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ABSTRACT. A model problem of magneto-elastic body is considered. Specifically, the
case of a two dimensional circular disk is studied. The functional which represents the
magneto-elastic energy is introduced. Then, the minimisation problem, referring to the
simplified two-dimensional model under investigation, is analysed. The existence of a
minimiser is proved and its dependence on the eigenvalues of the problem is investigated. A
bifurcation result is obtained corresponding to special values of the parameters.

1. Introduction

The interest in magneto-elastic materials finds its motivation in the growing variety of new
materials among which magneto-rheological elastomers or magneto-sensitive polymeric
composites (Hossain et al. 2015a,b) may be mentioned. A special issue of the journal
Materials devoted to Magnetoelastic Materials is currently being published (Szewczyk
2020). Many applications of magneto-elastic materials, covering a wide area of interest
from technological to biomedical devices (see, e.g., Ren et al. 2019), can be listed. In
particular, also two dimensional problems are subject of applicative investigations (Hadda
and Tilioua 2012). The model we consider is a two dimensional simplified one, however,
we believe that, it might open the way to further applications, possibly, via perturbative
methods (Bernard et al. 2019).

We study the functional energy of a magneto-elastic material, that is a material which is
capable of deformation and magnetisation. The magnetisation is a phenomenon that does
not appear at a macroscopic level, it is characterised by the magnetisation vector whose
magnitude is independent of the position while its direction which can vary from one point
to another. In this context, the magnetisation vector m is a map from Ω (a bounded open
set of R2) to S2 (the unit sphere of R3). In particular, here we assume Ω is the unit disk of
R2. The magnetisation distribution is well described by a free energy functional which we
assume composed of three terms, namely the exchange energy Eex, the elastic energy Eel
and the elastic-magnetic energy Eem. In Section 2 we detail the three energetic terms and,
after some simplifications, derive the proposed functional for describing some phenomena.
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A1-2 S. CARILLO ET AL.

Assuming the hypothesis of radially symmetric maps, i.e.,

m = (cosθ sinh(r),sinθ sinh(r),cosh(r)),

we get to the analysis of a one-dimensional energy functional that can be expressed in terms
of the only scalar function h. The effect of the elastic deformation reveals through a positive
parameter µ which characterizes the connection between the magnetic and elastic processes.
In Section 3 the minimisation of the energy functional, namely

E(h) = π

∫︂ 1

0

[︄
h2

r +

(︃
sinh

r

)︃2

− µ

2
(sin2h)2

]︄
rdr,

is the aim of our paper. In particular, we prove that there exists a critical value µ0 such that
for µ ≤ µ0 the functional energy is not negative and there is only a global minimiser that
is the trivial solution h ≡ 0; for µ > µ0 other nontrivial minimisers appear, moreover the
energy takes negative values. The local bifurcation analysis is carried out. More precisely
we prove that at the point µ0, two branches of minimisers, with small norm, bifurcate
from the trivial stable solution. This local analysis does not exclude the existence of other
solutions of the minimisation problem even for µ = 0 (see also the results by Brezis and
Coron 1983, concerning the solutions of harmonic maps from the unit disk in R2 to the
sphere S2).

For the modelling of magneto-elastic interactions see also Brown (1966), He (1999),
Bertsch et al. (2001), Valente and Vergara Caffarelli (2007), Cerimele et al. (2008), and
Chipot et al. (2008, 2009). Magneto-viscoelastic problems were studied by Carillo et al.
(2011, 2012, 2017). Moreover we recall that the phenomenon of bifurcation of minimising
harmonic maps has been studied by Bethuel et al. (1992) in a different physical context.

2. The model

We start with the general three-dimensional theory. We assume Ω ⊂ R3 is the volume of
the magneto-elastic material and ∂Ω its boundary. Let xi, i = 1,2,3, be the position of a
point x of Ω and denote by

ui = ui(x), i = 1,2,3
the components of the displacement vector u and by

εkl(u) =
1
2
(uk,l +ul,k), k, l = 1,2,3

the deformation tensor where, as a common praxis, uk,l stands for ∂uk
∂xl

. Moreover we denote
by

m j = m j(x), j = 1,2,3
the components of the magnetisation vector m that we assume of unit modulus, i.e., |m|= 1.
In the sequel, where not specified, the Latin indices vary in the set {1,2,3} and the summation
over repeated indices is assumed. We first define the exchange energy which arises from
exchange neighbourhood interactions as

Eex(m) =
1
2

∫︂
Ω

ai jmk,imk, jdΩ (1)
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where ai jkl = a1δi jkl +a2δi jδkl with a1,a2 ≥ 0 and δi jkl = δikδ jl is the fourth-order identity
tensor. This integral represents the interface energy between magnetised domains with
different orientations. For most magnetic materials divm = δi jmi, j = 0, so hereafter we
assume a1 = a > 0 and a2 = 0 (see Landau and Lifshitz 1935). The magneto-elastic energy
is due to the coupling between the magnetic moments and the elastic lattice. For cubic
crystals it is assumed to be

Eem(m,u) =
1
2

∫︂
Ω

λi jklmim jεkl(u)dΩ (2)

where L= {λklmn} denotes the magneto-elasticity tensor whose entries λ1,λ2,λ3 ≥ 0, and
λi jkl = λ1δi jkl +λ2δi jδkl +λ3(δikδ jl + δilδ jk) with δi jkl = 1 if i = j = k = l and δi jkl = 0
otherwise. Moreover we introduce the elastic energy

Eel(u) =
1
2

∫︂
Ω

σi jklεi j(u)εkl(u)dΩ (3)

where E= {εlm} indicates the strain tensor σi jkl satisfying the following symmetry property

σi jkl = σkli j = σ jilk

and moreover the inequality
σi jklεi jεkl ≥ βεi jεi j

holds for some β > 0. In the isotropic case

σi jkl = τ1δi jkl + τ2δi jδkl , τ1,τ2 ≥ 0.

The resulting energy functional E is given by

E(m,u) = E(m,u) = Eex(m)+Eem(m,u)+Eve(u), (4)

which, after some manipulations (Bertsch et al. 2001; Carillo et al. 2012), under the
assumption the material is isotropic, reads

E(m,u) =
1
2

∫︂
Ω

a|∇m|2dΩ+
1
2

∫︂
Ω

[︁
τ1|∇u|2 + τ2(divu)2]︁dΩ+

+
1
2

∫︂
Ω

[︁
λ1δkli ju j,imkml +λ2|m|2divu+2λ3(∇ui ·m)mi

]︁
dΩ . (5)

2.1. A simplified 2D model. To get the proposed model we make some approximations.
First of all we assume Ω ⊂ R2 and neglect the components in plane of the displacement
vector u, i.e., we assume u = (0,0,w), which implies divu = 0 since w depends only on
the plane coordinates. Let λ3 = λ be a positive constant, setting1

τ1 = 1 and a = 1, the
functional E reduces to

E(m,w) =
1
2

∫︂
Ω

(︁
|∇m|2 +2λm3(mα w,α)+ |∇w|2

)︁
dΩ (6)

where the Greek indices vary in the set {1,2}.

1No need to prescribe nor λ2 nor τ2 ≥ 0 since they both appear only as factors of divu; also λ1 can be left
arbitrary; indeed, δkli ju j,i = 0 since u j,i ̸= 0 only if j = 3 and i = 1,2 but δkli j = 0 when j ̸= i.
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Setting Ω ≡ D = {(x,y) ∈ R2 : x2 + y2 < 1} and assuming radial symmetry, further to
w = w(r), we can express the components of the vector m in terms of r, that is

m =
(︂x

r
sinh(r),

y
r

sinh(r),cosh(r)
)︂
, r =

√︁
x2 + y2,

where h : (0,1)⊂ IR → IR is an unknown regular function. Using the fact that ∂xr = x
r and

∂yr = y
r we deduce by the chain rule, where hr :=

dh
dr

denotes the derivatives of the h with
respect to the variable r:

∂xm =

(︃
sinh

r
+

x2

r

(︃
sinh

r

)︃
r
,

xy
r

(︃
sinh

r

)︃
r
,

x
r
(cosh)r

)︃

∂ym =

(︃
xy
r

(︃
sinh

r

)︃
r
,

sinh
r

+
y2

r

(︃
sinh

r

)︃
r
,

y
r
(cosh)r

)︃
.

Thus we get

|∇m|2 =
[︃

sinh
r

+
x2

r

(︃
sinh

r

)︃
r

]︃2

+

[︃
sinh

r
+

y2

r

(︃
sinh

r

)︃
r

]︃2

+2
[︃

xy
r

(︃
sinh

r

)︃
r

]︃2

+[(cosh)r]
2

= 2
(︃

sinh
r

)︃2

+
x4 +2x2y2 + y4

r2

[︃(︃
sinh

r

)︃
r

]︃2

+2
x2 + y2

r2 sinh
(︃

sinh
r

)︃
r
+h2

r (sinh)2

= 2
(︃

sinh
r

)︃2

+ r2
[︃(︃

sinh
r

)︃
r

]︃2

+2sinh
(︃

sinh
r

)︃
r
+h2

r (sinh)2

=

(︃
sinh

r

)︃2

+

[︃
sinh

r
+ r

(︃
sinh

r

)︃
r

]︃2

+h2
r (sinh)2

=

(︃
sinh

r

)︃2

+

[︃
sinh

r
+ r

(︃
rhr cosh− sinh

r2

)︃]︃2

+h2
r (sinh)2

=

(︃
sinh

r

)︃2

+h2
r .

So the energy (6), when we recall the assumed radial symmetry implies also w = w(r),

adopting the notation wr :=
dw
dr

, becomes

E(h,w) = π

∫︂ 1

0

[︄
h2

r +

(︃
sinh

r

)︃2

+λ sin2hwr +w2
r

]︄
rdr

and from that we deduce the governing equations⎧⎪⎪⎪⎨⎪⎪⎪⎩
hrr +

hr

r
− sin2h

2r2 −λ cos2hwr = 0

wrr +
wr

r
+

λ

2

[︃
(sin2h)r +

sin2h
r

]︃
= 0.

(7)
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We prescribe the following boundary conditions

wr(0) = 0, w(1) = 0, (8)

where the first condition is motivated by the symmetry assumptions, while the second one
corresponds to prescribe the boundary of Ω is fixed, and

hr(1) = 0. (9)

Solving the second equation of (7) which can be written

(rwr)r +
λ

2
(r sin2h)r = 0 ⇔ wr =−λ

2
sin2h ,

where the double implication is guaranteed when we set h(0) = 0, then letting µ = λ 2/2
we get the equation

hrr +
hr

r
− sin2h

2r2 +µ sin2hcos2h = 0 (10)

and the energy E becomes

E(h) = π

∫︂ 1

0

[︄
h2

r +

(︃
sinh

r

)︃2

− µ

2
(sin2h)2

]︄
rdr. (11)

The variational analysis of the functional E(h) is the objective of the following section.

3. The minimisation problem

Lemma 3.1. Let us define

V = {v | vr,
v
r
∈ L2(0,1;rdr)}. (12)

V is a Hilbert space equipped with the norm

||v||2 =
∫︂ 1

0
(vr

2 +
v2

r2 )rdr . (13)

Proof. Let vn be a Cauchy sequence in V , {(vn)r},
{︂vn

r

}︂
are Cauchy sequences in

L2(rdr) = L2(0,1;rdr)

and there exist h,g such that

{(vn)r},
{︂vn

r

}︂
→ g,h in L2(rdr) (14)

Set h̃ = hr. Since ∫︂ 1

0

(︂vn

r
−h

)︂2
rdr → 0 (15)

one has

vn → rh in L2(︁0,1;
dr
r

)︁
. (16)

but also in D ′(0,1) so that
(vn)r → h̃r in D ′ . (17)

Atti Accad. Pelorit. Pericol. Cl. Sci. Fis. Mat. Nat., Vol. 98, No. 2, A1 (2020) [17 pages]



A1-6 S. CARILLO ET AL.

We deduce from (15) that h̃r = g and thus h̃ ∈V and since

(vn)r,
vn

r
→ h̃r,

˜︁h
r

in L2(rdr) (18)

one has vn → h̃ ∈V . This completes the proof of Lemma 3.1. □

Lemma 3.2.
V ⊂ {v ∈C([0,1]) | v(0) = 0}

Proof. For x,y ∈ (0,1] one has

|xv(x)− yv(y)|=
⃓⃓⃓⃓∫︂ y

x
(rv)rdr

⃓⃓⃓⃓
=

⃓⃓⃓⃓∫︂ y

x
r(vr +

v
r
)dr

⃓⃓⃓⃓
≤

∫︂ y

x
r(|vr|+

|v|
r
)dr . (19)

Using the Cauchy-Young inequality a ≤ 1
2 a2 + 1

2 one gets

|xv(x)− yv(y)| ≤
∫︂ y

x

{︃
r
2

(︃
vr

2 +
v2

r2

)︃
+ r

}︃
dr → 0 when y → x. (20)

It follows that v is continuous at any point where r ̸= 0 on [0,1]. Now, one has also

v(x)2 − v(y)2 =
∫︂ y

x

d
dr

v(r)2dr =
∫︂ y

x
2vr v dr =

∫︂ y

x
2
√

r vr
v√
r

dr

≤
∫︂ y

x

{︃
r(vr

2 +
v2

r2 )

}︃
dr ≤ ε

(21)

for x,y small enough (we used again the Cauchy-Young inequality). Thus, when x → 0,
v(x)2 is a Cauchy sequence and there exist l ≥ 0 such that

lim
x→0

v(x)2 = l. (22)

If l > 0 one has for ε small enough

∥v∥2 ≥
∫︂ 1

0

v2

r
dr ≥

∫︂
ε

ε2

(︃
l
2

)︃2 dr
r

=
l2

4
(lnε −2lnε) =− l2

4
lnε (23)

and a contradiction when ε → 0. Thus, l = 0 and this completes the proof of the Lemma
3.2. □

Remark Since V ⊂ H1(ε,1), it follows that V ⊂C1/2(ε,1) for every ε .

One sets

E(h) = π

∫︂ 1

0

{︃
h2

r +(
sinh

r
)2 − µ

2
(sin2h)2

}︃
rdr. (24)

One would like to show that E(h) possesses a minimiser on V for any µ .
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Lemma 3.3. The energy E(h) is bounded from below on V and one can find a minimising
sequence vn such that

0 ≤ vn ≤
π

2
. (25)

Proof. One has clearly for every h ∈V

E(h)≥−π
|µ|
2

∫︂ 1

0
rdr =−π

|µ|
4

. (26)

Thus
I = inf

h∈V
E(h)

exists. Let us denote by vn a sequence such that

E(vn)→ I .

If vn ∈V , then also |vn| ∈V and one has

E(vn) = E(|vn|)

so, without loss of generality, we assume vn ≥ 0.

FIGURE 1. Graphical representation.

Then on vn >
π

2 , we replace vn by −vn +π (cfr. Fig. 1). It is clear that

ṽn = vnX{vn≤ π
2 }+(−vn +π)X{vn>

π
2 } (27)

satisfies ṽn ∈V and
E(ṽn) = E(vn).

This completes the proof of the Lemma 3.3. □

Remark 3.4. It could be that −vn +π achieves negative values, but clearly, after a finite
number of operations like the one we just did we get a vn satisfying (25).
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Lemma 3.5. There exists a minimiser h̃ of E in V satisfying

0 ≤ h̃ ≤ π

2
. (28)

Proof. We consider the sequence {vn} constructed in Lemma 3.3. We claim that {vn} is
bounded in V independently of n. Indeed, one has, since for some constant λ > 0 one has(︃

sinx
x

)︃2

≥ λ , ∀x ∈ [0, π

2 ],

∫︂ 1

0
r
{︃
(vn)r

2 +
vn

2

r2

}︃
dr ≤

∫︂ 1

0
r

{︄
(vn)r

2 +
1
λ

(︃
sinvn

r

)︃2
}︄

dr

≤
(︃

1∨ 1
λ

)︃∫︂ 1

0
r

{︄
(vn)r

2 +

(︃
sinvn

r

)︃2
}︄

dr ≤C

(29)

where C is a constant independent of n and ∨ denotes the maximum of two numbers. Recall
that since vn is a minimising sequence one has, for n large enough,

E(vn)≤ E(0) = 0

i.e., see the definition of E

π

∫︂ 1

0

{︄
(vn)r

2 +

(︃
sinvn

r

)︃2
}︄

rdr ≤ π
|µ|
2

∫︂ 1

0
sin2(2vn)rdr ≤ π

|µ|
4

. (30)

Since {(vn)r},{
vn

r
} are bounded in L2(rdr) one finds a subsequence, still labelled by n,

such that
vn

r
⇀ h , (vn)r ⇀ g in L2(rdr) .

Set h̃ = hr. The first weak convergence above reads∫︂ 1

0

vn

r
Ψrdr →

∫︂ 1

0
hΨrdr , ∀Ψ ∈ L2(rdr).

In particular, taking Ψ ∈ D(0,1) one see that

vn → h̃ = hr in D ′(0,1)

and thus, by the continuity of the derivative in D ′

(vn)r → h̃r = g in D ′(0,1) .

Thus, we have h̃ ∈ V . For any k ≥ 2 one has also, thank to (29), that vn is bounded in

H1
(︃

1
k
,1
)︃

. Thus, by induction, one can find a subsequence {nk} extracted from {nk−1}

such that

vnk → h̃ in L2
(︃

1
k
,1
)︃

and a. e..

Then clearly
vnk → h̃ a.e. on (0,1).
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By the dominated Lebesgue theorem one has then that

r sin2vnk → r sin2h̃ in L2(0,1)

sinvnk → sin h̃ a.e. on (0,1) .

Then, since x ↦→ x2 is convex by the Fatou lemma one has

I = lim E(vnk) = π lim
∫︂ 1

0

{︄
(vnk)r

2 +

(︃
sinvnk

r

)︃2
}︄

rdr−π

∫︂ 1

0

µ

2
(sin(2vnk))

2rdr ≥

≥ π lim
∫︂ 1

0
(vnn)r

2rdr+π lim
∫︂ 1

0

(︃
sinvnk

r

)︃2

rdr− πµ

2

∫︂ 1

0
(sin(2h̃))2rdr ≥

≥
∫︂ 1

0
(h̃r)

2rdr+π

∫︂ 1

0
lim

(︃
sinvn

r

)︃2

rdr− πµ

2

∫︂ 1

0
(sin(2h̃))2rdr =

= E(h̃) = I .
(31)

This shows that h̃ is the minimiser that we are looking for. □

Lemma 3.6. The Euler equation of the minimising problem is given by⎧⎪⎨⎪⎩
−hrr −

hr

r
+

sin2h
r2 = µ sin2hcos2h in (0,1)

h(0) = hr(1) = 0

(32)

Proof. If h is a minimiser of E on V one has

d
dλ

E(h+λv)|0 = 0 , ∀v ∈V

Since

E(h+λv) = π

∫︂ 1

0

{︃
(h+λv)2

r +
sin(h+λv)2

r2 − µ

2
sin(2(h+λv))2

}︃
rdr . (33)

One gets ∀v ∫︂ 1

0

{︃
2hrvr +2

sinhcosh
r2 v−2µ sin(2h)cos(2h)v

}︃
rdr = 0

⇐⇒
∫︂ 1

0

{︃
hrvr +

sin(2h)
2r2 v−µ sin(2h)cos(2h)v

}︃
rdr = 0 , ∀v ∈V .

(34)
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Thus, in the distributional sense

−(rhr)r +
sin(2h)

2r
−µ r sin(2h)cos(2h) = 0

=⇒−rhrr −hr +
sin(2h)

2r
−µ r sin(2h)cos(2h) = 0 .

(35)

Dividing by r we get the first equation of (32). Integrating by parts in (34) and using (35)
we get

∫︂ 1

0
(rhrv)r − (rhr)rv+

sin2hv
2r

−µsin(2h)cos2hrv = 0 , ∀v ∈V

i.e., ∫︂ 1

0
(rhrv)r = 0 , ∀v ∈V

which gives

hr(1) = 0 .

(in a weak sense) h(0) = 0 follows from h ∈V . This completes the proof of the Lemma. □

Lemma 3.7. If h ̸= 0 is a nonnegative minimiser of E on V then h > 0 on (0,1).

Proof. Indeed, if h vanishes at r0 ∈ (0,1) then, since h is smooth and r0 is a minimum for
h, one would have

h(r0) = hr(r0) = 0

then from the theory of o.d.e’s (see [1]), h ≡ 0. □

Lemma 3.8. If h is a positive minimiser of E then 0 < h ≤ π

2 .

Proof. If not then h constructed as in the figure before (Fig.1) is a minimiser but it has a
jump in the derivative unless this one is 0. But then h = π

2 is solution of the o.d.e. on h > π

2
and a contradiction follows. Note that the solution of the elliptic equation (14) is smooth on
(0,1). □

Lemma 3.9. A minimiser cannot vanish on (0,1) unless it vanishes identically.

Proof. If h is a minimiser, |h| is also a minimiser. But, then, |h| would have a jump
discontinuity in its derivative unless when it vanishes so does hr. This implies (theory of
o.d.e’s), h = 0. □

Lemma 3.10. If h ∈V then sin(kh) ∈V , ∀k ∈ IR.

Proof. One has

sin(kh)r = khr cos(kh) , |sin(kh)| ≤ |kh|. (36)
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Therefore one has

∥sin(kh)∥2 =
∫︂ 1

0

{︄
sin(kh)2

r +

(︃
sin(kh)

r

)︃2
}︄

rdr

≤
∫︂ 1

0

{︃
k2 cos(kh)2h2

r + k2 h2

r2

}︃
rdr ≤ k2∥h∥2

(37)

□

It easy to check that h ≡ 0 solves (9), (10) and hence it is a stationary point of the functional
(11).

Let γ0 be the first eigenvalue of the problem⎧⎪⎨⎪⎩
−φrr −

φr

r
+

φ

r2 = γφ

φ(0) = 0, φr(1) = 0 .

(38)

Lemma 3.11.
γ0 > 1 .

Proof. Suppose not, i.e., γ0 ≤ 1. Let φ be the corresponding positive (or nonnegative)
eigenfunction. One has

−φrr −
φr

r
= φ(γ0 −

1
r2 )≤ 0 since r ∈ (0,1)

(rφr)r ≥ 0 =⇒ rφr ↗ =⇒ rφr ≤ 0 since φr(1) = 0 .

(39)

Thus, the maximum of φ is achieved at 0 but, since φ(0) = 0, we get a contradiction i.e.,
φ ≡ 0. □

We have the following bifurcation lemma.

Lemma 3.12. If µ ≤ γ0/2 we have E(h)≥ 0 and the global minimum is attained only for
h ≡ 0. For µ > γ0/2 the global minimum is negative.

Proof. The first equation of (38) can also be written after a multiplication by r as

−(rφr)r +
φ

r
= γφr.

Multiplying by φ and integrating over (0,1) we derive by definition of γ0 that∫︂ 1

0

(︃
φ

2
r +

φ 2

r2

)︃
rdr ≥ γ0

∫︂ 1

0
φ

2rdr ∀φ with φ(0) = 0, φr(1) = 0. (40)

We divide the proof in two parts:

(i ) µ ≤ γ0/2
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In this case we have (using (40) with φ = sinh)

E(h) = π

∫︂ 1

0

[︄
(cosh)2h2

r +

(︃
sinh

r

)︃2

−2µ(sinh)2(cosh)2 +(1− (cosh)2)h2
r

]︄
rdr

≥
∫︂ 1

0

[︁
γ0(sinh)2 −2µ(sinh)2(cosh)2 +(1− (cosh)2)h2

r
]︁

rdr

=
∫︂ 1

0

[︁
(γ0 −2µ))(sinh)2 +(1− (cosh)2)(2µ(sinh)2 +h2

r )
]︁

rdr

≥ 0 = E(0)

the equality taking place only for h = 0.

(ii ) µ > γ0/2

Let us denote by φ0 the first positive normalised eigenfuntion to (38). One has, for ε > 0:

E(εφ0)≤ π

∫︂ 1

0

[︃
(εφ0)

2
r +

(εφ0)
2

r2 − µ

2
(sin(2εφ0))

2
]︃

rdr

= π

∫︂ 1

0

[︂
γ0(εφ0)

2 − µ

2
(sin(2εφ0))

2
]︂

rdr.

Using with x = 2εφ0 the formula

sinx = x−
∫︂ 1

0
(1− cos(tx))xdt

E(εφ0) can be written as

E(εφ0) = π

∫︂ 1

0

[︃
(εφ0)

2
{︃

γ0 −2µ(1−
∫︂ 1

0
(1− cos(2tεφ0))dt)2

}︃]︃
rdr

< 0 = E(0)

for ε small, since ∫︂ 1

0
(1− cos(2tεφ0))dt → 0

when ε → 0. □

Alternative proof of (ii)

Suppose h ̸= 0 is a minimiser of E one has

E(h)< E(0) (41)
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i.e., ∫︂ 1

0

{︄
h2

r +

(︃
sinh

r

)︃2
}︄

rdr <
µ

2

∫︂ 1

0
(sin2h)2 rdr = 2µ

∫︂ 1

0
sinh2cosh2rdr

=⇒
∫︂ 1

0

{︄
cosh2h2

r +

(︃
λ

sinh
r

)︃2
}︄

rdr < γ0

∫︂ 1

0
sinh2rdr

=⇒ γ0 >

∫︂ 1

0

{︂
sinh2

r +
(︁ sinh

r

)︁2
}︂

rdr∫︂ 1

0
sinh2rdr

(42)

and a contradiction since sinh ∈V with the definition of γ0.

Consider the problem⎧⎪⎨⎪⎩
−hrr −

hr

r
+

sin2h
r2 = µ sin2hcos2h on (0,1)

h(0) = hr(1) = 0

(43)

Lemma 3.13. If µ ≤ γ0/2 the only solution of (43) such that h ∈
[︂
−π

2
,

π

2

]︂
is h ≡ 0.

Proof. Recall that for any φ ∈V one has by definition of γ0

γ0

∫︂ 1

0
φ

2rdr ≤
∫︂ 1

0

(︃
φ

2
r +

φ 2

r2

)︃
rdr . (44)

Let us write the equation (43) as

(rhr)r +
sin2h

2r
= µ sin2hcos2hr . (45)

Multiply both sides by sin2h and integrate on (0,1). It comes

∫︂ 1

0
r
{︃

hr(sin2h)r +
(sin2h)2

2r2

}︃
dr = µ

∫︂ 1

0
(sin2h)2 cos2h rdr . (46)

One has

(sin2h)r = 2cos2h hr ⇐⇒ hr =
(sin2h)r

2cos2h
. (47)

Thus, the equation above becomes

∫︂ 1

0
r
{︃
(sin2h)2

r
1

cos2h
+

(sin2h)2

r2

}︃
dr = 2µ

∫︂ 1

0
(sin2h)2 cos2hrdr . (48)
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Suppose that h is such that h ∈
[︂
−π

2
,

π

2

]︂
then since −1 ≤ cos2h ≤ 1 one gets

∫︂ 1

0
r
{︃
(sin2h)2

r +
(sin2h)2

r2

}︃
dr < γ0

∫︂ 1

0
(sin2h)2rdr (49)

i.e, sin2h ∈V and satisfies an inequality contradicting (44), except if h ≡ 0. □

Each minimiser of E(h) solves the problem (9), (10). For the solutions of this problem we
can give the following existence result around the bifurcation point.

Lemma 3.14. There exist two positive numbers ρ0 and δ0 such that, the problem (9), (10)
does not have non-zero solutions for µ ∈ (γ0/2−δ0,γ0/2] and ∥h∥0 ≤ ρ0. The problem has
exactly two solutions h1 and h2 =−h1 in the sphere ∥h∥0 ≤ ρ0 for µ ∈ (γ0/2,γ0/2+δ0).

Proof. The proof follows from Krasnosel’skii (1964, Theorem 6.12). Indeed the equation
(10) can be written in the form

2µh = L(h,r)+C(h,r,µ)+D(h,r,µ) (50)

where L is the linear operator

L(h,r) =−hrr −
hr

r
+

h
r2

and C, D are given by

C(h,r,µ) =−2
3

h3

r2 +
16
3

µh3,

D(h,r,µ) =−
(︃

2h
2r2 − sin2h

2r2

)︃
+

2
3

h3

r2 +
µ

2
(4h− sin4h)− 16

3
µh3.

It is easy to check that

C(th,r,µ) = t3C(h,r,µ), (−∞ < t < ∞) (51)

and
∥D(h,r,µ)∥0 = o(∥h∥3). (52)

Moreover we have

((C(φ 0,r,µ),φ 0))0 =
∫︂ 1

0

[︃
−2

3
(φ 0)4

r
+

16
3

µ(φ 0)4r
]︃

dr > 0, for µ ≥ γ0

8
. (53)

Indeed from ((L(φ 0,r)− γ0φ 0,(φ 0)3))0 = 0 it follows that

∫︂ 1

0

[︃
− d

dr
(φ 0

r r)(φ 0)3 +
(φ 0)4

r
− γ(φ 0)4r

]︃
dr = 0 (54)

The latter, on by parts integration

−(φ 0
r r)(φ 0)3 ⃓⃓1

0 +
∫︂ 1

0
3(φ 0

r )
2(φ 0)2rdr+

∫︂ 1

0

[︃
(φ 0)4

r
− γ0(φ

0)4r
]︃

dr = 0
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that is ∫︂ 1

0

(φ 0)4

r
− γ0(φ

0)4r dr ≤ 0,

and the inequality (53) can be easily derived. The statements (50)- (53), together to the local
Lipschitz condition on the operators C and D, assure (see Krasnosel’skii 1964) the existence
of exactly two branch of non-zero solutions bifurcating from the point γ0/2. Finally, we
remark that the existence of two opposite branch follows from the odd functions in (50). □

Remark 3.15. In order to establish the stability of the solutions to (9), (10) around the
point µ0 = γ0/2, we perform a qualitative analysis of the bifurcation equation to the lowest
order (see equation (55) below). From (50) setting

G(h,r,µ) =−2µh+L(h,r)+C(h,r,µ)+D(h,r,µ) = 0
and

2µ = γ0 +δ , |δ |<< 1,

assuming that each element h ∈ H 1(0,1) has the unique representation

h = βφ
0 +Ph, (Ph,φ 0)0 = 0, β ∈ R,

we have
(G(h,r,µ),φ 0)0 =−δβ +(C(βφ

0,r,µ),φ 0)0 + . . .

Moreover from (51), (53) we can get to the simple l.o. bifurcation equation, namely

−δβ +β
3C̄ = 0, C̄ = (C(φ 0,r,µ),φ 0)0 ≥ 0. (55)

It is easy to check that:

for δ ≤ 0 there is the only solution β = 0 and this solution is stable (indeed in this case:
−δ +3β 2C̄ ≥ 0);

for δ > 0 the trivial solution is no more stable but other two stable solutions appear, i.e.,
β =±

√︁
δ/C̄.
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