
RESEARCH Open Access

A metastable subproteome underlies
inclusion formation in muscle
proteinopathies
Prajwal Ciryam1, Matthew Antalek2, Fernando Cid3, Gian Gaetano Tartaglia3, Christopher M. Dobson4,
Anne-Katrin Guettsches5, Britta Eggers6, Matthias Vorgerd5, Katrin Marcus6, Rudolf A. Kley7, Richard I. Morimoto2,
Michele Vendruscolo4 and Conrad C. Weihl8*

Abstract

Protein aggregation is a pathological feature of neurodegenerative disorders. We previously demonstrated that
protein inclusions in the brain are composed of supersaturated proteins, which are abundant and aggregation-
prone, and form a metastable subproteome. It is not yet clear, however, whether this phenomenon is also
associated with non-neuronal protein conformational disorders. To respond to this question, we analyzed
proteomic datasets from biopsies of patients with genetic and acquired protein aggregate myopathy (PAM) by
quantifying the changes in composition, concentration and aggregation propensity of proteins in the fibers
containing inclusions and those surrounding them. We found that a metastable subproteome is present in skeletal
muscle from healthy patients. The expression of this subproteome escalate as proteomic samples are taken more
proximal to the pathologic inclusion, eventually exceeding its solubility limits and aggregating. While most
supersaturated proteins decrease or maintain steady abundance across healthy fibers and inclusion-containing
fibers, proteins within the metastable subproteome rise in abundance, suggesting that they escape regulation.
Taken together, our results show in the context of a human conformational disorder that the supersaturation of a
metastable subproteome underlies widespread aggregation and correlates with the histopathological state of the
tissue.

Introduction
The presence of protein aggregates is a hallmark of many
age-related degenerative disorders [21, 23]. These aggre-
gates are characteristic of neurodegenerative diseases, but
are also features of disorders outside of the central
nervous system, including protein aggregate myopathies
(PAMs) [19]. One unifying hypothesis relating to the
pathogenesis of these proteinopathies is the age-related
disruption of the protein homeostasis system [21, 23]. For
example, mutations in aggregation-prone proteins or
changes in the cellular environment promote protein
misfolding and subsequent aggregation in affected tissues
[8, 12]. These aggregation events lead to further progres-
sive impairment in protein surveillance and degradation

pathways, causing further aggregation of other
aggregation-prone proteins.
To rationalize these observations, we recently proposed

that protein aggregation is a widespread phenomenon
associated with the intrinsic supersaturation state of the
proteome [3, 33]. Proteins become supersaturated when
their cellular concentration exceeds their solubility, which
is dictated by the physico-chemical characteristics of their
amino acid sequences. Thus, supersaturation is a measure
of the balance between concentration and solubility of
proteins (Fig. 1). Upregulation of the heat shock response
and the level of molecular chaperones or impairment in
protein quality control can positively or negatively modu-
late the propensity of a protein to aggregate. This principle
suggests that supersaturated proteins are most vulnerable
to alterations in protein homeostasis [2, 9, 11, 12, 30, 31,
37, 41]. To measure protein supersaturation, we have
developed a metric that combines a sequence-based
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prediction of aggregation propensity and estimates protein
concentration from transcriptomic and proteomic data of
thousands of human proteins [3]. With this approach, we
reported that proteins found in inclusions in Alzheimer’s
disease (AD), Parkinson’s disease (PD), and amyotrophic
lateral sclerosis (ALS) have high supersaturation scores
even in control tissues [3, 5, 22]. We have also similarly
shown that the proteins that aggregate in aging C. elegans
are supersaturated [3].
Remarkably, the enrichment for supersaturated proteins

in neurodegenerative pathways is still detectable even
when estimating supersaturation levels from average
abundances across a wide variety of non-pathological tis-
sues. However, the tissue selectivity of many protein con-
formational disorders suggests that the risk of misfolding
may depend in part on the specific proteomic context. A
limitation of previous studies on supersaturation is the ab-
sence of this context, because of the difficulty of obtaining
living brain tissue from patients with neurodegenerative

disease [8, 10]. Because muscle can be directly biopsied,
the PAMs offer a means to determine how proteinopa-
thies can remodel the proteome homeostasis in specific
tissues, and whether changes in the metastable subpro-
teome help to explain disease progression and pathology.
In these degenerative muscle disorders, protein accumu-
lates into inclusion bodies in affected myofibers [19, 40].
In some cases these inclusions contain the same proteins
associated with neurodegenerative diseases, such as TDP-
43 and SQSTM1 [40].
Most hereditary PAMs are due to dominantly inher-

ited missense mutations in specific proteins resulting in
their destabilization and subsequent aggregation [19]. By
contrast, sporadic inclusion body myositis (IBM) is an
acquired PAM with no clear genetic etiology manifesting
exclusively in patients over 45 years of age [39]. Two
types of pathological structures exist in PAMs: inclusion
bodies, which are often immunoreactive for the mutated
protein in the corresponding hereditary diseases, and
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Fig. 1 A protein aggregates when its concentration exceeds its solublity, thus becoming supersaturated. Supersaturated proteins tend to be
abundantly expressed despite having a relatively low solubility. Disruptions in the protein homostasis system favor protein aggregate formation
whereas an enhancement in protein homeostasis favors protein solubility (dashed lines). The translational repression of abundant aggregation-
prone proteins favors a non-aggregated proteomic state. Protein inclusions in diseased tissue are heterogenous and composed of multiple
proteins that have exceeded their solubility threshold
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rimmed vacuoles (RVs), which are pathological struc-
tures found in affected myofibers and containing aggre-
gated proteins in association with degradative debris
such as ubiquitin and autophago-lysosomal proteins
[39]. In the present study, we use quantitative proteomic
data from human patient tissues to test the hypothesis
that supersaturation of a metastable subproteome ex-
plains protein inclusions in PAMs. Moreover, we explore
how this metastable subproteome changes between
healthy cells, diseased cells and inclusion-bearing cells.

Results
IBM-associated proteins are supersaturated in healthy
tissues
We previously performed laser microdissection to collect
areas of single fibers from muscle biopsies of 18 patients
with IBM [14]. These samples were taken from normal
healthy fibers, or in the case of IBM-affected muscles,
from affected RV-containing fibers and adjacent normal
appearing fibers. We then analyzed these samples by mass
spectrometry using label-free spectral count-based relative
protein quantification (see Methods). For the study pre-
sented here, healthy control and IBM proteomic datasets
were generated from healthy control myofiber regions
(HCs), unaffected myofiber regions from IBM patients
(disease controls, DCs), non-vacuole containing sarcoplas-
mic regions of affected fibers (AFs), and myofiber regions
containing rimmed vacuoles (RVs) (Fig. 2a).
Comparison of these datasets enabled us to identify a set

of proteins enriched within RVs, as compared to DCs. This
list of 53 RV-enriched proteins includes 17 proteins pre-
viously identified to accumulate in IBM tissue (Add-
itional file 1: Dataset S1). We next asked whether these
proteins share similar biophysical features despite their dif-
ferent sequences, structures and functions. We had previ-
ously estimated supersaturation of a protein as the product
of its predicted aggregation propensity (given by the Zyg-
gregator score (Zagg) which correlates negatively with its
solubility) and its expression level, either based on mRNA
levels from microarray data or proteomic analysis [3].
We thus compared the supersaturation levels of RV-

enriched proteins to those of co-aggregators within
amyloid plaques [24], neurofibrillary tangles [38], and
TDP-43 inclusions [5] (Additional file 1: Dataset S2).
As an approximation of the supersaturation level for a
given protein, we used mRNA levels averaged over
dozens of different human tissues unaffected by mis-
folding disease (Additional file 1: Dataset S4) and ag-
gregation propensities predicted from the primary
sequences for the unfolded states of proteins (Zagg)
(Additional file 1: Dataset S3) termed the unfolded
supersaturation score (σu) (Additional file 1: Dataset
S2). While this approach does not benefit from tissue
specificity, it was previously shown that this average

estimate demonstrated elevated supersaturation scores
for proteins associated with aggregation and cellular
pathways implicated in neurodegenerative disorders
and enabled the direct comparison of inclusions from
muscle to the central nervous system [3].
We found that proteins enriched in RVs have elevated

supersaturation scores (σu) in control tissues (RV, median
fold change (Δ): 2.4x, p = 1.4•10− 6). This was similar to
proteins observed to co-aggregate (co-aggregators) with
plaques (median Δ: 6.0x, p = 4.5•10− 8) and neurofibrillary
tangles (median Δ: 5.2x, p = 1.3•10− 13) in AD, and TDP-43
(median Δ: 2.1x, p = 1.8•10− 3) in ALS, respectively (Fig. 2b,
Additional file 1: Dataset S7). The elevated supersaturation
score for RV-enriched proteins was also present when we
calculated tissue-specific supersaturation scores (σtsu ) using
the subset of the cross-tissue microarray expression data-
base that included skeletal muscle expression (RV: median
Δ: 2.1x, p = 2.2•10− 6) (Additional file 2: Figure S1; Add-
itional file 1: Dataset S7). Comprehensive statistical results
are shown in Additional file 1: Dataset S12.

hPAM-associated proteins are supersaturated in healthy
tissues
To determine whether the phenomenon of supersaturation
observed for IBM-associated proteins (Fig. 2b), an acquired
PAM, is also observed for proteins associated with heredi-
tary PAMs (hPAM), we extended our studies to proteomic
datasets from laser microdissected myofibers of muscle bi-
opsies of patients with three different genetically defined
hPAMs (10 patients with DES mutations, 7 patients with
FLNC mutations and 17 patients with MYOT mutations)
[20, 25, 26]. Samples were taken from affected aggregate-
containing fibers (AF) or adjacent normal appearing
disease control fibers (DC) (Fig. 2c). We then identified
proteins that are enriched within the aggregate-containing
fibers, as compared to unaffected disease control fibers
(Additional file 1: Dataset S2). The σu score is similarly ele-
vated for the proteins enriched in hPAM aggregate fibers
(AF) (median Δ: 2.2, p = 6.9•10− 4) (Fig. 2d, Additional file
1: Dataset S7). We note, however, that sample size limita-
tions led to statistically insignificant results for two of the
three individual hPAMs (desminopathy median Δ: 8.5x,
p = 9.8•10− 2; filaminopathy median Δ: 1.9x, p = 8.3•10− 2,
myotilinopathy median Δ: 1.8x, p = 6.7•10− 3) (Fig. 2e). We
then calculated σtsu and found the increased supersaturation
of proteins in aggregate-containing tissue is significant in
this context (hPAM: median Δ: 4.5x, p = 1.2•10− 8; desmi-
nopathy median Δ: 11x, p = 2.5•10− 2; filaminopathy me-
dian Δ: 5.6x, p = 1.4•10− 3, myotillinopathy median Δ: 3.9x,
p = 7.5•10− 7) (Additional file 2: Figure S1; Additional file 1:
Dataset S7). In addition, we estimated the significance of
the increase in supersaturation of the σtsu scores relative to
the σu scores (p < 1•10

− 6).
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Fig. 2 (See legend on next page.)

Ciryam et al. Acta Neuropathologica Communications           (2019) 7:197 Page 4 of 14



Particular to our proteomic datasets, we can evaluate the
degree of supersaturation within the context of the skeletal
muscle proteome rather than abundances from mRNA
levels in public databases. Thus, we asked whether
aggregate-enriched proteins in hPAMs were supersatu-
rated, based on their abundance in background of a healthy
muscle proteome (Additional file 1: Dataset S6). To do this,
we combined protein abundances derived from healthy
control muscle using a version of the Zyggregator algo-
rithm that weights residue-level aggregation propensities
based on predictions of the relative burial of proteins after
folding (ZSC

agg ), as described previously [32] (Additional file

1: Dataset S3). This estimate is termed folded supersatur-
ation score (σf) as compared with the previous estimate of
the unfolded supersaturation score (σu) (Additional file 1:
Dataset S9). To directly compare these two estimates (σu
and σf), we calculated the σf score of proteins enriched in
hPAM aggregate-containing fibers (median Δ 9.1x, p =
5.3•10− 5) (Fig. 2f compared with Fig. 2d). The elevated
supersaturation score among proteins enriched in hPAM
aggregate-containing fibers relative to HC is a result of
both abundances and aggregation propensities higher than
those of the proteome (Δ: 6.3x, p = 3.9•10− 7; ZSC

agg Δ: 2.2x,
p = 0.049) (Additional file 2: Figure S2A-B, Additional file
1: Datasets S3 and S9). Similarly, we found elevated σf
scores when considering proteins enriched in aggregate-
containing tissue specific to each hPAM (Fig. 2g, Add-
itional file 1: Dataset S2) (desminopathy median Δ: 31x,
p = 1.4•10− 2; filaminopathy median Δ: 33x, p = 8.8•10− 4;
myotillinopathy median Δ: 13x, p = 5.7•10− 5).

In unaffected diseased control myofibers (DC), we found
that the σf scores of proteins enriched in aggregate-
containing myofibers (AF) were elevated relative to the
proteome (desminopathy median Δ: 16x, p = 1.2•10− 2;
filaminopathy median Δ: 4.6x, p = 5.7•10− 2; myotilinopa-
thy median Δ: 4.4x, p = 2.7•10− 3) (Fig. 3a, d, g). In com-
parison, the σf scores of these proteins in affected fibers
(AF) were higher (desminopathy median Δ: 1700x, p =

4.3•10− 5; filaminopathy median Δ: 48x, p = 4.2•10− 5; myo-
tilinopathy median Δ: 33x, p = 3.6•10− 8) (Fig. 3b, e, h). To
confirm the robustness of these results, we introduced
varying amounts of random noise into our data, and found
that the results are robust even when noise of at least 5
times the magnitude of the signal, and in many cases as
much as 20x the magnitude of the signal, is introduced
(Additional file 2: Figures S3-S4).

Escalating supersaturation in IBM
We used our IBM proteomic datasets, to segment the
data starting from healthy controls (HC) and continuing
to unaffected fibers in affected patients (DC), areas from
affected fibers surrounding the RV (AF), and the RV it-
self (RV) (Fig. 2a, Fig. 4a-e, Additional file 1: Datasets S6
and S9). By this approach, we were able to determine
how the σf scores of the proteins that are enriched in
RVs transition from healthy fibers to aggregate-
containing fibers. We calculated σf based on protein
abundances for each of these contexts. Even in healthy
controls, the σf scores of RV-enriched proteins are
higher in the muscle context than what we found in the
cross-tissue transcriptional analysis for unfolded super-
saturation (σu) (median Δ: 7.3x, p = 9.6•10− 4) (compari-
son p < 2.0•10− 5) or with the skeletal muscle unfolded
supersaturation score (σtsu ) (median Δ: 2.1x, p = 2.2•10− 6)
(Fig. 4a compared with Fig. 2b and Additional file 2:
Figure S1). In healthy control (HC) fibers, this result is
driven by the higher median aggregation propensity of
RV-enriched proteins rather than an increase in abun-
dance (abundance Δ: 1.9x, p = 0.12; ZSC

agg Δ: 7.4x, p =

3.7•10− 3) (Additional file 2: Figure S2C-D).
We found that σf increases with the physical proxim-

ity to the RVs (DC median Δ: 9.1x, p = 1.2•10− 4; AF
median Δ: 37x, p = 1.2•10− 9; RV median Δ: 56x, p =
4.3•10− 10) (Fig. 4b-e). These results are robust against
high levels of noise (Additional file 2: Figure S5-S6). In
order to determine whether this rise in supersaturation

(See figure on previous page.)
Fig. 2 Proteins in rimmed vacuoles from protein aggregation myopathies are supersaturated. Representative images of: (a) healthy control
myofibers (HC), control unaffected myofibers in diseased samples (DC), surrounding tissues of affected fibers (AF), and rimmed vacuoles (RV) from
human subjects with inclusion body myositis, and (c) DC and AF samples from human subjects with myotilin mutations. Outlines represent areas
for LMD. In (c), prior to LMD, muscle was immunostained with an antibody directed to myotilin (green) to identify aggregate containing fibers
(AF). b, d, e Comparison of the unfolded supersaturation scores (σu) of the proteome (Prt) (N = 15,954) and (b) proteins enriched in RVs (RV) (N =
50), amyloid plaques (Plq) (N = 26), neurofibrillary tangles (NFT) (N = 76), proteins found in TDP-43 inclusions (TDP) (N = 32); (d) proteins enriched
in affected fibers from any of three protein aggregation myopathies (hPAM) (N = 50); and (e) proteins enriched in affected fibers from individual
protein aggregation myopathies involving desmin (Desm) (N = 6), filamin (Fil) (N = 16), and myotilin (Myot) (N = 46) mutations. f, g Comparison of
the folded supersaturation scores (σf) for the proteome (Prt) (N = 1605) and (f) the proteins enriched in affected fibers from any of three protein
aggregation myopathies (hPAM) (N = 46) and (g) the proteins enriched in affected fibers from individual protein aggregation myopathies
involving desmin (Desm) (N = 5), filamin (Fil) (N = 15), and myotilin (Myot) (N = 43) mutations. The fold change (Δ) represents the fold difference
in the median σu or σf scores between each inclusion type and the proteome. The median σu or σf supersaturation score for the proteome is
normalized to 0. Boxes range from the 25th percentile to 75th percentile, while whiskers extend to maximum and minimum data points up to
1.5x interquartile range above and below the limits of the boxes. Remaining outliers are plotted as open circles. Statistical significance
determined by one-tailed Wilcoxon/Mann-Whitney test with Holm-Bonferroni correction. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001
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was statistically significant, we performed a simulation
of 1,000,000 trials in which we randomly selected 53
proteins to determine how frequently we could achieve
the following pattern by chance: 1) elevated supersa-
turation for RV-associated proteins relative to the
proteome in each proteome context (HC, DC, AF, and
RV) and 2) a rising median Δ for the supersaturation of
RV-associated proteins from HC to DC to AF to RV. In
this way, we calculated a significance for achieving this
pattern of escalating supersaturation p = 0.011 (see
Methods). Given that this analysis included proteins
expressed in some contexts but not in others (e.g.

present in disease fibers but not healthy control fi-
bers), we confirmed that the results were qualitatively
similar when considering only a limited set of pro-
teins expressed in all four contexts and had associated
Zyggregator scores available (Additional file 2: Figure
S7, Additional file 1: Dataset S9). To further validate
these results, we performed these analyses utilizing
aggregation predictions from the unfolded state with
Zagg and TANGO [7], which similarly demonstrated a
significant escalation in supersaturation (Additional
file 2: Figure S8-S9, Additional file 1: Dataset S10).
Like proteins enriched in RVs, proteins enriched in

hPAM aggregate-containing fibers also exhibit an es-
calating σf in the sporadic disease context (Additional
file 2: Figure S10). The escalation in σf is specific for
proteins that accumulate in PAMs since proteins that
co-aggregate with amyloid plaques (Additional file 2:
Figure S11A-E) and neurofibrillary tangles (Additional
file 2: Figure S11F-J) in AD do not exhibit escalating
σf in IBM muscle tissues.

RV proteins escape the downregulation of supersaturated
proteins
We recently reported a transcriptional suppression of su-
persaturated proteins and pathways in Alzheimer’s disease
[4]. We therefore asked whether a similar phenomenon
takes place at the transcriptional and translational levels in
IBM. To do so, we determined the proteins differentially
expressed in affected fibers (AF) relative to healthy con-
trols in IBM (HC) (Additional file 1: Dataset S11). We
found, across independent patient datasets, that 52 pro-
teins are decreased and only one protein, desmin, is in-
creased in affected fibers. Those proteins that are
decreased in the surrounding fibers tend to have higher σf
in healthy controls relative to the rest of the proteome
(median Δ: 3.8x, p = 9.8•10− 5) (Fig. 5a). There are 830
proteins (Prt) in our dataset for which we had ZSC

agg in HC

context and abundance values across all four contexts,
and of these, only 48 (5.8%) are decreased in abundance in
affected fibers. By contrast, of the top 5% most supersatu-
rated proteins in this subset (N = 41) (Top σf), seven (17%)
are decreased in affected fibers (enrichment p = 0.013)
(Fig. 5b). As further validation of this phenomenon, we
used RNA sequencing data from healthy muscle and IBM
muscle to identify the transcripts of proteins that were
downregulated in IBM tissue [15]. The downregulated
transcripts correspond to proteins whose supersaturation
scores tend to be elevated in healthy controls (median Δ:
2.6x, p = 3.3•10− 3) (Additional file 2: Figure S12A). There
are 1366 transcripts for proteins in this dataset for which
we were able to calculate σf in HC context. Of the top 5%
most supersaturated proteins in this subset (N = 68) (Top
σf), 15 (22%) are decreased in expression in affected fibers

Fig. 3 Protein supersaturation in hereditary protein aggregate
myopathies. Comparison of folded supersaturation scores (σf)
between the proteome and proteins enriched in aggregate-
containing myofibers (AF) for: (a, b, c) desminopathy (DC: Prt N =
611, Agg N = 6; AF: Prt N = 1387, Agg N = 6), (d, e, f) filaminopathy
(DC: Prt N = 333, Agg N = 16; AF: Prt N = 507, Agg N = 16), and (g, h,
i) myotillinopathy (DC: Prt N = 680, Agg N = 46; AF: Prt N = 742, Agg
N = 46). Box plots and statistical tests as in Fig. 1. *p < 0.05, **p <
0.01, ***p < 0.001, ****p < 0.0001
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versus 157 (11%) for the proteome (Prt) as a whole (en-
richment p = 0.016) (Additional file 2: Figure S12B).
The RV-enriched proteins (RV) are an exception, as

none of them is downregulated at the protein (Fig. 5b)
or transcript (Additional file 2: Figure S12B) level. The
individual abundance trajectories of these RV-enriched
proteins trend towards rising abundances, although only
one of the proteins, desmin, significantly rises in abun-
dance between HC and AF (Fig. 5c). By contrast, among
the top 5% most supersaturated proteins, there is a trend
towards declining abundances, with a disproportionate
number of proteins decreasing in abundance signifi-
cantly in this group (Fig. 5d). These results suggest that
supersaturated proteins are typically downregulated to
control their abundance, but when they fail to be down-
regulated, they escape regulation and are more likely to
deposit into inclusions.
As mentioned above, only one protein (desmin) is

among the top 5% most supersaturated proteins, is an
RV-enriched protein, and increases significantly in abun-
dance. Mutations of desmin are associated with desmi-
nopathy, and this protein is found to be enriched in
aggregate-associated tissues in myotilinopathy, filamino-
pathy and IBM. Thus, desmin represents the clearest

example of an escape protein and is also highly associ-
ated with protein misfolding in muscle tissue.

Discussion
By using protein abundance data from proteomic datasets
derived from human biopsy specimens, we identified a
metastable, supersaturated subproteome in muscle tissue
from protein aggregate myopathies. These data are con-
sistent with our previous studies that explored this
phenomenon in proteinopathies associated with neuronal
inclusions such as AD and ALS [3, 5, 9]. In contrast to
those previous studies, the current analysis utilized the
protein abundances from the affected tissues rather than
estimated abundances averaged across tissues obtained
from publicly available datasets. Thus, skeletal muscle
offers a unique opportunity to explore how the proteome
remodels during the course of aggregation-related disease,
and the ways in which this can be rationalized by the
physicochemical characteristics of solubility and expres-
sion. The proteins that are found in RVs and inclusions in
disease have elevated supersaturation scores even in
healthy tissue, suggesting that these proteins have an
intrinsic risk for aggregation even in the normally
expressed proteome.

Fig. 4 Escalating supersaturation in inclusion body myositis. Comparison of folded supersaturation scores (σf) for the proteome (Prt) and proteins
enriched in rimmed vacuoles (RV) relative to diseased control myofibers. a Healthy control myofiber (HC) (Prt N = 1605, RV N = 47), b control
myofibers unaffected in diseased samples (DC) (Prt N = 1988, RV N = 52), c aggregate-containing affected myofibers (AF) (Prt N = 2396, RV N = 52),
and (d) rimmed vacuoles (RV) (Prt N = 2104, RV N = 52). e Comparison of the fold difference in median σf between RV and Prt. Box plots and
statistical tests as in Fig. 1. *p < 0.05, ***p < 0.001, ****p < 0.0001
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Our ability to analyze samples taken from unaffected
and affected myofibers within the same patient enabled
us to demonstrate that the degree of supersaturation
escalates from normal myofibers to unaffected diseased
myofibers and finally to aggregate containing myofibers.
In the case of IBM, the quality of the data made it
possible to show an escalating supersaturation to the RV
from surrounding tissue within the same fiber. To our
knowledge, a confirmatory demonstration that a meta-
stable subproteome increases in abundance from
unaffected to affected cells in a vulnerable tissue from
human biopsy specimens has never been performed
before.
Our method enables an estimate of the supersatur-

ation levels of thousands of proteins, based on

expression levels and predicted aggregation propensities.
Each of these underlying factors has certain limitations.
While spectral counts have been shown to correlate with
absolute protein abundance, this method is susceptible
to biases related to the chemical properties of individual
peptides and their likelihood of detection. The normal-
ized spectral abundance factor corrects for one major
aspect of such bias, protein length. The Zyggregator
method has been evaluated most comprehensively on
comparisons of point mutations in a given peptide [32].
Here, it is used to predict aggregation propensities of
distinct proteins, for which it may be less accurate. In
addition, we make aggregation propensity calculations
based on canonical sequences, which neglectss the con-
tribution of mutations or alternative splicing events in

Fig. 5 Protein supersaturation is associated with downregulation. In this analysis, only proteins that are detected in HC, DC, AF, and RV, and for
which there are defined σf scores in HC are included. a Folded supersaturation scores (σf) for the proteome (Prt) (N = 830) and proteins
downregulated from HC to AF (N = 50). Box plots and statistical tests as in Fig. 1. b Percentage of proteins downregulated in the proteome (Prt)
(48/830), proteins enriched in rimmed vacuoles (RV) (0/47), and top 5% most supersaturated proteins (based on HC context) (Top σf) (7/41).
Significance determined by the Fisher Exact test, with Holm-Bonferroni correction. c Protein abundances in HC, DC, AF, and RV are plotted for the
47 proteins enriched in RVs included in the subset analyzed in this figure. Desmin is highlighted in yellow, the only RV-enriched protein whose
abundance is increased between HC and AF. d Protein abundances in HC, DC, AF, and RV are plotted for the 47 proteins with the highest
supersaturation scores (top 5%). Desmin again is highlighted in yellow, the only highly supersaturated protein with rising abundance. Those
proteins that are significantly downregulated between HC and AF are highlighted in blue. In (c) and (d), the background black line and grey bar
represent median and 25th–75th percentile range for the 830 proteins in the proteome in this subset. *p < 0.05, ****p < 0.0001
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the propensity to aggregate of the eventual protein prod-
uct. Finally, our method does not take into account the
effects of subcellular localization, protein-protein inter-
actions, or post-translational modifications. For these
reasons, the approach is most useful in comparing
groups of proteins, but may be limited in its accuracy
for the supersaturation of any individual protein. Despite
these limitations, we have demonstrated in a range of
pathological contexts that supersaturation scores distin-
guish groups of aggregation-prone and conformational
disease-associated proteins from the remainder of the
proteome [3–5, 22].
In both IBM and the three hereditary myopathies

(hPAM) we studied, aggregate-associated proteins have
elevated supersaturation scores in the context of healthy
tissue (HC). In addition, affected fibers (AF) have higher
relative supersaturation scores than unaffected fibers in
patients known to have the disease (DC), both in the
sporadic and hereditary cases. There are likely multiple
factors contributing to the progressively rising abun-
dance (and hence, supersaturation level) of proteins that
deposit in RVs. In part, this may reflect a failure in pro-
teostasis, as has been shown in a variety of protein con-
formational disorders [3]. Our results suggest that there
may also be a failure to suppress the expression of some
highly supersaturated proteins, given that those proteins
that deposit in RVs run counter to a trend of declining
abundance for supersaturated proteins (Fig. 6). The
observation that this signal is already apparent at the
transcriptional level favors a role for dysregulation of

abundance, as opposed merely to a failure in the func-
tion of molecular chaperones or degradation machinery.
Our findings suggest that affected fibers have the cap-

acity to downregulate their supersaturated proteome,
and that this occurs at least in part at the transcriptional
level. These data are consistent with our previous study
in AD, in which downregulated proteins are similarly su-
persaturated relative to the proteome [4]. These results
suggest that there may be a mechanism in IBM by which
supersaturated proteins are preferentially downregulated
to maintain their solubility. Indeed, the abundances of
the top 5% most supersaturated proteins in skeletal
muscle remained stable or decreased as they approached
the RV. In contrast, supersaturated RV enriched proteins
tended to increase in abundance.
These analyses identified one abundant protein, des-

min, which was enriched within the RV and appears to
escape the downregulation common to other highly
abundant proteins. Desmin is a muscle specific type III
intermediate filament (IF), and inherited missense muta-
tions in this protein cause a PAM [13]. Desmin is abun-
dantly expressed and requires multiple molecular
chaperones to facilitate its proper assembly into the IF
network that maintains the structural integrity of the
sarcomere. In fact, dominant mutations in these molecu-
lar chaperones (e.g. CRYAB and DNAJB6) similarly lead
to a PAM with prominent desmin aggregates [16, 36].
The formation of desmin IFs occurs via sequentially or-
dered steps that include dimer and tetramer formation,
unit-length filament formation and filament elongation

Fig. 6 Escalating supersaturation of an aggregation-prone subproteome puts affected fibers at risk of inclusion formation in inclusion body
myositis. 1) Supersaturation of the aggregate proteome increases to the point of aggregate formation at muscle inclusion bodies (gray regions).
2) The most highly supersaturated proteins decrease in abundance upon approaching the inclusion body. In contrast, the abundance of the
aggregate/RV enriched supersaturated proteome increases and escapes downregulation
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[1]. Some disease mutations affect IF assembly in vitro
and in vivo resulting in cytosolic inclusions [1, 6]. We
recently found that under physiologic conditions, desmin
could also form amyloid fibrils [18]. The high abun-
dance, reliance on molecular chaperones and ability to
shift into an amyloidogenic state may explain why des-
min escapes normal protein homeostasis regulation in
PAMs. The behavior of desmin is exemplary of the close
connection between the features that give rise to func-
tional protein-protein interactions and pathological
aggregation. We previously showed that the surfaces that
mediate physiological protein-protein interactions tend
to have a higher aggregation propensity than other
protein surfaces [27]. Similarly, we have found that pro-
teins that are involved in macromolecular complexes
have higher supersaturation scores than the remainder
of the proteome [3].
The pathogenic mechanism associated with super-

saturation involves one or more of proteins reaching
concentrations exceeding their solubility, thus result-
ing in aggregation [3]. Therapeutic approaches aimed
at buffering this metastable proteome may be effective
at reducing the degree of supersaturation. The present
study identifies a common subset of abundant and
aggregation-prone proteins from > 50 well character-
ized patients with PAMs. These proteins include amy-
loidogenic proteins such as gelsolin and TDP-43 that
are not mutated in genetic PAMs but are mutated in
hereditary amyloidosis and ALS, respectively. These
findings suggest that therapies aimed at their reduc-
tion may also be effective at restoring protein homeo-
stasis in PAMs. Our observation that desmin is both
supersaturated in healthy control tissue and rises in
abundance with the muscle’s pathological progression
makes it a potential target for such intervention.
Finally, the degree of supersaturation of a subset of
proteins may serve as proxy for the proteostatic state
of muscle. We envision using the concentration of
the aggregate proteome as a biomarker in future ther-
apies focused on PAMs. Taken together, our results
indicate that the presence of supersaturated proteins
represents a persistent challenge for the protein
homeostasis system, and that failures in regulating the
aggregation of these proteins leads to the formation
of inclusions in a wide range of diseases, including
neurodegenerative disorders and protein aggregate
myopathies.

Methods
Datasets
The datasets used in this work and the proteins in each
of them are described in Additional file 1: Datasets S1
and S2.

Data analysis
Raw files were converted into the Mascot generic for-
mat (MGF) format using Proteome Discoverer 1.4
(Thermo Fischer Scientific, Germany). MGF files were
searched against a combined database containing the
Swiss-Prot part of the UniProt Knowledgebase
(UniProtKB) [35] or Homo sapiens (release 2014/05/
28, 20,265 curated entries). For the generation of
shuffled decoy entries DecoyDatabaseBuilder was used
[29]. Identifications were performed by Mascot 2.5
(Matrixscience Ltd., [28]) with a peptide mass toler-
ance of 10 ppm, fragment mass tolerance of 0.5 Da,
one allowed missed cleavage and carbamidomethyla-
tion (C), oxidation (M) as well as phosphorylation (S,
T, Y) as variable modifications. Label free relative
quantification by spectral counting was performed as
described in [14].

Calculation of protein abundance
We previously reported abundances as spectral counts
normalized by the total number of spectral counts in a
given sample [14, 20, 25, 26]. Here, we performed an
additional normalization step to account for the fact
that longer proteins will generate more peptides in
mass spectrometry than smaller proteins of the same
abundance [17]. Akin to the normalized spectral abun-
dance factor, we divided normalized spectral counts in
our data sets by the protein length. We then divided
these values by the sum of all such normalized values
in a given sample. We then averaged these normalized
protein abundances across replicates and log10-trans-
formed these values to arrive at a final abundance
value.

Calculation of gene expression from microarray data
Microarray data was obtained from BioGPS pre-processed
using gcrma as previously described. For cross-tissue ana-
lysis, cell ine and malignant tissue expression levels were
excluded. Transcript identifiers were converted to UniProt
IDs, with cases of ambiguous conversion or absence of
reviewed UniProt IDs excluded from analysis. Values ≤0
were excluded. Expression levels were then log10-trans-
formed then averaged across all values for a given UniProt
ID. A similar procedure was done for the skeletal muscle
analysis, but limiting it to the two arrays of skeletal muscle
data.

Calculation of gene expression from RNA sequencing
data
Processed RNA sequencing data was obtained, with
expression levels reported in FKPM (GEO Datasets
GSE102138) [15]. Any values ≤0 were excluded. Iden-
tifiers were converted to reviewed UniProt IDs, with
ambiguous conversions excluded from further analysis.
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In cases in which one multiple identifiers mapped to a
single UniProt IDs, these FKPM values were averaged.
The values were then log10-transformed. Significantly
upregulated and downregulated transcripts were identi-
fied based on the reported q-values. In cases in which
there were multiple q-values associated with a given
UniProt ID, the largest q-value was used. The q-values
reported were two-tailed, which we converted to one-
tailed q-values for the purpose of our analysis. We used
a threshold of significance of p < 0.05.

Calculation of protein aggregation propensity
For the human proteome set, we calculated the Zagg,
ZSC
agg and TANGO scores as previously described [7, 34].

For TANGO, we set the parameters at pH = 7.4, T = 310
K, and ionic strength = 0.1M. The supersaturation score
σ is calculated as the sum

σ ¼ C þ Z ð1Þ

where C is the log10 of the concentration and Z is aggre-
gation propensity score; the concentrations are derived
from the protein abundance levels. In each dataset,
values were recentered such that the median σ score for
each database was 0.

Identification of proteins enriched in disease-associated
inclusions
In order to determine vacuole-enriched proteins in the
IBM data set, we compared abundance values in the RV
dataset to those in the DC dataset. For this analysis, we
only included proteins that had a non-zero abundance
in both the DC and RV datasets, which constituted a
total of 1302 proteins. For these proteins, we performed
a one-tailed paired t-test. We then used the Benjamini-
Hochberg method to calculate q-values for each of these
proteins, using as a threshold of significant q < 0.05, for
a False Discovery Rate of 5%.

Gaussian noise generation
We performed noise testing to evaluate the robust-
ness of our results for the comparison of supersatur-
ation scores among the IBM data sets, as well as the
hPAM data sets. We defined one hundred noise levels
on the basis of the standard deviation of a series of
Gaussian distributions with mean of 0. The range of
standard deviations was log10(1.1) to log10(10.1). At
each noise level l, we performed 100 trials t, in which
we drew a random number nl, t, p from that the noise
level distribution for each of the p proteins in the
database. The noise-introduced supersaturation score
σp, l, t was defined as

σp;l;t ¼ σp þ nl;t;p ð2Þ
For trial t of noise level l, the set Sl, t of noise values is

Sl;t ¼ nl;t;1; nl;t;2;…; nl;t;p
� � ð3Þ

The set ml, t of linear magnitudes of noise for trial t of
noise level l is

ml;t ¼ 10 ln nl;t;1d e; 10 ln nl;t;2d e;…; 10 ln nl;t;pd en o
ð4Þ

For noise level l, the set Ml of median noise values for
its constituent trials is

Ml ¼ median ml;1
� �

;median ml;2
� �

;…;median ml;100
� �� �

ð5Þ
In each Gaussian noise plot, the values plotted on the

x-axis were the median of Ml with error bars represent-
ing the standard error of the mean as calculated using
default settings in the Python package SciPy.

Gaussian noise significance testing
For each trial at each noise level, we determined the sets
of noise-modified σ scores for the data sets under con-
sideration. A one-tailed Wilcoxon/Mann-Whitney U test
was performed for each of these trials, with multiple hy-
pothesis correction performed based on the same fam-
ilies used for the original analysis, with one difference.
At each noise level, the median of the p-values for the
100 trials was plotted with error bars representing the
standard error of the mean as calculated using default
settings in the Python package SciPy. We performed a
one-sided one-sample t-test using the distribution of p-
values for a given trial to test the null hypothesis that
the mean of these p-values is not significantly less than
0.05. For those cases in which we could not reject the
null hypothesis, we plotted the points in grey; otherwise,
we plotted the points in color.

Gaussian noise fold change testing
For each trial at each noise level, we determined the sets
of noise-modified σ scores for the data sets under con-
sideration. The linear difference dl, t between the me-
dians of the supersaturation scores of the control set Cl,

t and experiment set El, t being tested at noise level l and
trial t is

dl;t ¼ 10median El;tð Þ−median Cl;tð Þ ð6Þ
At noise level l, we plotted the median of set {dl, 1, dl,

2,…, dl, 100} with error bars representing the standard

Ciryam et al. Acta Neuropathologica Communications           (2019) 7:197 Page 11 of 14



error of the mean as calculated using default settings in
the Python package SciPy. We performed a one-sided
one-sample t-test using the distribution of fold change
values for a given trial to test the null hypothesis that
the mean of these fold changes is not significantly
greater than 1. For those cases in which we could not
reject the null hypothesis, we plotted the points in grey;
otherwise, we plotted the points in color.

Overlap analysis
In Fig. 5b and Additional file 2: Figure S12B, the Fisher
exact test is used to calculate enrichment of data sets for
particular categories of proteins.

Statistical significance of escalating supersaturation
To test the significance of our observations of rising
supersaturation (Fig. 4, Additional file 2: Figures S7–11)
we used a simulation. The null hypothesis was that it
would arise by chance that 1) the median Δ > 0 for a set
of proteins of interest in each context and 2) median Δ
of those proteins would rise successively from HC to DC
to AF to RV contexts. To test this, we performed the fol-
lowing procedure K times, where K =1,000,000. For each
trial k, we randomly selected N proteins from the prote-
ome (where N is equal to the number of proteins of
interest, for instance 53 in the case of RV-enriched pro-
teins or 51 in the case of hPAM-enriched proteins).
When selecting N, we used the total number of proteins
meeting a particular criterion, even if a smaller number
of those proteins was actually present in the original
dataset. For these N proteins, D is the set of median Δ
compared to the proteome for each of the four contexts:

D ≡ medΔHC ;medΔDC ;medΔAF ;medΔRVf g ð7Þ
If the supersaturation rose successively at each from

HC to DC to AF to RV, and median Δ > 0 in each con-
text, we assigned a score Ek of one; otherwise, we
assigned a score Ek of zero. We then summed this score
over the 1,000,000 trials.

D ¼ medΔHC ;medΔDC ;medΔAF ;medΔRVf g
ð8Þ

Ek ¼ 1; if min Dð Þ > 0 and medΔRV > medΔAF > medΔDC > medΔHC

0; otherwise

�

ð9Þ
We estimated the significance of the escalation in

supersaturation as follows:

E ¼ E1;…; EK ð10Þ

p ¼
XK
k¼1

Ek

K
ð11Þ

p ¼
XK
k¼1

Ek

K
ð12Þ

In order to test the isolated contribution of escalating
median Δ, we removed the constraint of median Δ > 0,
and calculated a score Er

k :

Er
k ¼

1; ifmedΔRV > medΔAF > medΔDC > medΔHC

0; otherwise

�

ð13Þ

p ¼
XK
k¼1

Ek

K
ð14Þ

We considered all cases analyzed by our original con-
straints on family for the purpose of multiple hypothesis
correction and all cases analyzed by the relaxed criteria a
separate family. Multiple hypothesis correction was per-
formed using the Holm-Bonferroni method. P-values for
both constraints are reported in Additional file 1: Data-
set S12.

Statistical significance of comparative median Δ
To test the significance of differences in median Δ
between different contexts (Figs. 2, 3 and 4), we used a
simulation. The null hypothesis was that the difference
in median Δ (ΔΔ), of at least the magnitude reported
would arise by chance. The reported difference in me-
dian Δ we refer to as Δ0

Δ . To test this, we performed the
following procedure K times, where K =1,000,000. For
each trial k, we randomly selected N proteins from the
proteome by the same procedure as above for escalating
supersaturation. For these N proteins, we calculated the
median Δ in contexts C1 and C2. Note that we per-
formed this analysis in a one-tailed fashion.

SΔΔ ¼ Δ1
Δ;…;ΔK

Δ

� �
ΔΔ ¼ Δ1

Δ;…;ΔK
Δ

� � ð15Þ

where

Δk
Δ ¼ medΔk

2−medΔk
1 ð16Þ

We assigned a score Ek to each trial and from all the
trials together derived a p-value, as follows:

Ek ¼ 1; Δk
Δ > Δ0

Δ
0; otherwise

�
ð17Þ

p ¼
XK
k¼1

Ek

K
ð18Þ

We considered all cases analyzed in this fashion as a
single family. Multiple hypothesis correction was
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performed using the Holm-Bonferroni method. P-
values are reported in Additional file 1: Dataset S12.

Multiple hypothesis correction
In order to perform adequate multiple hypothesis correc-
tion while avoiding increasing Type II error by overcorrect-
ing, it was necessary to group our results into a series of
families on which multiple hypothesis correction would be
performed meaningfully. We used the following principles
to help divide the analyses in these studies into a set of
coherent families. Except when they were being compared
directly, hPAM and IBM data sets were considered part of
separate families. IBM families were organized cross data
subsets (that is, HC, DC, AF, and RV included in the same
family). hPAM families were organized in three families: 1)
HC, 2) DC, and 3) AF. This was organized in this way
because there were multiple individual hPAMs, but ana-
lyses for the composite group of hPAM aggregate-enriched
proteins could only be performed logically on the HC data-
set as the other data sets were disease-specific. Analyses
using σu were considered distinct from analyses using σf.
All σu analyses were considered as part of a single family.
Among IBM data sets, we performed a series of analyses in
which we compared σf levels between the proteome and
particular subsets of proteins (RV-enriched, hPAM-
enriched, plaque-enriched, NFT-enriched) across the four
IBM data sets (HC, DC, AF, RV). We considered analyses
involving each of these subsets as separate families. Add-
itional file 1: Dataset S12 shows a summary of all statistical
tests performed in this analysis, and groups those tests by
their respective families.

Laser microdissection (LMD) and sample processing
Patients provided informed consent. Study protocols were
approved by the local ethics committee (reg. Number
3882–10) at Ruhr-University Bochum, Bochum, Germany.
For each patient 250,000 μm2 of HC, DC, AF or RV tissue
was collected by LMD (LMD 6500, Leica Microsystems,
Wetzlar, Germany). Sample lysis and digestion were car-
ried out as previously described [25]. Briefly, samples were
lysed with formic acid (98–100%) for 30min at room
temperature (RT), followed by a sonication step for 5min
(RK31, BANDELIN electronic, Berlin, Germany). Samples
were kept frozen at − 80 °C until digestion.
Prior to digestion the formic acid was removed and the

collected samples were digested in 50mM ammonium bi-
carbonate at pH 7.8. Samples were reduced and alkylated
by adding dithiothreitol and iodoacetamide. Trypsin
(Serva) was added to a final concentration of 1 μg. Diges-
tion was carried out overnight at 37 °C and stopped by
adding TFA to acidify the sample. Samples were purified
using OMIX C18 Tips (Varian, Agilent Technologies,
Böblingen, Germany) completely dried vacuum and again
solved in 63 μl 0.1% TFA, as described in [25].

Mass spectrometry
Sixteen microliter per sample were analysed by nano-
liquid chromatography tandem mass spectrometry
(nanoLC-ESI-MS/MS). The nano high performance liquid
chromatography (HPLC) analysis was performed on an
UltiMate 3000 RSLC nano LC system (Dionex, Idstein,
Germany) as described in [26]. Peptides were separated
with a flow rate of 400 nl/min using a solvent gradient
from 4 to 40% B-solvent for 95min. Washing of the col-
umn was performed for 5 min with 95% B-solvent and
was then returned to 4% B-solvent. The HPLC system was
online-coupled to the nano electrospray ionization (ESI)
source of an Orbitrap elite mass spectrometer (Thermo
Fisher Scientific, Germany). Mass spectrometric measure-
ments were performed as previously described [14].
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1186/s40478-019-0853-9.
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