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We study the orientifold projections of the N = 1 superconformal field theories describing D3-branes 
probing the Pseudo del Pezzo singularities PdP3b and PdP3c . The PdP3c parent theory admits two 
inequivalent orientifolds. Exploiting a maximization, we find that one of the two has an a-charge smaller 
than what one would expect from the orientifold projection, which suggests that the theory flows to the 
fixed point in the infrared. Surprisingly, the value of a coincides with the charge of the unoriented PdP3b
and we interpret this as the sign of an infrared duality.

© 2020 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
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1. Introduction

The AdS/CFT correspondence, in its original formulation, states 
that the 4 dimensional N = 4 SU(N) SYM gauge theory living on 
the worldvolume of a stack of N D3-branes in flat space is dual to 
type-IIB supergravity on an AdS5 × S5 background in the large N
limit [1–3]. More generally, for a system of regular D3-branes prob-
ing the tip of a Calabi-Yau (CY) cone, the worldvolume conformal 
field theory is dual to IIB supergravity on AdS5 × H5, where the 
horizon H5 is a 5-dimensional Sasaki-Einstein manifold [4,5] and 
represents the base of the CY cone. The correspondence relates the 
central charge a of the conformal field theory

a = 3

32

(
3TrR3 − TrR

)
, (1)

to the volume of the Sasaki-Einstein horizon H5 by the relation [6]

Vol(H5) = π3

4

N2

a
, (2)

where N is the number of units of 5-form flux. In general, the 
presence of U(1) flavour symmetries implies that the R-charges 
can not be unambiguously assigned a priori. When this happens, 
the superconformal R-charges are uniquely determined as those 
that maximize a [7,8].
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Fig. 1. The toric diagram of PdP3b on the left and the toric diagram of PdP3c on the 
right.

While in the simpler cases of cones that are abelian orbifolds 
of C3 the field content and superpotential of the gauge theory can 
be read directly from the N = 4 ones, systematic techniques have 
been developed to determine the gauge theories for D3-branes at 
the tip of more general toric cones [9]. A toric cone has at least 
a U(1)3 isometry and its base H5 is a T 3 fibration over a convex 
polygon known as the toric diagram. In particular, one can study 
the blow-up of a singularity adding points to the toric diagram 
and this is dual to the unhiggsing mechanism in the gauge the-
ory [4,9–12]. If applied to the dP2 theory, corresponding to the 
complex cone over the del Pezzo surface obtained by the blow-
up of 2 generic points of P 2, this gives rise to either dP3 or the 
Pseudo del Pezzo geometries PdP3b or PdP3c if the blow-up is non-
generic [11,12]. The latter two theories, whose toric diagrams are 
drawn in Fig. 1, are the ones we are interested in.
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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From the toric diagrams, there is a systematic procedure to 
determine, up to Seiberg dualities, the field content and the su-
perpotential of the gauge theory. Specifically, this information is 
encoded in a bipartite graph representing a web of NS5-branes, 
which is called dimer [13–17]. This web is drawn on a T 2 wrapped 
by D5-branes, and by performing two T-dualities along the torus 
the whole configuration is mapped back to the original system of 
D3-branes sitting at the singularity of the cone. We draw in Figs. 3
and 4 the dimers of the PdP3b and PdP3c theories. By looking at 
the nodes in the diagrams one can see that the two theories have 
different superpotentials but share the same quiver, given in Fig. 2.

In this setup, more general gauge theories can be constructed 
by introducing orientifold projections �. In the brane configura-
tion, this corresponds to adding an orientifold plane, which induces 
a Z2 involution on the space and flips the world-sheet parity 
of strings, making the theory unoriented [18–22] (for a review 
see [23]). The Z2 involution of the orientifold can be represented 
on the dimer by the introduction of either fixed points or fixed 
lines [24], from which one can read the field content and the 
superpotential of the unoriented theory. As far as conformal invari-
ance is concerned, the following scenarios are possible: either the 
unoriented theory does not have a fixed point at which a is max-
imized, or there is a fixed point and the orientifold yields O (1/N)

corrections to physical observables. Note that in the first scenario 
one could have a duality cascade [25] or conformal symmetry can 
be restored by the addition of flavour branes [26].

In this letter we show that a third scenario exists, in which the 
orientifold breaks the conformal symmetry of the parent theory 
but develops a new superconformal fixed point. We provide an ex-
ample of such a scenario by studying the orientifold projection of 
the gauge theories arising from the toric CY cones over PdP3b and 
PdP3c . While the projection PdP�

3b is unique, PdP3c admits two in-
equivalent orientifolds, which we call �1 and �2. For each of the 
orientifolds, we determine the ranks of the gauge groups such that 
there is a conformal fixed point, and the superconformal R-charges 
of the chiral fields using a maximization. Although one would al-
ways naively expect that the a central charge of the unoriented 
theory is a half of that of the parent theory, we find that this hap-
pens only for PdP�

3b and PdP�1
3c , while for PdP�2

3c one gets a smaller 
central charge a. To the best of our knowledge, this is the first 
time that such a mechanism occurs in the context of unoriented 
theories. Interestingly, both the R-charges and the a central charge 
of PdP�2

3c are identical to the ones of PdP�
3b . To see this effect 

it is crucial that the computation is performed keeping N finite, 
while neglecting O (1/N) corrections naively gives the same a cen-
tral charge of PdP�1

3c . The fact that the central charge a is smaller 
than expected suggests that there is an RG flow from a confor-
mal fixed point in the UV to another conformal fixed point in the 
IR, in which the theory coincides with PdP�

3b . This IR duality could 
be inherited by the relation between the parent theories, which 
are connected by a web of dualities involving specular [27,28] and 
Seiberg duality [29,30].

2. PdP3b and PdP3c

Let us introduce the parent gauge theories of interest. We be-
gin with PdP3b [11,12,27], whose quiver and dimer are drawn in 
Fig. 2 and 3. There are 6 gauge groups 

∏6
a=1 SU(Na) and the mat-

ter fields are bifundamentals Xab corresponding to the edges in the 
dimer. For instance, X12 transforms in the fundamental represen-
tation of SU(N1) and in the anti-fundamental of SU(N2) and is the 
edge between faces 1 and 2 in the dimer. The global symmetries 
of this model are U(1)2 × U(1)R as mesonic symmetry and U(1)5

as baryonic one, of which U(1)2 is anomalous. The superpotential 
of the theory reads
2

Fig. 2. The quiver of theories PdP3b and PdP3c . The dashed gray line labelled as �
represents the orientifold projection, which identifies the two sides of the quiver 
and projects fields and gauge groups that lie on top of it.

Fig. 3. The dimer of PdP3b , where the dashed green line delimits the fundamental 
cell. The two red fixed lines and their signs represent the orientifold projection that 
yields the unoriented PdP�

3b .

W3b = X13 X34 X41 − X46 X61 X14 + X45 X51 X14

− X24 X41 X12 + X62 X24 X46 − X35 X51 X13

+ X23 X35 X56 X61 X12 − X23 X34 X45 X56 X62 . (3)

The gauge anomalies vanish imposing the following relation be-
tween the ranks of the gauge groups:

N1 + N6 − N3 − N4 = 0 ,

N2 + N3 − N5 − N6 = 0 . (4)

We find the superconformal fixed point and the corresponding R-
charges Rab for the fields Xab maximizing the a-charge. Requiring 
that the β-functions vanish (which is equivalent to non-anomalous 
R-symmetry) we have
∑

a

(Rab − 1)Na = −2Nb , (5)

where the sum is over gauge groups a connected to b by a bifun-
damental field Xab . Together with the condition that the R-charge 
of the superpotential is R(W ) = 2, we have a system of equa-
tions with a priori eight independent R-charges. This can be seen 
also from the quiver, which enjoys a Z2 symmetry. The a-charge 
in Eq. (1) is a two-variable function, namely, a flavour symmetry 
U(1)2 mixes with the R-symmetry. The local maximum yields [27]

Rb
23 = 7 − 3

√
5 ,

Rb
13 = Rb

14 = Rb
24 = 3 − √

5 ,

Rb
12 = Rb

34 = Rb
35 = Rb

62 = 2
√

5 − 4 , (6)
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Fig. 4. The dimer of PdP3c , where the dashed green line delimits the fundamental 
cell. The four red fixed points (ε1, ε2, ε3, ε4) represent the orientifold projection, 
where (+, −, −, +) corresponds to PdP�1

3c and (−, +, −, +) corresponds to PdP�2
3c .

a3b = 27

4
N2

(
5
√

5 − 11
)

,

Vol(PdP3b) = π3

27
(

5
√

5 − 11
) , (7)

where Na = N ∀a = 1, . . . , 6 since this condition gives the only 
solution that respects the unitarity bound. Note that the expression 
of the a-charge is given at leading order in N .

The second theory we study is PdP3c [11,12,27], whose dimer 
is drawn in Fig. 4. As in the previous case, the gauge group is ∏6

a=1 SU(Na) and the global symmetries are U(1)2 × U(1)R as 
mesonic symmetry and U(1)5 as baryonic one, of which U(1)2 is 
anomalous. The matter fields are also the same of the PdP3b the-
ory and indeed the two models share the same quiver in Fig. 2. 
Nonetheless, they have a different dimer and therefore interact dif-
ferently. In fact, the superpotential reads

W3c = X12 X24 X41 + X45 X51 X14 − X13 X34 X41

− X46 X61 X14 + X13 X35 X56 X61 + X46 X62 X23 X34

− X12 X23 X35 X51 − X45 X56 X62 X24 . (8)

The gauge anomalies vanish imposing the condition in Eq. (4) as 
before. Computing the R-charges which maximize the a-charge we 
find [27]

Rc
14 = 2 − 2

√
3

3
,

Rc
23 = Rc

35 = Rc
62 = 1 −

√
3

3
,

Rc
12 = Rc

13 = Rc
24 = Rc

34 =
√

3

3
, (9)

a3c = 3
√

3

4
N2 ,

Vol(PdP3c) = π3

3
√

3
, (10)

where again Na = N ∀a = 1, . . . , 6 is the only solution that respects 
the unitarity bound. Note that the difference in the R-charges 
arises from the condition R(W ) = 2. It is crucial to note that in this 
case the a-charge is a three-variable function, namely, the non-R
symmetry which mixes with the R-charge is U(1)3.

3. Unoriented PdP3b and PdP3c

The orientifold projection of a quiver gauge theory is repre-
sented as a line which identifies the two sides of the quiver and 
3

projects the groups and the fields that are mapped onto them-
selves [31,32,26]. For the PdP3b and PdP3c theories, the involution 
is the � line in Fig. 2. The gauge groups intersected by the line are 
projected onto either SO or Sp, while bifundamental fields charged 
under two groups that are identified by � are projected onto 
a symmetric or antisymmetric representation. Besides, if SU(Na)

is mapped to SU(Nb), a fundamental representation of SU(Na) is 
identified with the antifundamental of SU(Nb).

In the dimer, the Z2 involution can be realized by the introduc-
tion of either fixed points of fixed lines on the torus [24]. In the 
first case, the orientifold projects both coordinates of the torus, 
preserving the mesonic flavour symmetry. There are four fixed 
points in the fundamental cell and each one carries a sign εi = ±, 
i = 1, . . . , 4. The superpotential terms are halved since black nodes 
are mapped to white nodes. The four fixed points are physically 
four orientifold planes and their charges are the signs of the fixed 
points. When a fixed point with ε = +(−) lies on a face, the cor-
responding SU(N) gauge group is projected onto SO(Sp). When a 
fixed point with ε = +(−) lies on an edge it projects the corre-
sponding field onto a symmetric (antisymmetric) representation 
and it identifies the gauge groups on the two sides of the edge. 
Supersymmetry requires that 

∏4
i=1 εi = (−1)NW /2, where NW is 

the number of terms in the superpotential of the parent theory. 
Besides, the anomaly cancellation condition may further constrain 
the orientifold signs. In the second case, the involution acts pro-
jecting only one coordinate of the torus, thus breaking the U(1)2

flavour symmetry to a combination of the two. Nodes in the dimer 
are mapped to each other w.r.t. the fixed lines. Physically, a fixed 
line is an orientifold plane that intersects the torus and its charge 
is the sign of the line. There is no constraint in this case, other 
than the anomaly cancellation condition.

3.1. Unoriented PdP3b

We consider the orientifold involution of PdP3b with two fixed 
lines and we choose the configuration with signs (−, +), as in 
Fig. 3. As a consequence, the gauge group SU(N5) is identified with 
SU(N3) and SU(N6) with SU(N2), while SU(N1) becomes Sp(N1)

and SU(N4) becomes SO(N4) since they lie on top of the fixed 
lines. The resulting theory has gauge groups Sp(N1) × SU(N2) ×
SU(N3) × SO(N4), where the fields X A

35 and X S
62 belong to the an-

tisymmetric and symmetric representations of the gauge groups 
SU(N3) and SU(N2) respectively. The superpotential reads

W �
3b = X13 X34 X41 − X24 X41 X12 + X S

62 X24 X46

− X A
35 X51 X13 + X23 X A

35 X56 X61 X12

− X23 X34 X45 X56 X S
62 (11)

and the anomaly cancellation condition is

N1 + N2 − N3 − N4 + 4 = 0 . (12)

As in the parent theory, there are eight a priori independent Rab . 
The condition for the β-functions to vanish changes slightly due to 
the orientifold involution. In fact, one has
∑

a

(Rab − 1)Na = −(Nb ± 2) , (13)

if the group labelled by b is orthogonal (−) or symplectic (+). 
Likewise, for unitary gauge groups one has
∑

a

(Rab − 1)Na + (Rb − 1)(Nb ± 2) = −2Nb , (14)

where Rb is the R-charge of the symmetric (+) or the antisym-
metric (−) field charged under SU(Nb). Imposing conformal in-
variance, consistency with the unitarity bound requires N2 = N3 =
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N1 +2 = N4 −2 = N . One then finds the flavour symmetry is U(1)2

and the R-charges are the same as the ones of the parent theory 
in Eq. (6) up to O (1/N) corrections. This implies that this orien-
tifold realizes what we have described in the introduction as the 
‘second scenario’, in which there is a fixed point, and the orien-
tifold induces corrections to the R-charges that vanish at large N . 
Taking this limit, the value of the a-charge is

a�
3b = 27

8
N2

(
5
√

5 − 11
)

. (15)

Note that the central charge a is half the one of the parent theory. 
This is expected since the degrees of freedom have been halved. 
Besides, also the volume of the PdP3b after the orientifold is half 
the volume of the parent space. To see this, consider that the 
orientifold acts as a Z2 projection on the geometry. As a conse-
quence, the number of units of 5-form flux is N/2 [33]. Thus, the 
proper ratio between the volumes reads

Vol(PdP�
3b)

Vol(PdP3b)
= 1

2
. (16)

This is similar to the case of the Zn orbifold of flat space, where 
the volume is a fraction n of the volume of the sphere S5.

3.2. Unoriented PdP3c

Let us turn to the orientifold of PdP3c . As shown in Fig. 4, 
the dimer admits only the projection with fixed points, whose 
signs (ε1, ε2, ε3, ε4) project the group SU(N1), the group SU(N4), 
the field X35 and the field X62, respectively. The parent theory 
has NW = 8, thus 

∏4
i=1 εi = +1. The two inequivalent choices are 

�1 = (+, −, −, +) and �2 = (−, +, −, +).
First, we focus on �1. The unoriented theory has gauge groups 

SO(N1) × SU(N2) × SU(N3) × Sp(N4), where fields X A
35 and X S

62
are antisymmetric and symmetric representations of SU(N3) and 
SU(N2) respectively. The superpotential reads

W �1
3c = X13 X A

35 X56 X61 − X45 X56 X S
62 X24

+ X12 X24 X41 − X13 X34 X41 (17)

and the anomaly cancellation condition remains as Eq. (12). The 
superconformal fixed point of this unoriented model has the same 
R-charges of the parent theory in Eq. (9) up to O (1/N) correc-
tions, with the flavour U(1)3 symmetry mixing with R-symmetry, 
and thus the second scenario described in the introduction is again 
realized as in the PdP3b case. In the large N limit, the a-charge is

a�1
3c = 3

√
3

8
N2 , (18)

where N1 = N2 = N3 − 2 = N4 − 2 = N is the only consistent so-
lution. Again, the a-charge is halved because of the orientifold 
projection, and the ratio between the volumes is 1/2 as before.

The unoriented theory obtained from �2 = (−, +, −, +) has 
gauge groups Sp(N1) × SU(N2) × SU(N3) × SO(N4), where fields 
X A

35 and X S
62 are unchanged w.r.t. the previous case. The superpo-

tential W �2
3c is formally identical to W �1

3c in Eq. (17) and again 
the anomaly cancellation condition remains as Eq. (12). The a-
maximization in this case is more subtle. If one took naively the 
limit N → ∞ before solving the equation for vanishing β-functions 
and R(W ) = 2, one would obtain the R-charges and half the a-
charge of the parent theory, with non-R flavour U(1)3. On the 
other hand, we find that for any finite value of N , the only consis-
tent solution is N2 = N3 = N1 +2 = N4 −2 = N exactly as in PdP�

3b , 
with one flavour U(1) broken and the remaining U(1)2 mixing 
4

Table 1
The values of the charges Q 1, Q 2 and R0 for the 
fields of PdP�

3b and PdP�2
3c , which are the same. 

Q 1 and Q 2 refer to the charges under the flavour 
symmetry U (1)1 × U (1)2, while R0 is an allowed 
non-superconformal choice of the R-charge.

Q 1 Q 2 R0

X12 − N+2
N

1
2

1
2

X13 0 − 1
2

1
2

X24
1
N − 1

2
1
2

X S
62 − 4

N 1 1

X23
N+2

N −1 0

X34 −1 1
2

1
2

X41 1 0 1

X A
35 0 1 1

with R-symmetry. This has the crucial effect of giving at leading 
order in 1/N the value of the superconformal R-charges as

R�2
23 = 7 − 3

√
5 ,

R�2
13 = R�2

14 = R�2
24 = 3 − √

5 ,

R�2
12 = R�2

34 = R�2
35 = R�2

62 = 2
√

5 − 4 , (19)

which are different from the R-charges of the parent theory in 
Eq. (9), and the a�2

3c -charge takes the value

a�2
3c = 27

8
N2

(
5
√

5 − 11
)

, (20)

which is smaller than the value of a�1
3c in Eq. (18). Consequently, 

the ratio between a�2
3c and that of the parent theory is

a�2
3c

a3c
= 3

√
3

2

(
5
√

5 − 11
)

� 0.47 , (21)

while the ratio between the volumes is

Vol(PdP�2
3c )

Vol(PdP3c)
� 0.53 . (22)

The fact that a�2
3c is less than halved w.r.t. the central charge a3c

of the parent theory can be taken as a sign of an RG flow towards 
the IR. Thus, a natural question is what is the endpoint of this 
RG flow. Surprisingly, the R-charges and the a-charge in Eqs. (19)
and (20) are exactly those of PdP�

3b given in Eqs. (6) and (15). This 
suggests the two theories are dual at the conformal fixed point. In 
other words, the RG flow is going from PdP�2

3c in the UV to PdP�
3b

in the IR.
To further support this conjecture we investigate the 1/N

corrections to the R-charges. Remarkably, imposing that the β-
functions vanish yields exactly the same solutions at any finite 
N , which implies that the charges w.r.t. all the global symme-
tries of the two theories are the same. The values of these charges 
are reported in Table 1, where Q 1 and Q 2 are associated to the 
flavour symmetry U (1)1 × U (1)2, while R0 is an allowed non-
superconformal choice of the R-charge.

4. Discussion

We have shown that the value of the a-charge of the super-
conformal fixed point of the unoriented PdP�2

3c is smaller than 
expected and this gives strong evidence that there is an RG flow 
from the UV to the IR. On the fixed point in the IR, the R-charges 
and a-charge are exactly those of the unoriented PdP�

3b . Moreover, 
the two theories share the same field content and have identical 
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charges under the same global symmetry for any finite N . As a 
consequence, ’t Hooft anomalies match in the IR as well as the su-
perconformal index and thus we conjecture that in the IR the two 
unoriented theories describe the same physics.

A natural question that one can ask is whether the PdP�
3b and 

PdP�2
3c theories are connected by an exactly marginal deformation. 

A hint in this direction comes from the fact that the two theo-
ries differ only because of superpotential terms. This implies that 
if one turns on in the PdP�2

3c theory a deformation α(W �
3b − W �2

3c ), 
the resulting theory must have a superconformal fixed point for 
any value of α, with the same value of the R-charges. While for 
α = 0 and α = 1 the theory results from an orientifold projec-
tion, it would be very interesting to investigate the origin of the 
other superconformal theories. The existence of exactly marginal 
deformations and the structure of the conformal manifold can be 
deduced from the superconformal index, whose computation we 
leave as an open project.1

As far as the gravity side of the AdS/CFT correspondence is con-
cerned, the mechanisms known in the literature to produce RG 
flows in the context of holographic field theories do not seem to 
explain our result. In particular, the flow described above is not 
due to mass deformations [34,35], to a Higgs mechanism [11] or 
to the introduction of fractional branes [36]. We can expect some 
kind of kink solution interpolating between two asymptotic ge-
ometries like in [37], but the metrics of the CY complex cones over 
PdP3b and PdP3c are unknown and thus we do not have control of 
the bulk theory. Progress on the gravity side of the orientifold the-
ories discussed in this letter would also allow one to investigate 
holographically the marginal deformation discussed above.

Since orientifolds realized in the dimer by fixed points do not 
break the U(1)2 × U(1)R mesonic symmetry [14], the U(1) broken 
by the �2 orientifold must be baryonic. The picture is thus that the 
configuration of branes and orientifold planes in the PdP�2

3c theory 
breaks, together with a baryonic U(1), also conformal symmetry 
in the UV, but makes the theory flow to a different IR fixed point 
that is the one of the PdP�

3b theory, with which PdP�2
3c shares all 

the symmetries. In the bulk, we can thus expect form fluxes that 
make the volume increase so that only asymptotically the metric 
is AdS. The scale associated to the flow can be identified with the 
size of the cycles wrapped by the branes that generate the fluxes. 
Solutions with broken baryonic U(1)’s associated to branes wrap-
ping cycles have been discussed in the literature [38,39].

Another direction that can be explored is the possibility that 
the duality is a consequence of the PdP3b and PdP3c parent theo-
ries being connected by specular duality [27,28], which in general 
is a map between theories with the same master space. In the case 
of theories whose toric diagram has only one internal point, like 
the ones we are discussing, specular duality exchanges mesonic 
and anomalous baryonic symmetries. The chain of maps that relate 
the two parent theories is more precisely a specular duality fol-
lowed by a Seiberg duality [29] and again another specular duality. 
One could even investigate the possibility that a chain of Seiberg 
dualities relates the two unoriented theories. Seiberg dualities in 
the case in which (anti-)symmetric fields are present have been 
considered in [40,41], where one describes them as mesons of a 
new confining symplectic or orthogonal gauge group. The problem 
of this approach is that one needs to add a gauge group going to-
wards the UV and that can not describe the flow from PdP�

3b to 
PdP�2

3c .
We expect to find other examples of pairs of orientifolds shar-

ing the same features of the theories discussed in this letter. This 
would allow us to understand the physical origin of this infrared 

1 We thank the referee for pointing out this possibility to us.
5

duality. However, as the number of gauge groups increases, it be-
comes computationally harder to find the exact local maximum 
of the a-charge. To give more evidence that the unoriented PdP�2

3c
flows to PdP�

3b in the IR, we plan to study the moduli spaces of 
the two unoriented theories. Another possible line of investigation 
would be to check whether S-duality and strong coupling effects 
are involved, along the lines of [42–45].
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