale in having pseudowords distinct from the regular non-words was to ensure the participants 

would commit enough errors. Thus, by task design, errors were intended to occur due to the 

tendency of internal completion of a word, or prediction of it from the initial few correct sounds (Norris 

& McQueen 2008), only then for the participants to realize that they are mistaken.  

We were guided in the choice of the stimuli by the assumptions of the Bayesian perspective 

of word recognition. A recent model of speech recognition, Shortlist B (Norris & McQueen 2008) 

posits a Bayesian perspective of word recognition which sets forth a claim that listeners adopt an 

approximate optimal strategy in word recognition, guided by predictive coding framework. In this 

model, optimality is described as the best recognition that can be achieved by the listener, 

constrained by the potential ambiguity of perceptual input, combined with phonological and lexical 

knowledge. If there is an ambiguous amount of perceptual input  (e.g. if a word isn’t easily 

recognizable to distinguish from a non-word, or when the deviation point that makes a word into a  

non-word is at the very end which creates ambiguity until the word is completed) in a task that 

requires a speeded response decision, the most probable word will be selected as the correct 

response (Bogacz et al 2006). Thus, words are recognized by prediction before they are revealed in 

full. However, depending on the ambiguity of the input, spoken word recognition process may or may 

not result in certainty. On the one hand, if a non-word is presented to a listener with an immediate 

obvious deviation from all known words, the listener can recognize with optimal probability that the 

word is non-existent. On the other hand, if a non-word is recognized to be a word only at the last 

sound (i.e. when a sound is added, which makes the real word a non-word), the optimal response 

will have been made with certainty, only to then realize the error in the decision. Therefore, it would 

be possible to test predictive mechanisms of word recognition, which according to Shortlist B is 

based on (incorrect) prediction with a set of stimuli comprised of Real words, filler words that are 

obviously non-words, and Pseudowords that become non-words in the last syllable. Pseudowords 
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were the target words in which we manipulated to make the participants to commit errors, and the 

Obvious non-words were included to prevent the participants forming a strategy expecting which 

syllable the error would be at. As per previous evidence, we hypothesized that the erroneous 

responses (yes-response to Pseudowords) in the present auditory lexical decision task will be 

marked with response-locked ERN. On the other hand, the correct responses are not expected to 

have ERN (yes-response to Real words). We expect the ERN for errors to be followed by stronger 

Pe for errors marking the subject’s awareness of the error. This would suggest the error monitoring 

mechanism is also shared for the errors that are committed during language comprehension. No-

response to real words were not used as errors because it might include a slightly different process 

that might confound the results if averaged over with the yes-response to Pseudowords. 

Furthermore, we expected to demonstrate the presence of oERN during the observation of another 

individual performing an error in the auditory lexical decision task, with smaller amplitudes compared 

to the performance ERN.  

4.2 Methods 

4.2.1 Participants 

20 pairs of participants have been tested, all native Dutch speakers between the ages of 18-35, 

recruited through the SONA system (MAge: 22.4, SD: 4.2, 28 Females). The inclusion criteria 

comprised of right-handedness, having no hearing issues, normal or corrected to normal vision, no 

color-blindness, no dyslexia or reading problems, no neurological issues, and not having learnt a 

second language from birth. 

4.2.2 Materials 

In order to select stimuli for the experiment, first a database of 4000 Dutch words was created 

from CELEX (Max Planck Institute for Psycholinguistics, 2001) and SUBTLEX-NL (Keuleers, 

Brysbaert, & New, 2010). 720 words (nouns, verbs and adjectives) between 1-10 syllables were then 

selected from within this set based on several exclusion criteria. Among these were: phonotactic 

violations, certain derivations (-heid, -teit, -isch, -lijk, -ig), generic compounds and reduction of 

derivations, names, inflected word forms and taboo words, as well as infrequent and emotionally 
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loaded (Moors et al 2013) words. 120 Pseudowords were created of the following manipulations: 

Added syllable (as with universiteitsbibliotheek → universiteitsbibliotheekui – university library + 

ui), added consonant, changed last sound or syllable, (scheikundelaboratorium → 

scheikundelaboratoriuf – chemistry library + uf), replaced vowel (diplomauitrekingsceremonie → 

diplomauitrekingsceremona – graduation ceremony), replaced consonant 

(onafhankelijkheidsverklaring → onafhankelijkheidsverklarinkt – declaration of independence), 

added consonant (verantwoordelijksheidsgevoel → verantwoordelijksheidsgevoelt – feeling of 

responsibility). Pseudowords were identical to real words until the last syllable, and were always 

between 7-10 syllables, and non-words were 1-6 syllables. Obvious non-words were created to be 

phonotactically sound (i.e. theoretically possible Dutch words) while not being identical to any 

existing Dutch word. The words varied in length (number of syllables), lexical frequency, and the 

position of stressed syllable. Words with strong phonological similarity to German or English 

were also avoided in order avoid confusion due to the high chances of familiarity to these 

languages. Most of the obvious non-words were assembled by changing existing words from 

the initial set until they became a clear nonword. A total of 250 Obvious non-words were created 

by adding a single sound, replacing several syllables or combining parts from multiple words, such 

as spak, kleuzelschetter or abanteurenmaroon. Contrary to obvious non-words, pseudowords 

were set to be longer to allow the predictive process to complete the word before the end was known. 

The Obvious non-words were created as filler non-words so that the participants wouldn’t be able to 

form an expectation on where and when the deviation from a real word would occur. 

We have recorded the words spoken by a female native Dutch speaker. Recordings were 

done in sound proof audio labs and were edited in PRAAT software (Boersma & Weenink, 2019). 

The audio files were segmented at word boundaries, at the zero crossings right before stimulus onset 

and after stimulus offset respectively (Avg. 1100 ms; Min. 342 ms, Max. 2302 ms). We balanced two 

lists for both participants in the pair to have the role of Observer and Performer. Each list had 240 

real-words, 90 obvious non-words, 30 pseudowords, and the items were distributed over different 
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syllable lengths. Obvious non-words were easy to recognize immediately, so they served as fillers 

to mask the fact pseudowords always had the manipulation at the very end. 

4.2.3 Procedure 

The set-up included a touchscreen that was embedded in a table, in which the buttons were 

presented. The task was a simple two-alternative forced choice auditory lexical decision task. The 

stimuli were delivered via speakers by Presentation® software (Version 20.0, Neurobehavioral 

Systems, Inc., Berkeley, CA, www.neurobs.com). The participants sat facing each other, with a table 

placed between them. The buttons were presented via a touchscreen placed between the two 

participants. Performers had to respond by touching the green box on the right side of the touch 

screen if they thought it was a real word, and red box on the left side if not. Performers had their 

hand on the planks placed over the touch screen, with their index finger hovering over the response 

buttons. Observer’s task was to pay attention to the auditory stimuli, as well as the Performer’s 

response on the touch screen (green for ‘word’, red for ‘not a word’). Additionally, both partners had 

to keep track of the number of incorrect responses to ensure the errors were being attended to. 

Response hands were not counterbalanced to make it simpler for the Observer to discriminate the 

Performer’s response on the touch screen. The participants were informed that they could respond 

as soon as they were sure, and that they did not need to wait until the end of the word. As determined 

by behavioural pilot sessions (see below), the time out duration was set to 400 ms after the offset of 

the word. If they were within the time limit, a white screen for inter-stimulus-interval between 500-

1000 ms was presented before the next sound file played simultaneously with the buttons presented. 

If they were too late to respond, they saw a message (‘Sneller A.U.B.!’ – ‘Faster please!’) that told 

them to be faster before the next trial started. The task lasted ~25 minutes comprised of 4 breaks 

and 5 blocks. In each break, participants were asked approximately how many trials they thought 

they observed/committed depending on their role, to ensure the observer’s attention throughout the 

session. Upon the completion of the first task, the participants changed roles, and were presented 

with the second word list.  

http://www.neurobs.com/
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Figure 1 Sequence of one trial. Each trial started with a presentation of the buttons and fixation cross for 100 ms, followed 
by the sound presentation. Response could be given either during (early response) or after (late response) the sound, and 
upon response, the buttons disappeared from the screen, and a blank interval screen was presented. Duration of the sound 
files varied between 394 - 2468 ms. Note: The blank screen after response was jittered, and so was the interval after the 
‘Faster Please!’ message. When the response was within the time limits and there were no ‘Faster Please! message 
presented, the first blank screen was the only jitter between trials. 

 

4.3 Behavioural Pilot Study Results 

In order to assess the validity of the stimulus and to estimate the appropriate time pressure 

for the participants to commit enough errors throughout the experiment, we have conducted a pilot 

experiment. This also helped us to get a sense of the type of the errors committed as well as the 

reaction time information. Participants were tested in sound-proof cubicles and were asked to fill in 

Figure 2 Results of the pilot study: (A) Error rates for each type of stimuli (B) RTs to each type of stimuli 
(Time 0 represents the sound offset. Negative reaction times represent the responses that were given before 
the sound offset.) 
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a questionnaire about the clarity of the stimuli. We have tested 34 participants with various time limits 

enforced (250 ms, 400 ms, 1000 ms), and decided on a 400 ms time pressure to respond to 400 ms 

after stimulus offset for our final sample of 20 participants. The task differed from the EEG experiment 

in the way that the participants were tested individually and using a buttonbox. Overall, in this pilot 

study participants were 91% accurate of 360 trials. We had aimed for at least a minimum of 6 error 

trials for pseudowords and correct trials for real words as a criterion to include the participant in the 

analyses, which proved possible by the pilot results (Olvet & Hajack et al., 2009; Pontifex et al., 

2010). On average, the number of errors for real words were ~11 out of 240 (SD = 8.5), for obvious 

non-words were ~6 out of 90 (SD = 7), and on pseudowords were ~11 out of 30 (SD = 6). Reaction 

time to real words was ~133 ms after the stimulus offset (SD = 196 ms), to obvious non-words was 

~232 ms (SD = 174 ms), and to pseudowords were exclusively before the stimulus offset (MRT = -

350, SD = 206 ms). Independent samples t-tests revealed that there were no differences between 

the error rates and the reaction times to the two lists of stimuli (all ps > .9). 

4.4 EEG Experiment 

Participants were recruited in pairs and were seated in a comfortable chair. After having 

signed the consent forms, they were explained the procedure and mounted with the EEG caps 

simultaneously by two researchers. The session was comprised of two parts: Observation and 

Performance. The order of the Observer/Performer role was assigned randomly. After the completion 

of the tasks, they were asked to fill out a post-experiment questionnaire. The full experiment lasted 

2 hours. Each participant was compensated with 20 € for their time.  

4.4.1 EEG recordings and Preprocessing 

The EEG recordings were done using two Brain Products ActiCaps. Each cap had 32 

electrodes including the external ocular and reference electrodes. The signals were acquired from 

channels: FP2, F4, F8, FC6, C4, T8, CP2, CP6, O2, P4, Cz, Pz, Oz, O1, P3, CP5, CP1, T7, C3, 

FC1, Fcz, FC2, Fz, FC5, F7, F3, FP1. The reference electrodes were applied to the left (digital 

reference) and right (physical reference) mastoids. All electrodes were algebraically re-referenced 

offline to the average of both mastoid electrodes. The Horizontal Electro-Oculogram (HEOG) was 

recorded bilaterally, and Vertical (VEOG) with electrodes positioned under the left eye. The signal 
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was recorded with an online band-pass filter 0.01-250 Hz with a sampling rate of 500 Hz. 

Impedances were maintained under 5 KΩ by applying gel (ElectroGel) to all electrodes. All 

preprocessing of the EEG data was carried out using FieldTrip, an open source toolbox (Donders 

Institute, Nijmegen; Oostenveld et al 2010) in MATLAB (The MathWorks, Inc.). Removal of visual 

artifacts was done in two steps. First, a blind source separation method, the Independent Component 

Analysis (ICA; Jung et al 2000) was applied to remove the components that are related to eye 

movements. Then, all trials were visually inspected and all trials with artefacts including residual eye 

blinks were excluded from the analysis. Furthermore, the trials with longer response times than 2 

standard deviations were removed from both behavioural and EEG analysis, matched between the 

Performers and the Observers. On average 22.8 trials per participant were removed. The ERPs were 

calculated time-locked to the response, obtained by segmenting the signal into epochs of 1000 ms 

length (-200 ms to +800 ms, relative to response time) and were band-pass filtered offline (0.1–30 

Hz). Baseline correction was done using the time window from 200 milliseconds before the stimulus, 

which were well before the response. The number of correct trials (from the Real words category) 

were matched to the number of erroneous trials (from the Pseudowords category).  

4.4.2 ERPs 

Statistical analyses on response-locked ERPs were performed with R Software (R Studio 

Team 2014), using the erpR package (Arcara and Petrova 2014). The data were segmented locked 

to the response of the Performer (Figure 4). Based on the ERN and Pe literature the analyses will 

be focused on FCz and Pz electrodes, respectively. Mean amplitudes for each participant and for 

each condition in the time windows of interest were fixed from 0 to 150 ms for ERN for the Performer 

(Danielmeier et al 2009; Kaczkurkin 2013; Zambrano-Vazquez & Allen 2014) and from 250 to 350 

ms for the Observer relative to the response of the Performer (covering the peak following ERN). 

The early Pe was defined as the mean amplitude in the 150–250 ms post-response time window at 

FCz for the Performer and 350-450 ms for the Observer. The late Pe was determined as the mean 

amplitude in the 300–500 ms post-response time window at Pz for both groups (de Bruin 2017). Data 

from the Obvious non words were not included the analysis, as there were filler words to prevent the 

participants from expecting the deviation from a real word to be at the end of the words each time. 
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Performer’s and Observer’s data were analysed separately, and t-tests were used to compare the 

mean amplitude difference between correct (yes to Real-words) and error trials (yes to 

Pseudowords). In order for both of the participants in a pair to be assigned to each role within one 

session, the number of stimuli was kept to a minimum. This meant that several other comparisons 

beyond the main hypothesis was not possible due to the small number of trials. Thus, comparisons 

between the stimulus types were beyond the scope of this study. 

4.5 Results  

4.5.1 Overview of Task Performance (EEG) 

  

Response times were analyzed relative to the stimulus offset, of which could be before 

(resulting in negative response times) or after (positive response times) the end of the stimulus. 

Overall, participants were 91% accurate of 360 trials. On average, the number of errors for real 

words were ~9 (SD = 5) out of 240 (4%), for obvious non-words were ~10 (SD = 7) out of 90 (11%), 

and on pseudowords were ~13 (SD = 7) out of 30 (44%). Error responses were executed faster than 

correct responses (137 ms after the sound offset (SD = 205 ms) vs 209 ms (SD = 116 ms); t(39) = - 

3.85, p < 0.001). Response times (RTs) to pseudowords were significantly faster (83 ms, SD = 303) 

than RTs to real words (201 ms, SD = 125; t(39) = 3.8, p = 0.001). Participants’ estimating accuracy 

for own errors was .02 and for partners errors was 2.6 out of 360 trials (even though with some 

variability SDs = 10.6, 14.5 respectively). This was calculated by subtracting the number of 

erroneous trials from the number of estimated errors for each participant. These estimates were 

Figure 3 Behavioural data from the Experiment: (A) Error rates for each type of stimuli (B) RTs to each type of 
stimuli (Time 0 represents the sound offset. Negative reaction times represent the responses that were given 
before the sound offset.) 



60 
 

calculated from the guesses they made at each break and subtracted from the number of errors; 

Own errors: 32/360 SD = 14; Partner’s errors: 32/360, SD = 13. 
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4.5.1 Event Related Potentials 
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Figure 4 Scalp distribution time-locked to response times for each group; red lines for error trials in pseudowords 
(yes response to pseudowords), green lines for correct trials in real words (yes response to real words).  The y axis: 
-15 to 15 μV, negative down; the x axis shows -200 preresponse period; time0 indicates the response time. Blue 
box indicates the time window of interest for ERN and oERN; red box for early Pe and oPe, and for the late Pe (*) 
indicates the statistical significance. (Note that the baseline correction was done using a 200 ms interval before the 

Stimulus Onset, therefore the pre-response interval on the figure does not reflect the baseline.) 
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In both groups (Performers and Observers), the opposite effect of the standard ERN-Pe 

pattern were observed. In correct trials (yes to Real words), there was a large negative deflection 

compared to errors (yes to Pseudowords) as can be seen in Figure 4, FCz electrode, with a 

significant difference between conditions (Performer, 0-150 ms: t(32) = -2.07, p =.046; Observer, 

250-350 ms: t(32) = 3.28, p =.003). For the analysis of early Pe in the electrode FCz, the only 

significant difference was present for the Observers (Performer, 150-250 ms: t(32) = -.68, p =.5; 

Observer, 350-450 ms: t(32) = 3.44, p =.002). This difference was in the expected direction but with 

a sustained positive deflection instead of the typical Pz peak. For the late Pe in the Pz electrode was 

significant in both groups (Performer, 300-500 ms: t(32) = 2.45, p =.02; Observer, 300-500 ms: t(32) 

= 3.40, p =.002). 

4.6 Discussion 

 In this study, we aimed to detect EEG error-related activity on an Auditory Lexical Decision 

Task, both for performance errors (i.e. ERN, in the Performer role), and for observed errors (i.e. 

oERN, in the Observer role). The task was designed in a way to allow us to compare errors that were 

made due to a lexical deviation, which resulted in an incorrect prediction (yes response to 

Pseudowords) of the stimuli, to correct responses (yes response to Real words). We have 

manipulated the classical errors to be due to the revelation at the end of the stimuli (i.e. there is no 

error until the deviation of the stimulus towards being a pseudoword), so that the performance error 

would be due to the incorrect prediction of the word rather than being an error concerning the part 

of the stimulus that the subject had heard up to the time of his/her response. In addition, we wanted 

to see if the Pe would be present in errors on Pseudowords, since the sudden realization of the 

errors that are due to the deviation at the last moment would increase the saliency of the stimulus 

and therefore the awareness to the error. Instead, results show more negative amplitudes on FCz 

between 0-150 ms window after the Performers response for correct trials (on Real words), but for 

the Pe window error trials (on Pseudowords) do show a larger Pe. These findings are not in 

agreement with our expectation, as the results were the opposite of the typical ERN-Pe pattern 

(Holroyd & Coles 2002). For the Performers and Observers, we see a similar pattern in the ERP 

waveform in response to both error and correct trials, with smaller amplitudes for the Observers.  
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We observed a significantly more negative deflection for the correct responses compared to 

the errors on pseudowords, with a sustained negativity, a contrary result to the negative peak for 

errors in the well-established ERN time window (0-150 ms after response). A possible driving effect 

for this result could be the nature of the Pseudowords that only deviated from a Real word at the last 

moment. This deviation may have made the participants doubt every Real word until after the last 

syllable. Previously, Hammer et al (2013) suggested that contrary to the intuitive expectation of a 

larger negativity, in some cases the ERN amplitude appears to be smaller due to competing 

processes in error monitoring and insufficient perceptual input. While this may seem in contradiction 

with the previous evidence, it suggests that response-conflict is lowered when there is stronger 

distractor processing. In other words, ERN amplitude is modulated by the degree of response conflict 

in relation to error awareness. In conflict monitoring literature, ambiguity has been related to Correct 

Related Negativity, a negative peak larger for correct responses compared to erroneous ones (Luu 

et al 2000; Pailing & Segalowitz 2004; Grützmann et al 2014), which is thought to represent 

uncertainty in speed-choice tasks that are used to study error activity at a cognitive level and the 

activity of at a cognitive level. In our task, there are only small differences between Real words and 

Pseudowords at the very end, which may have led participants to expect a deviation at the end of 

each long Real word. Furthermore, instead of the ERN-Pe pattern that is observed in error monitoring 

paradigms, our data seem to show multiple positive peaks after the sustained negativity. 

Alternatively, an N400 effect overlapping with Pe might create confounding effects in the current 

pattern in the waveform, due to unexpected deviation on the Pseudowords (semantic incongruity; 

Praamstra et al 1993), however, we think this is unlikely because the correct trials show more 

negative amplitudes, and not the errors on Pseudowords. Therefore, we think that the results are 

better explained with CRN that is due to the uncertainty.  

The more negative deflection in the initial time window is followed by a positive peak in both 

correct and error trials in the early Pe window, which was significantly more positive only for the 

Observers. In the error monitoring literature, the Pe has been observed in the absence of ERN and 

has been reported to be dependent on error awareness (Nieuwenhuis et al 2011), stimulus 

representations (Gibbons et al 2011), detection of an erroneous action (Panasiti et al 2016) and use 
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of different evidence in the detection of errors (Di Gregorio et al 2018). Di Gregorio et al suggest that 

while the early ERN reflects an early signal in the MFC that quickly indicates the need for behavioral 

adjustment, the Pe reflects the conscious evaluation of errors, two independent systems together 

forming a dual monitoring system. In the present study, CRN might indicate the encoding for 

continued ambiguity for both groups, followed by a significantly larger Pe for errors in the Observers, 

encoding the awareness for the errors. From the guess-rates regarding the number of errors, we can 

claim that mainly the errors were mostly attended to, which could explain the clear presence of Pe, 

although following the CRN and not the ERN. For the late parietal Pe, the mean amplitudes were 

significantly more positive for both groups during errors. Previously, salient and infrequent targets 

have been associated with stimulus-locked P300 which was thought to share characteristics with 

late Pe following errors (de Bruijn et al 2007; Ullsperger et al 2014b). While our analyses were 

response-locked, it is true that the Pseudowords were rare and salient in our paradigm; the 

participants have reported their attention was drawn every time there was a Pseudoword. Thus, we 

believe that the larger late Pe for the errors on Pseudowords marks the attention to the infrequent 

but salient deviation of the words.  

3.6.1 Limitations 

As a limitation, with the current analysis, we are not able to address the potential movement-

related effects. However, we believe the response (tap finger on the touch screen button) did not 

confound the data, as both groups show a similar pattern in the ERP waveform, while Observer’s 

were not required to respond (their task was to both discriminate between words and non-words 

without performing any response, and pay attention to the Performer’s errors). 

Furthermore, there is a small baseline difference that is present in the Performer’s ERP 

signal. This is likely to be caused by the response time differences relative to the baseline period 

used (which was the 200 ms time interval before the stimulus onset). This can be addressed by 

matching the word length of the correct trials to the error trials in further analyses. Lastly, to keep the 

experiment duration to a minimum for both of the participants to be able to do the experiment in each 

role, there were not sufficient number of erroneous trials in each category (Real words, Obvious non-

words, Pseudowords) for every participant. Therefore, we were not able to compare error/correct 
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trials in these categories with each other. Potentially, the question of whether stimulus related effects 

differ between each category (e.g. higher early and late Pe amplitudes for Pseudoword errors 

compared to Obvious non-words due to the effect of salience and rarity) can be addressed by mixed-

models analyses, which take into account the weight of the number of trials in different experimental 

conditions. This approach would make the claim about the late Pe being related to errors to 

Pseudowords more trustable, thus allowing to interpret the late Pe as a stronger response to an 

incorrect prediction of stimuli. 

3.6.2 Conclusions and Future Directions 

In the present study, I aimed to integrate the EEG error-related brain responses during action 

observation (van Schie et al 2004; de Bruijn et al 2011; de Bruijn & von Rhein 2012; Pezzetta et al 

2018), with EEG responses associated to lexico-semantic processing (Davidson & Indefrey 2011; 

Bultena et al 2017). The results suggest that the Auditory Lexical Decision task results in CRN for 

correct trials (on Real words) compared to errors (on Pseudowords) due to continued ambiguity for 

both Performers and Observers.  This is followed by a significant Pe marking the error awareness 

only for the Observers. Finally, a late Pe is present for both groups in errors, potentially due to the 

salience of the rare and deviant stimuli. Further data analysis for time-frequency and source analysis 

in order to determine the involvement of performance monitoring processes are required to support 

this claim (Cohen et al 2008).  
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Performance monitoring of actions is crucial for survival (Kilner 2007a, 2007b). During the 

actions we perform, both motor control and performance monitoring processes support the execution 

of movements. (Kawato et al 1999; Rushworth et al 2004). Research shows that we simulate others 

actions through our own motor repertoires (Di Pellegrino et al 1992; Rizzolatti and Craighero, 2004; 

Aglioti et al 2008; Inuggi et al 2018). Through these systems, we are also able to understand other’s 

goals and intentions; we can integrate the outcomes of their actions with one’s own movements for 

cooperation and competition (de Bruin et al 2012).  It is not only fundamental to monitor actions, but 

also the changing environment. Error and feedback monitoring supports learning processes (Ylinen, 

2017); together with other cognitive control and memory functions, detecting and correcting errors 

minimizes future errors (Holroyd & Coles 2002). This thesis relied on two distinct theoretical 

backgrounds: performance monitoring typically studied using tasks that require discrete responses 

and monitoring of observation of actions that are continuous such as kinematics. The question 

addressed was whether performance monitoring of observed kinematics and observed discrete 

choices might share the same markers that are associated to performance monitoring processing. 

The study in Chapter II shows the CNV, normally a potential that is observed when the subject 

expects an imperative stimulus requiring motor response, present during the prediction of action 

outcomes within the domain of expertise. This study is unique because paves the way to dissociate 

different types of physical capability in future experiments, through expertise or injury level. Chapter 

III includes a commentary on an empirical research that show ERN for the prediction of own action 

outcomes in a partially virtual environment. In this chapter, the use of virtual reality techniques for 

action observation research is discussed. In the empirical study in Chapter IV, we show the CRN, a 

negative deflection for correct trials compared to erroneous trials, contrary to our expectation for an 

ERN-Pe pattern during the incorrect prediction of a word in an auditory lexical decision task. This 

would be relevant from an ‘prediction error’ point of view, as our manipulation entailed pseudowords 

that subjects had thought to be real, until it was too late. Their response became erroneous, not 

because of a performance error but because of the predictive nature of word recognition was tricked. 

This study investigated the observation of the task performance as well as the effects during the 

performance itself, and showed a similar effect between the observer condition and the perform 
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condition. In the current chapter, I discuss how the presented results add to the body of research on 

performance monitoring and address future research lines that might emanate from them.  

5.1 Action observation and expertise 

Action observation literature is largely based on the humans’ capacity for action 

understanding through simulation (Rizolatti & Craighero 2004; Keysers and Perret, 2004; Avenanti 

et al 2012; Cross et al 2008; Kourtis et al 2013). Expertise has been shown to modulate this capacity 

(Aglioti et al 2008; Sebanz and Shiffrar 2009; Fujii et al. 2014; Amoruso et al 2014). For example, it 

has been shown that experts can both anticipate the successful basket throws and detect fake 

passes from kinematics. The neural mechanisms of the expert advantage are still not clear. It has 

been proposed that N400 (contribution of semantic integration process to motor expertise; Amoruso 

et al 2014), Pe (error recognition in piano finger sequences; Panasiti et al 2016), CRN (Wang & Tu 

2017) have been involved in supporting action expertise. In other words, the nature of the predictive 

processes behind the contribution of expert knowledge in action outcome prediction is still an open 

question that deserves to be studied. In Chapter II, I investigated the mechanisms of expert 

knowledge using EEG. I had the following predictions: during the observation of domain-specific 

actions, specifically when the action is observed for advancing in a game (therefore the inflow of 

visual input is being used to predict the next event) there would be a difference between the 

successful and unsuccessful shots. The unsuccessful throws might be related to error related 

components, or a marker of violation in action semantics. Results showed that the prediction of the 

outcome of a basketball free throw elicits different activation depending on expertise, observable in 

the ERP waveform, as CNV. Crucially, in this paradigm, it was possible for the subjects to focus on 

outcome prediction based on specific body kinematics: the participants had to guess the outcome of 

the observed action before it was completed (the trajectory of the ball and the outcome of the throw 

was occluded). The choice of using wheelchair basketball players made it possible to study 

expertise, with a potential to investigate the extent of influence of body ability in action observation 

in the future. Wheelchair basketball presents a rare possibility for research in action observation 

because there is a points system that classify the players by their physical ability (i.e. how much of 

their upper body the players can move; point 1 the least, point 4.5 the most). It is possible to compare 
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the neural differences that might be caused by the actual capability of a player (due to physical 

limitations) between the high and low limitations. This would of course require a sensitive control of 

the injury type (only spinal cord injury) as well as stimuli that targets each point class. Expertise 

effects on the neuromarkers that are related to performance monitoring might still be observed for 

action outcome prediction with a more sensitive experimental manipulation that uses first- instead of 

third-person perspective stimuli, as it can result in larger amplitudes in ERPs (Pavone et al 2016). 

Results from Chapter II suggests the domain specific action observation based on movement 

kinematics (in this case the free throw of a basketball) elicits an observed CNV, with significantly 

more negative amplitude in expert wheelchair basketball players compared to naïve observers. I 

would however interpret the results with caution due to the neural signature of the effect. On the one 

hand, we could interpret the effect modulation as CNV, which would suggest that action processing 

is involved in action observation (Kilner et al 2012); on the other hand, we could interpret the effect 

modulation as Readiness Potential (RP), if the 1.5 interval from the video offset to the response 

given was not sufficient for the response related confounds. RP is a negative potential observed 

from about 1–2 s prior to the onset of an action (responses such as a button press) which doesn’t 

necessarily involve the action preparation but action precision (Libet et al 1993; Wen et al 2018).  

The idea that neutrally observing an action is similar to making an action is not new. It is now 

established that the AON is activated by sheer observation of actions of other humans (Rizolatti & 

Craighero 2004; Keysers and Perret, 2004; Avenanti et al 2012; Cross et al 2008; Kourtis et al 2013). 

Experts observe and understand actions within their domain of expertise based on priors formed due 

to both long-term motor and visual familiarity (Karlinsky et al 2017). This is supported by an EEG 

study which has shown stronger beta desynchronization (associated to action simulation) for the 

observation of crawling in infants compared to the observation of walking (van Elk et al 2008), which 

is due to the infants’ experience with crawling rather than walking.  Furthermore, fMRI evidence by 

Calvo-Merino et al (2004, 2006) have shown increased neural activity in premotor and parietal 

cortices of both ballet dancers and capoeira martial artists when they observed ballet and capoeira 

specific choreographed movements, but only in their own domain of training. Therefore, it is argued 

that the observed actions are integrated by one’s own motor repertoire. Enhanced AON activity is 
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also reported in other motor activities such as archery (Kim et al 2011) or basketball (Abreu et al 

2012). A priori expectations (formed by experiences) have a critical role in perception and action 

observation (Kilner 2007b). It can be argued that expertise modifies those expectations in a way that 

is traceable with various techniques. fMRI evidence suggests that high-level of cognitive expertise 

(e.g. in mathematics) is reflected in activation in smaller number of regions compared to a broader 

distribution of activation for low level of expertise (Jeon & Frederici 2016). Similarly, visual expertise 

(e.g. in ornithology and mineralogy) leads to domain specific changes in visual cortex, as well as 

domain-general changes in the frontal lobe (Martens et al 2018). Expertise then would update to the 

priors, thus modulate the comparison between the priors and the sensory inflow of observed actions 

in a more permanent way. EEG findings complement this view in both observation (Babiloni et al 

2010) and anticipation (Amoruso et al 2014; Denis et al 2017) of domain specific actions. Tango 

dancers exhibit greater P300 responses (a positive going deflection approximately 300 ms following 

an event that is related to attention) compared to novices, for incongruent tango moves rather than 

congruent moves (Amoruso et al 2014). Likewise, alpha desynchronization was found to be lower in 

elite karate athletes, interpreted to reflect a neural efficiency (Babiloni et al 2010). These concepts 

are in line with previous evidence of the influence of expertise on motor simulation (Gallese et al, 

1996), and can be re-interpreted in the predictive coding framework (Neal & Kilner 2010). Together 

with our results that show a more negative late CNV activity in observation of a basketball free throw 

during the prediction of action outcomes (in which the comparison with the actual outcome was 

prevented) in experts compared to naive subjects, it can be speculated that the comparison process 

between the priors (what the movement kinematics should be for the basket shot to be successful) 

and the inflow of visual input (the actual continuous movement kinematics that is observed) is 

affected by long-term expertise. It might be useful to use control groups comprised of non-athlete 

wheelchair users, as well as non-wheelchair user basketball players. Such a control would 

strengthen the claim of expertise modulation is the cause of the CNV effect in action outcome 

prediction (due to motor simulation), instead of empathy. In order to control for the any possible 

confounds caused by empathy (that the players might feel towards other wheelchair basketball 

players), another useful control would be to expose the players to stimuli created using other sports 
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such as wheelchair rugby, softball, or tennis. It would also be fruitful to modulate the interest of the 

control group, thus the effects of attention in action observation (Weng & Tu 2017). These effects 

cannot be ruled out completely, and require further attention. 

Here, we discussed the present prediction-related activity modulated by expertise in action 

observation is reflected in CNV. While we can’t draw concluding inferences based on the above-

mentioned limitations, we can’t exclude the scenario that the motor simulation of observed 

kinematics is modulated by expertise. Building on the previous evidence that expert observation of 

action leads to distinct AON activation, here we suggest that expertise is reflected by the ERP 

waveform during the prediction of domain specific action outcome. In other words, the motor 

simulation of observed kinematics is modulated by expertise (Calvo-Merino et al 2006; Aglioti et al 

2008; Kim et al 2011; Abreu et al 2012; Amoruso et al 2014). 

5.2 Performance monitoring and language comprehension 

Both studies presented in this thesis were focused on the performance monitoring system in 

observation of others’ movements and decisions. In daily life, we observe and can understand when 

others misunderstand verbal cues, sometimes when they themselves have not yet noticed. The 

study in Chapter IV aimed to highlight the shared nature of performance monitoring during the 

observation of own and others’ errors that occur due to incorrect prediction of words. The rationale 

has stemmed from research in error monitoring in action observation, together with recent research 

that has supported that error related markers exist also in language errors (Sebastian-Gallés et al 

2006).  

 Results revealed opposite patterns to the ERN-Pe pattern that was expected, where correct 

responses elicited a peak with more negative amplitude compared to erroneous responses. This is 

interesting because it may be due to the uncertainty created by our manipulation: pseudowords were 

rare but salient, which created expectancy in any long words that were real to be not a word. Negative 

peaks for correct responses - Correct Related Negativity - have been previously linked to response 

uncertainty in conflict monitoring literature (CRN; Luu et al 2000; Pailing & Segalowitz, 2004; 

Grützmann et al 2014). Furthermore, CRN has been shown to be larger for faster responses (Valt & 
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Stürmer 2017). In our design, the presence of pseudowords was to prevent subjects from forming a 

strategy. This might have created enough uncertainty the CRN, and the larger negative peak for the 

correct responses was present. It should be noted that this pattern was echoed in the observers’ 

ERP waveform. The role of medial frontal cortex and ACC in performance monitoring and action 

observation is well established in the literature (van Noordt & Segalowitz 2012). Medial frontal 

negativities represent more than one response to the above-mentioned processes, as part of 

dynamic coordination of neural networks, and are modulated by individual differences (Cohen 

2011a) and social contexts (Boksem et al 2011). Mid-frontal region has been indicated as a center 

for conflict monitoring and reward, both in the frontal and posterior occipital cortices (Holroyd and 

Krigolson, 2006). The dissociations that are found between these negativities due to various task 

requirements or group differences suggest that there may be both partly different sources for these, 

and partly different roles (van Noordt & Segalowitz 2012). Our task presents the opportunity to 

examine these differences with regards to stimuli as well as social context.  

This study indicated that error monitoring does not result in the well-established ERN-Pe 

pattern in the ERP waveform like in the typical Flanker type speeded choice tasks. Instead, the 

processing of auditory (word) stimuli might be sensitive to conflict and uncertainty.  Similar to other 

error observation tasks, the latency smaller amplitudes of the ERPs suggest that the conflict 

monitoring system might be reflected in observers for more than error observation. 

5.3 Experimental Scenarios 

 The commentary that is presented in Chapter III draws special attention to the 

importance of designing experiments that will allow to address questions about performance 

monitoring while in keeping with the most recent models of how the brain functions, especially for 

being able to discriminate between observation and execution of own actions. It highlights the role 

that tasks using Virtual Reality (VR) environments increasingly play (Tieri et al 2018). As well as the 

high-level of control over the environment such as time sensitivity, it also presents the opportunity to 

create scenarios where individuals can observe movement in first person perspective (Slater et al 

2010). In many users, VR can elicit a distinct feeling of embodiment, which can allow researchers to 

address otherwise impossible questions (e.g. otherwise painful stimuli in real life). While this 
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phenomenon permits addressing questions regarding own and others’ performance monitoring 

markers, it also brings forth another stream of research concerning human-computer interactions. In 

this era, not only 2D technologies are a central part of daily life, but augmented and virtual realities 

are rapidly making their way into being crucial to many areas of life (starting from the gaming industry, 

reaching towards education and clinical applications). Thus, it is necessary to research the neural 

responses to performance monitoring in such environments in comparison to 2D scenarios (Zhang 

et al 2017). 

5.4 Limits and Future Directions 

 The results of the studies presented in this thesis bear new questions for investigating 

neural correlates of performance monitoring in observation, using various settings. In Chapter II 

(Study with the wheelchair basketball) there were a limited number of participants due to the 

availability of teams. In order to have strong claims for the extents of the modulation that comes from 

expertise, it is important to reproduce results. Relatively small sample size of the players and it did 

not allow us to address another fundamental question about the effects of movement capacity, not 

just modulated by expertise but also modulated by injury. The next interesting step would be to 

increase the sample size of expert wheelchair basketball players to allow clusters to form based on 

injury level, time since injury as well as expertise. It also requires testing individuals with motor 

handicap who are not expert wheelchair basketball players, as disability (or different motor capability) 

might have a fundamental influence over perception. Furthermore, creating a more realistic and 

sensitive experimental paradigm might help obtain a stronger signal, such as in comparison of first- 

and third-person perspectives in a basket free-throw created in virtual reality, as discussed in 

Chapter II. Research on performance monitoring permits creating more informed scenarios 

regarding becoming experts.  EEG provides extremely rich data which can be analysed in a number 

of ways. In the future, it would be informative to apply source analyses to investigate the cortical 

responses in performance monitoring with regards to expertise, especially at different stages of 

acquiring expertise. This has connotations for learning processes, for becoming an expert -may it be 

mastering a language, or a basketball shot) involves utilizing all resources of learning. With special 

focus on the temporal neural dynamics (Fahrenfort et al 2018) of performance and error monitoring, 
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we are aiming to address the role of brain markers of performance monitoring in two fundamental 

stages of learning, namely the building up of perceptual structures from sensory input, as well as 

forming of concepts. This, in combination with observation literature sets a suitable ground to 

investigate learning through observation. 
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A. Motor errors in Parkinson's Disease: neural correlates of actions observed in 

immersive virtual environments: preliminary EEG data 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



77 
 

Abstract 

Even simple daily actions, such as grasping a glass, can become challenging in patients with 

Parkinson’s Disease (PD). In addition to the motor execution deficits, PD patients seem to show a 

deficient functioning of the performance monitoring system (Farooqui et al 2011). Previous studies 

on error monitoring in people with PD showed contrasting results; a few studies found the typical 

error-related signatures (i.e. error-related negativity, ERN; positivity error, Pe; midfrontal theta 

oscillations) comparable to the ones shown by healthy elderly, while others showed a general 

decreased cortical response to erroneous actions. In particular, the evidence on the effects of the 

dopaminergic medication on the brain response to errors is still unclear (Holroyd et al 2002; Stemmer 

et al 2007; Willemssen et al 2008; Singh et al 2018). 

In the present work, by combining EEG and immersive virtual reality (CAVE system), we investigated 

the mechanisms underlying the performance monitoring system in PD patients during the 

observation of reach-to-grasp a glass actions performed by an avatar in first person perspective. 

The preliminary sample included 8 PD tested twice, at a 2-weeks interval.  Each patient was tested 

in two different states namely soon after assuming dopaminergic medication (‘Dopa-ON’) and 12-

hour after assuming the medication (overnight washout; ‘Dopa-OFF’). The order of the medication 

state was counterbalanced across patients. Ten healthy elderly controls were also tested. 

Preliminary results replicate and expand our previous findings in young participants (Pavone et al 

2016; Spinelli et al 2017; Pezzetta et al 2018) by showing that also healthy elderly exhibit an 

increased theta power activity (4-8 Hz) during the observation of erroneous actions. Interestingly, 

the same pattern was not found in the PD group, regardless of whether they were in Dopa -ON or -

OFF state. We also found a significant difference between correct and erroneous actions in the beta 

range (12-30 Hz), with greater beta power in the erroneous actions, in elderly controls and Dopa-

OFF participants. No such result was found in Dopa-ON participants, suggesting a link between the 

dopaminergic intake and the beta response to actions. Concerning the time-domain analysis, we did 

not find an ERN, but all three groups showed the typical Positivity Error in response to the erroneous 

actions. However, in both Dopa-ON and -OFF groups the cortical potential showed lower amplitude 
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compared to the healthy elderly. Although preliminary, these data can help to better understand the 

neural dynamics of action monitoring in Parkinson’s Disease. 

Introduction 

Parkinson’s Disease is a progressive disease characterized by the degeneration of the 

dopaminergic neurons in the substantia nigra pars compacta, which have an impact in the fronto-

striato-thalamo-circuits of the basal ganglia and the frontal areas (Chaudhuri et al 2009). The 

alteration of the functionality of those circuits influence the motor abilities, which results in the typical 

motor features associated with the PD, namely: rest tremor, bradykinesia (i.e.  extreme slowness of 

movements and reflexes), rigidity, abnormalities in gait and balance. Generally, the motor symptoms 

occur already in the early stages of the disease and often begin on one side of the body, but 

eventually affect both sides. Clinical and neuropsychological studies demonstrated that as the 

disease progresses, motor deficits are frequently associated to cognitive impairment (i.e. executive 

dysfunctions; Cools 2006; Costa et al 2009; Farooqui et al 2011). The general treatment of the PD 

is based on the administration of dopamine at different doses to reduce the symptoms. However, it 

is recognized that the relation between dopamine medication and performance is individual-specific 

and that it follows an inverted U-shaped function, thus implying that too little and too much dopamine 

can impair performance (Frank 2005; Cools & D' Esposito 2011; Fallon et al 2012). Nevertheless, 

these are only partial results, and nowadays the consequences on the effects of the dopaminergic 

medication on the cognitive functioning in PD - such as performance monitoring - are not yet 

completely understood (Cools & D'Esposito, 2011; Seer et al 2016). 

Few studies found the typical error-related signatures (i.e. error-related negativity, 

ERN; positivity error, Pe; midfrontal theta oscillations) comparable to the ones showed by 

healthy elderly, while others showed a general decreased cortical response to errors and 

conflicting events (Holroyd, Praamstra et al 2002; Verleger et al 2013; Singh et al 2018; 

Stemmer et al 2007; Willemssen et al 2008; Singh et al 2018). The evidence on the effects 

of the dopaminergic medication on the brain response to errors is still unclear; confounds 

derived from the fact that PD is a pathology characterized by heterogeneous deficits, and 
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each patient responds to the therapy differently. Further, some studies tested the patients 

in both medication states, (Dopa-ON and Dopa-OFF; Stemmer et al 2007, Willemssen et al 

2008) and some others only tested one category of patients (either patients in Dopa-ON or 

in Dopa-OFF; Holroyd et al 2002). Studies that compared the patients according to their 

medication state showed that, in some cases, the brain response to errors was indeed 

modulated by the dopamine (Volpato et al 2016), while in other cases the cortical response 

was unaffected by the dopaminergic treatment (Singh et al 2018).  

All the aforementioned studies on error-monitoring in Parkinson’s Disease were based on 

speed-response choice tasks, with various degree of difficulty of the task itself (i.e. go/no go, Holroyd 

2002; Eriksen Flanker task, Stemmer 2007; Modified Flanker task, Willemssen et al 2008; 

reinforcement learning task, Volpato et al 2016; modified Simon task, Singh et al 2018). However, it 

would be relevant to understand how Parkinson’s patients react to errors in very simple tasks, in 

which they have only to observe the correctness of actions. Also, all those studies provided only time 

domain analyses, but current literature suggests how extracting also time-frequency information can 

provide a clearer picture of the brain activity (Cohen, 2009). To date, only one study - Singh and 

colleagues (2018) - investigated the time-frequency response during a cognitive control task in PD 

patients. As already known, mid-frontal theta band activity is a crucial correlate for cognitive control 

(Cavanagh & Frank 2014; Cohen 2014b) and response to executive demands, and it is diminished 

in PD during a variety of tasks such as the interval timing task, in which participants estimate an 

interval of several seconds as instructed by a cue. These 4-8 Hz theta rhythms are modulated by 

cortical dopamine and can be abnormal in patients with PD. Humans and rodents with dysfunctional 

dopamine showed impaired performance in a timing task and had attenuated delta and theta activity 

(Parker et al 2015). The topographic distribution of ERPs over midfrontal cortex showed a typical 

central distribution. However, as Parker et al. (2015) specifies, it is likely that those oscillations are 

not unique to the timing tasks, but are rather a cortical response elicited by alerting and orienting 

responses, as a need for cognitive control (Cavanagh & Frank, 2014). It is still unclear if mid-frontal 

theta activity is attenuated also during tasks that require error detection in PD patients. Additional 
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work is also needed to dissect whether there are relative effects of the dopaminergic treatment in 

the theta response to errors (Seer et al 2016). 

In this study we used the paradigm developed in our laboratory (Pavone et al 2016; Spinelli et al 

2017; Pezzetta et al 2018) to investigate the error mechanisms in response to simple observed 

actions. The same patients visited the lab twice, in both dopaminergic treatment states (Dopa-ON 

and Dopa-OFF); an aged-matched group of healthy participants were also tested. The current 

analyses are done on a preliminary set of data. 

Methods and Materials 

Participants 

Eight patients with Parkinson Disease (PD) took part in the experiment (3 females, 5 males; 

mean ± SD: Age: 72.25 ± 9.84; Years of Education: 10.13 ± 3.23). All participant had normal 

or corrected-to-normal visual acuity (one patient had reduced visual acuity with the left-eye). Patients 

that were diagnosed with idiopathic PD were included in the study (United Kingdom Parkinson's 

Disease Society brain bank criteria; Huges et al 1992). The inclusion criteria were: i) absence of 

dementia (Mini Mental State Examination, MMSE> 26); ii) absence of other neurological and 

psychiatric diseases; iii) stable anti-Parkinsonian therapy; iv) sickness duration of less than 10 years. 

In addition, a group of 10 healthy control subjects (HC) was included in the study, comparable to the 

group of patients by age and level of education (6 females, 4 males. Mean ± SD: Age: 72.71± 8.82; 

Years of Education: 14.43 ± 2.53). They were included according to the following inclusion criteria: 

i) absence of neurological and/or psychiatric diseases in anamnesis; ii) absence of subjective 

cognitive disorders; iii) not taking medications with psychotropic action iv) MMSE = 30.  

To determine patients’ cognitive profile and to exclude a diagnosis of dementia, neuropsychological 

batteries were administered during a first visit in the laboratory, while patients were under their 

dopaminergic treatment (i.e. Dopa-ON). Patients that met our criteria of inclusion were then 

contacted to take part to the experiment. 

The PD group visited the laboratory twice, seven days apart: once in-within one hour from the 

medication intake (Dopa-ON) and once after a 12-hour overnight washout from their individual 

prescriptions of dopaminergic medication used to treat PD (Dopa-OFF). The medication sessions 
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were counterbalanced in the experiment. One control subject was excluded from the analyses 

because he was not matching our inclusion criteria. A final sample of 8 PD Dopa-ON, 8 PD Dopa-

OFF (within participants, each of the 8 Parkinson was tested twice) and 9 Healthy participants were 

included in the analyses. The present results included in this Chapter have to be considered as 

preliminary; the aim is to test 20 subjects per group, that given the large effect investigated (eta 

partial square ~0.45 for theta power) largely satisfy the requested sample size. 

Apparatus, Stimuli, and Procedure 

 

Similar to the Procedure described in the studies of Chapters 2 and 3 of the present work, 

participants sat in a cave automatic virtual environment (CAVE) with projectors directed to four walls 

of a room-sized cube (3m X 3 m X 2.5 m; Cruz-Neira et al. 1993). The virtual scenario consisted of 

a basic room with a table. At the center of the table, a yellow parallelepipedon was located with a 

blue glass on top of it. Participants observed one avatar in first-person perspective (1PP; see Figure 

1) seated on a chair in front of a table with its arms resting on the table. The glass was placed in the 

avatar’s peripersonal space at a distance of ~ 50 cm (Costantini et al. 2011). The avatar and the 

scenarios were created by means of Autodesk Maya 2011 and 3D Studio Max 2011, respectively. 

The kinematics of the avatar were implemented by HALCA library (Gillies and Spanlang 2010), and 

the experiment was performed in an immersive three-dimensional (3D) virtual environment with a 

real-size avatar drawn on a 1:1 scale and rendered in XVR 2.1 (Huang et al. 2013; Tecchia et al. 

2014). Participants wore Nvidia stereo glasses in which 3D virtual images were alternately displayed 

on both eyes with a refresh rate of 60 Hz. Moreover, these stereo glasses were interfaced with an 

Optitrack system and constantly tracked the head position during the experiment. 

Experimental Procedure 

Before the beginning of the experiment, participants underwent a familiarization phase with 

the experimental setup, as well as a calibration phase within the virtual environment, which consisted 

of adapting the size of the virtual body to the real one. The participants were engaged in 3 minutes 

eyes-open resting state in which they were asked to be relaxed and observe the scenario in front of 

them, followed by 3 extra minutes of resting state after the end of the task (the analyses on these 
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sessions are not reported in the thesis). After this phase, a brief practice session (8 trials, 4 correct 

and 4 erroneous) occurred. Each participant was informed that the goal of the avatar’s movements 

was to reach and grasp the glass on the table and that the action might or might not be successful. 

The total number of trials per participant was 110, 70 of which were correct and 40 of which were 

incorrect (similarly to Pavone et al 2016). The total duration of our experiment was approx. ~20 min. 

At the onset of each trial, a sound signaled the beginning of the action. During the trial, participants 

observed the movement of the avatar’s right arm in 1PP. The total duration of the movement was of 

1050 ms; the kinematics of the movement were identical for the 70% of the action in both conditions 

and diverged in the last 30% of the movement, leading to either a successful or unsuccessful grasp 

(Pavone et al 2016; Spinelli et al. 2017). The deviation from the to-be grasped object was identical 

in all the erroneous trials (Figure 1). The sequence of correct and incorrect trials was randomized. 

After the end of the action, the avatar’s arm rested for 1000 ms (± 50 ms) before a black screen 

appeared. During the intertrial interval (ITI), three different situations could occur: 1) in 10 trials (4 

incorrect, 6 correct), participants had to answer a catch question (“Did the arm take the glass?” 

(yes/no answer); 2) in 65 trials, an empty black screen was presented; and 3) in 35 trials (12 

incorrect, 23 correct), participants had to provide ratings concerning the sense of embodiment. When 

the first and third cases occurred, the black screen lasted until a vocal response was given, whereas 

when the second case occurred, the experimenter pressed a key to start the next trial, producing a 

variable ITI (mean duration: ~4,000 ms, range 2000-6000ms). To measure their sense of 

embodiment, participants were asked to verbally rate the embodiment questions on a visual analog 

scale (VAS) from 0 to 100. The question was about their sense of ownership (“To what extent did 

you feel the arm was yours?”; 0 = no ownership to 100 = maximal ownership; Slater et al. 2010; 

Fusaro et al 2016; Tieri et al 2015a, 2015b). A total of 208 embodiment ratings were collected for 

each group of Parkinson patient, and 315 embodiment ratings for the healthy group. 

Statistical analyses were performed using R software (R Core Team 2014). ERPs and time-

frequency statistical analyses were performed using the erpR package (Arcara and Petrova, 2014). 

As data were normally distributed, analyses were performed using repeated-measures ANOVA, and 
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Greenhouse-Geisser correction for nonsphericity was applied when appropriate. All ANOVAs were 

performed using the ez package (Lawrence, 2013). Practice trials were excluded from the analyses. 

EEG recording and processing 

The EEG recording procedure was identical to the steps written in Chapter 2. The only 

difference was in the EEG caps which included two additional parietal electrodes as compared to 

the settings in the previous chapters. For easy of reference, we will briefly explain the EEG recording 

and preprocessing also here. EEG signals were recorded using a Neuroscan SynAmps RT amplifier 

system and 62 scalp electrodes embedded in a fabric cap (Electro-Cap International), arranged 

according to the international 10–10 system11. Horizontal electro-oculogram was recorded bipolarly 

from electrodes placed on the outer canthi of each eye. EEG signal was recorded continuously in 

alternating current mode with a bandpass filter (0.05–200 Hz) and sampling rates of 1.000 Hz. 

Impedances were kept under 5 k. All electrodes were physically referenced to an electrode placed 

on the right earlobe and re-referenced offline to the common average across all electrodes.  

Offline, raw data were band-pass filtered with a 0.1-100 Hz filter (finite impulse response filter, 

transition 40–42 Hz, stopband attenuation 60 dB). Independent component analysis (ICA; Jung et 

al. 2000) was performed on the continuous EEG signal and components that were clearly related to 

blinks, ocular artifacts, sweat were removed (on average, 3.4 ICA components). For ERP analyses, 

an additional bandpass filter (0.3–30 Hz) was applied on the continuous raw signal. EEG signal was 

then downsampled to 500 Hz and epoched in wide windows of 3-s length, from -1.5 to +1.5 s to 

avoid edge artifacts induced by the following wavelet convolution. Epochs were time-locked (0ms) 

to the end of the avatar’s arm-path deviation (Pavone et al 2016). All epochs were DC offset 

corrected to the previous 200 ms preceding the end of the movement. Each epoch was then visually 

inspected for artifacts to manually remove residual eye blinks or epochs exceeding -100/+100 µV 

amplitude. Bad channels were not interpolated, and they were excluded from the analyses. Analyses 

were performed using the Brainstorm toolbox for Matlab (free open source for MEG/EEG analysis, 

 
1 The EEG was recorded from the following channels: Fp1, Fpz, Fp2, AF3, AF4, F7, F5, F3, F1, Fz, F2, F4, F6, F8, FC5, FC3, FC1, 

FCz, FC2, FC4, FC6, T7, C5, C3, C1, Cz, C2, C4, C6, T8, TP7, CP5, CP3, CP1, CPz, CP2, CP4, CP6, TP8, P7, P5, P3, P1, Pz, P2, 

P4, P6, P8, PO1, PO2, PO7, PO3, AF7, POz, AF8, PO4, PO8, O1, Oz, O2, FT7, and FT8. 
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https://neuroimage.usc.edu/brainstorm/; Tadel et al. 2011) and customized Matlab routines (Cohen 

2014a). 

EEG analyses 

For the time-domain, analyses focused on the oPe. The oPe is a P300-like component 

peaking at the Pz electrode likely associated with the conscious recognition of errors, either 

committed (Vidal et al 2000; Pavone et al 2009) or observed in others (de Bruijn et al 2007). All 

ERPs analyses were based on mean amplitude (Luck 2005). We performed a time-point cluster-

based permutation analyses with 1000 repetitions for each run (p < 0.05) and MonteCarlo correction 

in an extended time window from 0 (end of avatar’s action) to 600ms. For the time-frequency 

analysis, we used a complex Morlet transformation to compute time-frequency decomposition. A 

mother wavelet with central frequency of 1 Hz and 3 s of time resolution (full width half maximum, 

FWHM) was designed as in Brainstorm software (Tadel et al. 2011). The other wavelets were 

computed from this mother wavelet and ranged from 1 to 80 Hz, with 0.5-Hz linear frequency steps. 

To normalize each signal and frequency bin separately with respect to a baseline, we computed the 

relative power change (in %) over the time-frequency decomposition as 

 

𝐹 =  
S(t, f) − Sbase (t, f)

Sbase(t, f)
∗ 100 

 

where S(t, f) is the signal spectrum at a certain given interval of time (t) and frequency (f), and Sbase(t, 

f) represents the signal power of the reference signal used as baseline. To avoid edge effects, the 

power activity from -700 to -500 ms, a window in which the avatar’s movement was identical in 

erroneous and correct conditions, was used as the baseline interval. Positive and negative values 

index a decrease or an increase in synchrony of the recorded neuronal population (Pfurtscheller and 

Lopes da Silva 1999) with respect to a given reference interval, where equal neural activity is 

expected between conditions. In our case, a relative power increase/decrease represents a 

modulation of power compared with the mean power activity during the baseline. As in Pavone et al. 
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(2016), the main analyses were computed on FCz and Pz electrodes, focusing on oPe in the time-

domain (200-600ms) and the mid-frontal theta activity in the time-frequency domain (0-600ms). For 

the time-frequency domain analyses, after computing the Morlet convolution on the Frequencies 1-

80 Hz, we squeezed the frequency of interest on the following: delta (2-4 Hz), theta (4–8 Hz), alpha 

(8 –12 Hz), and beta (13–30 Hz) bands. Similarly to the ERP analyses, in the time-frequency, 

separately for each frequency band, we performed a time-point cluster-based permutation analyses 

with 1000 repetitions for each run (p < 0.05) and Montecarlo correction from 0 (end of avatar’s action) 

to 600ms. Both for time and time-frequency domain, with positive and negative cluster we refer to 

the grouping of neighboring significant effects in time, space (and frequencies) with the same sign 

(positive or negative). 

For each group within analyses are performed. Then the differential outcome (obtained by 

subtracting the correct from the erroneous conditions) was compared within patients in condition 

Dopa-OFF and Dopa-ON, to investigate a direct effect of the dopaminergic treatment on the error 

monitoring. The same was done also between the PD groups (PD Dopa-ON and PD Dopa-OFF) and 

the healthy participants, to investigate differences between the error monitoring system in healthy 

and pathological populations (similarly to Singh et al 2018). Embodiment ratings are analyzed. 

Results 

Cluster-based permutation 

Event-related potentials – oPe 

Cluster-based statistics found significant clusters differentiating erroneous compared to 

correct actions for the three groups, but with different extension in time. In the HC a positive cluster 

(p = 0.01) was found starting from 240 to 570 ms, with greatest spatial extent of the cluster reached 

at 332ms. In the PD Dopa-ON a positive cluster (p = 0.001) was found in the range 300 to 600 ms, 

with largest spatial extent at 518ms. Finally, in the PD Dopa-OFF a cluster was found (p = 0.002) in 

the range 374-600 ms and largest spatial extent at 482ms. The topographical scalp maps (Figure 

1C) show the clusters in the averaged window 0-600ms. Direct cluster-comparisons between groups 

did not show significant differences. 
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Delta (2-4Hz) 

Cluster-based statistics found significant clusters for the three groups, with different 

extension in time. In all cases the clusters showed greater delta activity for erroneous compared to 

correct actions. In the HC a positive cluster was found from about 0 to 600 ms (p = .005), and it was 

located over the posterior regions, reaching the largest spatial extent at about 318ms. Another 

middle-central positive cluster was found in the PD Dopa-ON (p = 0.04), from 0 to 600ms, and largest 

spatial extent at 600ms. A middle-central cluster was found also in the PD Dopa-OFF (p=.04) lasting 

from 0 to 600ms and showing a maximal activity at 352ms. No difference between groups was found 

at a cluster level. 

Alpha (8-12 Hz) 

No significant activity was found between erroneous and correct actions in the three 

groups. 

Theta (4-8Hz)  

Cluster-based statistics found a significant, positive cluster (p=.02), only for the HC, which 

was present from about 80 to 560 ms and was spread over the central and posterior regions, 

reaching the largest spatial extent at about 298ms (Figure 2C). The cluster in the HC showed greater 

theta activity for erroneous than for correct actions. The PD showed no significant cluster in neither 

PD-Dopa ON nor Dopa-OFF conditions.  

A significant contrast was found between HC and PD-Dopa OFF (in which the mean values obtained 

by correct minus erroneous actions – respectively for each group - were compared). More specifically 

a comparison between independent groups found a positive cluster for HC compared to PD Dopa-

OFF (p = .03) in the theta-band, from 100 to 480ms at a mid-frontal cluster, reaching the largest 

spatial extent at 250 ms (Figure 2C). 

Beta (12-30Hz) 

Cluster-based statistics found a positive cluster (p=.04), for the HC, which was present for a 

short window from 0 to 190 ms and was located over the central regions with a slightly contralateral 

distribution compared to the observed arm (Figure 2D). The PD Dopa-ON showed no significant 

cluster. The PD Dopa-OFF showed a positive cluster (p = .002), with a greater activity in the 
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erroneous than correct actions from 240 to 600 ms, with largest spatial extent at about 570ms and 

an activity mainly located on the central electrodes (Figure 2D). 

The independent-samples t-tests between groups compared the difference value obtained by correct 

minus erroneous trials and was performed between these groups: HC vs. PD Dopa-ON; HC vs. PD 

Dopa-OFF. The analysis revealed positive clusters for the contrast HC vs PD Dopa-OFF (p=0.04), 

accounted for by the fact that PD Dopa-OFF exhibited increased beta power in the time range 430-

600 ms at the fronto-central electrodes (Figure 2D). 

Analyses on a-priori chosen electrode 

In the time-domain, the oPe and its topographical distribution can be seen in Figure 1. 

Traditional analyses on electrode Pz showed that while the HC group reached a significant difference 

between erroneous and correct actions (t(8) =  - 3.81, p= 0.005, MERR= 10.93 µV; MCORR= 7.91µV), 

the same was not showed by the two PD groups (PD Dopa-ON: [t(7) =  -2.26, p= 0.06, MERR= 6.14 

µV; MCORR= 3.53 µV; PD Dopa-OFF ([t(7) =  -2.13, p= 0.07, MERR= 4.83 µV; MCORR= 2.75 µV). The 

fact that oPe is not significant at the single electrode level (Pz) but it is significant at a cluster-level, 

is accounted by the fact that the cluster found in the Parkinson’s groups (when erroneous and correct 

actions were compared), showed a greater activity in the central rather than parietal electrodes. 

Thus, the analysis at a cluster-level might have captured more information, as a more frontal rather 

than parietal activity for the oPe. 

In the time-frequency domain, traditional theta frequency band analyses (4-8Hz) on electrode 

FCz comparing erroneous versus correct actions found that in the HC there was a significant 

difference between action type (HC: [t(8) = -2.60, p= 0.03, MERR= -3.54; MCORR=-16.04), that was not 

found in the PD groups (PD Dopa-ON [t(7) = -1.00, p= 0.35, MERR= -8.20; MCORR= -14.11), PD Dopa-

OFF [t(7) = 0.004, p= 0.99, MERR= -22.44; MCORR= -22.40), thus confirming the findings on a cluster-

level. Thus theta activity for erroneous trials is significant only for the control group (HC) both at a 

cluster level and by analyzing the typical electrode of reference, FCz. 
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Figure 1. Electrophysiological results in the time domain for each group A. Grand average 

waveforms of oPe at electrode Pz. The end of avatar’s movement is set at 0ms. Light colors denote 

the standard error around the mean. B. Graphical representation of voltage distribution across 

channels. The values are the result of the erroneous-minus correct action (y-axis: channels, x-axis: 

time in ms). C. Cluster-based permutation (dependent sample t-test with cluster-correction p<0.05) 

for erroneous versus correct actions in the three groups. The maps represent the time-point in which 

the cluster was found with largest spatial extent. 
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Figure 2. Time-frequency representation of Relative Power change (in %) with respect to the 

baseline for erroneous and correct conditions. The end of avatar’s limb-path deviation is set at 0ms. 

A. Erroneous and correct plots at electrode FCz in the three groups, with all frequencies 1-80Hz 

displayed B. Erroneous and correct plots at electrode FCz in the zoomed range of interest, only 

frequencies from 4 to 12 Hz are displayed. The black rectangles highlight the a priori chosen window 

of interest between 0-600ms and 4-8 Hz, that indicate the values that have been submitted to 
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statistical analyses. C. Cluster-based permutation (p<0.05) for erroneous versus correct actions in 

theta. Only the HC showed a significant cluster. Independent Cluster comparison (p< 0.05) found a 

positive cluster only when HC and PD Dopa-OFF were compared, with the HC showing greater theta 

activity in the fronto-central electrodes. Only significant cluster are displayed in the figure D. Cluster-

based permutation (p<0.05) for erroneous versus correct actions in beta. HC and PD-OFF showed 

a significant cluster. In the PD Dopa-ON no cluster was found. Independent Cluster comparison (p< 

0.05) found a positive cluster when HC and PD Dopa-OFF were compared, with the HC showing 

less beta activity in the fronto-central electrodes. Only significant cluster are displayed in the figure. 

The maps represent the time-point in which the cluster was found with largest spatial extent. 

Embodiment 

 

Preliminary application of the Shapiro-Wilk test showed that embodiment ratings were 

normally distributed therefore parametric analyses for within- and between-groups were used. In 

order to explore the link between sense of embodiment and electro-cortical indices of error 

processing, Spearman correlations between Embodiment ratings and error signatures (Theta and 

oPe) were conducted across subjects. Paired sample t-test for each group showed no significant 

difference in the avatar’s grasp accuracy (correct vs. erroneous) in terms of sense of Embodiment 

(Healthy Control: t(8) = -0.33, p = 0.74; PD-Dopa ON = t(7) = 0.05, p= 0.96 ; PD-Dopa OFF: t(7) = 

0.21, p = 0.83). Also, in this preliminary sample, we did not find a correlation between the sense of 

Embodiment and neurophysiological signatures (oPe, theta). 

Discussion 

In the present study, we investigated the temporal dynamics of correct and erroneous action 

observation in Parkinson patients, in two different experimental conditions: i) once right after their 

dopaminergic treatment (PD Dopa-ON) and ii) once after a night of dopaminergic withdrawal (PD 

Dopa-OFF); a control groups of healthy individuals (HC) was also tested. Participants’ EEG was 

acquired during the observation of correct and incorrect reach-to-grasps presented through 

immersive virtual reality. 

Results in the time-domain revealed that observation of erroneous actions produced an oPe 

in all the three groups (detailed information about clusters latency in the Results section – Cluster-

based permutation Event-related potentials – oPe), but with a different latency as revealed by 
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cluster-analyses. Time-frequency analyses showed that error-related mid-frontal theta power was 

not present in PD patients, regardless of whether they were in Dopa -ON or -OFF state. Differently, 

the control group of HC participants showed the typical error-related theta increase that has already 

been observed in young healthy samples (Pavone et al 2016; Spinelli et al 2017; Pezzetta et al. 

2018). A greater beta activity was found in PD patients only when in Dopa-OFF and not -ON 

condition, suggesting a relation between beta oscillations and dopamine. Compared to most of 

existing studies, that mainly investigated the integrity of the error-monitoring system in the time-

domain, we showed how complementary and additive information is present in the frequency 

domain. These preliminary data suggest that patients with dopaminergic loss have an altered 

monitoring system from a neurophysiological point of view, compared to healthy controls. 

From visual inspection of the ERP graphs across the experimental groups, we did not 

observe an error-related negativity (oERN). Similar to the Study on apraxic patients in Chapter 3, 

oERN suppression can be explained in terms of an age-dependent effect (e.g., Gehring & Knight 

2000; Nieuwenhuis et al 2001), or in view of the novel evidence that errors can elicit error-positivity 

in absence of an ERN (Di Gregorio et al 2018; Tan et al 2019). The fact that the stimuli used in this 

task are continuous actions rather than all-or-none events (as are usually in speed response tasks 

– e.g. Flanker task) might also contribute to make more difficult to observe time-locked potentials as 

the oERN compared to other strong deflections (e.g. oPe). All the three groups (HC, Dopa-ON and 

Dopa-OFF) showed a significant positive cluster in the time-domain when erroneous and correct 

actions were compared, which suggests that an oPe is elicited in the erroneous actions in both HC 

and Parkinson patients. However, the three groups showed a different topography and latency of 

the oPe, as revealed by the cluster’s latencies. Moreover, since extensive literature points to the 

parietal regions of the scalp as the ones in which the oPe can be largely seen, we also performed 

traditional a-priori analyses on the electrode Pz. Interestingly, when Pz was considered, only the HC 

group showed a significant difference, whereas the Parkinson’ patients, neither in Dopa-ON nor 

Dopa-OFF, showed a statistically significant distinction between conditions. The different result 

between the traditional analyses (single electrode) and the cluster-based ones is accounted by the 

fact that the electrodes found in the cluster are mostly located in the central - rather than parietal – 
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areas. This activity might be associated with the early oPe, that is the positivity related to the low-

level detection of an error. The early oPe is a component that share similar features with the P3a, 

an event-related potential associated with the orientation of attention (Overbeek et al 2005). The late 

oPe on the other side has been instead associated with the P3b and linked with the awareness of 

the event and the updating of the recently acquired information.  

Interestingly, Luu and colleagues (2004), found that in a filtered signal, most of the energy of 

the Pe was not concentrated in the theta band, but rather in the slower delta band. We thus 

performed also the analyses on the delta frequency range (2-4Hz) and we found that the cluster-

based permutation showed that all the three groups evidenced a significant cluster when erroneous 

and correct action were compared, but only the HC showing a parietal distribution. The results of the 

delta activity are thus quite in line with the ones found in the time domain (oPe) for the electrode Pz, 

which shows a significant difference between erroneous and correct trials only in the HC group. The 

Parkinson’s groups – regardless dopaminergic treatment - show no significant difference in such a 

posterior electrode; however when analyses were performed at a cluster level, also the groups with 

Parkinson patients showed a cluster – more anterior than posterior - suggesting that both oPe (in 

the time-domain) and delta activity (in the time-frequency domain) might involve mostly the anterior 

regions of the scalp, in the Parkinson patients.  

However, these analyses rely only on evidence collected at the scalp-electrode level, further 

analyses on the source level might shed light on the cortical areas involved in the processes, in the 

three groups. As for what concerns the theta activity, only the HC group showed the typical theta 

increase when observing erroneous actions, whereas both PD group, in either medication conditions, 

did not. Reduced theta activity was previously found in timing and novelty response tasks 

(Cavanagh, Kumar, Mueller, Richardson, Mueen, 2018; Chen et al 2016; Kim et al 2017; Parker et 

al 2015). Only recently this has been extended to cognitive control (Singh et al 2018). In this study 

Singh and colleagues tested 16 PD twice (Dopa-ON and Dopa-OFF) in a modified speed-response 

Simon task, and they found no theta activity after erroneous events in both groups, regardless 

dopaminergic medication. Several studies confirmed that mid-frontal theta signals are a mechanism 
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of cognitive control, which engage the involvement of medial frontal cortex as well as other 

connected areas (Cohen, 2011a; Cavanagh & Frank, 2014; Cavanagh & Shackman, 2015; Holroyd 

& Coles, 2002). Parkinson patients’ accuracy in answering the questions in the catch trials (“Did the 

arm take the glass”) revealed that PD were able to understand whether an error or a correct action 

occurred. In fact, patients typically made zero or one mistakes within the entire session (only one 

PD in Dopa-OFF committed several errors when in -OFF, but not when he was in -ON). Despite 

behavioral accuracy, the fact that there is a lack of theta response in the Parkinson’ patients suggests 

that the mechanism is alternated as compared to that of the healthy aged-matched controls, even 

when the PD are under dopaminergic treatment. An interesting result here is the fact that Parkinson 

patients on one side did not show an increased theta power to the occurrence of errors, but on the 

other side it was still possible to observe an oPe, despite with a more central than parietal scalp 

distribution. This might be in line with the recent results of di Gregorio and colleagues (2016), in 

which that found a dissociation between the early response of the monitoring system (usually the 

ERN/theta) and the Pe response, suggesting a complex and hierarchical architecture of the 

monitoring processes. 

 Concerning the alpha activity, we were surprised not to find a difference between erroneous 

and correct actions in the three groups, especially in the healthy old participants, as was the case in 

previous studies with a similar paradigm (Pavone et al 2016; Pezzetta et al 2018); however, the 

modulation of some frequencies seems particularly age-dependent; for example, Babiloni et al 

(2006) suggest that the occipital delta and posterior cortical alpha rhythms decrease in magnitude 

during physiological aging, with both linear and nonlinear trends. The fact that other studies on 

healthy young participants with a similar paradigm (Pavone et al 2016; Pezzetta et al 2018) found a 

modulation in the alpha band, while experiments on aging and pathological populations did not, might 

follow that idea.  

 In addition to the absent theta response, PD Dopa-OFF showed an atypical long beta 

synchronization after the erroneous actions that was not present in the PD Dopa-ON patients and 

that was present only as a brief contralateral beta rebound in the HC. This enhanced beta activity 
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that we found in the PD Dopa-OFF deserves further discussion. Previous evidence in literature has 

showed that the passive observation of a movement is characterized by beta suppression. The beta 

increase in synchrony – or beta rebound - that follows the end of movement is believed to reflect the 

active inhibition or general deactivation of the motor system (Pfurtscheller, Neuper, Brunner, & Da 

Silva, 2005; Jurkiewicz, Gaetz, Bostan, Cheyne, 2006). Local field recordings on the subthalamic 

nucleus identified excessive neural oscillations in the β-band in PD patients as well as a general 

increased rhythmic activity associated with pathophysiological aspects (Oswal, Brown, Litvak, 2013). 

Also, Engel and Fries (2010) suggested that the pathological enhancement of beta-band activity is 

likely to result in an abnormal persistence of the status quo and a deterioration of flexible cognitive 

control. However, when the dopamine depletion is compensated by the dopaminergic treatment, the 

beta activity might be restored to a functional activity (Doyle et al 2005). In our study, the fact that 

the increased beta activity was found in the erroneous but not in the correct actions, is in line with 

some prior findings on healthy adults (Koelewijn et al 2008). Koelewijn and colleagues (2008) 

showed beta rebound was stronger for the observation of incorrect than correct actions, suggesting 

a potential role of the beta activity in the evaluation of action significance. The over-response that 

we observe during the dopaminergic withdrawal, goes along with the findings linking the Parkinson’s 

Disease to a pathological beta response. Still these interpretation needs to be supported by further 

investigations. In particular, collecting data on additional and larger samples will help clarify the 

modulation of these oscillations in response to action monitoring. 

In the embodiment ratings, we were surprised not to find a difference between erroneous and 

correct actions in the groups, as was the case in previous studies with a similar paradigm (Pavone 

et al 2016); however it might be the case that aging people had a different sensitivity to explicitly 

refer their sense of embodiment on the observed action; also, in previous studies (Pezzetta et al 

2018), we observed that the sense of Agency correlate with the brain responses to actions. In this 

case, for a matter of time, since the task could not last more than 25 minutes (to be able to test the 

PD Dopa-ON in their maximum peak of medication), we decided to include only the sense of 

Ownership question. 
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 One limitation of the current study is the fact that PD were tested twice, whereas HC were 

seen once time. However, as also previous works (Singh et al 2018), we can reasonably exclude a 

learning effect, since the task is of simple action-observation and it is not related to the acquisition 

of task-specific abilities. Further, it is important to underline that our sample size is considerably low 

as in the current sample we tested only 8 PD and 9 control participants. Thus, the results should be 

considered only preliminary, as should the related interpretations. An objective of the present study 

is in fact to reach a full sample of 20 PD Dopa-ON, 20 PD Dopa-OFF and 20 matched HC. Previous 

error monitoring studies on Parkinson patients had a low number of participants (generally 10-15, 

always < 20; Seer et al 2016) or tested the patients only in one of the two therapeutic conditions 

(Dopa-ON/OFF), making difficult direct comparisons across studies. Furthermore, since the 

Parkinson’s Disease is an heterogenous pathology, characterized by different levels of gravity and 

impairment, it is important to enlarge the sample in order to achieve more firm information.   

Conclusions 

Some of the most debilitating aspects of PD include motor and cognitive disturbances. While 

it is widely appreciated that cell death in PD somehow contributes to deficits in higher cognitive 

functioning, the mechanisms underlying these deficits remain somehow unclear. In this investigation, 

we tested PD patients during dopaminergic treatment and after night withdrawal, to test the integrity 

of the monitoring system, by focusing on the modulation of error-related signatures. The findings 

reported here, despite preliminary, suggest the deficient theta may be a promising candidate 

correlate for studying cognitive dysfunction in Parkinson’s Disease. 
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B. Theta tACS over the frontal midline modulates behavioural adjustment during 

human-avatar motor interactions 
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Abstract 

When engaging in joint actions, we need to continuously monitor our partner’s movements and to 

predict their possible outcomes. Recent findings from our research group showed that motor 

interactions requiring moment-to-moment adaptation to the partner’s actions elicit brain activity 

related to performance monitoring (i.e. enhancement of midfrontal Theta synchronisation). 

Importantly, this activity seems not associated to any explicit feedback concerning the interactive 

performance, but rather a response to observed violations to ones’ expectation of the partner 

behaviour; in this sense it seems to mediate the process of adapting to a partner behavioural change. 

In the present study we explored the causal role of midfrontal Theta on behavioural adjustment 

during motor interactions by means of transcranial alternating current stimulation (tACS). 

Participants received Theta or Beta (between-subject) tACS at their individual frequency and Sham 

stimulation over the frontal midline (FCz) and parietal sites while coordinating their movements with 

those of a virtual partner to synchronously touch one of two different targets. Importantly, there were 

two experimental conditions that differed in the degree to which participants needed to adjust their 

movements to virtual partner’s unexpected motor change. Results showed that, comparted to Beta 

tACS, Theta tACS improved synchronisation in all conditions and increased movement times after 

the virtual partner’s motor change (making individuals’ behaviour more synchronized with that of the 

partner), but only in the condition in which participants were asked to compensate that motor change. 
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Introduction 

 

During motor interactions, in both cooperative and competitive settings, the ability to coordinate our 

actions with those of our conspecifics requires the continuous monitoring of owns and other’s 

movements. This monitoring activity seems to be dependent on individuals’ ability to predict the 

actions of the observed partner behaviour, namely the anticipation of the consequences of observed 

actions (Aglioti et al 2008; Abreu et al 2012), which is likely implemented through sensorimotor 

simulation processes that occur in the fronto-parietal mirror neurons system (Di Pellegrino et al 1992; 

Rizzolatti and Craighero, 2004). Expectations about the unfolding of others’ actions in a pure 

observational context are generated on the base of previous experience, knowledge about biological 

motion and intention understanding (Urgesi et al 2010). Violations of our expectation of the fate of 

observed actions elicits error-related brain signatures. Error and conflict monitoring are two 

interrelated cognitive functions that contribute to improve adaptive behaviour during environmental 

and social demands. Mounting evidence from EEG and MEG studies revealed that the electrical 

correlates of error processing are characterized by specific neurophysiological signals, namely the 

Error Related Negativity (ERN, Gehring et al 1993) and the positivity error (Pe, Falkenstein et al 

2000; Van Elk et al 2012), likely generated in the anterior cingulate cortex (ACC, Ishii et al 1999). 

These signatures are maximally distributed over the frontocentral and parietal (for Pe) areas of the 

cortex, sharing a common spectral signature in theta band (4-8 Hz), a frequency that correlates with 

the increment of need for control.  

Studied have reported that observing a motor error from a first-person (Pavone et al 2016; Spinelli 

et al 2018; Pezzetta et al 2018) and third person (van Schie et al 2004; De Brujin & von Rhein, 2012; 

Pavone et al 2016) perspective elicits the ERN, a phenomenon called observational ERN (oERN, 

Miltner et al 2004; van Schie et al 2004). Conversely, the enhancement in Theta power seems to be 

specific for one’s own rather than for other’s errors Pavone et al 2016. At a behavioural level, 

observing an error in third-person perspective also induces a slowing in reaction times in the 

subsequent trial when participants are asked to grasp and move an object (Ceccarini and Castiello, 

2018). This phenomenon is named post error slowing (PES) and is thought to reflect the 
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implementation of adaptive adjustment to avoid further errors (Rabbitt, 1966; Notebaert et al 2009; 

Danielmeier and Ullsperger, 2011). These findings suggest that the detection of committed and 

observed errors might rely on similar neural processes.  

During motor interactions, action prediction also relies on knowledge about the interaction rules and 

shared goals (Sacheli et al 2015). For a shared goal to be fulfilled, each part of a dyad needs to 

achieve its individual sub-goal while monitoring the other part’s actions (Sebanz et al 2006; Sacheli 

et al 2012; 2018). When one of the two partners fails to comply with the interaction rules, the success 

of the joint action is jeopardized. Unexpected movements or changes in the context of motor 

interactions can therefore be considered as “errors”, since they not only create a mismatch between 

expected and observed outcome, but also hinder the fulfilment of a shared goal. Indeed, error-related 

brain signatures are also elicited during motor interactions after observing a sudden change in 

partner’s movement. In two recent studies, participants were asked to coordinate their reach-to-

grasp (Moreau et al 2019) and reach-to-press (Moreau et al in preparation) movements with those 

of a virtual avatar to perform either complementary or imitative movements. In both studies, in 30% 

of the trials the virtual avatar suddenly changed its initial movement before reaching the target (i.e. 

from grasping the lower part of a bottle-shaped object (through a power grip) to grasping it upper 

part (through a precision grip) in the first study and from reaching and pressing a target button with 

the index to pressing it with the middle finger in the second one. The avatar’s motor change required 

participants to promptly update their own motor plan in order to fulfil the common goal (i.e. performing 

an imitative or complementary movement). EEG results showed the presence of error-related brain 

activity both in the time domain (i.e. ERN) and in the frequency domain (i.e. increase in midline frontal 

Theta power) which was time-locked to the avatar’s movement change (not to the corresponding 

change in the individual action). Interestingly, these brain signatures were absent in a control 

condition that was perceptually identical but did not require participants to adapt to the avatar’s 

change because in this case they knew in advance which target they had to grasp or press.  

Theories on error-related midfrontal theta activity posit that these brain oscillations may act as a 

nonspecific “alarm” signal that may be used to implement behavioural adjustment by synchronizing 
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the simultaneous employment of the frontal (Hanslmayr et al 2008), motor (Nigbur et al 2012) and 

sensory (Van Driel et al 2012) areas. Indeed, a Theta phase synchrony between the MFC and frontal 

sites has been repeatedly observed in various tasks eliciting the need for cognitive control 

(Cavanagh, 2015). Several studies have related midfrontal Theta power to PES, although with mixed 

results (Valadez and Simons, 2017; Van Driel et al 2015; Fusco et al 2018). Less clear is the 

relationship between midfrontal Theta and task performance. Since the implementation of cognitive 

control should serve the need of optimising behaviour, it should be expected that an increase in 

Theta power would produce an improvement in performance.  

The present study aimed at investigating the causal role of midfrontal theta oscillation on behavioural 

adjustment to observed errors in a motor interaction context by means of Transcranial Alternating 

Current Stimulation tACS. To this end, we used a modified version of the task from Moreau and 

colleagues (in preparation) and asked participants to coordinate with a virtual partner to touch one 

of two targets. Importantly, in 30% of the trials the virtual partner would suddenly change its 

movement, therefore requiring participants to operate a motor correction. TACS is a non-invasive 

brain stimulation technique that can be used to target cortical oscillations by taking advantage of 

alternating current. A low intensity electric flow is delivered on the scalp through rubber-conductive 

electrodes. The oscillation frequency of the electric current can be set to mimic endogenous brain 

oscillations. Previous studies have shown that tACS is a viable tool to entrain endogenous rhythmic 

activity in a frequency-dependent manner (Helfrich et al 2014; Neuling et al 2013) and modulate 

behaviour (Feurra et al 2013; Vosskhul et al 2015). At the neurophysiological level, tACS enhances 

the power of existing brain oscillations, therefore acting as an “excitatory” neuromodulation. For the 

present study, we hypothesised that Theta (but not Beta) tACS would boost endogenous error-

related Theta activity following an observed movement correction and facilitate behavioural 

adaptation (i.e. better synchrony performance in trials with a motor correction). 

Methods 

Participants  

Forty-four (44) healthy participants without any declared neurological or psychiatric issues 

were recruited from Sapienza University. Suitability to receive non-invasive brain stimulation was 



101 
 

assessed by a standardized questionnaire (Antal et al 2017). All participants had normal or 

corrected-to-normal vision and were naïve as to the purpose of the experiment. Four subjects were 

excluded from the study because they reported: i) motion sickness induced by Immersive Virtual 

Reality (1 subject), ii) discomfort induced by tACS (2 subjects) or iii) anomalies in the resting-state 

EEG Alpha peak shape (1 subject). Our final sample comprised 40 right-handed subjects that were 

randomly assigned to receive either Theta (N=20 (10 Female) age = 25.4 ± 3.9) or Beta (N= 20 (8 

Female) age = 23.3 ± 3.3) fronto-parietal tACS. Our sample size was determined from previous 

studies that employed tACS with a similar design (Van Driel et al 2015 (20 subjects); Onoda et al 

2017 (15 subjects per group); Zaehle et al 2010 (20 subjects per group). All participants gave written 

informed consent to participate in the study. The experimental procedure was approved by the 

Fondazione Santa Lucia (Rome) Ethics Committee and was performed in accordance with the 2013 

Declaration of Helsinki. 

Procedure 

At their arrival at the laboratory, participants went through the EEG resting-state recording 

session (see details below) where they were asked to sit in a quiet room and stay still with their eyes 

closed for 5 minutes. Then, participants had a small break (around 20 minutes), during which we 

extracted the individual-frequency information (see Figure 1). 

Prior to the stimulation session, subjects’ scalp was measured to determine FCz and Pz 

positions according to the International 10-10 EEG layout. The areas of interest were cleaned with 

a cotton swab soaked in ethyl alcohol in order to reduce the skin’s conductance and marked with a 

marker. The two tACS electrodes were then fitted through an EEG-cap over the head of the 

participants, with the side toward the skin coated with electro-conductive gel. The stimulation 

sessions started with a training phase so that participants could familiarize with the tACS-induced 

physical sensations (i.e. itching, heat). During this phase, participants received 15 seconds (5 ramp-

up, 5 stimulation, 5 ramp-down) of tACS at 13 Hz and were asked to report physical sensation or 

discomfort. If no irregularities were reported, participants were asked to wear the Oculus Rift Head 

Mounted Display (HMD, www.oculus.com) where they would observe a virtual body in 1PP and the 

experimental scenario (see below). Participants underwent Calibration, Familiarization and Training 
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phases in the virtual scenario before starting the experiment. In the Calibration phase, the 

perspective point-of-view of each participant was adjusted to match the virtual body with individual 

positioning in order to obtain the best spatial-match between the participant’s real and virtual body. 

In the Familiarization phase, participants were invited to look both at the virtual body and at the 

environment, and to verbally describe what they were seeing (~30 sec) (Tieri et al. 2015b). During 

the Training phase, which was provided at the beginning of each of the two first blocks, participants 

completed 10 trials of the IVR Motor Interaction Task. The experimental phase consisted of two 

sessions (Theta/Beta tACS and Sham, order counterbalanced), each of which comprised two blocks 

(Interactive and Cued, order counterbalanced – see next section for a description of the tasks). At 

the end of each Session, participants completed the Embodiment Questionnaire, adapted from 

previous studies (Botvinick & Cohen, 1998; Tieri et al 2015a; Tieri et al 2017) and a standardized 

questionnaire measuring tES-induced physical sensations (Fertonani et al 2015).  

 

 

Figure 1 – Timeline of the experimental procedure.  

Electroencephalography (EEG) Protocol  

EEG signals were recorded via Neuroscan SynAmps RT amplifier system, from an elastic 

headband (Electro-Cap International) EEG arranged according to the International 10-10 EEG 

System with 58 scalp electrodes (Compumedics, ltd). EEG was recorded using following channels: 

Fp1, Fpz, Fp2, AF3, AF4, F7, F5, F3, F1, Fz, F2, F4, F6, F8, FC5, FC3, FC1, FCz, FC2, FC4, FC6, 

T7, C5, C3, C1, Cz, C2, C4, C6, T8, TP7, CP5, CP3, CP1, CPz, CP2, CP4, CP6, TP8, P7, P5, P3, 

P1, Pz, P2, P4, P6, P8, PO7, PO3, PO1, POz, PO2, PO4, PO8, O1, Oz, O2. The amplifier hardware 

band‐pass filter was 0.01–200 Hz and the sampling rate was 1000 Hz. Impedances were lowered 

below 5 kΩ using electrogel. Reference electrodes were applied to the left (digital reference) and 

EEG session

• Resting-state 
recording

tACS
familiarization

• Training phase 
• Discomfort report

VR-HDM 
familiarization

• Calibration
• Familiarization 
• Training 

tACS session
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Individual Frequency Peak Extraction
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right (physical reference) earlobes, and all electrodes were re-referenced offline to the average of 

both.  

Transcranial Alternating Current Stimulation (tACS) protocol  

Electrical stimulation was delivered via two circular sponge-based rubber electrodes 

(Sponstim, 25 cm , Neuroelectrics, Barcelona, Spain) soaked in saline water (NaCl) and connected 

to a rechargeable battery-operated stimulator system (Starstim/Enobio, Neuroelectrics, Barcelona, 

Spain) which in turn was controlled via Bluetooth by a dedicated software (Neuroelectrics Instrument 

Controller – NIC, Neuroelectrics, Barcelona, Spain). Electrodes were placed over the midline at FCz 

and Pz (International 10-20 System) beneath an EEG cap. Participants received sinusoidal 

alternating current (AC) of 1500 mA at their individual Theta (mean Hz = 5.5 ± 0.65) or Beta (mean 

Hz = 17.6 ± 2.54) frequency while engaged in the IVR-based Motor Interaction task. Impedance was 

kept below 5KΩ. Stimulation/task blocks lasted approximately from 9’ to 9’30’’. During each block, 

the current was ramped up for 5 seconds before starting the task and ramped down for 5 seconds 

after the task was completed. In half of the blocks, participants received sham stimulation which 

included 5 seconds of ramp up, 20 seconds of AC and 5 seconds of ramp down.  

Figure 2 tACS electrodes placement  

Experimental stimuli 

The virtual scenario and avatars were designed by means of 3DS Max 2017 (Autodesk, Inc.) 

and IClone 7 (Reallusion, Inc.), respectively, and implemented in Unity 5 game software 

environment. The scenario was presented by means of the Oculus Rift Head Mounted Display (HMD; 

www.oculus.com) having 110° field-of-view (diagonal FOV) with a resolution of 2160 x 1200. The 

http://www.oculus.com/
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virtual scene consisted of a real-size room (1:1 scale), two virtual avatars sitting on opposite sides 

of a table and a virtual grey panel placed between the avatars that blocked their reciprocal view 

except for their hands, arms and lower part of the trunk. In front of both avatars, at the centre of the 

table, appeared the 3D model of two buttons, coloured purple and yellow and a LED light that could 

either turn red or green. Participants observed the virtual body from a first-person perspective (1PP) 

through HMD. A right Oculus Touch controller (www.oculus.com) was used in order to allow the 

participants to control the movement of the right arm of their avatar in real time, observed in 1PP. In 

particular, participants could i) move the avatar’s hand forward in space by using the analogic stick 

of the Oculus touch controller with right thumb and ii) animate the right index or middle finger by 

pressing the Oculus touch controller’s up and down trigger button, respectively. During the 

experiment, the virtual scenario was rendered in both HMD and a computer screen, such that the 

experimenter could observe and assist the participants.  

IVR Motor Interaction task 

The IVR Motor Interaction Task (Figure 3) comprised two conditions (blocks) that differed for 

the instruction received and for the type of interaction required. In the Interactive block, participants 

were asked to reach and press one of the two buttons as synchronous as possible with the virtual 

partner while performing either an imitative (‘Same’) or a complementary (‘Opposite’) movement with 

respect to the virtual partner’s (e.g. if the instruction received is ‘Opposite’ and the virtual partner 

raises the index finger to press the purple button, the participant will need to raise the middle finger 

to press the yellow button). In the Cued block, participants still had to synchronize their reach-to-

press movements with those of the virtual partner but were in this case instructed to press either the 

‘Purple’ (index) or ‘Yellow’ (middle finger) buttons, regardless of which action the avatar was 

performing. In the Interactive condition participants needed to predict and monitor the action of the 

virtual partner in order to perform their own action, while action prediction and monitoring was not 

needed during the Cued condition, where participants already knew what action to perform. It is 

important to note that in the Interactive condition, Correction trials require participants to adapt their 

own behaviour to the observed change (i.e. change their own finger) in order to fulfil the request (e.g. 
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to perform a complementary movement). In the Cued condition, instead, participants observed the 

avatar changing its initial behaviour but were not required to change and adapt their own behaviour.  

Each trial started with an acoustic ‘go’ signal (“beep”) delivered by the Oculus headphones. 

Both avatars started with their hands closed and placed in the centre of table’s midline. After the go 

signal (“beep”) was delivered the participant and the virtual partner started moving (virtual-partner 

total movement time lasting 3170 ms). 1056 ms after it started moving (33% of the whole movement 

time), the avatar would raise a finger in order to press the associated button (index finger for purple 

button and middle finger for yellow button, see Fig 3). Participants were required to control his/her 

avatar’s right hand with the Oculus touch controller to reach and press one of the two buttons as 

synchronously as possible with the virtual partner. With the analogic stick of the controller, 

participants could move their avatar’s arm forward and regulate its velocity (i.e. velocity was 

proportional to the force applied by their thumb) and, by pressing the index and middle trigger button 

of the controller, they could raise either the virtual index or the virtual middle finger of their avatar. 

Depending on the Asynchrony (i.e. absolute time difference between the two pressing times) the 

LED light could turn either green (‘win’ trial) or red (‘fail’ trial). A staircase procedure was adopted to 

make the task more challenging: after each ‘win’ trial the minimum time difference to turn the light 

green was reduced by 50 ms (e.g. from 200 ms to 150 ms), while in the case of ‘fail’ trials, the time 

window was increased by 50 ms (e.g. from 200 to 250 ms). The trial ended 2 seconds after the LED 

visual feedback. Importantly, in 30% of the trials the virtual partner changed its initial behaviour 2113 

ms after starting its movement (66% of the total movement time), namely from using the middle to 

the index finger to press the button (Correction trials). The avatar’s total movement time (i.e. the time 

from start to touch) lasted approximately 3.2 seconds and did not vary through the task or in different 

conditions. Each of the two tasks (i.e. Cued and Interactive) comprised 68 trials, of which 20 were 

Corrections (10 Opposite, 10 Same) and 48 were NoCorrection (24 Opposite, 24 Same).  

From the IVR Motor Interaction Task we extracted the following behavioural parameters: 

Asynchrony (absolute difference between the virtual partner’s and subject’s pressing times), 

Movement Times (time between subject’s movement start and button press), Last Press Time (time 

of the last effector selection, note that in Correction trials the effector is selected twice, once before 
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and once after the correction) and Reaction Times (time between the ‘go’ signal and subject’s 

movement start), see Table 1.  

 

 

Fig 3– Motor Interaction Task. Participants were required to synchronise their reach-to-touch 

movements with those of the virtual partner to perform either an imitative (Same) or 

complementary (Opposite) in the Interactive Blocks or to touch either the Purple or the Yellow 

button in the Cued Blocks. 

Embodiment ratings  

After each experimental session, a black panel with a horizontal green line (VAS scale, 60 

cm length, left and right extremity marked as “0” and “100” respectively) was presented in the virtual 

scenario. In order to assess the degree to which participants experienced the illusory Feeling of 

Ownership (FO) and Agency (A) over the virtual right hand, a 6-item questionnaire (Table 2) was 

used. The questionnaire consisted of two blocks, each with three items concerning the FO (Q1–2 

experimental, Q3 control) and Agency (Q4–5 experimental, Q6 control), respectively. Participants 
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were asked to move a vertical bar along the horizontal VAS line by using the analogic stick of the 

right Oculus touch controller in order to answer the items reported in Table 1. 

 

Behavioural variables Experimental design 

 

• Asynchrony (absolute difference 

between 1PP and 3PP touch time) 

• Movement Time (time from Start to Stop) 

• Motor Preparation Time (Time from ‘go’ 

signal to Start) 

• Last Press Time (time of last effector 

selection) 

 

 

• Group (Theta, Beta) 

• Stimulation (Real, Sham) 

• Task (Interactive, Cued) 

• Trial (NoCorrection, Correction)  

• Movement (Same, Opposite) 

Table 1. List of behavioural variables and within/between subjects design. 

 

Index 
     

Item 
  

e-FO Q1 I felt as if I were looking at my own hand 

e-FO Q2 I felt as if the Virtual Hand were my hand 

c-FO Q3 It felt as if I had more than one right hand 

e-A Q4 
It felt as if the movements of the Virtual Hand were my own 

movements 

e-A Q5 
I felt as if I could have caused a/the movement of the Virtual 

Hand 

c-A Q6 I felt as if the Virtual Hand were controlling me 

Table 2.  Embodiment Questionnaire. Items Q1, Q2, Q4 and Q5 measure Feeling of Ownership (e-

FO) and Agency (e-A), items Q3 and Q6 are control items.  
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Resting EEG Data Analysis 

The EEG data analysis was performed using the FieldTrip toolbox for EEG/MEG (Oostenveld 

et al, 2011; Donders Institute for Brain, Cognition and Behaviour, Radboud University, the 

Netherlands. See http://fieldtriptoolbox.org). In order to extract the individual peak frequencies, we 

segmented the five-minute resting state recordings into epochs of 4 seconds (Pahor & Jaušovec 

2014). Independent Component Analysis was computed to identify and remove eye movements and 

muscular artifacts (ICA; Jung et al 2000). An average of ~0.94 components (SD = 0.75) per subject 

was removed and ~ 69.53 artifact-free epochs (SD = 4.17) per participant was kept. Data were band-

pass filtered at 1-70Hz and a Fast Fourier Transformation (FFT) with 0.25 Hz resolution was 

performed to derive estimates of absolute spectral power (Pahor & Jaušovec 2014). We first 

identified the individual Alpha peak frequency (IAF) (MIAF = 10.64, SDIAF = 0.66). Following Methods 

from Klimesch (1999), individual Theta frequency (ITF) was extracted by choosing the highest peak 

between IAF - 4.0 Hz - IAF - 6.0 Hz range (MITF = 5.5, SDITF = .65). For individual Beta frequency 

(IBF), the peak between 12.5 Hz and 22.5 Hz was chosen (MITF = 17.5, SDITF = 2.54). The calculated 

peaks were rounded-up to 0.5 Hz, and were visually inspected and confirmed, or changed when 

necessary (Klimesch 1999: van Driel et al 2015) 

 

Data handling  

Behavioural measures (Asynchrony, Movement Times, Motor Preparation Times, Last Press 

Times) 

As a first step, for each behavioural variable we removed trials in which participants i) failed 

to follow the instructions (i.e. Same or Opposite for the Interactive Block and Purple or Yellow for the 

Cued) or ii) failed to touch the target. From this new dataset, we removed trials that fell more than 

2.5 standard deviations below or over the individual mean in the corresponding condition. Analysis 

on raw data showed that the two groups (Theta and Beta) were significantly different between each 

other in many behavioural variables. In order to deal with between-subjects variability, we decided 

to perform data analysis on sham-corrected values. Then, for each participant values from each trial 

http://fieldtriptoolbox.org/
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in the Real Stimulation condition were standardized by subtracting the corresponding average Sham 

Stimulation value in the same condition. For example, each trial in the Interactive Correction 

Opposite Real Stimulation condition was standardized by subtracting the mean value in the 

Interactive Correction Opposite Sham Stimulation condition.  

Statistical analyses  

Data from the Embodiment Questionnaire and behavioural measures (Asynchrony, Start – to 

Stop, Motor Preparation Times and Last Press Times) were analysed with Multilevel Linear Mixed 

Models using the software R and the packages lme4 (version 1.1 -21, Bates et al 2015). For each 

model, the random part was selected using the principal component analysis (PCA) method (Bates 

et al 2015). We kept all random factors that explained at least 1% of variance. Statistical significance 

of fixed effects was determined using type III Anova test with the mixed function from afex package. 

Post-hoc comparisons were performed with the ‘Estimated Marginal Means’ R package (version 

1.3.3, Lenth, 2017) via the emmeans and emtrends functions, respectively, and Tukey correction for 

multiple comparisons.  

For Asynchrony and Movement Times we ran LMM with Asynchrony values as our dependent 

continuous variable, Frequency (Theta, Beta), Block (Interactive, Cued), Trial (Correction, 

NoCorrection), Movement (Same, Opposite) and their respective interactions as our fixed effects, 

and Participant:Block  (i.e., random intercept for each level of Block) as our random part.  

For Motor Preparation Times we collapsed the Correction and NoCorrection trials, since at 

the moment in which participants start moving they still do not know whether there will be a correction 

or not. Therefore our model included Frequency (Theta, Beta), Block (Interactive, Cued), Movement 

(Same, Opposite) and their respective interactions as our fixed effects and Participant:Block  (i.e., 

random intercept for each level of Block) as our as our random part. 

Since in the Cued block participants were not required to correct their movement and 

therefore Last Press Times were not informative, we decided to run LMM on Last Press Times only 

for the Interactive blocks. Moreover, we coded trials from the Interactive block as follows: 

NoCorrection (i.e. trials in which the avatar did not change its movement), Correction (i.e. trials in 
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which the avatar changed its movement and the participant adapted) and FakeCorrection (i.e. trials 

in which the avatar changed its movement but the participant did not adapt). Our model for Last 

Press Times in the Interactive block included Frequency (Theta, Beta), Trial (Correction, 

NoCorrection, FakeCorrection), Movement (Same, Opposite) and their respective interactions as our 

fixed effects and Participant:Trial  (i.e., random intercept for each level of Block) as our as our random 

part. tACS-induced physical sensations were analysed with non-parametric statistics. Embodiment 

ratings were analysed with LMM including Group (ThetaGroup, BetaGroup), Stimulation (Real, 

Sham) and Item (Experimental, Control) as fixed effects and Participant (i.e., random intercept) as 

our random part. 

Results  

Asynchrony  

Type III ANOVA on sham-corrected Asynchrony values with Block (Cued, Interactive), Trial 

(Correction, NoCorrection) and Movement (Opposite, Same) as within-subjects and Frequency 

(Beta, Theta) as between-subject factor revealed a significant main effect of Frequency (F = 3.81, p 

= 0.05). Indeed, Asynchrony values in the Theta group were smaller than in the Beta group (Theta 

M(SD) = -0.04 (0.17), Beta M(SD) = 0.02(0.23)), see Figure 4. It should be noted that, given the 

standardisation over the sham condition, negative Asynchrony values indicate a better performance 

(i.e. smaller asynchrony) compared to baseline performance. Also, there was a significant interaction 

between Frequency, Block, Trial and Movement (F = 8.52, p < 0.01). Tukey-corrected post hoc test 

did not show any significant difference between conditions of this interaction (all ps > 0.1).  
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Figure 4. Main effect of Frequency for Asynchrony. Theta tACS reduced (and Beta tACS 

increased) Asynchrony across all conditions. Error bars indicate standard error (SE).  

Movement Time (Time from Start to button press) 

Type III ANOVA on sham-corrected Movement Times values with Block (Cued, Interactive), 

Trial (Correction, NoCorrection) and Movement (Opposite, Same) as within-subjects and Frequency 

(Beta, Theta) as between-subject factor, revealed a main effect of Frequency (F= 6.28, p = 0.01), 

indicating that Movement Time values in the Theta group were significantly longer than in the Beta 

group and a 3-way interaction between Frequency, Block and Trial (F = 7.60, p = 0.006). Tukey-

corrected post hoc tests showed that only in the Interactive block the contrast between Beta and 

Theta was significant for Correction trials (estimate = - 0.18, SE = 0.04, z-ratio = - 3.69, p = 0.001). 

Namely, Movement Times during Correction trials were increased by Theta tACS and decreased by 

Beta tACS (see Figure 5). None of the Frequency contrast in the Cued block reached or approached 

significance. The ANOVA also revealed a significant main effect of Movement (F = 8.72, p = 0.003), 

indicating that Movement times were longer for Opposite than for Same trials and a 3-way interaction 

between Block, Trial and Movement (F = 13, p = 0.0003), which we further analysed with post hoc 

tests. Results showed that Movement Time values in the Interactive block when performing 

Opposite_Correction trials were higher than in Same_Correction trials (estimate = 0.02, SE = 0.02, 

z-ratio = 2.465, p = 0.06), while no difference was seen between Opposite_NoCorrection and 

Same_NoCorrection (estimate = 0.01, SE = 0.01, z-ratio = 0.10, p = 0.99). This means that in the 

Interactive block participants’ reach-to-press movements were longer for Opposite than for Same 

trials only when the avatar changed its movement. Conversely, in the Cued block there was a 

significant difference between Opposite_NoCorrection and Same_NoCorrection (estimate = 0.07, 

SE = 0.01, z-ratio = 4.17, p < 0.0001) but not between Opposite_Correction and Same_Correction 

(estimate = -0.01, SE = 0.02, z-ratio = -0.63, p = 0.92), meaning that in the Cued block participants’ 
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reach-to-press movements were longer for Opposite than for Same trials only when the avatar did 

not change its movement. 

Figure 5 Frequency * Block * Trial Interaction for Movement Times. Theta tACS increased (and Beta 

tACS reduced) Movement Times during Correction trials in the Interactive Block.  

Motor Preparation Times (Time from ‘Go’ signal to Start) 

Type III ANOVA on sham-corrected values with Block (Cued, Interactive), Trial (Correction, 

NoCorrection) and Movement (Opposite, Same) as within-subjects and Frequency (Beta, Theta) as 

between-subject factor, revealed a significant Frequency * Block interaction (F = 4.53, p = 0.04). 

Post hoc analysis showed a marginally significant difference between Theta and Beta group in the 

Interactive Block (estimate = 0.07, SE = 0.03, z-ratio = 1.85, p = 0.06), suggesting that Theta tACS 

tended to reduce the Motor Preparation time only in the Interactive block, see Figure 6.  

Figure 6. Frequency x Block interaction for Motor Preparation Times. Theta tACS reduced (and Beta 

tACS increased Motor Preparation Times in the Interactive Block.  

Last Press Times (Interactive Block) 

Type III ANOVA on sham-corrected values with Block (Cued, Interactive), TypeTrial 

(Correction, NoCorrection, FakeCorrection) and Movement (Opposite, Same) as within-subjects and 

Frequency (Beta, Theta) as between-subject factor, revealed no significant main effect or interaction 

(all Fs < 0.0, all ps > .99) suggesting that tACS didn’t have any effect on this variable.  
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Correlational analyses 

Figure 7.  Correlations between Asynchrony and Movement Times in the Interactive Blocks.  

Our results indicate that Theta tACS had the effect of reducing Asynchrony across all 

conditions and increasing Movement Times in Correction trials. Also, although not significant, an 

increase in Movement Times was found in NoCorrection trials during the Interactive Task (see Fig 

7). We reasoned that longer Movement Times might have allowed participants to be more 

synchronous with the virtual partner in touching the targets. Indeed, we found that (across all 

conditions) the average participants’ Movement Time was 2.65 (± 0.35), while the virtual partners 

was 3.18 (± 0.01). This means that, on average, participants touched the target earlier than the 

virtual partner. In this vein, increasing Movement Times should allow participants to touch the target 

more in synchronous with the virtual partner. To test this hypothesis, we ran correlation analysis 

between Asynchrony and Movement Times during the Interactive Block. We focused on the 
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Interactive condition as the one in which a significant effect of tACS on Movement Times was found. 

Results showed a significant negative correlation between the two variables in all conditions (see 

Figure 6) except for Theta_Correction. Specifically, Asynchrony and Movement Times were 

correlated in Theta_NoCorrection (r = -0.53, p = 0.02), Beta_NoCorrection (r = -0.66, p < 0.01) and 

Beta_Correction (r = -0.63, p < 0.01) but not in Theta_Correction (r = 0.08, p = 0.73).  

Discussion 

Motor and behavioural adjustment following observed errors in social contexts have been 

mainly investigated in turn-taking speeded reaction time (Schuch and Tipper, 2007, De Brujin et al 

2008) or grasping tasks (Ceccarini and Castiello, 2008). However, rather than “observing, then 

doing”, the most part of everyday motor interactions require agents to “observe while doing”, 

therefore involving a moment-by-moment integration of observed and executed movement. From 

this perspective, the most part of “joint errors” (i.e. errors occurring in the context of a joint action 

and influencing its success) can, and need to, be corrected online. Considering the classical example 

of two people moving a table together, if one of them accidentally loose his grip, the other will need 

to quickly implement a motor adjustment to compensate the other’s failure and ensure the fulfilment 

of the joint action. Previous studies from our research group have shown that unexpected motor 

changes during motor interactions elicit error-related midfrontal Theta activity (Moreau et al 2019, 

Moreau et al in prep.), a neural marker of error and conflict detection. In the present study, we used 

a sham-controlled mixed design to test the hypothesis that boosting midfrontal Theta with tACS 

would modulate adaptive motor adjustments after the observation of a virtual partner’s unexpected 

change.  

Our results showed that Theta and Beta tACS had both general and condition-specific effects 

on performance in the motor interaction task. Participants’ ability to synchronise their reach-to-press 

movements with those of the virtual partner was improved during Theta, compared to Beta, tACS, 

irrespective of the experimental condition. Synchronisation in motor interaction tasks requires the 

continuous monitoring of both the observed and the executed movements. Endogenous midfrontal 

Theta activity has been related to sustained attention during cognitive tasks (Sasaki et al 1996; 

Onton et al 2005) and meditation (Aftanas et al 201, Tang et al 2009). Since Theta tACS was 
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delivered continuously, this improvement in synchrony performance might reflect an increased 

engagement of attentional systems. In this vein, Theta tACS might have helped participants to focus 

their attention on the motor task and to better control their own movements.  

We also found an increase in movement time during Theta, compared to Beta tACS that was 

specific for Correction trials in the Interactive task, namely when participants observed a motor 

change in the virtual partner and needed to implement a motor correction. Midfrontal Theta activity 

has been related to both error detection (Cavanagh et al 2009) and conflict resolution (Botvinick et 

al 2007; Nigbur et al 2011), two processes sharing the need of increased cognitive control. More in 

general, midfrontal Theta is elicited whenever a habitual response needs to be overcome (Cavanagh 

et al 2013). In our task, when the virtual partner was correcting its movement, participants needed 

to inhibit their ongoing motor plan (e.g. pressing the button with the index finger) and to reprogram 

a different action (e.g. pressing the button with the middle finger). Motor inhibition involves movement 

slowing or stopping and has been associated with a brain network consisting of the lateral inferior 

frontal cortex (IFC), the presupplementary motor area (pre-SMA) and the subtalamic nucleus (STN) 

(Aron et al 2007). Activity in this network has been associated with the implementation of PES 

(Danielmeier and Ullsperger, 2011). Interestingly, the STN is directly interconnected with the ACC 

(Orieux et al 2002), where information about errors and conflict are processed and where Theta 

oscillations are putatively generated (Luu et al 2004). 

From this perspective, the Theta-tACS-induced increase in movement times during 

correction trials might reflect an enhanced activation of the performance monitoring system which in 

turn modulated the implementation of PES. Since in our task participants were not asked to be as 

fast as possible but, rather, as synchronous as possible, we did not expect to observe any slowing 

in reaction times in the following trial. Instead, we found an increase in movement times during the 

trial that could possibly reflect a phenomenon of motor inhibition (and movement slowing) induced 

by a response conflict. Interestingly, movement times during correction trials seemed to be reduced 

by Beta tACS. This result is particularly surprising, considering that increased EEG Beta power has 

been related to motor inhibition (Kuhn et al 2004), movement slowing (Pogosyan et al 2009) and 
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PES (Marco-Pallares et al 2008). However, since our participants were exerting a continuous force 

over the Touch controller button and since the velocity of the Avatar 1PP movements was directly 

related to the exerted force, it is possible that Beta tACS, rather than affecting motor control per se, 

has influenced the strength of the button press. Indeed, one study found that unexpected 

somatosensory and auditory events delivered while participants were performing an isometric task 

triggered an increase in force power that was paralleled by an enhancement in Beta EEG power 

recorded over the central electrodes (Novembre et al 2019).  

Correlation analyses showed that movement times were correlated to synchrony. Namely, 

those participants who took more time to move their virtual arm to the target were also better at 

synchronising their reach-to-press movements with those of the virtual partner. The fact that, on 

average, participants’ movement times were shorter than the virtual partner’s ones might explain 

why their synchrony performance benefited from an increase in movement time. However, this was 

not true for correction trials in the Theta group, possibly because the increase in movement time 

elicited by Theta tACS was so large. 

Limits  

There are potential limitations in this study that should be taken account in the interpretation 

of the results. First, the time between the real and sham stimulation session might have been too 

short to cancel tACS aftereffects for those participants that received real tACS in the first session. 

This could explain why the two groups were showing differences in various kinematic parameters 

not only during real tACS but also (although to a lesser extent) during sham. There is still no 

consensus on the actual duration of tACS aftereffects, which seem highly dependent on the 

stimulation parameters (Veniero et al 2015). However, the possibility that tACS effects might last 

after stimulation, especially for what concerns plasticity (Vossen et al 2015) should be considered. 

Another potential limitation of our study is the absence of EEG recording during or after the 

stimulation, which prevents us to claim that we were, indeed, enhancing midfrontal Theta power. 

Future research should consider the potential benefits of concurrent EEG/MEG recording during 

Theta tACS stimulation.  
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Conclusion  

In the present study we have addressed the causal role of midfrontal Theta oscillations in 

online motor adjustment to a “joint error”. To our knowledge, this is the first study investigating the 

causal role of the performance monitoring system in dyadic motor interactions. We showed that 

Theta tACS improved synchrony performance in all conditions and increased movement times when 

a motor correction was required.  These results hint to a potential beneficial effect of combining tACS 

with motor interaction tasks for the treatment of motor impairments (e.g. Apraxia or Parkinson 

disease).  
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