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ABSTRACT 15 

Recently, low-thrust propulsion is gaining a strong interest by the research community, and already found 16 

application in some mission scenarios. This paper proposes an integrated guidance and control methodology, 17 

termed VTD-NOG & PD-RM, and applies it to orbit transfers from a low Earth orbit (LEO) to a geostationary 18 

orbit (GEO), using low-thrust. The variable time-domain neighboring optimal guidance (VTD-NOG) is a closed-19 

loop guidance approach based on minimization of the second differential of the objective functional along the 20 

perturbed path, and avoids the singularities that occur using alternate neighboring optimal guidance algorithms. 21 

VTD-NOG finds the trajectory corrections considering the thrust direction as the control input. A proportional-22 

derivative scheme based on rotation matrices (PD-RM) is used in order to drive the actual thrust direction toward 23 

the desired one determined by VTD-NOG. Reaction wheels are tailored to actuate attitude control. In the 24 

numerical simulations, thrust magnitude oscillations, displaced initial conditions, and gravitational perturbations 25 

are modeled. Extensive Monte Carlo campaigns show that orbit insertion at GEO occurs with excellent accuracy, 26 

thus proving that VTD-NOG & PD-RM represents an effective architecture for guidance and control of low-27 

thrust Earth orbit transfers. 28 
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INTRODUCTION 29 

Low-thrust propulsion has recently been established as a valuable option for a variety of mission scenarios, 30 

spanning from interplanetary missions to Earth orbit transfers. Low-thrust systems have very high specific 31 

impulses, much larger than those available using chemical propulsion. This circumstance implies that low-thrust 32 

propulsion can usually outperform high-thrust engines with regard to propellant mass requirements. 33 

Optimization of low-thrust orbit transfers is aimed at minimizing the propellant mass, and leads to identifying 34 

the nominal trajectory associated with the mission specifications. However, in practical scenarios, the space 35 

vehicle is subject to perturbations, related either to unpredictable (environmental) phenomena or to imperfect 36 

modeling of the space vehicle. As a result, driving a spacecraft toward the desired final conditions requires the 37 

identification of the corrective maneuvers aimed at compensating the displacements due to perturbations, while 38 

minimizing the propellant needed to perform these corrective actions. 39 

The present study aims at describing and applying a guidance and control methodology, capable of driving 40 

the spacecraft along a perturbed trajectory sufficiently close to the nominal path, which is assumed to be optimal. 41 

Specifically, the minimum-time transfer from a low-altitude Earth orbit (LEO) to a geostationary orbit (GEO) 42 

found in Pontani 2018 is selected as the nominal path.  43 

Driving the space vehicle in the proximity of the optimal trajectory in nonnominal flight conditions requires 44 

defining the feedback corrective actions aimed at compensating the perturbations, on the basis of the displaced 45 

state, evaluated at specified sampling times. Two major classes of guidance schemes exist. Explicit algorithms 46 

redefine the transfer path (leading to the desired final conditions) at each guidance interval (cf. Teofilatto and De 47 

Pasquale 1999, Calise et al. 1998, and Lu et al. 2003). Implicit schemes evaluate the deviations from a specified 48 

nominal path, and identify the feedback control actions aimed at maintaining the vehicle in the neighborhood of 49 

the nominal path (cf. Hull 2003, Lu 1991, and Townsend et al. 1968). Neighboring Optimal Guidance (NOG) 50 

represents an implicit guidance algorithm based on the second-order optimality conditions. A few researches 51 

have been devoted to investigating neighboring optimal (cf. Kugelmann and Pesch 1990, Afshari et al. 2009, 52 

Seywald and Cliff 1994, Yan et al. 2002, Naidu et al. 1993, Hull and Helfrich 1991), and a usual difficulty 53 
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consisted in the fact that the gain matrices, which play a crucial role in the guidance scheme, become singular 54 

while approaching the final time. 55 

This research is focused on a unified guidance and control architecture for low-thrust Earth orbit transfers, 56 

based on the iterated, joint use of two techniques: (i) the variable-time-domain neighboring optimal guidance 57 

(VTD-NOG), and (ii) a proportional-derivative algorithm that uses rotation matrices (PD-RM) for attitude 58 

control. The adoption of a normalized time scale represents a major feature of VTD-NOG (cf. Pontani et al. 59 

2015a and Pontani et al. 2015b), and leads to avoiding the singularities that affect the numerical performance of 60 

alternative NOG schemes. Moreover, the updating formula for the flight time and the guidance ending criterion 61 

are derived in a way that is consistent with the optimality conditions. VTD-NOG determines the corrective 62 

control actions by considering the thrust direction as the control input. Because the thrust has fixed direction in 63 

the spacecraft body axes, the actual spacecraft orientation must be modified so that the actual thrust direction is 64 

driven toward the desired one determined by VTD-NOG, and this is the specific objective of the attitude control 65 

system. In this research, reaction wheels are assumed as the attitude actuators. This technological solution is 66 

often employed onboard spacecraft equipped with low-thrust propulsion systems (Berge et al. 2009, Garulli et al. 67 

2011). The attitude control law proposed in this study is proportional-derivative-like and uses the rotation 68 

matrices (PD-RM), for the purpose of avoiding singularities and sign ambiguities inherent to other 69 

representations. Alternative combinations of VTD-NOG and different types of attitude control were 70 

implemented in Pontani and Celani 2018a and Pontani and Celani 2019. 71 

This work employs VTD-NOG & PD-RM for guidance and control of the low-thrust orbit transfer starting 72 

from a low Earth orbit (LEO) and ending at insertion into a coplanar geostationary orbit (GEO). Nonnominal 73 

flight conditions are considered, related to (i) gravitational perturbations, (ii) unpredictable oscillations of the 74 

propulsive thrust magnitude, and (iii) errors on the initial conditions. Extensive Monte Carlo campaigns are 75 

performed, with the objective of proving effectiveness and efficiency (in terms of propellant budget) of VTD-76 

NOG & PD-RM for low-thrust Earth orbit transfers, in the presence of perturbed flight conditions. A preliminary 77 

version of the present work can be found in Pontani and Celani 2018b. Several remarkable novelties are 78 

introduced in this research with respect to former publications on a similar subject (Pontani and Celani 2018a 79 
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and Pontani and Celani 2019). First, gravitational perturbations are modeled, i.e. those due to a relevant number 80 

of harmonics of the geopotential, as well as the attraction of Sun and Moon as third bodies. In fact, while in 81 

previous studies (Pontani and Celani 2018a and Pontani and Celani 2019) the time of flight was relatively short, 82 

low-thrust orbit transfers have considerable durations, therefore the previously mentioned gravitational 83 

perturbations yield nonnegligible effects. Second, the control algorithm considers different actuation modality 84 

and devices (i.e. reaction wheels instead of thrust vectoring), as well as a different representation for orientation, 85 

i.e. rotation matrices (instead of quaternions). The latter choice is related to a non-ambiguous representation of 86 

the commanded spacecraft orientation, and is accompanied by an effective attitude control law that employs 87 

directly the rotation matrices. Lastly, because the flight time is long for the orbit transfer studied in this work, a 88 

non-uniform sampling time for feedback guidance and control is adopted. This is proposed as an effective 89 

approach with the potential of joining computational efficiency and accuracy at orbit injection. 90 

 91 

NOMINAL LEO-GEO ORBIT TRANSFER 92 

This research is focused on the problem of transferring a space vehicle from an equatorial low Earth circular 93 

orbit (LEO) to a final, coplanar geostationary orbit (GEO), in the presence of perturbed flight conditions. The 94 

initial altitude equals 400 km. Both trajectory and attitude dynamics are considered. This section addresses the 95 

definition of the nominal transfer path, and the space vehicle is modeled as a point mass. In the succeeding 96 

sections, attitude dynamics is introduced. 97 

Continuous low-thrust propulsion is used to complete the orbit transfer of interest. Under the assumption of 98 

constant, continuous thrust, if c and 0n  represent the (constant) effective exhaust velocity of the propulsion 99 

system and the thrust acceleration at the initial time, the instantaneous thrust acceleration ( )T m  is given by 100 

 0

0

T n c

m c n t
=

−%
 (1) 101 

where t denotes time. The following (nominal) values are assumed: 0 00.0001n g= and 102 

( )2

030 km sec  9.8 m secc g= = . 103 
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Formulation of the problem 104 

The spacecraft trajectory is described in the Earth-centered inertial frame (ECI), defined through the right-105 

hand triad of unit vectors ( )1 2 3
ˆ ˆ ˆ, ,c c c , where ( )1 2

ˆ ˆ,c c  corresponds to the equatorial plane, 1̂c  is the vernal axis, 106 

and 3ĉ  is directed toward the Earth rotation axis (cf. Figure 1(a)). The time-dependent position is associated with 107 

the radius r, the latitude  , and the absolute longitude  , depicted in Figure 1(a). The velocity is described in 108 

terms of components in the rotating frame ( )ˆˆ ˆ, ,r t n , where r̂  points toward the position vector r and t̂  is parallel 109 

to the ( )1 2
ˆ ˆ,c c -plane (cf. Figure 1(a)). Inspection of Figure 1(a) leads to  110 

 ( ) ( ) 2 3 1 2 3
ˆˆ ˆ ˆ ˆ ˆ

T T
r t n c c c   = −  R R  (2) 111 

where ( )j R  is a counterclockwise elementary rotation about axis j by (the generic) angle  . The symbols 112 

( ), ,r t nv v v  denote the components of the velocity and are referred to as radial, transverse, and normal 113 

component. The state vector x (with components ( ) 1, ,6kx k = ) of the space vehicle is given by 114 

 :
T

r t nr v v v =x . The thrust direction represents the control, and is defined by the out-of-plane angle 115 

  and the in-plane angle  , both portrayed in Figure 1(b) (in which T̂   points toward the thrust direction). 116 

Hence, the control vector u is    1 2:
T T

u u  = =u . The motion equations, also termed state equations 117 

henceforth, are  118 

                         
cos

t n
r

v vdr d d
v

dt dt r dt r

 


= = =  (3) 119 

 
2 2

2
sin cost nr

r

v vdv T
a

dt r r m


 

+
= − + + +

%
 (4) 120 

 ( )tan cos cost t
n r t

dv v T
v v a

dt r m
  = − + +

%
 (5) 121 

 
2

tan sinn t r n
n

dv v v v T
a

dt r r m
 = − − + +

%
 (6) 122 
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where ( )T m  is given by Equation (1) and ( )3 2 398600.4 km sec =  is the terrestrial gravitational parameter. 123 

The symbols ra , ta , and na  represent the acceleration components related to the presence of perturbations. In 124 

general, these terms have very limited magnitude and are functions of the state of the space vehicle in a 125 

complicated fashion. For this reason, perturbations are neglected while finding the optimal trajectory, whereas 126 

they are being considered while applying VTD-NOG & PD-RM. Equations (3)-(6) (with 0r t na a a= = = ) can be 127 

written as 128 

 ( ), ,
d

t
dt

=
x

f x u%  (7) 129 

The terminal conditions (at the initial and final time, denoted respectively with subscripts “0” and “f ”) are 130 

 0 0 0 0 0 0          0     0          0LEO i r t n

LEO

r R v v v
R


  = = = = = =  (8) 131 

      0     0          0f GEO f rf tf nf

GEO

r R v v v
R


= = = = =  (9) 132 

where LEOR  and GEOR  are respectively the radii of the initial LEO and the final GEO, whereas i  denotes the 133 

(prescribed) initial absolute longitude. The previous conditions (8)-(9) can be written in compact form as 134 

 ( )0 , ,f ft = 0ψ x x  (10) 135 

The problem under consideration can be formulated also by using the normalized time  , 136 

 0:           0 1f ft t   =       (11) 137 

If the dot denotes the derivative with respect to  , Equation (7) is rewritten as 138 

 ( ) ( ), , : , , ,f ft t  = =%&x f x u f x u a  (12) 139 

where a contains all the time-independent unknown quantities ( ft=a  for the present problem). 140 

Because continuous propulsion is employed, minimization of the propellant expenditure is achieved if the 141 

flight time ( )0ft t−  is minimized. Therefore, letting 0 0t = , the objective function J is 142 

 fJ t=  (13) 143 
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Optimal LEO-GEO orbit transfer 144 

The analytical necessary conditions (cf. Hull 2003) for an optimal solution can be written after introducing a 145 

Hamiltonian H and a boundary condition function  , 146 

 ( ) ( )0, , :      and     , , :T T

fH J=  = +x u a λ f x x a υ ψ  (14) 147 

where ( )tλ  and υ  denote the adjoint vectors associated to the state equations (12) and to the conditions (10), 148 

respectively; their dimension is appropriate to the context and the respective components are ( )k t  k . 149 

Specifically, the first-order (local) optimality conditions (cf. Hull 2003) include the costate (or adjoint) 150 

equations, together with the respective boundary conditions, as well as the Pontryagin minimum principle and 151 

the parameter condition (cf. Hull 2003). Their explicit expressions are omitted for the sake of brevity. It is worth 152 

mentioning that the Pontryagin minimum principle leads to writing the optimal control *
u  as a function of the 153 

adjoint variables, whereas the parameter condition is proven to be equivalent to 154 

 0     with        and   

T T

f

H    
− = − =       

μ μ μ
a a

= 0 0  (15) 155 

where μ  is an auxiliary time-varying vector.  156 

In the context of orbit transfer optimization, the gravitational geopotential is modeled as spherical. The 157 

spacecraft is not subject to any other external force, and the optimal transfer can be assumed to belong to the 158 

( )1 2
ˆ ˆ,c c -plane. In fact, any alternate three-dimensional path would imply an out-of-plane thrust component and a 159 

waste of propellant as a result. This means that the out-of-plane variables can be set to zero, i.e. 160 

 3 60      0      0      0      0nv   = = = = =  (16) 161 

Only the state equations for r,  , rv , and tv , in conjunction with the respective adjoint equations and the 162 

Pontryagin minimum principle for  , are needed in order to determine the minimum-time transfer. The 163 

remaining adjoint equations, accompanied by the respective boundary conditions, are identically satisfied. In 164 

addition, the state equation for ( )2  x   is ignorable, as the absolute longitude 2x   does not appear in any final 165 

condition and is not contained in any right-hand-side the equations of motion. 166 
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The optimal transfer path is obtained in Pontani 2018 using the indirect heuristic method (cf. Pontani and 167 

Conway 2014 and Pontani and Conway 2015). The optimal time histories of the state variables r, rv , and tv  are 168 

portrayed in Figures 2 through 4, whereas Figure 5 illustrates the optimal thrust direction; the total time of flight 169 

equals 50.33 days. The indirect heuristic method employs the first-order necessary conditions to identify the 170 

optimal solution. Nevertheless, the second-order sufficient conditions are also to be met in order to apply VTD-171 

NOG using the optimal path as the reference, nominal solution. Evaluation of matrix Ŝ  (cf. Hull 2003) and the 172 

Hessian matrix Huu  along the optimal trajectory proves that the second-order sufficient conditions are fulfilled. 173 

This is the fundamental prerequisite for applying VTD-NOG. 174 

 175 

ORBIT PERTURBATIONS 176 

The spacecraft orbital motion is primarily subject to the gravitational attraction of Earth, therefore the 177 

perturbed two-body-problem model represents the appropriate dynamical framework for the study of the orbit 178 

transfer in nonnominal flight conditions. First, the real geopotential differs from that yielded by a spherical mass 179 

distribution. As a result, some meaningful harmonic terms of the Earth gravitational field must be considered in 180 

dynamical modeling. Second, the gravitational pull of Moon and Sun is a further contribution. This section is 181 

focused on describing and modeling these perturbations of a gravitational nature. 182 

 183 

Earth gravitational harmonics 184 

This study utilizes the EGM2008 model (cf. Pavlis et al. 2008), which provides the coefficients of zonal, 185 

sectorial, and tesseral harmonics of the geopotential up to order 2160. These coefficients ( ,l mJ  and lm ) appear 186 

in the expression of gravitational potentials of celestial bodies,  187 

 ( ) ( ) ( )0 ,

2 2 1

sin sin cos

l ll
E E

l l l m lm g lm

l l m

R R
U J P J P m

r r r r

 
   

 

= = =

     = − + −        
   (17) 188 
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where the terms lmP  are Legendre polynomials, ER  is the Earth equatorial radius, whereas g  denotes the 189 

spacecraft geographical longitude. If G  represents the Greenwich sidereal time (taken counterclockwise from 190 

1̂c ), then g G  = − . The gravitational acceleration in the ( )ˆˆ ˆ, ,r t n -frame is 191 

 
ˆ ˆ

ˆ   where   
cos g

t n
U r

r r r  

  
=   = + +

  
G  (18) 192 

Equations (17) and (18) allow attaining the three components ( ), ,r t nG G G  in the rotating frame ( )ˆˆ ˆ, ,r t n . As rG  193 

includes the main term of the gravitational acceleration, the disturbing contributions are  
( ) 2H

r ra G r= + , 194 

( )H

t ta G= , and 
( )H

n na G= . These three components contribute to the terms ( ), ,r t na a a  in Equations (3)-(6). 195 

 196 

Third body perturbation 197 

Third body gravitational perturbations are related to the Moon and Sun gravitational pull. A third body 198 

yields an acceleration that can be conveniently written as 199 

 
( ) ( )

2 2

3 3 3 3
3 3 3 33 2 3 2 23

33 3 3

3 3 2
        where        :

1 1 1

T

B

q q r
q q

ss q q

  + + −
= − + = 

+ + +  

r s
a r s  (19) 200 

The symbol 3  represents the gravitational parameter of the third body, 3s  denotes its position vector with 201 

respect to the Earth, and 3 3s = s . Equation (19) employs the Battin-Giorgi approach (cf. Battin 1987 and Giorgi 202 

1964) to the Encke’s approach. Then, the components of 3Ba  along the ( )ˆˆ ˆ, ,r t n -frame must be obtained for their 203 

use in the equations of motion. The term 3s  is written in the ( )ˆˆ ˆ, ,r t n -frame with this intent. 204 

The Moon orbit about Earth is approximated as circular, therefore its position vector Mr   can be written in 205 

the ECI-frame as a function of of M , Mi , and M , i.e. the right ascension of the ascending node (RAAN), 206 

inclination, and (instantaneous) argument of latitude M of the lunar orbit (Prussing and Conway 1993),  207 
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1

2

3

ˆcos cos sin sin cos

ˆsin cos cos sin cos

ˆsin sin

T

M M M M M

M M M M M M M

M M

ci

r i c

i c

 

 



 −    
  

=  + 
  
     

r  (20) 208 

where the (constant) Moon orbit radius Mr  is approximated to 384400 km. The position vector of the Moon is 209 

( )
3

M

M=s r . The two angles M  and Mi  are time-varying, with a period of 18.6 years due to precession of Mh . 210 

Combination of Equations (2) and (20) allows attaining the projections of 
( )
3

M
s  along ( )ˆˆ ˆ, ,r t n , and finally the 211 

components ( ) ( ) ( )( ), ,
M M M

r t na a a . 212 

As a further step, also the Earth motion about the Sun is described by using the two-body-problem model. 213 

The heliocentric inertial system (HCI) is aligned with the unit vectors ( ) ( ) ( )( )1 2 3
ˆ ˆ ˆ, ,

S S S
c c c , where 

( )
1̂

S
c  is the vernal 214 

axis (associated with the line where the Earth equatorial plane and the plane of ecliptic intersect) and ( )
3

ˆ S
c  is 215 

directed toward the orbital angular momentum of Earth (cf. Prussing and Conway 1993). The ECI-frame is 216 

obtained from the HCI-frame through a single clockwise rotation about axis 1 by the ecliptic obliquity angle 217 

( ) 23.45 degE = , 218 

   ( ) ( ) ( ) ( )
1 2 2 1 1 2 3

ˆ ˆ ˆ ˆ ˆ ˆ
TT S S S

Ec c c c c c  = −
 

R  (21) 219 

Under the assumption of approximating the Earth orbit as circular, its position vector Er  can be expressed in 220 

terms of Earth ecliptic longitude E  in the HCI-frame,  221 

   ( ) ( ) ( )
1 2 3

ˆ ˆ ˆcos sin 0
T

S S S

E E E Er c c c   =
 

r  (22) 222 

where the (constant) radius of the Earth orbit, Er , is set to 1 AU. The Sun position with respect to the Earth is 223 

( )
3

S

E= −s r . Combination of Equations (2), (21), and (22) allows attaining the projections of 
( )
3

S
s  along ( )ˆˆ ˆ, ,r t n , 224 

and, as a final step, the components ( ) ( ) ( )( ), ,
S S S

r t na a a . 225 

 226 

 227 
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VARIABLE-TIME-DOMAIN NEIGHBORING OPTIMAL GUIDANCE 228 

The Variable-Time-Domain Neighboring optimal guidance (VTD-NOG) is an implicit algorithm that 229 

employs the minimum-time path as the reference solution, for the purpose of attaining the control correction at 230 

each sampling time   ( )00, ,
 0

S
k k n

t t
=

= . The state displacement along the actual trajectory (corresponding to x ) 231 

with respect to the nominal path (associated with *
x ) is evaluated at these sampling times, 232 

 ( ) ( )*

k k k kd t t = −x x x x  (23) 233 

The overall number of sampling times, Sn , is unspecified, while 
( )

1

k

S k kt t t+ = −  ( )0, , 1Sk n= −  is the interval 234 

between two subsequent sampling times.  In general, the actual sampling interval 
( )k

St  can be programmed 235 

offline, in relation to the nominal trajectory, and can vary adaptively, in order to ameliorate the performance of 236 

the guidance and control algorithm. In this study, two prescribed values for 
( )k

St  are employed: a large value for 237 

the great majority of the transfer path and a reduced value for the terminal arc that ends at final orbit injection. 238 

Details on the specific values adopted in this research are reported in the succeeding section. A key ingredient of 239 

VTD-NOG is represented by the formula for updating 
( )k

ft , i.e. the (corrected) time of flight, which is computed 240 

at each sampling time kt .  241 

 242 

Time-to-go and termination criterion 243 

At each sampling time, VTD-NOG is intended to define the updated time of flight 
( )k

ft  and the correction 244 

( ) u  to the control in the normalized interval  1,k k  + , corresponding to the actual interval  1,k kt t + . The 245 

fundamental relations of VTD-NOG derive from minimizing the second differential of the objective functional J 246 

(cf. Pontani et al. 2015a), while enforcing the first-order expansions of the state and costate equations, the 247 

respective final conditions, and the parameter condition. Minimization of the second differential of J is 248 

equivalent to the solution of the accessory optimization problem in the interval  ,1k . The classical relations 249 

that hold in optimal control theory refer to the overall interval  0,1  and are reported in Hull 2003.  They are 250 
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generalized to the interval  ,1k  in Pontani et al. 2015a, focused on the analytical foundations of VTD-NOG. 251 

Among all the relations that form the core of VTD-NOG (omitted in this work for the sake of brevity), it is worth 252 

reporting the feedback law that yields the control correction as a function of the parameter vector correction da  253 

and the state and costate displacements ( ) x  and ( ) λ ,  254 

 ( )1

1     k kH H H d H     −

+= − + +  uu ux ua uλu x a λ  (24) 255 

Specifically, da  is given by (cf. Pontani et al. 2015a) 256 

 
1 1   with  :

qxpT

k k k k k

pxp

d

d
 − −

  
= − − =   

    

υ
x μ

a

0
V U V Θ Θ

I
 (25) 257 

where k μ  is the final value of   μ  in the preceding interval  1,k k −  (with 0 =μ 0 ), whereas ( ) x  and 258 

( ) λ  are obtained by integrating the following linear differential system:  259 

 d  = − +x x λ aA B D  (26) 260 

 T d  = − − −λ x λ aC A E  (27) 261 

 T T d  = − − −μ x λ aE D F  (28) 262 

In each interval  1,k k  + , the initial condition for  x  is given by Equation (23), while for  λ  the following 263 

relation (to evaluate at k ) is obtained (cf. Pontani et al. 2015a): 264 

 ( )ˆ T T

k k d d = − − −λ x υ aS Wm Wn Wα  (29) 265 

In Equations (26)-(29) several matrices appear, i.e. A, B, C, D, E, F, Ŝ , W, m, n , and α . All of them are 266 

evaluated along the nominal path. 267 

The updated time of flight is 
( ) ( )*k k

f f ft t dt= + , where 
*

ft  is the nominal time of flight and  
( )k

fdt  derives 268 

directly from the analytical conditions for optimality, because it is included as a component of da  (cf. Pontani et 269 

al. 2015a). Because the actual sampling interval 
( )k

St  is specified (and depends, in general, only on the nominal 270 

trajectory), while 
( )k

ft  is updated at each iteration, the general formula for 1k +  is 271 
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( )

( )

( )( )0 *

1

0

          0, , 1;  

jk
S

k S f fj
j f

t
k n t t

t
 +

=


= = − =  (30) 272 

Finally, the total number of intervals Sn  corresponds to occurrence of the condition 273 

 
( )

( )

1

0

 1          1
S

S

jn

S
nj

j f

t

t


−

=


  =  (31) 274 

In the end, the adoption of the normalized time   has remarkable consequences. First, all the gain matrices do 275 

not become singular, because they are defined in the interval [0,1]. Second, the values  k  are calculated at 276 

each sampling time through Equation (30). The guidance and control algorithm terminates when   reaches the 277 

upper bound of the interval where   is defined (i.e., when 1 = ). 278 

 279 

Modified sweep method 280 

The backward numerical integration of the sweep equations (cf. Hull 2003) represents a necessary step, in 281 

order to obtain the gain matrices associated with neighboring optimal paths. However, unlike the accessory 282 

minimization problem, VTD-NOG refers to the interval  ,1k . This circumstance implies the need of deriving 283 

modified sweep equations.  284 

Lengthy analytical developments (presented in Pontani et al. 2015a, and not reported in this work for the 285 

sake of brevity) lead to the equations that follow, 286 

 1 1 1ˆ ˆ ˆ ˆ ˆ ˆ ˆ           T T T T T T− − − = − + + + + − − − − = −
 

S SA SBS SDα WFα Eα m WE WD S C A S Q R BWn  (32) 287 

 ( )ˆ                     T T T T T T T T T= − − = − = − − −R R BS R A R BWm n R D + BWα α D Wα F m BWα m D  (33) 288 

 ˆ ˆT T T T T T T T T= − + − − − +m m A m BS m BWm E D S D Wm  (34) 289 

Hence, the gain matrices S, Ŝ , R, Q, n, m, and α , must be integrated backward, from 1 =  to 0 = , in two 290 

steps: 291 

(a) the equations of the classical sweep method (cf. Hull 2003), with the associated boundary conditions 292 

are employed in the interval  ,1sw  293 
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(b) Equations (32)-(34) are used in the interval  0, sw . Matrices R, Q, n, m, and α  are continuous across 294 

the switching time sw , whereas Ŝ  is given by 
1ˆ : T−= −S S UV U  (cf. Pontani et al. 2015a); in this work 295 

sw  is set to 0.99. 296 

 297 

Offline computations and algorithm structure 298 

This subsection first summarizes the preliminary steps to complete offline before running VTD-NOG. Then, 299 

the overall architecture of VTD-NOG & PD-RM is illustrated in a block diagram. 300 

In order to implement VTD-NOG & PD-RM, the optimal solution must be identified, together with the 301 

related state, control, and adjoint variables. These are available as equally-spaced sets of discrete values, e.g. 302 

( )* *

i i=u u  ( )00, , ;  0 and 1
DD ni n  = = = . However, because VTD-NOG evaluates the control corrections 303 

( ) u  at times   not coincident with  i , interpolation is mandatory, for the control *
u , as well as all the 304 

remaining nominal quantities, *
x , *

λ , A, B, C, D, E, F,  ,   ,   ,   ,   ,   ,   ,   ,   ,   ,H H H H H H Hx u a xx xu xλ xa ux uu uaf f f  305 

0 0 0 0
, , , , , , , , , , , , ,

f f f f f
H H H H H      uλ ax au aa aλ x x a x x x a x x x a ax aaψ ψ ψ . Then, the backward integration of the sweep 306 

equations yields the matrices Ŝ , R, m, Q, n, and α . The preliminary computations end with the interpolation of 307 

all the gain matrices. If a suitable number of times  i  is adopted (e.g., 10000), linear interpolation is a simple 308 

and effective option and is adopted in this study. 309 

At time k , using the nominal variables and gain matrices (evaluated offline), VTD-NOG computes the 310 

flight time 
( )k

ft , the value 1k + , and the correction ( ) u . In particular, the guidance methodology at hand is 311 

interpolated through the following steps: 312 

1. Specifiy the sampling interval St  313 

2. At each time ( )0 0, , 1;  0k Sk n = − =  314 

a. Evaluate k x  thorugh Equation (23) 315 

b. Assume the value of  μ  obtained at the end of the previous interval  1,k k −  as k μ  316 
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c. Calculate 
( )k

fdt  and update the flight time 
( )k

ft  317 

d. Obtain the upper value 1k +  for the current interval 318 

e. Evaluate k λ  and integrate the linear differential system composed of Equations (26)-(28)  319 

f. Obtain the correction ( ) u  in  1,k k  +  by means of Equation (24) 320 

3. If Equation (31) is met, then VTD-NOG terminates, otherwise point 2 is repeated (after increasing k by 1). 321 

Figure 6 depicts a block diagram that shows the sampled-data feedback structure of VTD-NOG. The 322 

corrections on control and flight time are obtained after evaluating the state deviation  x , using the gain 323 

matrices. The attitude control loop is encircled by the dotted line, and is being described in the following section. 324 

 325 

PD-LIKE ATTITUDE CONTROL BASED ON ROTATION MATRICES 326 

The objective of the attitude control system is ensuring that the actual orientation of the spacecraft is 327 

sufficiently close to the commanded orientation obtained from VTD-NOG. The actual spacecraft attitude is 328 

associated with the actual control au  (cf. Figure 6). The control torque is generated by reaction wheels 329 

 330 

Commanded attitude 331 

VTD-NOG determines u i.e. the thrust angles   and  that yield the thrust direction. Because the thrust 332 

direction does not vary with respect to the spacecraft body axes, the attitude control system must modify the 333 

spacecraft orientation so that the desired thrust direction is achieved. Thus, the two thrust angles yielded by 334 

VTD-NOG actually represent the commanded values for the desired thrust angles denoted by c  and c . 335 

Consider the body frame ( )ˆ ˆ ˆ, ,b b bx y z  whose origin coincides with the current mass center of the spacecraft, 336 

its axes are principal inertia axes, and ˆ
bx  is directed along the longitudinal axis. The commanded angles c  and 337 

c  define the commanded direction for ˆ
bx , denoted with 

( )ˆ c

bx  and expressed by 338 
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 ( ) ( ) ( )
1

2 3 2

3

ˆ ˆcos sin cos sin

ˆˆ ˆcos cos cos cos

ˆ ˆsin sin

T T

c c c c

c

b c c c c

c c

r c

x t c

n c

   

     

 

       
       

= = −
       
              

R R  (35) 339 

The commanded direction for 
( )ˆ
c

bz  is defined as 340 

 
( )

( )

( )

3

3

ˆ ˆ
ˆ

ˆ ˆ

c
c b

b c

b

c x
z

c x


=


 (36) 341 

and 
( )ˆ c

by  completes the right-handed coordinate system ( ) ( ) ( )( )ˆ ˆ ˆ, ,
c c c

b b bx y z . In nominal flight conditions 
( )ˆ
c

bz  is in the 342 

equatorial plane and coincides with the nadir direction if a circular orbit is traveled. Using Equations (35) and 343 

(36), the commanded rotation matrix cR   can be determined, 344 

 ( ) ( ) ( )  1 2 3
ˆ ˆ ˆ ˆ ˆˆ

T Tc c c

b b b cx y z c c c  =
 

R  (37) 345 

Attitude dynamics 346 

The spacecraft attitude is controlled through a reaction wheel assembly. The current attitude is determined 347 

by the rotation matrix R defined as  348 

    1 2 3
ˆ ˆ ˆ ˆ ˆˆ

T T

b b bx y z c c c= R  (38) 349 

Let 
T

x y z   =  ω  denote the spacecraft angular velocity, with components written along the body 350 

axes. Thus, the attitude kinematics are described by 351 

 

0

        where        : 0

0

z y

z x

y x

 

 

 

 

 −
 

= − = − 
 − 

ω ωR R  (39) 352 

Let  diag , ,x y zI I II =  be the inertia matrix, whereas 
T

c cx cy czM M M =  M  and 
T

e ex ey ezM M M =  M  353 

represent respectively the control torque and the environmental torque both resolved along the body axes. Thus, 354 

the attitude dynamics are given by 355 

 c e

+ = +ω ω ω M MI I  (40) 356 
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The control torques are generated by the reaction wheel assembly, and the amplitude of each component is 357 

bounded by the maximum values cxM , cyM , czM . These limits are taken into account by introducing the 358 

variable 
T

c cx cy czM M M =  M , whose relation with cM   is given by 359 

 ( )

    if    

sat       if    

      if    

cx

cx cx cx

cx cx cx cx cx cxM

cx cx cx

M M M

M M M M M M

M M M

−  −


= = −  




 (41) 360 

Similar relations hold for cyM   and czM . Thus, the spacecraft attitude control input is given by cM . The effect 361 

of the reaction wheel assembly can be neglected for practical purposes (cf. Sidi 1997). As a result, no model for 362 

the assembly is considered here. Environmental torques are typically due to residual magnetization, gravity-363 

gradient, aerodynamics, and solar radiation. 364 

 365 

Attitude control 366 

The torque that the reaction wheel assembly must provide is determined by a control law that uses the 367 

rotation matrix cR , which specifies the commanded attitude, addressed in a preceding subsection. Using rotation 368 

matrices implies the advantage of avoiding singularities and ambiguities that would be otherwise introduced by 369 

other attitude parameterizations, such as sequences of angles and Euler parameters. 370 

The following PD-like control law is employed (Chaturvedi et al. 2011): 371 

 ( )
3

1

T

c p i c i d

i=

= −  −M e e ωK R R K  (42) 372 

In the preceding equations  diag , ,p px py pzk k k=K  and  diag , ,d dx dy dzk k k=K  are diagonal matrices 373 

containing positive control gains, and  
1,2,3i i=

e   are the columns of the 3 by 3 identity matrix. For convergence 374 

analysis of the proposed control law, cR  can be approximated as constant since its rate of variation is small 375 

compared to that of R. Thus, neglecting eM  with respect to cM , one obtains that R converges to cR  locally 376 

and exponentially, by means of Proposition 2 in Chaturvedi et al. 2011. In fact, in Chaturvedi et al. 2011 it is 377 
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shown that the linearization of the closed-loop system given by Equations (39) through (42) about 
c=R R  and 378 

=ω 0  leads to the following equation: 379 

 1 12d p

− −+ + =ζ ζ ζI K I K 0  (43) 380 

where  :
T

=   ζ   and ,  ,  and     is the current 3-2-1 Euler sequence of the body reference with 381 

respect  to the commanded attitude. Thus, it is immediate to obtain that →ζ 0 .  382 

 383 

Selection of gains 384 

The gains pxk , pyk , pzk , dxk , dyk , and dzk  are determined by adopting the following approach which is 385 

presented only for gains pxk  and dxk  since it is straightforward to adapt it to the remaining gains. The first 386 

equation of the linearized closed-loop system in Equation (43) is given by 387 

 2 0
pxdx

x x

kk

I I
  +  =+  (44) 388 

The corresponding characteristic equation is 389 

 2 2 0
pxdx

x x

kk
s s

I I
+ + =  (45) 390 

The principal moment of inertia xI   changes during flight. Let xI  and xI  denote the minimum and 391 

maximum of xI . Thus, gains pxk  and dxk  are determined so that the solutions of Equation (44) have damping 392 

ratio x x    and natural angular frequency nx nx   for x x xI I I  . The lower bounds x   and nx  are 393 

selected through experience and trial-and-error. Since 
22 px x nxk I =   and 2dx x x nxk I  = , it is immediate to 394 

verify that inequalities x x   and nx nx    hold for all x x xI I I   by setting 395 

 

2

          and          2
2

nx x

px dx x nx x

I
k k I


 = =  (46) 396 

 397 

 398 
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Actual attitude 399 

The current attitude of the spacecraft is determined by matrix R. Thus, the actual orientation of axis ˆ
bx   can 400 

be obtained by using Equation (38). Combining the latter equation with Equation (2) leads to 401 

     ( ) ( )1 2 3 3 2
ˆˆ ˆ ˆ ˆ ˆ ˆ ˆˆ

TT T T

b b bx y z c c c r t n   = =  R RR R  (47) 402 

The actual thrust direction coincides with ˆ
bx , and can be resolved in the ( )ˆˆ ˆ, ,r t n -frame as follows, 403 

  ˆ ˆˆ ˆ ˆcos sin cos cos sin
T

a b a a a a aT x r t n       =    (48) 404 

The two angles a  and a  can be expressed as functions of  R,  , and  , by comparing Equations (47) and 405 

(48). 406 

 407 

VTD-NOG & PD-RM APPLIED TO LOW-THRUST LEO-GEO TRANSFER  408 

The guidance and control architecture termed VTD-NOG & PD-RM is tested on the low-thrust orbit transfer 409 

from LEO to GEO. The minimum-time path is obtained in a preceding section and requires more than 50 days. 410 

The spacecraft has initial mass 0 2400 kgm =  and maximal torque yielded by the reaction wheels 411 

0.5 N mcx cy czM M M= = =  (about each body axis). The time-dependent inertia moments xI , yI , and zI  are 412 

given by 413 

 0 0 0          x x x y y y z z zI I I t I I I t I I I t= + = + = +  (49) 414 

where 415 

 

2 4 2

0

2 4 2

0 0

1200 kg m       3.92 10  kg m sec

800 kg m       2.61 10  kg m sec

x x

y y y z

I I

I I I I

−

−

= = − 

= = = = − 
 (50) 416 

In addition, the following values are chosen for VTD-NOG & PD-RM. A non-uniform sampling interval is 417 

employed: 
( )k

St  = 2 hours if 0 0.995k   and 
( )k

St  = 3 min if 0.995 1k  . Therefore, the state deviations 418 

are evaluated more frequently while reaching the final time, with the intent of improving accuracy at final orbit 419 

injection. The control gains are identified on the basis of the following considerations. First, it is worth noting 420 
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that the nominal thrust is 0 0T n m= , whereas the maximum values for xI , yI , and zI  are 0x xI I= , 
0y yI I= , and 421 

0z zI I= . The lower bounds for the natural frequencies are set to 10.03 rad secnx ny nz   −= = = . In fact, a 422 

spectral analysis of the commanded attitude in the nominal case shows that using those values the attitude 423 

control loop should be fast enough to track the commanded attitude even in perturbed conditions. The lower 424 

bounds of the damping coefficients have been selected as 0.7x y z  = = = . In fact, the latter value represents a 425 

good compromise between fast response and low overshoot. Thus, by Equation (46) and similar equations for the 426 

remaining gains, one obtains 11.76pxk = , 151.2dxk = , 7.84py pzk k= = , 100.8dy dzk k= = . 427 

The first reason for the existence of nonnominal flight conditions is due to the fact that the actual attitude 428 

differs from the commanded attitude. In fact, in general the commanded angles, determined by VTD-NOG, are 429 

discontinuous across successive guidance intervals, unlike the real steering direction. The latter is driven by the 430 

attitude control system, and converges toward the desired one with some delay. This fact is apparent also in 431 

Figure 6, which points out that the adjusted commanded control u differs from the actual control au . 432 

Moreover, (modest) displacements from the nominal trajectory arise also as an effect of the gravitational 433 

perturbations. These are related to the harmonics of the geopotential, as well as to the Moon and Sun pull. Albeit 434 

these deviations were neglected while determining the optimal trajectory, these terms are retained while testing 435 

VTD-NOG & PD-RM. As a result, ( ), ,r t na a a  contain all the mentioned perturbations of a gravitational nature, 436 

 
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

                
H M S H M S H M S

r r r r t t t t n n n na a a a a a a a a a a a= + + = + + = + +  (51) 437 

where superscripts H, M, and S denote respectively the contributions of the geopotential harmonics, the Moon, 438 

and the Sun. The numerical simulations consider all the harmonics with magnitude 
610lmJ − , i.e. 2J  3J , 4J , 439 

22J , and 31J . 440 

In the following, an estimate of the maximum amplitude of the enviromantal torque eM  is determined. The 441 

magnitude of the residual magnetization torque is bounded by 0maxB m  where maxB  is the maximum amplitude of 442 

the geomagnetic field during spaceflight, and 0m  is the magnitude of the magnetic dipole moment due to 443 
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residual magnetization. The maximum amplitude of the geomagnetic field is achieved when the spacecraft is 444 

closest to the Earth and is of the order of 10-7 T. A residual magnetization on the spacecraft may have an order of 445 

1 A m2. Thus, the maximum amplitude of the torque due to residual magnetization moment has an order of 446 

magnitude of 10-7 N m. Using the well-known expression for the gravity-gradient torque reported in Sidi 1997, it 447 

is easy to obtain that each component of that torque is bounded by 448 

 ( ) 3

0 03

3
1.54 10  N mx y

LEO

I I
R

 −− =   (52) 449 

An estimate of the amplitude of the aerodynamic torque is given by (cf. Pisacane 2005) 450 

 
2

,

1

2
D R p mc A v r  (53) 451 

where Dc  is the drag coefficient, A is the aerodynamics reference surface of the spacecraft,   is the atmospheric 452 

density, Rv  is the spacecraft velocity relative to the atmosphere, and ,p mr  is the distance that separates the center 453 

of pressure from the mass center. Magnitudes   and Rv  take their largest values at the initial time (at LEO), 454 

which corresponds to   of the order of 12 310  kg m− −  and 7.174 km secRv = . Thus, setting 2Dc = , 
21 mA = , 455 

, 1 mp mr =  one obtains the maximum amplitude of the aerodynamic torque, which has order of  10-4 N m. The 456 

magnitude of the solar radiation torque is at most of the order of 10-5 N m (cf. Pisacane 2005). Thus, after 457 

summing all these disturbing torques, each component of the total environmental torque eM  has at most an 458 

order of 10-3 N m. Since the magnitude of each component of the control torque cM  can reach 0.5 N m, the 459 

effects of eM  are negligible. As a result, eM  is not included in the simulations being presented. 460 

As a first step, the guidance and control architecture of interest has been tested with the inclusion of the 461 

nonnominal conditions exclusively related to gravitational perturbations and to attitude motion. The reference 462 

epoch, corresponding to the initial time, is set to 1 January 2020 at 12 UTC, whereas the initial absolute i  is set 463 

to 0. The acronym GP (“gravitational perturbation”) labels the first column of Table 1, which collects the related 464 

results attained in a single simulation, i.e. the final displacements regarding the state components of interest. The 465 

numerical results demonstrate the excellent accuracy of the guidance and control methodology in this context. 466 
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However, further perturbations are responsible of nonnominal flight conditions. Monte Carlo (MC) 467 

campaigns are run for the purpose of getting several statistical information on accuracy of VTD-NOG & PD-468 

RM, with stochastic inclusion of the most relevant perturbations. In particular, the initial conditions are 469 

perturbed by introducing an error on the initial latitude and radius, with Gaussian distribution, zero average value 470 

and standard deviations 
( )
0


  (for 

0 ) and 
( )

0r


 (for 
0r ) respectively equal to 0.085 deg  and 10 km. The former 471 

value corresponds to an out-of-plane distance of 10 km. The velocity deviation has direction distributed 472 

uniformly over a unit sphere, whereas the velocity magnitude has displacement with zero mean value and 473 

standard deviation 
( )
0 30 m secv

= . Moreover, errors on the initial attitude angles and rates are introduced. All 474 

these displacements have Gaussian distribution and zero mean. Their standard deviation equals 10 deg for the 475 

initial Euler angles and 10 deg/sec for the initial attitude rates. Finally, because the thrust magnitude can exhibit 476 

reduced (although nonnegligible) fluctuations, the perturbation of the thrust acceleration is modeled using a 477 

trigonometric function with stochastic coefficients, 478 

 
5 5

0 0 5* *
1 1

2 2
1 sin cosp

k k

k kf f

k t k t
n n a a

t t

 
+

= =

    
= + +    

   
     

   (54) 479 

where 0

pn  represents the perturbed value of 0n , while the coefficients  
1, ,10k k

a
=

 have a Gaussian distribution 480 

with zero mean and 0.01 as the standard deviation. Let 0m  denote the initial spacecraft mass. Because the thrust 481 

magnitude is no longer constant, Equation (1) is replaced by 482 

 0 0 0

0

     where     
p pn m nT m

m m m c
= = −  (55) 483 

At the end of VTD-NOG & PD-RM, two parameters are calculated, i.e. the average value and the standard 484 

deviation for all of the quantities of interest. 
____

  and 
( )  represent the average error and standard deviation of 485 

  hence forward. A MC campaign is performed, including 100 numerical simulations: and assuming all the 486 

previously perturbations. Figures 7 through 16 illustrate the time histories of  0

pn , the state variables of interest, 487 

the torque components, and the principal angle (cf. Schaub and Junkins 2003) that relates the actual and the 488 
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commanded rotation matrices, R and cR  (for a single case). Both the altitude and the velocity components 489 

exhibit nonnegligible deviations from the respective nominal values. Specifically, the time histories of altitude 490 

and transverse velocity (cf. Figs. 8 and 11) resemble the respective optimal time histories, although the flight 491 

times of perturbed paths vary. Moreover, from inspection of Figs. 9, 10, and 12, it is apparent that the perturbed 492 

time histories of latitude, radial velocity, and normal velocity exhibit nonnegligible deviations from the 493 

respective nominal values; these displacements decrease in time, up to reaching modest values at orbit injection. 494 

The torque component yM  (corresponding to pitch motion) has an oscillating time behavior, with average 495 

amplitude that decreases in time, as shown in Fig. 14. Instead, the remaining two torque components reach 496 

modest values (never exceeding 0.03 Nm). Component yM  in Fig. 14 shows nonnegligible oscillations that are 497 

closely related to the oscillations presented by the commanded attitude. The oscillations of yM  have a 498 

decreasing amplitude, with the exception of the time interval that precedes orbit injection. This is due to the fact 499 

that while approaching the final time the commanded control, yielded by VTD-NOG and directly related to the 500 

commanded attitude (cf. Fig. 6), exhibits fast time variations, aimed at reducing the injection errors. This is 501 

consistent with the time history of the displacement angle (cf. Fig. 16), which also shows an increase in 502 

amplitude while approaching the final time. Overall, the final errors at injection are quite satisfactory, as shown 503 

in Table 1, which reports also the statistics on the time of flight. From inspection of this table it is apparent that 504 

VTD-NOG & PD-RM ensures orbit insertion with great accuracy, in spite of the relatively large sampling time. 505 

In addition, the mean time of flight approaches the nominal value, while the related standard deviation is modest.  506 

On an Intel i7-4700MQ @ 2.40 GHz, the runtime of the guidance and control algorithm at hand takes 1.91 507 

hours. Because the nominal time of flight exceeds 50 days, this relatively short runtime ensures that VTD-NOG 508 

& PD-RM can be run in real time. 509 

 510 

 511 

 512 

 513 



24                                              Pontani, 22 May 2020 

 

CONCLUSION 514 

This research addresses a new, real-time, feedback guidance and control architecture tailored to space 515 

vehicles and applied to a low-thrust orbit transfer, from a low Earth orbit to the geostationary orbit, in the 516 

presence of nonnominal flight conditions. Two main parts, which interact iteratively, compose the architecture at 517 

hand, i.e. (a) the variable-time-domain neighboring optimal guidance (VTD-NOG) and (b) a proportional-518 

derivative-like attitude control scheme that uses rotation matrices (PD-RM). VTD-NOG is a guidance algorithm 519 

aimed at identifying the corrective maneuvers, based on the second-order optimality conditions. The introduction 520 

of a normalized time domain for the nominal path avoids the numerical difficulties related to the gain matrices, 521 

which do not diverge for the entire flight. Both the updating relation for the flight time and the guidance ending 522 

condition are consistent with the optimality conditions. VTD-NOG identifies the desired path corrections, which 523 

are yielded by a commanded thrust direction with discontinuous time history. Because the steering direction 524 

coincides with the spacecraft longitudinal axis, the actual attitude (and thrust direction) must converge to the 525 

desired (commanded) attitude as quickly as possible. PD-RM, a proportional-derivative algorithm that employs 526 

rotation matrices, is intended to perform this task. The attitude control action is actuated by means of reaction 527 

wheels. The guidance and control architecture at hand is tested on a LEO-to-GEO orbit transfer. Gravitational 528 

perturbations, fluctuations of the propulsive thrust, and initial condition errors are introduced in the numerical 529 

simulations, and yield three-dimensional perturbed transfers. Extensive Monte Carlo campaigns show that orbit 530 

insertion at GEO occurs with excellent accuracy, thus proving that VTD-NOG & PD-RM is an effective 531 

guidance and control technique for the low-thrust transfer of interest. VTD-NOG & PD-RM is formulated with 532 

reference to a quite general dynamical system, thus it may be regarded as an effective architecture for spacecraft 533 

guidance and control, even in different mission scenarios. 534 
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TABLE 1. Outputs using VTD-NOG & PD-RM 599 
   600 

 
___

fr  (km) 
___

f  (deg) 
____

rfv  (m/sec) 
____

tfv  (m/sec) 
___

nfv  (m/sec) ft  (days) 

GP −0.010 −5.9 e−9  −0.050 −0.375 3.3 e−5  50.36 

MC −1.687 −4.2 e−8  −0.120 −0.856 1.9 e−3  50.40 

 ( )
fr


 (km) ( )
f


  ( )

rfv


 (m/sec) ( )
tfv


 (m/sec) ( )
nfv


 (m/sec) 
( )
ft


 (days) 

MC 11.945 3.1 e−7  1.102 1.774 1.6 e−3  0.21 

Legend. GP = nominal conditions, MC = Monte Carlo campaign with all nonnominal flight conditions; 

ft = average time of flight 
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