
Mechanics of Soft Materials            (2020) 2:13 
https://doi.org/10.1007/s42558-020-00029-0

ORIGINAL PAPER

Modeling solvent dynamics in polymers with solvent-filled cavities

Michele Curatolo1 · Paola Nardinocchi1 · Luciano Teresi2

Received: 6 August 2020 / Accepted: 26 August 2020
© The Author(s) 2020

Abstract
Dynamics of solvent release from polymer gels with small solvent-filled cavities is investigated starting from a thermodyna-
mically consistent and enriched multiphysics stress-diffusion model. Indeed, the modeling also accounts for a new global
volumetric constraint which makes the volume of the solvent in the cavity and the cavity volume equal at all times. This indu-
ces a characteristic suction effect into the model through a negative pressure acting on the cavity walls. The problem is solved
for gel-based spherical microcapsules and microtubules. The implementation of the mathematical model into a finite element
code allows to quantitatively describe and compare the dynamics of solvent release from full spheres, hollow spheres, and tu-
bules in terms of a few key quantities such as stress states and amount of released solvent under the same external conditions.

Keywords Polymer gels · Microcapslules dynamics · Solvent release · Suction pressure

1 Introduction

In the last years, solvent release from polymer gels has been intensively studied, as it is able to drive quite large deformations
in polymer-based structures. Solvent release in response to specific stimuli is used in multi-responsive materials to meet
clearly defined functional demands such as the onset of specific deformation patterns and the delivery of fixed amounts
of solvent to the external environment. Multifunctional devices based on these multi-responsive materials are common in
both nature and industries [1–8]. Solvent release drives a wide variety of deformations in multi-responsive bulk materials,
depending on material architecture, boundary conditions, and external stimuli, only to cite a few key factors [4, 9–14]. On
the other hand, the dynamics of the release process depends on the deformations which can significantly affect the rate of re-
lease; then, its control is as important as the control of the shape changes induced by the release in polymer-based structures.

Solvent release processes have been largely studied within the frame of the so-called stress-diffusion models which view
the solvent-polymer mixture as a single homogenized continuum body allowing for a mass flux of the solvent [13, 15–18].
Typically, stress-diffusion models are based on the Flory-Rehner constitutive theory which describes the thermodynamics
of the solvent-polymer mixture. Mostly, they deal with the analysis of the steady response of polymer gels under constraint
and applied forces [11, 19–24]; however, the transient dynamics occurring during swelling or drying processes have been
studied, too [13, 15, 17, 18, 25–27].

A different story has been going on when small solvent-filled cavities are present in the bulk polymer: solvent release
comes from bulk as well as from cavities and the release changes the size of cavities which, on its turn, depends on the amount
of released solvent. The process has been recently observed in the solvent-filled micro-cavities which are the elementary
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units of fern sporangium [3, 5]. Therein, due to dehydration, the solvent is released from both the walls of the elementary
units and the cavities and a shooting mechanism allowing for seed dispersal is produced when solvent cavitation is attained
within the cavities.

In [28], the release process from a filled cavity has been studied in a partially constrained gel subject to traction, within
the context of stress-diffusion theories. As usual, the driving force of the process is the change of the chemical potential
of the environment which determines a change of chemical potential of the solvent in the gel. The proposed quasi-static
analysis is controlled by the above change; the volume of the cavity, which is filled with an incompressible fluid whose
volume is controlled by changing the temperature, is a further control parameter of the process. The problem is solved in
two steps: first, the deformation of the gel caused by the change of the chemical potential of the solvent and by loads is
evaluated at fixed cavity volume; then, the cavity volume is changed by changing the thermal expansion of the fluid filled
in it. The variation of the size of a small cavity inside a swollen elastomer when environmental humidity changes and
drying processes take place has been studied also in [29, 30] under different constraints and loading conditions. Therein,
the steady analyses show that, starting from an initial swelling state, the cavity shrinks with the increase of humidity while
the cavity grows with the decrease of humidity and the deformation state in the swollen elastomer for different humidity is
evaluated. Differently from the model proposed in [28], the cavity volume freely changes at the different equilibrium states
corresponding to different values of the environmental humidity.

A first attempt to describe the dynamics of the solvent release from a filled cavity other than from the bulk has been
established in [31], where a study inspired by the observations in [3, 5] has been presented. It has been shown as dynamics of
solvent release from cavities filled with incompressible solvents, at any time before the onset of cavitation, is strongly driven
by the condition that the volume of the cavity has to match the volume of the water it contains. In [31], this condition has
been interpreted as a global constraint which is enforced by adding a term to the total potential energy. Correspondingly, the
Lagrange multiplier enforcing the constraint identifies the inner pressure which the solvent inside the cavity and the cavity
walls exchange one with another. The evolving inner pressure is a key element of the model which makes it truly different
from standard stress-diffusion models in the absence of filled cavities. However, in [31], it was assumed that the chemical
potential of the solvent which fills the cavity cannot change during the dynamics, neglecting the change in the chemical
potential due to the inner pressure. As a consequence, the system cannot attain any steady states but goes on de-hydrating;
the evolution of the system is halted when the inner pressure gets the typical values of water cavitation.

In the present paper, we wish to make some progress towards addressing this question; we deal with the dynamics of water
fluxes from hydrogel cavities induced by a change in the environmental conditions. As the well-known incompressibility
constraint requires that any change in volume of a gel must be accompanied by uptake or release of solvent and holds every-
where and at all times, the so-called suction effect requires that the volume of the solvent in the cavity and the cavity volume
must be the same at all time [31]. In our model, the reaction to the volumetric constraint is the inner pressure exerted by
the solvent which fills the cavity on the cavity walls. The inner pressure, under some circumstances which will be discussed
in the paper, may also attain negative values [3, 5, 14]; in this case, it determines a change in the chemical potential of the
solvent which may attain the values of the chemical potential of the environment, so determining a steady state of the system.
The above circumstances are identified by material parameters and have driven the distinction between poorly and highly
swollen gels. The first ones mainly release solvent from the cavity and pressure in the cavity walls takes negative values; by
contrast, highly swollen hydrogels mainly release solvent from the walls and pressure does not take negative values.

The control of solvent release from the capsule is achieved through an accurate change of the outer chemical potential
which is assumed to depend on the chemical conditions of the outer environment. We show as, at the same changes of the
outer chemical potential, the amount of released solvent is smaller and smaller and can be controlled by the differential
changes of the outer chemical potential, a condition which is relevant in drug release applications. We also show the
difference in solvent release from a full sphere and a capsule during the dynamics of the process; we also show the
difference between the two situations in terms of stress state. Finally, a comparison between solvent dynamics in spherical
microcapsules and cylindrical microtubules is also presented in the Appendices A and B.

2 Stresses and diffusion in polymer gels

Swelling and shrinking of polymer gels can be described through a nonlinear field theory which views the solvent-polymer
mixture as a homogenized continuum body, allowing for a mass flux of the solvent [15, 17–19, 25]. In the following, we
shortly review the key elements of the model originally presented in Ref. [18] and then improved in Refs. [14, 27, 31, 32]
with special emphasis on swelling and shrinking dynamics.
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Usually, the reference state of a polymer body is identified by its dry state Bd ; we denote with Xd ∈ Bd a material point
and with t ∈ T an instant of the time interval T . The displacement field ud(Xd, t) ([ud ]=m) from Bd gives the actual
position x at time t of the point Xd : x = f (Xd, t) = Xd + ud(Xd, t) and the molar solvent concentration per unit dry
volume cd(Xd, t) ([cd ] =mol/m3) gives the number of moles per unit dry volume. Displacement ud and concentration cd

fields are the state variables of our multiphysics problem and are coupled by the volumetric constraint1

Jd = detFd = Ĵd (cd) = 1 + Ωcd with Fd = ∇f = I + ∇ud , (2.1)

which implies that any change in volume of the gel is accompanied by uptake or release of solvent where Ω denotes the
molar volume of the solvent ([Ω] = m3/mol).

The thermodynamics of the model is based on the Flory-Rehner free energy representation [33, 34] which assumes that
the free energy ψ per unit dry volume is additively decomposed into an elastic component ψe which depends on Fd and a
polymer-solvent mixing energy ψm which depends on cd . The corresponding relaxed free energy ψr includes the volumetric
constraint which involves the pressure p representing the reaction to the volumetric constraint. The latter maintains the
volume change Jd due to the displacement equal to the one due to solvent content Ĵ (cd). The constitutive equations for
the reference (also called Piola-Kirchhoff) stress Sd ([Sd ] = N/m2) and the chemical potential μ of the solvent within the
polymer ([μ] = J/mol) come from standard thermodynamic arguments [35] and prescribe that

Sd = Ŝd(Fd) − p F∗
d with Ŝd(Fd) = ∂ψe

∂Fd

, (2.2)

and

μ = μ̂(cd) + p Ω with μ̂(cd) = ∂ψm

∂cd

. (2.3)

The term F�
d = JdF

−T
d denotes the adjugate of the deformation gradient. From Eq. 2.2, the (Cauchy) stress T can be

evaluated; it holds: (1/Jd)T = SdFT . In Eq. 2.3, the constitutively determined component μ̂(cd) of the chemical potential
can be interpreted as the osmotic pressure, whereas the term pΩ is the mechanical contribution to the chemical potential
[13]. Finally, it is worth noting that the pressure term in both the constitutive equations for the stress and the chemical
potential makes the elastic and diffusive problem strongly coupled also from a dynamical point of view.

The Flory-Rehner thermodynamic model, largely used in literature when continuum models of gels are considered [15–
18, 20], assumes a neo-Hookean free elastic energy and a mixing free energy derived by statistical mechanics procedures.
The free energies (see for details [14, 17, 18, 32]) include the physical parameters G ([G] = J/m3) being the shear modulus
of the dry polymer, R ([R] = J/(Kmol)) the universal gas constant, T ([T ] = K) the temperature, and χ the non-
dimensional Flory parameter. Equations 2.2–2.3 together with the assumed free energies deliver the constitutive equations
for the dry-reference stress Ŝd(Fd) and for chemical potential μ̂(cd) in the form

Ŝd(Fd) = GFd and μ̂(cd) = μ̂(Jd) = R T

(
log

Jd − 1

Jd

+ 1

Jd

+ χ

J 2
d

)
, (2.4)

where the volumetric constraint (2.1) has been exploited to write the chemical potential in terms of Jd . A representation of
the reference solvent flux hd ([hd ]=mol/(m2 s)) which is consistent with the dissipation principle is

hd = hd(Fd , cd, p) = −Dd(Fd , cd)∇(μ̂(cd) + p Ω), (2.5)

provided that the diffusion tensor Dd = Dd(Fd , cd) ([Dd ] = mol2/(s m J)) be positive definite.2 We assume that diffusion
remains always isotropic during any process and increases with solvent concentration. It drives a representation formula of
Dd as

Dd(Fd , cd) = D

RT
cdC

−1
d , Cd = FT

d Fd , (2.6)

with D ([D] = m2/s) the diffusivity [15, 17, 25].

1It is often called incompressibility constraint as it is due to the incompressibility of both solvent and polymer.
2The same physics can be characterized in terms of actual quantities by writing hs = −Ds (Fd , cs)gradμs . In this latter formula, since the chemical
potential is not a density, the spatial to material transformation involves just the change of variable and μ = μs ◦ f ; on the contrary, the spatial
concentration c denotes the number of solvent moles, reckoned per unit current and cd = J (c ◦ f ). Finally, the differential operator grad denotes
derivative with respect to x = f (Xd, t) and hd = JF−1

d (h ◦ f ) and Dd = JF−1(D ◦ f )F−T .
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The initial-boundary value problem describing the dynamics of the gel is the following: given the domain Bd × T , find
(ud , cd, p) such that the following bulk balance equations

0 = divSd and ċd = −divhd on Bd × T , (2.7)

mechanical boundary conditions

Sd m = t on ∂tBd × T and ud = ūd on ∂uBd × T , (2.8)

chemical boundary conditions

−hd · m = q on ∂qBd × T and μ = μe on ∂cBd × T , (2.9)

volumetric constraint

Jd = Ĵd (cd) on Bd × T , (2.10)

and initial conditions

ud = uo, cd = co and p = po on Bd × {0}, (2.11)

hold. In Eqs. 2.8 and 2.9, ∂tBd , ∂uBd , ∂qBd , and ∂cBd represent the portion of the boundary where it is controlled the
force t, the displacement ū, the solvent flux q, and the chemical potential μe, respectively. Moreover, a dot denotes the
time derivative, div the divergence operator, and m the outward unit normal to ∂Bd . It is worth noting that the balance
equations (2.7) constitute a system coupled by both the volumetric constraint (2.1) and the constitutive equations (2.2) and
(2.3). As we assume both the bulk force and the bulk solvent source to be null, the state of the system is determined by the
boundary conditions; in particular, solvent uptake or release, which takes place at the boundary, depends on the applied force
t and on the external chemical potential μe [23]. The solvent volume contained in the gel at time t is easily determined by

Vs(t) =
∫
Bd

Ω cd(Xd, t)dVd, [Vs] = m3. (2.12)

Here, we consider as main driving force of solvent dynamics the difference between μe, and the chemical potential μ of
the solvent within the polymer. Thus, Eq. 2.92, imposed at the boundary, may be interpreted as a boundary condition which
relates the solvent concentration cs , and the pressure p at boundary to the value of μe:

μ̂(cs) + p Ω = μe and cd = cs, on ∂cBd × T . (2.13)

It is worth noting that Eq. 2.13 is a nonlinear equation which cannot be solved explicitly for cs ; moreover, on ∂cBd , where
cs is controlled through Eq. 2.131, the solvent flux q is a reaction, unknown a priori. Typically, as standard for reactions,
q is evaluated during post-processing. It yields a poor approximation of the solvent flux, which is a relevant quantity in
solvent dynamics. To overcome the issue, in the finite element implementation of the problem, we use the following integral
versions of the boundary conditions controlling the solvent concentration [14, 27, 31]:

0 =
∫

∂cBd

[ μ̂(cs) + p Ω − μe ] · c̃s dVd and 0 =
∫

∂cBd

[ (cd − cs) q̃ + q (c̃d − c̃s ) ] dVd

where c̃d , c̃s , and q̃ are test functions of the finite element method. The first equation is the integral form of Eq. 2.131.
The second equation enforces the constraint cd = cs by considering q as an additional state variable, having the role of a
Lagrange multiplier: it provides a better evaluation of q and of other q-based quantities.

Finally, another important quantity is the overall time rate of solvent volume Q̇ crossing the boundary per unit time and
unit area, defined as

Q̇ = Ω

∫
∂Bd

q dAd, [Q̇] = m3/s ; (2.14)

note that q > 0 is an inward flux. By evaluating Q̇ on the boundary of the cavity, it is possible to compute the time course
of the solvent content in the cavity.

3 Solvent release from a polymer with small solvent-filled cavities

Here, we tackle the problem of solvent release from a gel with a small cavity and start from a fully swollen state with the
cavity completely filled with solvent. Dynamics of solvent release when small solvent-filled cavities are present in the bulk
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polymer need further remarks. Being the solvent incompressible, the cavity volume must always be equal to the volume of
the solvent it contains; thus, when solvent is pumped out of the cavity, the cavity volume reduces and the cavity wall is pulled
by an increasing negative pressure which affects the chemical potential of the solvent inside the cavity. The consequence
is that a steady, yet not homogeneous, state can take place. As is will be discussed in the following, the suction (negative)
pressure is determined by different material conditions which make possible or not the existence of a steady state other than
the initial one.

Let us consider a gel Bd and its cavity Cd at dry state. The corresponding swollen, steady, and stress-free state is Bo and Co

denotes the cavity in this state which has a size different from Cd ’s size [29, 30]. This swollen state is uniquely determined
by the conditions Sd = 0 and μ = μo. From Eq. 2.4, it follows a relation between the uniform swelling ratio λo of the gel
and μo, with μo the value of the chemical potential of the solvent in the bath and in the cavity:

R T

(
log

λ3o − 1

λ3o
+ 1

λ3o
+ χ

λ6o

)
+ G

λo

Ω = μo. (3.15)

The homogeneous state Bo is not equilibrated if a change in the chemical potential is assigned at the boundary. Let us
distinguish between the boundary ∂eBd of the polymer gel body and the boundary ∂iBd of the cavity; we reserve the symbol
μe for the chemical potential of the external bath whereas denote with μi the chemical potential of the solvent within the
cavity. In general, if a chemical potential μe < μo is assigned on ∂eBd , diffusion starts and solvent is expelled from both
the gel and the cavity until a new equilibrium state is attained (see Fig. 1).

In this investigation, we focus on the dynamics of solvent concentration in the gel under controlled changes of μe.
Dynamics is described by Eq. 2.7 and is driven by the changes in the chemical boundary conditions (see Eq. 2.9). We
assume that (i) the cavity stays always filled with solvent, that is, an incompressible liquid and set μi = Ω pi(t) with the
pressure term pi representing the suction pressure; (ii) the outer environment is filled with air, that is, an ideal gas whose
content in water determines the value of the chemical potential which can be related to the relative humidity of the air, and

Fig. 1 We consider two polymer
spheres immersed in a solvent,
without (a) and with (b) a cavity
completely filled with the same
solvent; both spheres are in a
free-swollen, steady state. When
the spheres are removed from
the bath (bottom row), the
solvent is released from both the
bulk polymeric matrix and the
cavity. The key point for the
sphere with the cavity is that the
change of the solvent volume in
the cavity yields a change of the
pressure acting on the cavity
wall, which plays an important
role in the dynamics of solvent
release. This inner pressure can
become negative, and brings a
stop in the dynamics; thus, also
non homogenous steady states
are possible, having different
conditions on the outside
boundary and in the inside one
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set μe = μ̂e(t) with μ̂e(t) the (unique) control law of the problem (see cartoon in Fig. 3). So, in the end, we write down at
any time t ∈ T :

Sd m = −pe F�
d m = 0 and μe = μ̂e(t) on ∂eBd , (3.16)

and

Sd m = −pi F�
d m and μi = Ω pi(t) on ∂iBd , (3.17)

where we neglected the atmospheric pressure pe. Equations 3.16 and 3.17 show that a steady state is attained after a change
of the external chemical potential from μo when μi attains the same value μe. On the other hand, as in the dehydration
process μe < 0, a negative pressure pi is required to get a steady state. The negative pressure pi = pi(t) realizes the suction
effect and is modelled as the reaction to the volumetric coupling between the volume V c

s = V c
s (t) of the solvent in the cavity

and the volume of the cavity Vc = Vc(t),

Vc(t) = V c
s (t) , (3.18)

which must hold at each instant t ∈ T as solvent flows out of the cavity (see also [31]). It is worth noting that the global
constraint (3.18) adds a further coupling between the state variables of the multiphysics problem other than the common
local volumetric constraint (2.1). Constraint (3.18) can be enforced by considering the augmented total free energy defined
by∫
Bd

ψr dVd − pi (Vc − V c
s ), (3.19)

so that the cavity pressure pi can be viewed as the Lagrange multiplier enforcing the constraint. The cavity volume Vc

depends on the actual configuration Ct = f (Cd , t) of the cavity Cd at time t , and can be measured by evaluating the following
integral

Vc(t) =
∫
Ct

dv = −1

3

∫
∂iBd (t)

x · n da = −1

3

∫
∂iBd

(Xd + ud) · F�
d m dAd, (3.20)

with n the normal to ∂iBd(t) = f (∂iBd , t).3 The solvent volume at time t is the sum of the initial solvent content V c
s (0)

of the cavity, plus the solvent volume Qi(t) the has crossed the cavity boundary during the time interval (0, t), that is,
V s

c (t) = V c
s (0) + Qi(t). The initial solvent content equals the initial cavity volume Vc(0); thus, from Eq. 3.20 it follows:

V c
s (0) = Vc(0) = −1

3

∫
∂iBd

(Xd + uo) · F�
o m dAd, (3.21)

with F�
o = Jo F−T

o and Jo the adjugate and the Jacobian determinant of the initial swollen deformation gradient Fo = λoI.
The solvent volumeQi(t) that has crossed the cavity boundary entering into the gel in the time interval (0, t) can be evaluated
by the time integration of a formula analogous to Eq. 2.14; it holds

Qi(t) =
∫ t

0
Q̇i(τ ) dτ = Ω

∫ t

0

∫
∂iBd

q dAd dτ = −Ω

∫ t

0

∫
∂iBd

hd · m dAd dτ . (3.22)

4 Control of solvent release from spherical polymer capsules

Let us consider a polymer sphere with a small sphere cavity, that is, a spherical capsule. Polymer-based microcapsules can
form a covering to substances which have to be protected from modification or degradation before being released at the
correct location [36–38] and can also be used in microfluidic systems where solvent release processes can be implemented
to drive specific functional demands [39, 40]. In both cases, the control of solvent release and of its rate is important and
requires a study which combines the nonlinear and transient mechanics of the micro-system with the dynamics of the release
process.

3We note that the internal boundary of the gel ∂iBd coincides with the boundary of the cavity ∂Cd , proviso an opposite orientation of the normal.
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4.1 Spherical dynamics and solvent release conditions

The dry state of the polymer is a hollow sphere Bd with radius rd , and its cavity is a smaller sphere Cd with radius rc. From
Eq. 3.15, it follows that the corresponding swollen state, assumed steady and stress free, is the sphere Bo with radius λo rd ;
we denote with Co the cavity at the swollen state with radius λo rc. Taking Bo as the initial state, we change the chemical
potential μe: diffusion starts, solvent is released from both the bulk and the cavity, and eventually, a new equilibrium state
is attained.

This process has spherical symmetry, and the deformation of the body can be described as x = fd(r, t) = (r + u(r, t))n,
and cd = cd(r, t), with r the radial coordinate, u the radial displacement, and n the unit radial vector. Under these
assumptions, it holds

Fd = λr n ⊗ n + λθ (I − n ⊗ n) with λr = f ′
d = 1 + u′ and λθ = fd

r
= 1 + u

r
, (4.23)

being λr and λθ , the radial and hoop stretch, respectively, and a prime denoting derivation with respect to the radial
coordinate r; from Eq. 4.23, it follows Jd = λrλ

2
θ .

The Piola-Kirchhoff stress Sd has only the radial σr and the circumferential σθ components different from zero:

σr = G λr − p λ2θ and σθ = G λθ − p λr λθ . (4.24)

The Cauchy stress T = Sd FT /Jd has components:

Tr = G λr/λ
2
θ − p and Tθ = G/λr − p. (4.25)

The reference solvent flux is described by a single scalar field

hd = −D cd

R T
λ−2

r μ′, (4.26)

and the corresponding component of the actual solvent flux h is h = hd/λ2θ . The global volume constraint (3.18) rewrites
considering that

Vc(t) = 4

3
π r(t)3 = 4

3
π(rc + u(rc, t))

3 = 4

3
π r3c λθ (rc, t)

3,

Q̇i(t) = Ω4π r2c

(
−D cd(rc, t)

R T
(1 + u′(rc, t))−2μ′(rc, t)

)
,

V c
s (0) = 4

3
π(λo rc)

3. (4.27)

The initial-boundary value problem describing the dynamics of the spherical gel is the following: given the domain
(rc, rd) × T , find (u, cd, p, pi) such that, at any time t ∈ T , the bulk balance equations

σ ′
r + 2

r
(σr − σθ ) = 0 and ċd = −(h′

r + 2

r
hr) for r ∈ (rc, rd), (4.28)

the external boundary conditions

σr = 0 and μ = μe at r = rd, (4.29)

the internal boundary conditions

σr = −λ2θ pi and μ = Ω pi at r = rc, (4.30)

the volumetric constraint

Jd = λrλ
2
θ = Ĵd (cd) for r ∈ (rc, rd), (4.31)

the global volumetric constraint

Vc(t) = V c
s (0) + Qi(t), (4.32)

the initial conditions

u = (λo − 1) r, cd = (λ3o − 1)/Ω and p = po for r ∈ (rc, rd) and t = 0, (4.33)

hold.
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Fig. 2 Pressure-volume curves with χ = 0.2, T = 293 K, Ω = 1.8 · 10−5 m3/mol, external radius rd = 1 cm, cavity radius rc = 0.9 cm and
D = 10−9 m2/s. Orange background denotes the range of cavity volume where pressure is positive, while pink denotes the region with negative
pressure. The panels correspond to poorly swollen gels (ε = 3 · 10−1, λo = 1.15, panel (a)) and highly swollen gels (ε = 3 · 10−3, λo = 2.45,
panel (b)). a Pressure takes negative values at Vc(t)/Vc(0) ≈ 0.8 and, depending on the value of μe, equilibrium states are theoretically achievable
from that cavity volume ratio. b A high positive pressure region occurs because the cavity gets compressed by the walls of the microcapsule which
shrink because solvent exits from them; in this case pressure becomes negative at Vc(t)/Vc(0) ≈ 0.15

We assign a change in the external chemical potential μe = μ̂e(t), with μ̂e(t) a step-wise constant function. A step
change of μ̂e(t) yields a transient solvent release which stops when a new equilibrium state is attained; a further step change
of the external chemical potential produces a new release until another steady state is reached. It turns out that by tuning
μ̂e(t), it is possible to control both the duration release and the amount of solvent exiting from the microcapsule.

4.1.1 Highly and poorly swollen gels

When a polymer body has small cavities and solvent can be released from both the cavity and the bulk, it is especially
important to distinguish between highly and poorly swollen gels as it can determine a very different dynamics. Equation 3.15
is the right tool to do it. Indeed, the swelling ratio λo corresponding to μo which makes the difference between a highly and
a poorly swollen gel depends on the shear modulus G and the parameter χ which describes the polymer-solvent affinity. Let
us introduce the dimensionless parameter ε = GΩ/RT , which is the ratio between the two key material constants of the
mechanical and chemical free energy.4 Then, we define a regime of poorly swollen gels when:

ε � 10−1 and χ � 0.8 or ε � 10−1 and χ � 0.8. (4.34)

In this case, Eq. 3.15 yields λo � 1.5. On the other hand, we define a second regime of highly swollen gels when:

ε � 10−1 and χ � 0.8. (4.35)

In this case, Eq. 3.15 yields λo � 2. For highly swollen gels, due to the great amount of water inside microcapsule walls,
solvent is firstly released from the gel rather than from the cavity. As a consequence, suction effect does not become apparent
and the inner pressure pi takes non-negative values (see Fig. 2, panel (b)). Under these conditions, the new equilibrium state
is attained at very low ratios Vc(t)/Vc(0) � 0.1.

By contrast, for poorly swollen gels, solvent is mainly released from the cavity and the inner pressure takes negative
values. Under these conditions, the new equilibrium state is attained at higher ratios Vc(t)/Vc(0) with respect to the former
case (see Fig. 2, panel (a)).

It is worth noting that the suction effect induced by a negative inner pressure can produce mechanical instabilities and
buckling phenomena; the study of these phenomena is beyond the scope of the present work.

4.2 Poorly swollen gel microcapsules

We limit our analysis to problems where the thermodynamical equilibrium is attained for Vc(t)/Vc(0) > 0.3 and the
conditions corresponding to the first regime hold. The aim is producing a stop-and-go mechanism of solvent fluxes from
microcapsules through the accurate tuning of the external chemical potential μe.

4Indeed, the ratio RT//Ω has the same role for the chemical energy as that of the shear modulus G for the elastic energy.
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We consider gels whose material and geometrical characteristics are G = 50 MPa, χ = 0.2, external dry radius rd = 1
cm, cavity dry radius rc = 0.9 cm, molar volume of the solvent Ω = 1.8 · 10−5 m3/mol and diffusivity D = 10−9

m2/s; we also set T = 293 K. With these values, the initial solvent content in the microcapsules’s walls is Vs(0) = 0.60
cm3, ε = 0.37, and the initial swelling ratio is λo = 1.1525. The dynamics described by the Eq. 2.72 introduces the
characteristic diffusion time τd = l2/Dε into the model, where l = rd − rc is the characteristic diffusion length; it holds
τd = (rd − rc)

2/Dε 	 105 s.
We assume that the external chemical potential μe changes with the step-wise constant law μ̂e(t), having a step decrease

�μe = −200 J/mol after every time interval �t = 4 · 105 s; for comparison, we also study dynamics due to a single step
�μe = −1e3 J/mol. We start from the initial valueμe = 0 J/mol and stop at the final valueμe = −1e3 J/mol, corresponding
for example, if humidity environment is controlled, to a relative humidity RH = 66.3%.

In Fig. 3 (top panels), we show a cartoon of the initial (left), intermediate (center), and final (right) state of the
microcapsule. In the same figure (middle left panel), we show the time laws μ̂e(t) corresponding to a single-step (green,
dashed) and a step-wise constant function (blue, solid). The same color code is used to represent the corresponding dynamics
represented through the time evolution of a few key elements obtained by solving the coupled stress-diffusion problem. The
pressure inside the cavity pi (middle right panel) corresponding to the two different control laws of μ̂e(t) is represented. It is
always negative and yields an inner chemical potential which contributes to reducing the gradient of the chemical potential
across the wall thickness. Finally, an equilibrium steady state is attained when the inner pressure takes a specific value
which makes null the gradient of the chemical potential. The stop-and-go solvent flux is also shown (bottom left panel); as
expected, solvent flux presents a peak at each time interval �t and solvent peaks decrease with time. The relation between
flux and external chemical potential is nonlinear and it is qualitatively similar to the relation between the uniform swelling
ratio λo and the external chemical potential in Eq. 3.15. Finally, the ratio between the solvent volume Qe expelled from the
capsule and the total initial solvent content V T

s (0) is also shown (bottom right panel) with:

Q̇e = Ω

∫
∂eBd

q dAd, and V T
s (t) = Vs(t) + V c

s (t). (4.36)

Fig. 3 Dynamics of solvent
release from a hollow spherical
gel. Top. Cartoons of the initial
(left) and final (right)
equilibrium state of the
microcapsule; a sketch of a far
from thermodynamical
equilibrium state is also
represented (center). Middle,
left: Time evolution of μe for a
single step (dashed green line)
and for multiple steps (solid
blue line) (left); the same color
code is used to represent the
corresponding dynamics. The
remaining three panels show the
key outcome of the model: the
pressure inside the cavity pi

(middle, right), which has
negative values; (bottom, left),
the actual flux from the external
walls which stops and starts at
each time interval �t ; the ratio
between the solvent volume Qe

expelled from the capsule and
the total initial solvent content
V T

s (0) (bottom, right)
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Fig. 4 Comparison between a spherical and a hollow spherical gel. Top. Actual solvent flux versus time for the full sphere (solid) and the
microcapsule (dashed) corresponding to the single-step law for μe, see Fig. 3 (left); ratio between the solvent volume Qe expelled and the initial
solvent content V T

s (0) versus time for the full sphere (solid) and the microcapsule (dashed). Middle. Contour plot of the hoop stress σθ versus
the radius r and time in the full sphere (left) and in the microcapsule (right). It is worth noting that the hoop stress in the microcapsule is tenfold
than the one in the sphere; moreover, at steady state, the sphere becomes stress free (gray color at t∞), while the microcapsule remains highly
compressed (blue color at t∞). Bottom. Piola-Kirchhoff and Cauchy hoop stresses are compared at the same instant t = 2 · 104 s (dashed black
line in the middle panel)

Precisely, Qe is the solvent volume crossing the external boundary, and comprehend both the solvent initially in
microcapsule’s walls and inside the cavity; V T

s (0) is the volume of solvent initially in the gel walls and within the cavity;
this latter corresponds, as already written, to the initial volume Vc(0) of the cavity.

4.3 Hollow sphere versus sphere

We compare the solvent release from a sphere of radius rd and a hollow sphere having the same external radius rd , with a
spherical cavity of radius rc in terms of fluxes, ratio between the solvent volume expelled from the two polymer structures
and the total initial solvent content and stresses. Firstly, we evaluate the total solvent content V T

s (0) of the sphere which
corresponds to the solvent Vs(0) in its bulk and is determined by the initial value μo of the chemical potential:

V T
s (0) = Vs(0) = 4

3
πr3d

(
λ3o − 1

)
. (4.37)

The analogous quantity V T
s (0) for the hollow sphere is given by:

V T
s (0) = Vs(0) + V c

s (0) = 4

3
πr3d (λ3o − 1) + 4

3
πr3c . (4.38)

Thus, under the same conditions, the hollow sphere contains more solvent, and the difference between the two is given by
the volume of the dry cavity 4πr3c /3. The differences between the two polymer structures are not limited to that there are a
few key aspects of the dynamics during the solvent release which make the two situation quite different.
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The volume of solvent released in the time interval (0, t) from both a full sphere and a microcapsule due to a change
in the chemical potential μe is always measured by its rate Q̇e. Under the single-step decrease of the external chemical
potential μe, corresponding to the single-step control law shown in Fig. 3 (top left panel), the time evolution of the solvent
actual fluxes through the external boundary has the pattern shown in Fig. 4 (top left panel: solid line for the sphere, dashed
line for the hollow sphere). Our result shows that the full sphere releases solvent with a higher flux peak with respect to the
hollow one, which releases the solvent more smoothly. Integrating those lines, the ratio between the amount Qe of released
solvent normalized with respect to the initial total solvent content V T

s (0) can be obtained. Figure 4 (right panel) shows as
the hollow sphere releases more solvent than the full one, under the same condition of external chemical potential.

An important difference between the two release systems is the stress state inside the polymer network. As expected, it
is quite different all along the process. Figure 4 (middle panels) shows as hoop stresses are 1 order of magnitude higher in
the microcapsule than in the full sphere and different from zero at the end of the process. Hence, whereas the full sphere is
stress free at the steady state, the microcapsule presents a not uniform along the radius negative (compression) hoop stress.
Finally, the hoop components of Piola-Kirchhoff and Cauchy stresses are compared in the bottom panel of Fig. 4, dashed
green and purple solid line respectively. The qualitative behavior of the Piola-Kirchhoff and Cauchy stresses for the full
sphere and capsule remains the same for all the dynamics.

5 Conclusions and future perspectives

A study which combines the nonlinear and transient mechanics of polymer-based structures with the dynamics of the release
process from them has been presented. Attention has been restricted to polymers which release solvent from bulk and from
small cavities. The dynamics of these systems is restricted by a global volumetric constraint which forces the solvent volume
inside the cavity and the cavity geometric volume to match all along the process; the inner pressure on the cavity walls which
maintains the constraint evolves in time, taking also negative values under some geometric and material conditions, until a
steady state is attained.

We showed as the control of solvent release from the spherical capsule is achievable through smart changes of the outer
chemical potential. During the dynamics of the process, high-stress states can be attained and maintained also at steady
states. We also showed as steady states are attainable only for poorly swollen gels while highly swollen gels reach very high
positive pressure which makes steady states in the reality unrealizable.

In our opinion, the present work suggests new lines of investigations based on the present analysis adapted for
microcapsules and microtubules made of active polymer networks such as intelligent actively-remodeling biopolymer gels
which can be used for controlled drug release [41] and actively-contractile photo-sensitive elastomers [42]. In these cases, a
localized activation stimulus can deliver very different dynamics and produces smart actuation/delivery systems.
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Appendix A: Cylindrical microtubules

The same approach developed for spherical microcapsule hold when the confined cavities have cylindrical shape. For
example, we consider a cylindrical infinitely long tubule having the same physical and geometrical parameters used for
the microcapsule in the paper. Under free-swelling conditions, the microtubule gets a radius λo rd with λo given by the
Eq. 3.15 and μe = μo. The swollen tubule is the initial state of the our dynamic problem. Likewise we did for the spherical

http://creativecommonshorg/licenses/by/4.0/
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Fig. 5 Top. Ratio Qe/V
T
s (0) versus μ̄ in the microcapsule (dashed line) and in the microtubule (solid line) (left); hoop stress σθ versus

dimensionless radius in the two systems. Bottom. Inflation curves pi versus λθ/λo in the microcapsule (dashed line) and in the microtubules (solid
line) (left); cartoon representing the load condition of a part of the microtubule (right)

capsule, a reduction of the chemical potential μe starts the stress-diffusion mechanism and the solvent is released from
both the bulk and the cavity, until a new steady state is attained. Due to the infinite length of the tubule, attention is
restricted to the radially symmetric plane strain deformation of the cylindrical tubular region described by a deformation
map fd(r, t) = (r +u(r, t))n, with r the radial coordinate, u the radial displacement, and n the unit radial vector. Moreover,
it is also assumed that cd = cd(r, t). Under these assumptions, it holds:

Fd = λrer ⊗ er + λθeθ ⊗ eθ + λze3 ⊗ e3, (5.39)

with λz = λo and λr and λθ the same as for the sphere. Under these conditions, the volume change5 of the tubule is
Jd = λr λθλo; plane stresses and flux are:

σr = Gd λr − p λθ λo, σθ = Gd λθ − p λr λo, hd = −D cd

RT
λ−2

r μ′, (5.40)

whereas σz = Gd λz − p λr λθ . The balance laws of forces and solvent are

σ ′
r + 1

r
(σr − σθ ) = 0 and ċd = −

(
h′

r + 1

r
hr

)
. (5.41)

The global volume constraint (3.18) rewrites considering that the tubule has infinite length and it can be written as a global
area constraint in terms of the cavity cross-sectional area Ac(t) and of the amount of solvent As(t) in the cavity with

Ac(t) = π rc (rc + u(rc, t)) λθ (rc, t), (5.42)

As(t) = As(0) − Qi(t) and Q̇i(t) = −2π rc Ω h(rc, t), (5.43)

and As(0) = Ac(0). The initial total amount of solvent is

V T
s (0) = π r2c λ2o + π(r2d − r2c )(λ3o − 1). (5.44)

The characteristic quantities of the release process are, as for the microcapsules, the ratio of the volume Qe of solvent
crossing the external boundary over the initial total solvent content V T

s (0), the inner pressure pi and the hoop stress σθ . We
compare the values Q̄e, p̄i and σ̄θ taken by these quantities at the equilibrium states corresponding to the constant value μ̄ of
the external chemical potential μe, controlled as a single-step function, in the microtubule and in the microcapsule. Figure 5
(top left panel) shows as the ratio Q̄e/V

T
s (0) in the microcapsule (dashed) and in the microtubule (solid) is almost the

5Actually, under the hypothesis of plane strain, the axial stretch λz remains constant and equal to λo; thus, Jd measures the change in area of the
cross-section
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same but in general microtubules release more solvent over the initial total content at the same change of external chemical
potential. Each point of the two lines corresponds to the equilibrium state determined by the corresponding value μ̄ of the
external chemical potential μe. It is worth noting that for μ̄ < −2 · 103 J/mol, microcapsules may exhibit mechanical
instabilities and buckling phenomena which can’t be caught by solving the equations under the assumption of spherical
symmetry. Also the hoop stress σ̄θ takes the comparable values shown in Fig. 5 (top right panel) in the two systems. On
the other side, the inflation curves corresponding to the inner pressure p̄i versus the hoop deformation λ̄θ /λo measured
from the initial state are different as shown in Fig. 5 (bottom left panel) being the microcapsule (dashed line) stiffer than
the microtubules (solid line). Finally, load conditions of the microtubule are shown in Fig. 5 (bottom right panel): the inner
negative pressure and the compressive hoop stresses decreasing from the outer towards the center of the cross-section are
shown.

Appendix B: Integral formulations in symmetrical regions

In the study of solvent release from gel (full or hollow) spheres and cylinders, due to geometrical and mechanical symmetries,
we implemented in the finite element code the weak form of the equations of the multiphysics problem in a form reduced
by considerations related to the symmetries. The time steps taken by the solver to compute the solution are chosen with
a logarithmic entry method considering 20 steps per decade. Quadratic Lagrange shape functions are used for all state
variables, while a Linear Lagrange shape function is used for the pressure p. The mesh size is very small: 1/1000 the value
of the external radius rd .

In the following, the weak forms of the equations of both balance of forces and balance of solvent are summed up in the
case of spherical symmetry. In the paper, the same equations have been developed in the case of cylindrical symmetry in a
similar way.

When the equations have to be solved in a three-dimensional sphere-like region Bd ⊂ E , they are written down in terms
of the spherical coordinates (r, θ, ψ) and the points X ∈ Bd are identified as

X = o + rn(θ, φ) with n(θ, φ) = cosφi3 + sinφe(θ) (5.45)

and e(θ) = cos θ i1 + sin θ i2 with θ ∈ (0, π/2), φ ∈ (0, π/2), and r ∈ (0, rd) for a full sphere and r ∈ (rc, rd) for a sphere
with a spherical cavity of radius rc.

The actual volume element dv is related to the reference volume element dVd by

dv(r, t) = Jd(r, t) dVd = λr(r, t) λ2θ (r, t) dVd . (5.46)

Diffusion-type problem

The prototype diffusion problem is governed by the following equation

−divhd = ċd in Bd and hd · n = qs on ∂Bd , (5.47)

and solving it in the form reduced by the spherically symmetry means: (i) assuming that

hd = hd(r)n(θ, φ) and divhd = I · ∇hd = h′
d(r) + 2

r
hd(r) ; (5.48)

(ii) solving the local problem

h′
d(r) + 2

r
hd(r) = −ċd in 0 < r < R and hd = qs on r = rd, (5.49)

when the region Bd is a full sphere and initial conditions have to be considered. Solving the same problem in a weak form
means solving, for any test field w, the problem∫
Bd

ċdwdV = −
∫
Bd

(h′ + 2

r
hd)wdV +

∫
∂Bd

(hd(rd) − qs(rd))w(rd)dA. (5.50)

As dV = 4πr2dr and A = 4πR2, the Eq. 5.50 can be written down as

0 =
∫ R

0

(
h′

d + 2

r
hd

)
w4πr2dr − 4πR2(hd(rd) − qs)w(rd). (5.51)
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After some manipulations, we get the weak form corresponding to the spherically symmetric problem (5.49) which have to
be implemented in the finite element code:∫ rd

0
ċdw 4πr2dr =

∫ rd

0
(hw′4πr2dr − 4πr2dqsw(rd). (5.52)

The weak formulation for the hollow sphere reads the same for the bulk part of the equations while is different for what
regards the contributes on the boundaries:∫
Bd

ċdw dV = −
∫
Bd

(
h′

d + 2

r
hd

)
w dV +

∫
∂Bd

(hd(rd) − qe)w(rd)dA −
∫

∂Cd

(hd(rc) − qi)w(rc) dA (5.53)

where ∂Cd is the boundary of the spherical cavity Cd ⊂ Bd . With this, the final weak equation is∫ rd

rc

ċdw 4πr2dr =
∫ rd

0
hdw′4πr2dr − 4πr2dqew(rd) + 4πr2c qiw(rc). (5.54)

Balance of forces–type problem

The prototype balance-of-forces problem is governed by the following equation

divSd = 0 in Bd and Sdn = t on ∂Bd . (5.55)

Solving the spherically symmetric problem in the sphere Bd means: (i) assuming that

Sd = σrn ⊗ n + σθe′ ⊗ e′ + σφn,φ ⊗n,φ , (5.56)

with all the three stress components only depending on r; (ii) solving the radial balance equation of forces as

0 = divSd · n = div (ST
d n) − Sd · ∇n = σ ′

r + 2

r
(σr − σθ ) in 0 < r < rd, (5.57)

and

σr = σ on r = rd . (5.58)

Solving it in a weak form means solving, for any test field w, the problem

0 =
∫
Bd

(σ ′
r + 2

r
(σr − σθ ))wdV −

∫
∂Bd

(σr (rd) − σ)w(rd)dA, (5.59)

that is, the problem

0 =
∫ rd

0
(σ ′

r + 2

r
(σr − σθ ))w4πr2dr − 4πr2d (σr(rd) − σ)w(rd). (5.60)

After some manipulations, we get the weak form corresponding to the problem (5.57) and (5.58):

0 = −
∫ rd

0
(σrw

′(r) + 2

r
σθw)4πr2dr + 4πr2dσw(rd). (5.61)

The weak formulation for the hollow sphere is:

0 =
∫
Bd

(
σ ′

r + 2

r
(σr − σθ )

)
wdV −

∫
∂Bd

(σr (rd) − σe)w(rd)dA +
∫

∂Cd

(σr (rc) − σi)w(rc)dA, (5.62)

that is,

0 = −
∫ rd

rc

(
σrw

′(r) + 2

r
σθw

)
4πr2dr + σe4πr2dw(rd) − σi4πr2c w(rc). (5.63)
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