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Abstract. Turbulent fluctuations induce the commonplace phenomenology on the transport
of small inertial particles known as clustering. Particles spread disuniformly and form aggregates
where their local concentration is much higher than it is in nearby rarefaction regions, the voids,
where in extreme cases not even a single particle can be found. The underlying physics has been
exhaustively analyzed in statistically homogeneous and isotropic flows under the so called one-
way coupling regime, i.e. in conditions where the momentum exchange between the carrier
fluid and the disperse phase is negligible. Recently it has been shown that the addition of a
mean flow might have dramatic effects on the disperse phase, i.e. the mean flow, through its
large scale anisotropy, induces a preferential orientation of the clusters. Due to inertial effects,
their directionality can even increase in the smallest scales, contrary to the expectation based
on the isotropy recovery behavior of velocity fluctuations. This finding opens new issues in
presence of large mass loads, when the momentum exchange between the two phases becomes
significant and the back-reaction of the particles on the carrier flow cannot be neglected. These
aspects are discussed here by addressing direct numerical simulation data of particle laden
homogeneous shear flow in the two-way coupling regime. Consistently with previous findings
we observe an overall depletion of turbulent fluctuations. In particular, particles with order
Kolmogorov scale relaxation time induce the energy depletion of the classical inertial scales and
the amplitude increase of the smallest ones where the particle back-reaction pumps energy into
the turbulent eddies increasing their energy content. We find that increased mass loads result
in the substantial broadening of the energy co-spectrum thereby extending the range of scales
driven by anisotropic production mechanisms. This is due to the clusters which form the spatial
support of the back-reaction field and give rise to a highly anisotropic forcing active down to
the smallest scales.

1. Introduction
Transport of inertial particles is involved in several fields of science such as droplets growth and
collisions in clouds [1, 2], the plankton accumulation in the oceans [3, 4] or the plume formation
in the atmosphere [5]. At the same time multiphase flows are the base of several technological
applications. The inertial particles dynamics is crucial in designing injection systems of internal
combustion engines [6], to prevent sediment accumulation in pipelines [7, 8] or for the appropriate
dimensioning of several industrial devices [9].

The relevant physical aspect in particles dynamics consists in their finite inertia which
prevents them from following the fluid trajectories. Most evident is the “preferential
accumulation” which, in inhomogeneous flows such as wall bounded flows, occurs in the form
of the so called “turbophoresis”, i.e. preferential localization of particles in the near wall region
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[10, 11]. An exhaustive review of the subject can be found e.g. in [12], see also [13] and the recent
paper [14] for a physical explanation in terms of statistical properties of velocity fluctuations in
the near wall region.

When the idealized conditions of isotropic turbulence are addressed, preferential accumulation
manifests itself in the form of small scale clustering. The disperse phase forms small scale
aggregates where most particles concentrate, separated by void regions of small particle density,
see e.g. [15] and references therein.

So far the effect of turbulent transport on particle dynamics has been studied extensively in
many flow configurations. Much less is known about the effect the disperse phase may have on
the carrier flow demanding for a renewed effort in this direction see e.g. [16, 17]. It is expected
that, under proper coupling conditions, the momentum exchange between the two phases might
become relevant in driving the turbulent fluctuations away from their universal equilibrium
state predicted by Kolmogorov in the early forties. Clearly, in contrast to the one-way coupling
regime, addressing these effects calls into play the more realistic two-way coupling mechanism,
where the disperse phase provides an active modulation of velocity fluctuations.

In this context, many authors first studied the simplest flow configuration, i.e. decaying
homogeneous isotropic turbulence [18, 19, 20, 21, 22], by addressing the decay rate of turbulence
intensity and the modification of the energy spectra under two-way coupling regime. Other
numerical investigations analyzed the statistically steady state of isotropic turbulence [23]
showing a non uniform distortion of the energy spectra, i.e. a damping of turbulent fluctuations
at large scales and a relative enhancement at the smallest ones. In some cases, the overall effect
of back reaction on the carrier phase is reported as an attenuation of turbulence fluctuations
controlled by the mass load ratio defined as the ratio of total disperse phase mass to fluid mass,
see e.g. [24, 25]. Similar effects have also been observed for particles larger than the Kolmogorov
scale showing that the crossover wavenumber characterizing the transition between dumped and
enhanced energy modes is related to the particles finite size [26]. Other important issues such as
the increase of the particles settling velocity under gravity have been addressed both numerically
[27] and experimentally [28]. By breaking isotropy gravity leads to a preferential augmentation of
turbulence intensities along the vertical direction while in the transverse directions augmentation
is only observed below the Taylor scale. Other interesting effects of the momentum exchange
between the carrier fluid and the disperse phase is observed in the context of grid generated
spatially decaying turbulence. In fact, starting from an isotropic state the feedback of the
particles seems to lead to an anisotropic flow as turbulent fluctuations develop downstream
[29, 30]. An extensive review of the back-reaction effects on isotropic turbulence might be found
in Ref. [31]. Concerning wall bounded flows many authors considered the classical geometry of
the channel [32, 33, 34] or of the pipe flow [35, 36]. Due to inhomogeneity and anisotropy new
features emerge such as the preferential suppression of turbulence intensities in the wall normal
direction [34], the enhancement of large scale anisotropy as measured by velocity variances [33]
or even the occurrence of drag reduction [32]. A substantial modification of turbulent kinetic
energy production has been reported in Ref. [37] in the context of a time evolving homogeneous
shear flow.

In any case, as isotropy is broken by the presence of gravity or by the mean streamwise
advection, the back-reaction of the disperse phase seems to immediately originate strong
anisotropies in the carrier phase. Motivated by recent findings in the context of anisotropic
clustering [38, 39], we consider here the modulation of turbulence by transported particles
addressing the particle laden homogeneous shear flow in the two-way coupling regime. Such flow
can be considered as a sort of bridge between the idealized conditions of isotropic turbulence
and the more realistic geometries of wall bounded flows, since it preserves spatial homogeneity
and retains the anisotropy of shear flows.

It is worth recalling that, under shear, turbulent fluctuations are strongly anisotropic at
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the largest scales due to production of turbulent kinetic energy via interaction of the mean
velocity gradient and turbulent fluctuations. At smaller scales, below the so-called shear scale
LS =

√
ε/S3–where ε is the energy dissipation rate and S the mean shear–inertial energy

transfer usually prevails. In such conditions re-isotropization of turbulent fluctuation takes
place following a route described in [40, 41, 42]. However, turbulent fluctuations in the one-
way coupling regime are found to induce an anisotropic clustering of the disperse phase which
persists down to the smallest scales [38]. Actually, in contrast to the small scale behavior of
velocity fluctuations, particles aggregates do not lose their directionality. Their anisotropy even
increases down to the viscous scales where clusters still keep memory of the spatial orientation
of the large scale coherent motions.

Here we consider the same flow under the two-way coupling scenario. In this more complex
case the physical result we achieve consists in a view of multi-phase turbulent flows consistent
with the multiscale forcing addressed in [43]. Small scales anisotropic clusters acts as a
source/sink of momentum for the turbulent motions distributed all along the range of scale.
They deplete the energy from the largest inertial scales which is in part retrieved in the low-
inertial/dissipative range. Here the clusters keep the velocity fluctuations to a higher excitation
state than expected on the basis of the standard Kolmogorov theory. As we will see such
back energy scatter is highly anisotropic in shear flow, hence the small scales fluid motions are
prevented from recovering isotropy and eventually increment their anisotropy.

2. Methodology
Concerning the carrier fluid, the velocity field v is decomposed into a mean flow U = Sx2 e1 and
a fluctuation u where e1 is the unit vector in the streamwise direction, x2 denote the coordinate
in the direction of the mean shear S and x3 is in the spanwise direction. Rogallo’s technique
[44] is employed to rewrite the Navier-Stokes equations for velocity fluctuations in a deforming
coordinate system convected by the mean flow according to the transformation of variables
ξ1 = x1 − Stx2; ξ2 = x2; ξ3 = x3; τ = t. The resulting system

∇ · u = 0 ;
∂u
∂τ

= (u× ζ)−∇π + ν∇2u− Su2e1 + F , (1)

is numerically integrated by a pseudo-spectral method combined with a fourth order Runge-
Kutta scheme for temporal evolution. In equations (1) ζ is the curl of u, π is the modified
pressure which includes the fluctuating kinetic energy |u|2/2, ν is the kinematic viscosity and
F denote the back-reaction due to the disperse phase. The latter consists of diluted particles
with mass density ρp much larger than the carrier fluid ρf . The approximation of point particles
can be adopted whenever the particle diameter dp is much smaller than the typical turbulence
scales. It follows that the only relevant force is the Stokes drag [45]. Accordingly, the equations
for particles position xpi (t) and velocity vpi (t) read

dxpi
dt

= vpi ;
dvpi
dt

=
1
τp

[vi(xp, t)− vpi (t)] , (2)

where vi(xp, t) is the instantaneous fluid velocity evaluated at xpi (t) and τp = ρpd
2
p/(18νρf ) is

the Stokes relaxation time. Particles’ velocities are decomposed as vpi = Ui[x
p
k(t)] + upi where upi

denotes the particle velocity deviation with respect to the local mean flow of the carrier fluid.
Finally by using Rogallo’s transformation eqs. (2) can be written as

dξpi
dτ

= upi − Sτu
p
2δi1 ;

dupi
dτ

= fpi . (3)

Equations (1) and (3) are integrated in computational space. In fact, the computational box
gets distorted in physical space by the mean flow advection. The re-meshing procedure is
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periodically applied to allow long time integrations. By exploiting periodicity in the ξ1 direction,
the computational domain is transformed back into a non skewed domain every ∆tr = 2/S,
preventing the unbounded growth of the wavenumbers, see [46] for further details on the numerics
adopted. In equation (3) fpi = τ−1

p [ui(ξp, τ)− upi (τ)] − Sup2δi1 is the expression of the Stokes
drag acting on the pth particle. In the so-called two way coupling regime an equal and opposite
force acts on the carrier fluid accounting for the momentum exchange between the two phases.

Modeling the back reaction in numerical simulations is an issue [47]. The local distortion of
turbulence due to the disperse phase can be captured only resolving the boundary of each particle
on the computational grid. In the so-called resolved particle simulations several approaches
have been proposed ranging from finite volume schemes [48] to Lattice Boltzman Methods [49].
However other approaches are possible once it has been recognized that the flow close to a small
particle can be locally approximated as a Stokes Flow. In Ref. [50] the Stokes solution is used to
provide appropriate boundary conditions to the Navier-Stokes equations close to each particle.
Clearly these approaches, even though they provide the exact momentum coupling between
the carrier and the disperse phase, are feasible only for a relatively small number of particles.
When particles are much smaller than the turbulent scales they can be considered as material
points i.e. as point source/sinks of momentum for the carrier fluid. Within this approximation
several other methodologies are available. For instance, in the force coupling method [51] the
disturbance flow produced by the particles is modeled as a regularized steady Stokes solution
corresponding to a force monopole and quadrupole while the singular steady Stokes solution is
employed in Ref. [34]. In our case we adopt the particle in cell method introduced in Ref. [52]
where the particle is regarded as a point source of momentum for the carrier fluid. This is the
simplest approach to model the two way coupling regime widely adopted in the literature even
if the methodology might suffer of lack of numerical convergence in estimating the interphase
momentum transfer [53]. Accordingly, the resulting force on the fluid is computed as

F = −Nc

Np
Φ
n(ξ)∑
p

fp (4)

where the sum is extended to all the n(ξ) particles belonging to the computational cell centered
at point ξ. In eq. (4) Nc denote the number of Eulerian cells, Np is the total number of
particles and Φ denote the mass load ratio i.e. the ratio between the mass of the disperse phase
Mp = Npπρpd

3
p/6 and the carrier fluid Mf = ρfVf where Vf is the volume of the computational

box. Fluid properties are known in an Eulerian frame while particles evolve along their own
Lagrangian trajectories requiring a first interpolation when the fluid velocity is computed at the
particle position, namely ui(ξp, τ). An other interpolation is required when the back-reaction on
the fluid is computed since fpi is known at the particle position. In fact, the force acting on the
pth particle is re-distributed via inverse interpolation to the nearest Eulerian grid points where
the fluid velocity is defined. Equations (3) are integrated by the same fourth order Runge-Kutta
scheme used for the Navier-Stokes equations and the interpolation adopt a tri-linear scheme.

The data we analyze come from a statistically steady Direct Numerical Simulation (DNS)
of a homogeneous shear flow. The mean shear induces velocity fluctuations which are strongly
anisotropic at the larger scales driven by production while, at smaller separations, the classical
energy transfer mechanisms become effective in inducing re-isotropization. The position of the
shear scale LS was found crucial to determine whether small scale isotropy recovery eventually
occurs. For these reasons LS plays an important physical role in shear turbulence where it
enters the two basic control parameters [54, 55]. The first one is the Corrsin parameter, S∗c =
S(ν/ε)1/2 = (η/LS)2/3, where η =

(
ν3/ε

)1/4 is the Kolmogorov scale. The Corrsin parameter
can be recast in terms of the Taylor-Reynolds number 1/S∗c ∝ Reλ =

√
5/(νε)〈uαuα〉, where
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uα is the αth Cartesian component of the velocity fluctuation and the angular brackets denote
ensemble averaging. The second parameter is the shear strength S∗ = S〈uαuα〉/ε = (L0/LS)2/3,
with L0 = 〈uαuα〉3/2/ε the integral scale of the flow. The former determines the extension of
the range of scales below the shear scale and above the Kolmogorov length η. When this range
is sufficiently extended, i.e. the Taylor-Reynolds number is large enough, small scale isotropy
recovery is likely to occur in the fluid velocity field. The latter, instead, fixes the range of scales
directly affected by the geometry of the forcing. This is the anisotropic range between integral
and shear scale.

The Navier-Stokes equations are integrated in a 4π × 2π × 2π periodic box see table 1 for a
full description of the dataset. The Kolmogorov scale is η = 0.07 which corresponds to Kmaxη
ranging from 5.8 to 15.5. Note the very accurate resolution of the smallest scales required to
have smooth fields in view of accurate interpolations and re-distribution of the back-reaction on
the carrier fluid. Accurate resolution of the smallest scales is also crucial when addressing the
statistical properties of the viscous dissipation field [56, 57].

Concerning the disperse phase, the dynamics is controlled by the ratio of the particles
relaxation time τp to a characteristic flow time scale, typically the Kolmogorov time scale
τη = (ν/ε)1/2, i.e. the relevant control parameter is the Stokes number Stη = τp/τη. When
the two-way coupling regime is considered other non dimensional parameters are required to
describe the momentum exchange between the two phases, namely the density ratio ρp/ρf –
assumed to be much larger than unity– and the mass load fraction Φ = Mp/Mf . In fact, the
mass load can be expressed as Φ = (ρp/ρf ) Φv where Φv = Vp/Vf is the volume fraction. When
ρp/ρf � 1, the mass load Φ can be order one when the volume fraction is still very small, order
10−3 in the present case. In such conditions inter-particles collisions might be safely neglected
see e.g. [16] while the momentum coupling between the two phases must be retained. For the
simulations summarized in table 1 particles are injected in an already fully developed turbulent
flow. Their position is initialized at random homogeneous points with initial velocity matching
the fluid velocity at particle position. The total number of particles is changed to achieve
different values of the mass load parameter while the Stokes number is kept constant. To this
purpose, after discarding an initial transient, 150 statistically independent snapshots are used
to compute the relevant statistical observables. The snapshots are collected at each remesh time

run Nx ×Ny ×Nz Φ Np

a 192× 96× 96 − −
b 384× 192× 192 0.2 327500
c 384× 192× 192 0.4 655000
d 384× 192× 192 0.8 1310000
dl 192× 96× 96 0.8 1310000
dh 512× 256× 256 0.8 1310000

Table 1. Direct Numerical Simulation dataset. Navier-Stokes equations are integrated in a
4π× 2π× 2π periodic box with a resolution of Nx×Ny ×Nz Fourier modes. The 3/2 dealiasing
rule is adopted to compute the non linear terms. The Taylor Reynolds number is Reλ = 50 and
the shear parameter is S∗ = 7. Np is the number of particles whose Stokes number based on the
Kolmogorov time is Stη ' 1 with τp = 0.4. The mass load parameter (see text for definition) is
denoted by Φ, ρp/ρf = 2000 indicate the density ratio between the disperse and carrier phase.
In our case dp/η ' 0.1. The first four entries of the table provide for the effect of increasing the
mass load ratio for a given grid resolution, runs a − d. Comparison of run dl and dh with the
reference case d provide the sensitivity to grid resolution for a given mass load ratio.
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when the computational box comes back to its unskewed configuration.

3. Particles Clustering
A visual impression of instantaneous particles’ configurations is provided in figure 1 where slices
of the domain in selected coordinate planes are displayed for different values of the mass load
parameter Φ at Stη = 1.05. Hereafter the Stokes number is defined with respect the Kolmogorov
time of the simulation operated in the one-way coupling regime. In fact, as we will see in
§4, the back-reaction leads to an overall depletion of the viscous energy dissipation rate and
consequently to an alteration of the Kolmogorov time-scale τη = (ν/ε)1/2. In all the four cases

Figure 1. Snapshots of particle positions for increasing values of the mass load parameter
Φ = 0, 0.2, 0.4, 0.8 from top to bottom. For all the datasets Stη = 1. Left column thin slice
in the y − z plane; right column slice in the x− y plane. The slice thickness is of the order of a
few Kolmogorov scales.
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reported in figure 1, the disperse phase is characterized by a multi-scale distribution of particles
concentration and voids. From the figure the shear induced orientation of the clusters is apparent
even though the concentration of the particles in the accumulation regions seems to be reduced
as the coupling effects become relevant. At a first sight this effect might be explained in terms
of an alteration of the Kolmogorov time scale resulting in a smaller effective Stokes number i.e.
for a given relaxation time–τp = 0.4 in our case–particles might be expected to behave more like
tracers in the two-way coupling regime. However, a more quantitative analysis shows that this is
not the case. The modification of the Kolmogorov time-scale, even though the energy dissipation
rate is significantly changed at high mass loads, is small and corresponds to an alteration of
the Stokes number which can not explain the observed depletion of the clustering intensity in
the two-way coupling regime. For instance, the Stokes number ranges from Stη = 1.05 when
turbulence is not modified by the particles to Stη = 0.90 in the most severe coupling conditions
at Φ = 0.8. In conclusion, the observed depletion of the clustering intensity calls into play non
trivial physical effects which are more likely related to an overall alteration turbulent fluctuations
rather than an oversimplified explanation in terms of an alteration of the Stokes number.

In this paper we limit ourselves to the description of anisotropic clustering under the two-way
coupling conditions by considering the Angular Distribution Functions (ADF) introduced in [38].
Essentially the ADF measures the number of particles’ pairs at separation r in the direction r̂
and is defined as

g(r, r̂) =
1
r2

dνr
dr

1
n0

, (5)

where n0 = 0.5Np(Np − 1)/Vf is the volume density of particles’ pairs and νr(r, r̂)dΩ is the
numbers of particles’ pairs contained in the spherical cone of radius r with axis along r̂ and
amplitude dΩ. The spherical average of the ADF g00(r) = 1/(4π)

∫
Ω g(r, r̂)dΩ is called the Radial

Distribution Function (RDF) and has been already used to characterize particles clustering in
isotropic conditions. The ADF extend the tool to anisotropic conditions retaining information
on the directionality of the clusters. The behavior of the RDF near the origin g00(r) ∝ r−α
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Figure 2. Projection of the ADF in the isotropic sector g00 as a function of separation. The
main panel address the effect of an increasing mass load for a given resolution of the carrier
phase. The inset provides sensitivity of the data to the grid resolution for the highest mass load
Φ = 0.8. Error-bars (not shown) are of the order of the symbols size in the entire range of scales.
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can be shown to be related to important geometrical features of the clusters. In particular
D2 = 3 − α is the so-called correlation dimension [58] of the multi-fractal measure associated
with the particle density. A positive α indicates the occurrence of small scale clustering.

The RDF is shown in figure 2 for the different values of the mass load parameter Φ. The
data show the quantitative alteration of the clustering intensity. In fact, the back-reaction
progressively attenuates the particles concentration at small scales leading to a smaller value
of the scaling exponent α. The modification is substantial. As the mass load is progressively
increased the number of particles pairs at small scales is reduced about seven times as inferred
by comparing the small scale values of g00 obtained in the one-way coupling simulation (solid
line) against the two-way coupling data at Φ = 0.8 (open circles) in figure 2. The plot shows
the smooth convergence of the two-way coupled simulation to the uncoupled case for very small
values of the mass load, see for instance the data at Φ = 0.05 in comparison with those at
Φ = 0. Concerning statistical accuracy, in the case of the isotropic projection of the ADF shown
in figure 2 the error-bars (not shown) are smaller than the symbol size. In conclusion, the
behavior confirms the qualitative impressions gained by simple inspection of the instantaneous
particles patterns reported in figure 1 where the clusters are definitely less defined in the case
Φ = 0.8 than at Φ = 0, compare bottom and top panels of the figure, respectively. In any case
clustering, though partially attenuated, is a persistent feature of the two-way coupling regime
as measured by the exponent α. In order to exclude any bias in our results due to the numerics,
in the inset of figure 2 we address the RDF in the most severe coupling conditions. For the
highest mass load Φ = 0.8 we have performed two additional simulations with a coarser and
finer resolution with respect to the reference case of run d, namely run dl and dh of table 1
respectively. The data confirm that the attenuation of the clustering is a genuine physical effect
resulting from the momentum exchange between the carrier and disperse phase.

In view of turbulence modification, the anisotropy of particles’ clusters will play a crucial role
to be discussed in the next section where the analysis of the back-reaction effects on the carrier
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Figure 3. Projection of the ADF in the most energetic anisotropic sector g2,−2 as a function
of separation. The main panel addresses the effect of the mass load for a given resolution of
the carrier phase. The inset provides the sensitivity to the grid resolution for the highest mass
load Φ = 0.8. Error-bars for the data at Φ = 0.05, 0.2, 0.4 (not shown) are of the same order of
those reported for the most severe coupling case at Φ = 0.8.
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fluid is addressed. For this reason, we complete the analysis of clustering under two-way coupling
regime by characterizing the anisotropy of the aggregates. This can be done by exploiting the
directionality properties of the ADF. Its angular dependence g(r, r̂) can be resolved in terms of
spherical harmonics

g(r, r̂) =
∞∑
j=0

j∑
m=−j

gjm(r)Yjm(r̂) , (6)

achieving a systematic description both in terms of separation r, accounted for by the coefficients
gjm(r), and in terms of directions, described by the shape of the basis functions Yjm(r̂). Each
successive subspace, here labeled j, accounts for increasing levels of anisotropy consistently with
the geometrical meaning of the spherical harmonics. This tool, introduced by [59], allowed for
the systematic study of small scale isotropy recovery, see for instance [60, 61, 62, 40] and the
exhaustive review in [63].

In figure 3 we show the most energetic anisotropic projection of the ADF namely g2−2. As
in the one-way coupling regime, by reducing the scale separation the intensity of the anisotropic
projection increases indicating directionality in the particles aggregates. As for the RDF, the
small scale behavior of g2−2 is controlled by the mass load ratio while the numerical resolution
seems to play a negligible role, see the right panel of figure 3 where g2−2 is shown for Φ = 0.8
and different resolutions. The statistical convergence of this observable might be an issue since
it samples only few preferential directions. The error-bars on the data for the worse case at
Φ = 0.8 are always smaller than the symbol size up to r/η = 0.1 below which the error becomes
appreciable on the scale of the plot. To correctly infer about the persistency of directionality
at small scales, in figure 4 we show the most energetic anisotropic projection normalized by
the RDF, namely the ratio g2−2/g00. This indicator quantifies the average level of anisotropy
of particles’ clusters at that particular scale. We observe that the back-reaction on the carrier
fluid partially reduces the small scale anisotropy of the disperse phase when compared with
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Figure 4. Normalized anisotropic projection of the ADF g2−2/g00 as a function of separation.
The left panel addresses the effect of the mass load for a given resolution of the carrier phase.
The right panel show the sensitivity to the grid resolution for the highest mass load Φ = 0.8 The
error-bars for the data at Φ = 0.05, 0.2, 0.4 (not shown) are of the same order of those reported
for the most severe coupling case at Φ = 0.8.
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the one-way coupling regime. In contrast to the saturation observed under one-way coupling
conditions (solid line), the ratio g2−2/g00 seems to slightly decrease to eventually saturate to a
lower value when the smallest scales are approached. In any case, going down the scale range,
the anisotropy of the clusters is still present also in the two-way coupling regime. The overall
behavior is not substantially altered from what we already described in previous papers [38]
on the one-way coupling regime denoting a persistency of the clusters’ directionality up to the
smallest viscous scales.

4. Turbulence Modulation
In presence of two-way coupling, the support of the particle reaction field on the fluid is mainly
given by the sets where most of the disperse phase concentrate. Actually clusters are organized
in multi-scale sets whose orientation is controlled by the large scales anisotropy [38]. The effect
is strong and the particles never achieve small scale isotropy, despite the Richardson cascade,
in absence of back reaction, drives the fluid velocity fluctuations towards an isotropic state.
We infer that the fluid is excited by a highly anisotropic, spectrally non-compact forcing, quite
an unusual circumstance in turbulence. In these conditions, the back-reaction of the disperse
phase is expected to deeply alter the structure of turbulence. Energy extraction/injection is now
strongly anisotropic and active from the largest down to the smallest scales of the flow leaving
no opportunity for a classical inertial range.

We start our description of turbulence modulation observing that, in the homogeneous shear
flow, the mean velocity profile is imposed both in the one-way and the two-way coupling regimes.
This excludes the modification of the mean flow itself as it could happen instead in channels
or jet flows. Any alteration of turbulence can be directly ascribed to an intrinsic distortion of
velocity fluctuations due to the inter-phase momentum exchange. The simplest quantities which
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Figure 5. Left: effect of the mass load Φ on the turbulent fluctuations. Data normalized with
the corresponding values of the un-coupled case. Open symbols refers to simulations a − d in
table 1. Filled symbols refers to cases dl (grey) and dh (black). 〈u2

1〉 (square), 〈u2
2〉 (delta), 〈u2

3〉
(diamond), 1/2〈ui ui〉 (gradient), −〈u1 u2〉 (circle). The vertical tick of amplitude 0.04 provides
the statistical error of the data. Right: turbulent kinetic energy budget. Data normalized with
the production rate of the un-coupled case P0. Production P (circles), viscous energy dissipation
ε (squares), energy flux intercepted by particles εp (delta). The algebraic sum P − ε− εp is also
reported (diamonds) to check the quality of the budget. Filled symbols refers to cases dl (grey)
and dh (black). Error-bars are of the order of the symbol size.
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characterize the response of turbulence are single point statistics such as the turbulent kinetic
energy, the energy dissipation rate and, as always for shear flows, the Reynolds shear stress. The
turbulent kinetic energy is addressed in figure 5 as a function of the mass load ratio. In addition,
in the same figure, data at fixed mass load Φ = 0.8 and different grid resolutions, namely run
dl and dh, are reported to check the grid sensitivity. Consistently with previous findings in the
context of isotropic turbulence and wall bounded shear flows, by increasing the mass load ratio
the turbulent fluctuations are found to be progressively attenuated.

The directionality of the mean flow leads to a significant difference in the three normalized
velocity variances. The streamwise component 〈u2

1〉–squares in figure 5–is the least affected by
the back-reaction. Nonetheless the trend is toward its slight increase in comparison with the un-
coupled case. The other two components, 〈u2

2〉 (delta) and 〈u2
3〉 (diamonds), are progressively

attenuated as the coupling becomes more relevant. The depletion–up to 50% at Φ = 0.8–
overwhelms the slightly increasing trend of the streamwise variance leading to an overall
reduction of turbulent kinetic energy. The resolution check for case Φ = 0.8 (gray and black filled
squares in the figure) confirms the quality of the results. The impression is that the back-reaction
enhances the large scale anisotropy of the flow. The concurrent depletion of the Reynolds shear
stress is noteworthy, since it drags along the reduction of turbulent kinetic energy production.

The steady state turbulent kinetic energy balance in the two-way coupling regime, P = ε+εp,
involves a new term, the energy exchanged with the particles through the Stokes drag εp =
〈F · u〉, whereas the production term P0 = −S〈u1 u2〉0 simply balances the viscous dissipation
ε0 in the uncoupled case (the subscript stands for Φ = 0, no back-reaction). Actually at steady
state the average particle kinetic energy is constant implying εp = 〈F · u〉 > 0 since 〈F · vp〉 = 0.
Hence the energy provided by the Reynolds stress work is partially intercepted by the back-
reaction field which represents an alternative dissipation channel, see [64, 65, 66] for a similar
mechanism in the context of polymer laden flows and [67, 68] for more recent work on the

Kη10-1 100 10110-10

10-8

10-6

10-4

10-2

100

one-way
Φ=0.2
Φ=0.4
Φ=0.8

N=384

10-1 100 10110-10

10-8

10-6

10-4

10-2

100

one-way
N=192
N=384
N=512

Φ=0.8

Kη10-1 100 10110-10

10-8

10-6

10-4

10-2

100

one-way
Φ=0.2
Φ=0.4
Φ=0.8

N=384

10-1 100 10110-10

10-8

10-6

10-4

10-2

100

one-way
N=192
N=384
N=512

Φ=0.8

Figure 6. Effects of the mass load on the energy spectrum (left) and cospectrum (right)
for a fixed spectral resolution of the carrier phase. Data of the one-way coupled simulation
run a (solid line) are compared with two-way coupled simulations operated for incresing mass
loads Φ = 0.2, 0.4, 0.8 (symbols) which correspond to run b (square), c (delta) and d (circle)
respectively, see table 1. In the inset effect of the grid resolution at the fixed mass load ratio
Φ = 0.8. Data of the one-way coupled simulation (solid line, run a in table 1) are compared
against two-way coupled data at Φ = 0.8 obtained with different resolutions of the carrier phase.
Symbols correspond to runs dl, d and dh of table 1.
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subject. The energy budget is addressed in graphical form in figure 5. The striking effect of the
coupling is the considerable reduction of the production rate P–20% at Φ = 0.8–which entails
the reduction of the viscous dissipation ε. Although typically smaller than ε, intriguing is also
the behavior of the Stokes dissipation εp (deltas in figure 5) which achieves its maximum–order
15%–at intermediate mass loads.

A more detailed analysis of turbulence modulation calls into play the spectral distribution of
turbulent kinetic energy. In the spectra shown in figure 6, as Φ increases, turbulent fluctuations
are first attenuated in an intermediate range of scales to be eventually enhanced at small scales
before being shut down by viscosity. In other words, the Stokes drag intercepts energy from the
classical cascade at intermediate scales where velocity fluctuations are damped. The intercepted
energy is partly pumped back to the fluid at small scales increasing the energy content by orders
of magnitude, compare solid line (one-way coupling) and open symbols (two-way coupling) in
figure 6. The overall effect is a reduction of turbulent kinetic energy, essentially given by the low
wave number part of the spectrum. The emerging picture of particle-laden turbulence amounts
to a standard transfer across the inertial range, a partial removal of energy from the cascade
by the Stokes drag and its partial re-injection in the small scales. Under certain respects, the
conceptual framework is similar to that operating in polymeric solutions.

The cospectrum, figure 6, shows a definite alteration of the spectral distribution of the
turbulent shear stress and allows to identify the scales affected by the shear stress forcing.
Though hardly appreciable in log scale, the cospectrum slightly decreases at large scales as the
mass load ratio increases, consistently with the overall reduction of the shear stress. Meanwhile
the range affected by production is progressively enlarged. These are the back reaction effects
of the highly directional multi-scale clusters which force anisotropic motions in a progressively
wider range of scales, see figure 6. Results at Φ = 0.2 present only small deviations from case
Φ = 0. Increasing the mass load, Φ = 0.4 ÷ 0.8, the back-reaction excites the Reynolds shear
stress in almost the entire range of scales. The cospectrum vanishes much more slowly at high
wave numbers resulting in unexpected energy injection at small scales. This keeps the turbulent
fluctuation excited at scales much smaller than expected on the sole basis of the overall energy
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r/r0 (circles right axis) as a function of the mass load ratio. Filled symbols as in the left panel.
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production which, as already recalled, diminishes. The insets in figure 6 illustrate the results of
grid refinement tests.

The present results apparently question the small scale isotropy assumption for particle-
laden flows under considerable mass loads, which were classically motivated by the orientational
randomization expected of the Richardson cascade.

Concerning the large scales, their anisotropy is quantified by the deviatoric component of the
Reynolds stresses tensor bij = 〈ui uj〉/〈uk uk〉 − 1/3δij . Since anisotropy is already present at
large scales in the Newtonian case (no back-reaction), to isolate the effect of the back-reaction
we address, shown by open circles in the left panel of figure 7, the ratio ‖b‖/‖b‖0, where the
subscript stands for Φ = 0 and the norm is ‖b‖ =

√
bij bij . As anticipated in the discussion

of figure 5, the back-reaction enhances the anisotropy. This mainly occurs by the attenuation
of the transversal velocity variances 〈u2

2〉 and 〈u2
3〉 associated with a slight augmentation of the

longitudinal fluctuation 〈u2
1〉. Concerning the dissipative scales, their anisotropy, shown by open

squares in the left panel of figure 7, is analogously quantified by the deviatoric component of the
pseudo-dissipation tensor εij = 2 ν〈∂kui ∂kuj〉, i.e. by computing aij = εij/εkk − 1/3δij and its
norm ‖a‖ = √aij aij . The data show a dramatic growth of the gradient anisotropy which under
the most severe coupling conditions increases by 350% with respect to the reference Newtonian
case. Two features emerge. First, the disperse phase is able to alter the anisotropy of the largest
scale. Second, the small scale anisotropy level normalized with the Newtonian value increases
even more steeply with the mass load, due to the spectrally non compact anisotropic forcing
operated by the disperse phase on the carrier fluid. Actually the ratio r = ‖a‖/‖b‖ of small to
large scale anisotropy, right panel of figure 7, almost doubles going from r = 0.4 for Φ = 0 to
r = 0.7 for Φ = 0.8, scale on the left axis of the plot.

5. Final Remarks
Clustering is a well known feature of inertial particle configurations in turbulent flows. The
classical explanation of this small scale behavior is the centrifugal effect due to the vortical
structures that populate a turbulent flow, which tend to expel heavy inertial particles from
the vortex cores, to localize in the interstices between the vortices. The resulting segregation
may be extremely intense for particles at Stokes number order one. A peculiar feature of these
systems is their response to the anisotropy of the flow. In recent investigations of a particle-laden
homogeneous shear flow it was found, [38], that particle clusters maintain the anisotropy down
to their smallest scales, in ranges where, typically, the carrier velocity field already recovered
isotropy under the action of the Richardson cascade.

When the mass load ratio is increased, the back-reaction of the suspended phase on the carrier
fluid can be no longer neglected, opening the issue of the ultimate fate of the clusters in the
strong two-way coupling regime, and poses the question as to how the structure of the turbulence
is altered in the carrier phase. This is the regime we have explored in the present paper. As
main results, we find that the coupling of the carrier fluid with the suspended phase leads to
less pronounced segregation effects, with the clusters that tend to become progressively smeared
and less neatly defined with respect to the Newtonian simulation with advected passive inertial
particles. At the same time, the anisotropy of the clusters is also reduced. Overall the trend
seems to proceed towards a reduction of the peculiar segregation and anisotropy amplification
effects recently described for vanishingly small mass loads.

The intriguing aspect is here the response of the carrier fluid to the particle back-reaction.
The oriented clusters, though fatter and more isotropic than in the one-way coupling regime,
constitute the geometrical support of the force field exerted back on the fluid. This forcing
is distributed on the entire range of scales spanned by the clusters and present significant
anisotropic features at all active scales. The result is an increased large scale anisotropy of
the carrier fluid turbulence, manifested by the Reynolds stress anisotropy indicator. The effect
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consists in the alteration of the energy carrying large scales of the fluid, which is accompanied by
a reduction of turbulent kinetic energy. The Reynolds shear stress also diminishes, though less
than its isotropic component, resulting in the increase of the anisotropy indicator mentioned
above. It follows the reduction in the turbulent kinetic energy production rate, which, at
equilibrium, entails a lowering of turbulent energy dissipation rate.

The observation that the back-reaction forcing occurs throughout the range of scales spanned
by the clusters, implies that a non-negligible amount of forcing takes place also in the smallest
scales of the turbulence, which are usually passively fed only by the energy cascade from larger
scales. Consistently, the energy spectrum is broadened, with the excitation of scales significantly
smaller than the Kolmogorov scale expected from the energy content of the system. As we
have shown, the clusters retain their anisotropy down to the smallest scales. Consistently,
the Reynolds shear stress forcing is also much less compact in spectral space than found in
classical shear turbulence. This leads to a substantial increase of anisotropy at the level of
the instantaneous velocity gradients, as measured by the anisotropy indicator of the pseudo-
dissipation tensor.

In conclusion, the structure of the system of particles and fluid is significantly altered by the
coupling, an effect which clearly increases with the amount of mass loading of the suspension.
Our findings could have a certain impact on turbulence modeling of multiphase flows which,
both in the context of Reynolds averaged (RANS) and filtered equations (LES), heavily rely
upon the concepts of inertial energy cascade and of a presumed universal small scale statistics.
Actually, we have shown that the cornerstone Kolmogorov theory no longer safely applies, since
the classical energy cascade is overwhelmed by the anisotropy-enhancing back-reaction of the
particles.
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