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Abstract: Automated pavement crack detection and measurement are important road issues. Agencies
have to guarantee the improvement of road safety. Conventional crack detection and measurement
algorithms can be extremely time-consuming and low efficiency. Therefore, recently, innovative
algorithms have received increased attention from researchers. In this paper, we propose an ensemble
of convolutional neural networks (without a pooling layer) based on probability fusion for automated
pavement crack detection and measurement. Specifically, an ensemble of convolutional neural
networks was employed to identify the structure of small cracks with raw images. Secondly, outputs
of the individual convolutional neural network model for the ensemble were averaged to produce
the final crack probability value of each pixel, which can obtain a predicted probability map. Finally,
the predicted morphological features of the cracks were measured by using the skeleton extraction
algorithm. To validate the proposed method, some experiments were performed on two public crack
databases (CFD and AigleRN) and the results of the different state-of-the-art methods were compared.
To evaluate the efficiency of crack detection methods, three parameters were considered: precision
(Pr), recall (Re) and F1 score (F1). For the two public databases of pavement images, the proposed
method obtained the highest values of the three evaluation parameters: for the CFD database, Pr =

0.9552, Re = 0.9521 and F1 = 0.9533 (which reach values up to 0.5175 higher than the values obtained
on the same database with the other methods), for the AigleRN database, Pr = 0.9302, Re = 0.9166 and
F1 = 0.9238 (which reach values up to 0.7313 higher than the values obtained on the same database
with the other methods). The experimental results show that the proposed method outperforms the
other methods. For crack measurement, the crack length and width can be measure based on different
crack types (complex, common, thin, and intersecting cracks.). The results show that the proposed
algorithm can be effectively applied for crack measurement.

Keywords: automated pavement crack detection and measurement; deep learning; ensemble network;
convolutional neural network; segmentation; morphological

1. Introduction

A pavement crack is a critical failure of a pavement structure and presents a potential threat to road
and highway safety [1–6]. Road crack detection and measurement play a role in road management [7–9].
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Conventional crack detection and measurement algorithms are time-consuming and less efficient.
Therefore, automated crack detection and measurement outperform the conventional methods and for
this reason, they have received increased attention from researchers.

In a structure, the geometry of the cracks (width, length, and orientation) can be retrieved from
images and the results can be used to evaluate the required safety and maintenance work. This process
is similar to the automated road crack detection one and similar method to detect cracks [10] can be
used. Oh et al. proposed a bridge detection system based on a robot, including a specially designed
car, a robot mechanism, a control system for mobility, and a machine vision system [11].

In recent decades, some algorithms for image processing have been widely used to detect
road cracks. In early studies, many researchers adopted methods related to threshold [12], edge
detection [13,14] and morphology [15] based on photometric and geometric hypotheses to improve the
accuracy of road crack detection.

The cracks and background are segmented by using a threshold value [12–16]. Some researchers
applied Canny and Sobel methods to detect cracks [13,14]. In other studies, the geometric information
of the cracks was taken into consideration to reduce false detection [15]. The wavelet transform
method was employed to detect crack regions by Subirats et al. [17]. Although these methods can be
used to detect cracks, they cannot find all the cracks as a consequence of noise interference. Recently,
alternative analytical methods have been presented to improve the performance of crack detection:

• Minimal Path Methods: the principle of this approach is to suppose that minimal paths in the
image correspond to road cracks. Kaul et al., in [18], proposed a new algorithm to detect crack
curve with unknown endpoints and topology based on minimal path. Nguyen et al., in [19],
applied the Free-From Anisotropy to address brightness and connectivity issues in the cracks.
Amhaz et al., in [20], considered the local and global level to choose endpoints and minimal path
for crack detection, using two-dimensional pavement images.

• Machine Learning: Recently, many algorithms have been proposed to detect cracks based on
machine learning. A support vector machine (SVM) was employed to detect aircraft skin cracks [21].
Oliveira and Correia, in [22], proposed an unsupervised learning algorithm named CrackIT to
detect cracks. After that, they developed research to extend their work to the CrackIT toolbox [23].
A new descriptor with a random structure forests algorithm has been proposed to describe crack
and non-crack pixels [24]. Due to overlay depending on feature descriptors and complex road
conditions, it is difficult for operators to inspect road cracks.

• Deep Learning: For multi-class classification tasks, deep learning has presented a better
performance than traditional algorithms. Moreover, many distress detection issues adopted the
deep learning to inspect and recognize cracks. Cha et al. used the convolutional neural networks
(CNN) and Faster-RCNN to detect road cracks [25,26]. In CrackNet [27], the proposed CNN
without pooling layers was used to inspect cracks and improve accuracy. In CrackNet-R [28],
Zhang et al. proposed a Gated Recurrent Multilayer Perception (GRMLP), which was embedded
into the CNN to perform automated pavement crack detection. A structured prediction method
with CNN was proposed to inspect cracks pixels [29]. Yang et al. in [30] adopted the Fully
Convolutional Network (FCN) to perform automated road crack detection and measurement.

• Ensemble Learning: An ensemble network was proposed to perform medical image
classification [31]. Wen et al. designed an ensemble network based on probability fusion
for facial expression recognition [32]. Maji et al. proposed an ensemble network to detect retinal
vessels [33].

The width of the predicted crack image can be measured by extracting the morphological aspects,
which can be segmented into a thinned crack skeleton. Many algorithms can be employed to skeletonize
the predicted images, including the 3D-medial axis thinning algorithm, medial-axis and Hilditch’s
algorithm [34,35]. A crack defragmentation technique was proposed to measure the average crack
width [36].
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Inspired by the above observations, we propose an ensemble network (without a pooling layer)
based on the probability fusion for automated pavement crack detection and measurement, shown in
Figure 1. Specifically, an ensemble network was employed to evaluate the small cracks’ structure
from raw images, shown in Figure 1a. The individual CNN model adopts a structured prediction
method to detect cracks. The outputs of the individual convolutional neural network model for the
ensemble (Figure 1b) were averaged to produce the final crack probability of each pixel, which can
obtain a predicted probability map, shown in Figure 1c. The segmentation image was obtained after
the morphological operation shown in Figure 1d. Then, the crack skeleton can be obtained based on
the medial-axis algorithm, shown in Figure 1e. Finally, the predicted morphological features of cracks
were measured by using the skeleton extraction algorithm, shown in Figure 1f.

 

 Figure 1. Overview of the automated pavement crack detection and measurement system, (a) The
raw image; (b) The ensemble network model; (c) The output image of ensemble network; (d) The
crack segmentation image; (e) The extracted crack skeleton based on the medial-axis algorithm; (f) The
extracted crack width and length.

The contributions of an ensemble network are listed below:

1. We propose an ensemble network based on probability fusion for automated pavement crack
detection and measurement.

2. The structured predicted method was embedded into individual CNNs for an ensemble network.
The designed individual CNNs can improve the accuracy of crack detection by discarding the
pooling layers.

3. The designed ensemble neural network model was employed to obtain a satisfactory accuracy for
crack detection.

4. The crack width and length can be measured based on the predicted crack maps.

The rest of this paper is organized as follows. The details of the proposed ensemble of convolution
neural networks are described in Section 2. Then, we conducted comprehensive experiments to show
the crack detection and measurement performance for the proposed method and compared them with
other algorithms in Section 3. Finally, the conclusions are provided in Section 4.

2. Methods

This section introduces the details of the ensemble network for automated pavement crack
detection and measurement.

2.1. Convolutional Neural Networks

The CNN shows that the network employs a mathematical operation, named convolution, which is
a specialized type of linear operation. Convolutional networks are simply neural networks that use
convolution in place of general matrix multiplication in at least one of their layers [37]. The CNN have
four different parts, including a convolution, pooling, full connection and activation function.

Convolution layer: It contains a K filter (or kernels) with the weight W. By applying the following
equation, the convolution process can be adopted to obtain the output K of the feature maps:

Hl
i = Hl−1

⊗ Wl
i + bl

i (1)



Coatings 2020, 10, 152 4 of 14

where bl
i and Wl

i are the bias and weights of the ith filter based on the lth convolutional layer, respectively.
Hl

i is the feature maps.
Full connection layer: bl and Wl are the bias and weights for the full connection layer lth.

The operating process for the full connection layer is shown in the following equation:

Hl = f latten
(
Hl−1

)
∗ Wl

⊕ bl (2)

where f latten(·) indicates that the feature maps are tiled along the height value. The symbols * and ⊕
represent, respectively, the matrix multiplication and element-wise addition.

Pooling layer: Pooling was employed to decrease the size of image, which contains two types:
max pooling and average pooling. When a sliding window moves and scans the feature maps,
the average value can be obtained for average pooling. Therefore, the max pooling can calculate the
maximum value.

Activation function: The activation function rectified linear unit (ReLU) [38] was employed to
increase the non-linearity of the output after the convolution process. The activation functions sigmoid
and softmax are usually applied to the binary classification and multi-label classification [39], respectively.

2.2. Structured Prediction Method

The structured prediction method was applied into the individual network of the ensemble
network, which was proposed by our original article [29].

The architecture of an individual network of ensemble network is shown in Figure 2 [29]. The size
of the input patch is 27 × 27 with three channels, and the size of 5 × 5 is defined as out structure,
which is shown in Figure 2.
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Figure 2. The architecture of an individual convolutional neural network (CNN).

The feature maps are shown with the cubes, which were obtained after the convolution operation.
The circles indicate the full connection layers that were used to obtain the output. The layer names are
followed by numbers of feature maps, specifying kernel size, stride and padding (see Figure 2).

In this architecture of the CNN, the kernel of 3 × 3 was employed to perform a convolution
operation which was verified in VGG-net [40]. The zeros padding operation was employed to obtain
the spatial resolution of the feature maps during the convolution process. In order to increase the
level of abstraction for the feature maps, the input images were downsized by using the pooling layer,
which leads to the loss of input information [27,41]. Therefore, we discarded the pooling layer in this
CNN model.

The output patch 5 × 5 is a structured prediction center based on the input patch 27 × 27,
shown in Figure 2. The 25 neurons were obtained from the 5 × 5 windows, which is the output layer of
the CNN model. The output size of the corresponding ground truth is 5 × 5 labels. Pavement crack
detection is a binary classification task. Therefore, the activation function sigmoid was used for the final
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output for the binary classification task. The ReLU was employed to increase the non-linearity for
hidden layers.

In the CNN training process, we adopted the cross entropy loss function to minimize classification
error with the following the equation:

L = −
s2∑

i=1

(yi log ŷi + (1− yi) log(1− ŷi)) (3)

where yi and ŷi are the label for ground truth and the prediction value based on the ith output,
respectively. The number of labels is defined as s2. At the same time, the weight decay is employed to
penalize weight factors of the CNN model to avoid the network overfitting. Therefore, we applied the
L2 penalty term into the loss function. The total loss Ltotal is shown with the following equation:

Ltotal = L + β ·
1
2

∑
j

W2
j (4)

where β is the penalty factor for L2 and Wj is the jth weight for CNN. Then, we also adopt the Dropout
to prevent network overfitting [42].

2.3. Ensemble Network Learning Method

Ensemble network learning is an algorithm that constructs multiple models to address the artificial
intelligence task [43]. The ensemble learning method is able to promote performance among the CNN
models and decrease network overfitting, which can combine various classifiers to achieve a better
performance than a single classifier.

The outputs of individual CNN model based on ensemble network are averaged to produce the
final prediction of crack probability. Specifically, if the ensemble network contains k models m1,...,mk,
the output probability p(x = yi|mj) presents that the output data x is classified as yi based on model mj,
and the final ensemble prediction is shown with the following equation:

p(x = yi
∣∣∣m1, . . . , mk) =

1
k

k∑
j=1

p
(
x = yi

∣∣∣m j
)

(5)

The ensemble network is able to show a better performance and higher accuracy for crack detection
than the individual models.

2.4. Crack Measurement

Once we obtained the detected crack images by the ensemble network, the morphological aspects
could be calculated and extracted from binary crack images. As shown in Figure 1, the predicted binary
crack images are labeled to generate the segmented crack images. In order to generate crack skeletons
images, we thinned the segmented crack images and used one pixel to show the crack skeleton. Finally,
we can obtain crack morphological features based on crack skeleton images [30].

2.4.1. Crack Segmentation

In order to separate crack pixels from the background, we need to label each crack pixels from
the crack images to segment them. This operation contains three steps: filling small holes, discarding
noisy pixels, and labeling each crack pixel.

The closing operating based on morphological operation is employed to fill small holes in a
crack image, formulated with the following equation:

closing : (( f ⊕ ψ) 	 ψ) (6)
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where ⊕ and 	 are the dilation and erosion operations for the morphological operation, respectively.
f and ψ are the crack image and the structure element, respectively. The operation ⊕ is used to increase
the regions of the crack pixels and the operation 	 erodes the boundary regions of the crack pixels.

The opening operation based on the morphological operation is applied to warp off noisy pixels.
Compared with the closing operation, the opening operation has an adverse order with regards to the
erosion and dilation operation. The opening operation is defined as

opening : (( f 	ψ) ⊕ψ) (7)

Image segmentation is the attribution of different labels to different regions of an image. Therefore,
we labelled the individual cracks to generate segmentation images. The crack images can be segmented
after labeling individual cracks.

2.4.2. Crack Skeleton

The goal of the crack skeletons is to use the crack of a single pixel to visualize the cracks’
topology. The extracted crack skeletons can be used as a reference value for the structural health
monitoring and road maintenance. In this article, we employed a medial-axis algorithm to perform
crack skeletonization, which can realize real-time detection [30,35].

When we obtain the crack skeletons with single pixel wide, the following equation can be used to
calculate the length of the cracks:

Lcrack =
∑

f (x, y)dl (8)

where f(x, y) and dl are the calibrated displacements of the pixels in the crack images and the finite
length of the crack skeleton elements, respectively. In this project, we assume that there is no geometric
distortion. Hence, f(x, y) is defined as unique. At the same time, we can calculate length of cracks by
the displacement of pixels for crack skeletons. The average width of cracks can be ormulated with the
following equation:

Wavg =

∑
f 2(x, y)ds
Lcrack

(9)

where ds is the finite area of the crack elements. Therefore, we can obtain the physical length and width
of a crack according to the image resolution. These reference values can help engineers to evaluate and
estimate the security performance of a pavement.

3. Experimental Results

In this section, we mainly discuss implementation details for an ensemble network and present
the experimental results.

3.1. Training and Testing

An ensemble of convolutional neural networks was programmed by Tensorflow based on the
Linux system. The experimental results are implemented on the GPU workstation equipped with the
types of NVIDIA-GTX-Titan-XP.

In this project, the public databases CFD [24] and AigleRN [44] were employed to evaluate an
ensemble network. The CFD includes 118 images with pixel size of 320 x 480, and it was obtained
using an iPhone 5 smartphone ( Apple Inc. State of California, USA) on a pavement in Beijing, China.
The CFD database contains various types of noise, such as oil spots and shadows. This database is
divided into two parts: training set (72 images) and test set (46 images). The AigleRN database has 38
images with a gray level and has two types of resolution (991 × 462 and 311 × 462). This database has
complex structures, which were taken from a French pavement. In this case, 24 images were used for
training and 14 images were used for testing.



Coatings 2020, 10, 152 7 of 14

In this project, we employed three numbers to evaluate the accuracy of the model: precision (Pr),
recall (Re), F1 score (F1); these parameters are defined with the following equations:

Pr =
TP

TP + FP
(10)

Re =
TP

TP + FN
(11)

F1 =
2× Pr×Re

Pr + Re
(12)

where TP is short for the number of true positives. False positive is defined as FP. FN presents false
negatives. For the ensemble networks, when we calculate the metric for TP, FP, and FN, we consider
the transitional areas between non-crack and crack pixels. Therefore, a two-pixels distance between
the prediction image and the ground truth is accepted in [20,29,45,46]. In this project, we accepted a
two-pixel distance.

3.2. Ensemble Network

In this sub-section, we mainly explore the number of ensemble networks and thresholds based
on CFD and AigleRN databases. The numbers of the neural network are defined as n = 1, 3, 5, 7.
The decision probability value is defined as t = 0.4, 0.5, 0.6, and 0.7 to eliminate low-probability pixels
and obtain binary crack images. As is shown in Figures 3 and 4, the Pr, Re, and F1 values are shown
based on different neural network models and thresholds for the AigleRN and CFD databases.

From Figure 3, it is clear that the experimental results for threshold t = 0.4 and the numbers of
neural networks models n = 3, have a better performance than the other values based on the AigleRN
database. From Figure 4, it can be observed that the experimental results for threshold t = 0.6 and the
numbers of neural networks models, n = 3, have a better performance than the others values based on
the CFD database. Therefore, the number of ensemble networks models was set to three in this project,
as shown in Figure 1. At the same time, the thresholds were set to t = 0.4, 0.6 for the AigleRN and
CFD database.
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3.3. Results on CFD

Figure 5 and Table 1 present some specimen detections in the public database CFD.
The experimental result images for different methods are shown in Figure 5 (from left to right: original
image, ground truth, Canny [13], local threshold [12], CrackForest [24], structured prediction [29],
U-net [47], and the proposed method.). It can be observed that noises have a negative influence on the
two traditional methods (Canny and local threshold), which cannot be used to detect cracks. It is also
clear that CrackForest can obtain wider a crack width than ground truth, with high recall and low
precision (recall: 0.9514, precision: 0.7466), as shown in Table 1. This method can overestimate the
number of cracks. It is clear that the structured prediction method can obtain several wrong detections,
such as white points. This method shows that it is not able to obtain more feature maps for cracks.
Although the method of U-net can get the crack skeleton, missed detections also occur in the images.

The experimental results show that ensemble networks can get a more satisfactory accuracy than
other algorithms, as shown in Figure 5 and Table 1 (Pr: 0.9552, Re: 0.9521, F1:0.9533). The main reason
is that ensemble networks can extract and learn more features than individual networks. Hence,
ensemble networks can obtain a satisfactory performance.
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Table 1. Crack detection experimental results on CFD.

Pr Re F1

Canny [13] 0.4377 0.7307 0.457
Local thresholding [12] 0.7727 0.8274 0.7418
CrackForest [24] 0.7466 0.9514 0.8318
U-net [47] 0.9254 0.8951 0.899
Structured prediction [29] 0.9119 0.9481 0.9244
Structured prediction
without pooling 0.9227 0.9489 0.9312

Ensemble network 0.9552 0.9521 0.9533

3.4. Results on AigleRN

Figure 6 and Table 2 show the experimental results with different methods based on AigleRN.
The experimental result images for different methods are shown in Figure 6 (from left to right: original
image, ground truth, Canny [13], local threshold [12], Free-Form Anisotropy (FFA) [19], Minimal Path
Selection (MPS) [18], structured prediction [29], and the proposed method. It is clear that Canny and
local threshold are not able to detect continuous cracks and that these methods are sensitive to the noise.
The FFA method can inspect some local cracks but also fails to detect continuous cracks. This method
is not used to detected global pavement cracks. It can be observed that MPS can find continuous cracks,
but the crack skeleton cannot be extracted. The structured prediction methods is effective to inspect
the cracks, but there are also missed detections that occur in the images. The ensemble networks
can find more continuous cracks and it can extract the crack skeleton, obtaining a good accuracy.
Therefore, the proposed ensemble networks method can outperform other algorithms, as shown in
Figure 6 and Table 2 (Pr:0.9302, Re:0.9166, F1:0.9238). The main reason is that ensemble networks can
extract and learn more features than individual networks. Hence, ensemble networks can obtain a
satisfactory performance.
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Table 2. Crack detection experimental results on AigleRN.

Pr Re F1

Canny [13] 0.1989 0.6753 0.2881
Local thresholding [12] 0.5329 0.9345 0.667
FFA [19] 0.7688 0.6812 0.6817
MPS [18] 0.8263 0.841 0.8195
Structured prediction [29] 0.9178 0.8812 0.8954
Structured prediction without pooling 0.9188 0.8861 0.9021
Ensemble network 0.9302 0.9166 0.9238

3.5. Measurements

In this sub-section, we mainly discuss the details of the method implemented for crack
measurement and present the main experimental results.

3.5.1. Crack Segmentation and Skeleton

As shown in Figure 7, the experimental results show crack segmentation and crack skeleton based
on public databases CFD and AigleRN. The images and experimental results from the first row to the
third row are based on CFD. The images and experimental results from the fourth row to the sixth row
are based on AigleRN. The experimental result images are shown from left to right: original image,
ground truth, predicted image, crack segmentation image, and crack skeleton image.
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The labels of each cracks are indicated as different colors in the crack segmentation process.
The crack skeleton with single-pixel is extracted based on the medial-axis method, which is shown
by using different colors. The wider the crack, the lighter the crack skeleton. It is clear that crack
segmentation and crack skeleton images are able to present original images based on CFD (from the
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first row to the third row in Figure 7), which have a better accuracy. The crack skeleton for the complex
images based on AigleRN (from the fourth row to the sixth row in Figure 7) can be extracted. Due to
the complex structures in the AigleRN database, the output results may have some deficiencies with
reference to the public database. However, the disconnected and small cracks can also be detected and
skeletonized, which is also shown in the ensemble networks.

3.5.2. Crack Measurements

Figure 8 presents the morphological features of crack measurement (from left to right: original
image, ground truth skeleton, predicted image skeleton, ground truth morphological features, predicted
image morphological features.). It is clear that the method tends to overestimate the crack length,
shown in Figure 8. The experimental results (Figure 8, first, third, fourth, and sixth rows) show that the
ground truth length of the crack skeleton is much larger than the predicted length. The main reason
for this is that the disconnected cracks are eliminated and missed for crack detection, which can reduce
the numbers of cracks.

The experimental results (Figure 8, second and fifth rows) show that the ground truth length of
crack skeleton is much lower than the predicted length, which leads to a larger crack mean width than
ground truth. The main reason for this is that we used morphological operations (opening and closing
operation) to fill the hole and eliminate the single pixel. These methods can fill the whole crack pixels
or the neighbor pixels and eliminate the isolate pixels, which can increase the number of predicted
crack pixels. At the same time, the order for the opening and closing methods for the morphological
operation may have had an influence on the numbers of crack pixels.
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4. Conclusions

The survey and analysis of road pavement distresses is an important issue for every Pavement
Management System. All over the world, there have been many methods to gather information about
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the surface condition: some of them are only visual; others are based on advanced technologies.
The first ones are economic but time-consuming and can be affected by errors due the operator
subjectivity; the others are more reliable, even if the cost could be higher. In this paper, we propose an
advanced method to evaluate the road pavement surface based an ensemble network of convolutional
neural networks (CNN), based on probability fusion for automated pavement crack detection and
measurement. The individual CNN designed improves the accuracy of crack detection by discarding
pooling layers. The crack width and length can be measured based on predicted crack maps.

The experimental results were compared with existing databases and we found that precision,
recall, and F1 had scores of 0.9552, 0.9521, and 0.9533 based on the CFD database, while the scores
were 0.9302, 0.9166, and 0.9238 based on the AigleRN database. These results show that the proposed
method outperforms the other methods. The algorithm adequately performs crack measurement:
the length and the width of different crack types (complex, common, thin, and intersecting cracks) can
be measured with satisfactory accuracy.

However, the proposed method is not able to perform end-to-end crack detection, and can only
be employed to detect static images. Hence, we will explore the following in future work:

• We will explore end-to-end deep learning to create an automatic crack detection system.
• To date, many algorithms have detected cracks based on individual images. Therefore, we will

explore the detection of cracks in video streaming.
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