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INEQUALITIES FOR SHEPARD–TYPE OPERATORS

U. AMATO AND B. DELLA VECCHIA

(Communicated by I. Raşa)

Abstract. Direct and converse approximation error estimates for generalized Shepard operators
are given, improving analogous inequalities for well-known Shepard operators. As application in
CAGD, generalized degree elevation algorithms for modeling the shape of Shepard-type curves
are presented, improving previous techniques.

1. Introduction

For n ∈ N and f ∈C([0,1]) denote by Sn the Shepard operator defined by

Sn( f ;x) =
∑n

k=0
f (xk)

(x− xk)2

∑n
k=0

1
(x− xk)2

, 0 � x � 1, (1)

with xk = k
n , k = 0, . . . ,n. From (1) it follows that Sn is a linear, positive operator,

preserving constants, interpolating f at the equispaced knots xk , k = 0, . . . ,n and Sn

is a rational function of degree (2n,2n). Shepard-type operators are widely used in
classical approximation theory and in scattered data interpolation problems (see, e.g.,
[1, 6, 22]). In particular if ‖g‖ denotes the usual supremum norm of g ∈C([0,1]) and
ω(g) the usual modulus of continuity of g , then the following approximation error
estimate is well-known for Sn (see, e.g., [7, 17])

‖ f −Sn( f )‖ � Cω
(

f ;
logn

n

)
. (2)

Here and in the following C denotes a positive constant which may assume different
values even in the same formula. Converse results and saturation statements present
some complications (see, e.g., [9, 18]).

The aim of the present paper is to modify slightly Shepard operators to improve
(2), by dropping the factor logn in the relative error estimate, and to overcome above
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complications. More generally in Section 2 Theorem 1 establishes uniform and point-
wise approximation error estimates for generalized Shepard-type operators. Then The-
orem 2 gives corresponding Markov-Bernstein inequalities, Steckin inequalities and
direct and converse results. Furthermore Theorem 3 solves the saturation problem.

Then an application of Shepard-type operators in CAGD is discussed in Section
3. In [4] Shepard-type curves were introduced and studied, overcoming some of the
original Shepard operator’ s drawbacks and having some advantages with respect to
the Bézier case. A progressive iterative approximation (PIA in short) technique for
Shepard-type curves was also developed in [4], giving an intuitive and straightforward
way to generate a sequence of curves with finer and finer precision for data fitting, by
adjusting the control points of a blending curve iteratively. The limit of the curves
sequence interpolates the initial control points. In [4] a degree-elevation-type formula
was also showed for Shepard-type curves.

Here we present a modelling technique for Shepard-type curves, combining above
degree-elevation formula and PIA format. Indeed by a shape vector we generate se-
quences of Shepard-type curves based on two independent modelling parameters, giv-
ing as extreme cases the original Shepard-type curve, global interpolating Shepard-type
curve and degree-elevation Shepard-type curve (see Theorem 5). Therefore by our al-
gorithm we can model the basic shape to satisfy the designer’ s requirements, with
more flexibility than the above techniques. A fairing algorithm for Shepard-type curves
combining a degree-reduction formula and PIA process is also deduced. Numerical
experiments are presented in Section 4, confirming the outperformance of our meth-
ods. Finally Section 5 contains proofs of main results, based on direct estimates and
interesting inequalities for Shepard-type operators and their eigenstructure.

2. Generalized Shepard operators

Let φ ∈C([0,1]) , with φ � 0 and φ(0) = 0. The following cases

a) φ(x) = |x|α , 1 < α ;

b) φ(x) = exp(−|x|α), 0 < α ;

c) φ(x) = x2 logα (
x2 +1

)
, 0 < α ;

d) φ(x) = x2
(
exp

(
x2

)−1
)α

, 0 < α;

e) φ(x) = logα (
x2 +1

)
, 1 < α ;

f) φ(x) = (exp(x2)−1)α , 1 < α,

are interesting for our study. Then consider the Shepard-type operator S n defined by

S n( f ;x) =
∑n

k=0
f (xk)

φ(x− xk)

∑n
k=0

1
φ(x− xk)

, 0 � x � 1. (3)
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From (3) S n is a linear, positive operator, preserving constants, interpolating f at
xk,k = 0, . . . ,n. If φ is given as in Case a), with α = 2, then (3) gives back original Sn

operator. The general case α > 1 was deeply studied (see, e.g., [1] and references
therein). In Case b) we find back an exponential Shepard-type operator studied in
[11, 12]. Cases of type c), d), e) and f) were mentioned in [2, 10]. Compare case e) with
radial basis functions of Duchon’s Thin Plate Splines, used for example in visualising
2D survey data (see, e.g., [22]).

Now we prove that if φ is given as in Case c) or d) or e) or f), then we get approx-
imation results, improving (2). Indeed we have

THEOREM 1. Let S n be the operator given by (3), with φ as in Cases c) or d)
or e) or f). Then for every f ∈C([0,1])

∥∥ f −S n( f )
∥∥ � Cω

(
f ;

1
n

)
. (4)

Furthermore,

THEOREM 2. Under the assumptions of Theorem 1, we have∥∥S ′
n( f )

∥∥ � Cn‖ f‖ ,∥∥S ′
n( f )

∥∥ � C
∥∥ f ′

∥∥ , if f ′ ∈C([0,1]).
(5)

Hence if K( f ; t) denotes the usual K− functional of f , then

K

(
f ;

1
n

)
�

∥∥S m( f )− f
∥∥+C

m
n

K

(
f ;

1
m

)
, (6)

∥∥S n( f )− f
∥∥ = O

(
n−α) ⇐⇒ ω( f ;h) = O(hα) , 0 < α < 1, (7)

and

ω
(

f ;
1
n

)
� Cγn

γ−1
n

∑
k=1

k−γ ∥∥ f −S k( f )
∥∥+Cγn

γ−1 ‖ f‖ , γ > 0. (8)

Letting ν ∼ μ , for ν and μ two quantities depending on some parameters, if
|ν/μ |±1 � C , with C independent of the parameters, we state

THEOREM 3. If f �= constant, then

limsup
n→∞

∥∥S n( f )− f
∥∥

ω ( f ;1/n)
∼ 1, (9)

where the sign ∼ does not depend on f . Also

∥∥S n( f )− f
∥∥ = o

(
1
n

)
⇐⇒ f = constant, (10)

∥∥S n( f )− f
∥∥ = O

(
1
n

)
⇐⇒ ω( f ; t) � Ct. (11)
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REMARK 1. From Theorem 1 we deduce the uniform convergence of S n( f ) to
f , ∀ f ∈C([0,1]). A pointwise approximation error estimate is also derived (see (23)),
showing both the interpolatory character of S n at xk , k = 0, . . . ,n, both the constants
preservation property. Hence from (4) we deduce that a slight modification of the orig-
inal Shepard operator (namely the operator S n ), does not change its main properties
and allows to drop the logn factor in the corresponding error estimate. Direct estimate
(4) cannot be improved because of (9). Equivalence (7) gives a converse result for S n

operator.
Estimate (8) gives the Steckin-Marchaud type inequality for S n operator.
Estimate (9) is a counterpart of (4) and has a character similar to the result (see

[19])

‖Bn( f )− f‖ ∼ ω2
ψ

(
f ;

1√
n

)
,

with Bn the n− th Bernstein polynomial and ω2
ψ the second order modulus of smooth-

ness of Ditzian and Totik, where ψ(x) =
√

x(1− x). However, due to the interpolatory
character of S n , we cannot get the estimation (9) with “lim” (instead of “limsup”) as
a consequence of a result stated in [9], p. 77 (cf. also [21], Theorem 2.1, p. 320).

Estimation (9) combined with the equivalence relation ω( f ; t) ∼ K( f ; t), with
K( f ) the K− functional, can serve as a characterization of such K− functionals. Rela-
tions (10)–(11) handle the saturation problem for S n.

3. A generalized degree elevation technique

In this section we discuss an application of Shepard-type operators in CAGD. Let
An(t) = [An,0(t),An,1(t), . . . ,An,n(t)]

T , where

An,i(t) =
1/((t − ti)s + λ )

∑n
i=0 1/((t− ti)s + λ )

, (12)

for 0 � i � n , i,n∈N , t ∈ [0,1] , ti = i/n , i = 0, . . . ,n , s even > 2 and 0 < nsλ �C. In
Lemma 5 in [4] we showed that An,i(t) , 0 � i � n, form a basis generating a subspace
of rational functions of degree (sn,sn) , with

0 � An,i(t) � 1, i = 0, . . . ,n,
n

∑
i=0

An,i(t) = 1.

Hence in the following the functions An,i(t) , i = 0, . . . ,n, are called blending
functions. Given the blending functions An,i(t) defined by (12) and a control vector
P = [P0,P1, . . . ,Pn]T , Pi ∈ Rd , i = 0, . . . ,n , d � 2, in [4] we introduced the Shepard-
type curve Sn[P, t] defined by

Sn[P,t] =
n

∑
i=0

An,i(t)Pi = An(t)P. (13)

It is easy to check that Sn[P,t] is a rational curve of degree (sn,sn) , it reproduces
points, it is smooth, it is non degenerate, it lies in the convex-hull of the control points,
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it satisfies the pseudo-local control property (indeed each function An, j(t) , 0 � j � n,
attains its maximum value close to 1 at t = t j and is very small for |t − t j| > 1/n, in
other words the point Pj influences strongly the shape of the curve in a neighborhood
of t = t j ) and it interpolates at the control points, as λ tends to 0.

In [4] curves Sn[P] were studied, overcoming some of the original Shepard op-
erator’s drawbacks and having some advantages with respect to Bézier case. Further
generalizations and improvements for such curves were discussed in [5].

In [4] the following raising degree formula was also derived for Sn curves

Sn+1[Q,t] =
1

Dn+1(t)

[
Sn[P,t]Dn(t)+

Z
(t− t)s + λ

]
, (14)

with t0 < t1 < .. . < t j < t < t j+1 < .. . < tn , Q =
[
P0,P1, . . . ,Pj,Z,Pj+1, . . . ,Pn

]
, Z ∈Rd ,

d � 2,

Dn(t) =
n

∑
k=0

1
(t− tk)s + λ

, and Dn+1(t) =
n

∑
k=0

1
(t− tk)s + λ

+
1

(t− t)s + λ
.

In [4] the PIA process for Sn curves was also introduced. Indeed given the control
polygon P and the basis functions An,i(x) , i = 0, . . . ,n , defined by (12), we generate
the initial Shepard-type curve

γ1[P,t] =
n

∑
i=0

An,i(t)P1
i := Sn[P,t], t ∈ [0,1],

with P1
i = Pi , i = 0, . . . ,n . Then we calculate the successive Shepard-type curves of

the sequence γm+1[P,t] , for m � 1, as follows

γm+1[P,t] =
n

∑
i=0

An,i(t)Pm+1
i , Pm+1

i = Pm
i + Δm

i , (15)

with
Δm

i = Pi− γm[P,ti], i = 0, . . . ,n,

the corresponding error vectors.
We say that γ1 curve satisfies the PIA property ⇐⇒ limm γm[P,ti] = Pi , i =

0, . . . ,n . In [4] by some results on the iterates of Shepard-type operators (cfr., e.g.,
[14, 16]) and on their eigenstructure, the following statement was proved

THEOREM 4. Curve γ1 satisfies the PIA property.

PIA property makes possible to construct a sequence of control polygons converg-
ing to the control polygon of an interpolating curve of Shepard type. Moreover the
parameter k can be used as a shape parameter in order to model different shapes, ob-
taining as an extreme case the Sn curve and the global Shepard-type interpolating curve
(see [4]).

Now we present a generalized degree-elevation technique for Shepard-type curves.
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Assume we want to model the shape of an object in 2D (analogously if we are in
3D). First we can consider Sn[P,t] curve. Then assume we want to modify slightly that
shape by a modeling vector. By the following algorithm we get pencils of curves acting
as a sculptor to model that shape and we can choose among several curves approaching
the desired shape. Indeed given a control vector P , draw Sn[P] curves for various λ
and choose a proper λ giving a satisfactory shape. Then assume we want to modify
Sn[P] curve by a modeling vector

M =
(
m0,m1, . . . ,mj+1, . . . ,mn+1

)
, mi ∈ R2, i = 0, . . . ,n+2,

with mj+1 �= 0 and mi = 0, i �= j and associated knots vector T = [t0, t1, . . . ,t j, t ,
t j+1, . . . ,tn], with t j < t < t j+1. The condition mj+1 �= 0 guarantees that we are going
to model our object next to a new knot t between two consecutive knots t j and t j+1.
The case of a modeling vector modifying our object next to more new knots can be
treated similarly. In other words by the degree-elevation formula (14) for Sn curves we
construct the new curve

Tn+1[t] := Sn[P,t]+Sn
[−P+M,t

]
Sn+1[F,t], (16)

with M = (mj+1,mj+1, . . . ,mj+1) a vector of n+1 components all equal to mj+1 and
F = [0, . . . ,1, . . . ,0]T , the vector of n+2 components, with the j +2-nd one equal to
1 and the remaining ones equal to 0.

It is interesting for the designer to have a pencil of intermediate curves to go from
Sn to Tn+1. To this aim for � � 1 introduce the pencil of curves

Un+1,�(t) := Sn[P,t]+
�−1
�+1

Sn
[−P+M,t

]
Sn+1[F,t]. (17)

Obviously from (17) Un+1,1(t) = Sn[P,t] and Un+1,∞(t) = Tn+1[t]. Hence acting on the
parameter � we can go from a Shepard-type curve to the degree-elevated corresponding
one.

Furthermore the designer could be interested in modeling the shape near the orig-
inal control points and eventually the new one. Therefore we introduce the curves

Vn+1,k,�(t) := γk[P,t]+
�−1
�+1

γk [−P+M, t
]

γ1[F,t], (18)

with k, � � 1 and γk given by (15).
We have

THEOREM 5. Let Vn+1,k,�(t) be as in (18). Then

Vn+1,k,1(t) = γk[P,t], Vn+1,1,∞(t) = Tn+1[t]. (19)

Moreover
Vn+1,∞,1(ti) = Pi, i = 0, . . . ,n. (20)
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REMARK 2. From (18) and Theorem 5 acting independently on two shape param-
eters we can model the shape of the curve reaching closer and closer the original con-
trol points and approximating the new point. Therefore such technique allows a wider
choice in modifying the form of our object than the previous methods (cfr. [4, 5]). In
other words such algorithm is a sort of generalized degree elevation technique, because
it increases the degree of the curve and at the same time models its shape. The exten-
sion of such algorithm to the tensor product surfaces case is immediate (cfr. [4]) and we
omit it.

From (18) we also deduce a fairing algorithm for Shepard-type curves. Indeed
denote by Tn+1[t] the Shepard-type curve based on n+ 2 control points. Assume that
the shape of Tn+1 is not enough satisfactory for the designer near a certain point, say
the j +2−nd one. Then from (16) we can immediately construct the reduction-degree
formula

Sn[P,t] = Tn+1[t]−Sn
[−P+M,t

]
Sn+1[F,t],

in other words we can delete the bad point from the original control polygon and con-
sider Sn instead of Tn+1. On the other hand for the designer it could be useful to have
a pencil of curves to go from Tn+1 to Sn . i.e. we consider for � � 1

Un,�[t] = Tn+1[t]− �−1
�+1

Sn
[−P+M,t

]
Sn+1[F,t]. (21)

Obviously Un,1[t] = Tn+1(t) and Un,∞(t) = Sn[P,t].
In addition the designer could be interested in fairing the shape near the original

control points or the good ones only. Hence working as for the generalized degree
elevation method in (18) we can use the PIA process at the r.h.s. in (21) and get inter-
mediate curves by acting on two independent parameters.

4. Examples

Consider a helix of radius 5 given by (cfr. [4, 5, 16])

(x(t),y(t),z(t)) = (5cost,5sin t,t), t ∈ [0,6π ].

A sequence of 19 control points Pi , i = 0, . . . ,18, is sampled from the helix as

(x(si),y(si),z(si)) , si =
π
3

i, i = 0,1, . . . ,18.

Starting with these control points we fit the helix by the corresponding Shepard-type
curve defined in (13) with s = 4 and λ = 2 · 10−5 (see [4, 5]). Now assume we want
to change slightly the shape of the helix between P8 and P9 by the modeling vector
M = [M0,M1, . . . ,M19]

T , with M9 = [5cos(6πt)−15,5sin(6πt),6πt] , t = 0.475 and
Mi = [0,0,0] , i �= 9. Then we fit the helix by a sequence of curves generated by the
process defined by (18). Figures 1–5 show curves corresponding to the first, second,
fourth and tenth iteration level for � = 1,2,3,5,10, respectively.

So we modeled the helix by new intermediate curves.
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Figure 1. Sequence of curves generated by algorithm (18) for � = 1 at the first (red), second
(green), fourth (blue) and tenth (cyan) iteration.
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Figure 2. Sequence of curves generated by algorithm (18) for � = 2 at the first (red), second
(green), fourth (blue) and tenth (cyan) iteration.
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Figure 3. Sequence of curves generated by algorithm (18) for � = 3 at the first (red), second
(green), fourth (blue) and tenth (cyan) iteration.
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Figure 4. Sequence of curves generated by algorithm (18) for � = 5 at the first (red), second
(green), fourth (blue) and tenth (cyan) iteration
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Figure 5. Sequence of curves generated by algorithm (18) for � = 10 at the first (red), second
(green), fourth (blue) and tenth (cyan) iteration

5. Proofs of main results

Proof of Theorem 1. Let φ(x) = x2 logα (
x2 +1

)
, α > 0. (Analogously we can

work in other cases.) Because of the interpolatory behavior of S n operator, we may
assume x �= xk , k = 0, . . . ,n. Then denote by x j the closest knot to x , with x j < x <
x j+1 , i.e. |x− x j| � 1/(2n). (Analogously if x j+1 is the closest knot to x .) We have

∣∣ f (x)−S n( f ;x)
∣∣ �

∣∣ f (x)− f (x j)
∣∣

φ(x− x j)

∑n
k=0

1
φ(x− xk)

+

∣∣ f (x)− f (x j+1)
∣∣

φ(x− x j+1)

∑n
k=0

1
φ(x− xk)

+
∑k �= j, j+1

| f (x)− f (xk)|
φ(x− xk)

∑n
k=0

1
φ(x− xk)

:= Σ1 + Σ2 + Σ3.

Obviously

Σ1 � φ(x− x j)

∣∣ f (x)− f (x j)
∣∣

φ(x− x j)
� ω

(
f ;

1
n

)
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and

Σ2 � φ(x− x j+1)

∣∣ f (x)− f (x j+1)
∣∣

φ(x− x j+1)
� ω

(
f ;

1
n

)
.

Since
1

∑n
k=0

1
φ(x− xk)

� (x− x j)2 logα (
(x− x j)2 +1

)
� C

n2+2α , (22)

it follows that

Σ3 � C
n2+2α

[
j−1

∑
k=0

ω( f ;x− xk)
(x− xk)2 logα ((x− xk)2 +1)

+
n

∑
k= j+2

ω( f ;xk − x)
(xk − x)2 logα ((x− xk)2 +1)

]

:= Σ4 + Σ5.

Now

Σ4 � C
ω ( f ;1/n)

n2+2α

j−1

∑
k=0

( j− k)n2+2α

( j− k)2+2α � Cω
(

f ;
1
n

)
.

Analogously

Σ5 � C
ω ( f ;1/n)

n2+2α

n

∑
k= j+2

(k− j−1)n2+2α

(k− j−1)2+2α � Cω
(

f ;
1
n

)
.

Collecting all the above estimates, (4) follows. �

REMARK 3. From the proof of Theorem 1, we deduce the following pointwise
approximation error estimate

∣∣S n( f ;x)− f (x)
∣∣ � ω ( f ; |x− x j|)+ φ(x− x j)

ω( f ; |x j+1 − x|)
φ(x j+1− x)

+Cφ(x− x j)n2+2αω
(

f ;
1
n

)
.

(23)

Proof of Theorem 2. Working as in [8] we get (5). Then following [13], Theorem
9.3.2, p. 117, we obtain (6). From [13], Lemma 9.3.4, p. 122, (7) follows. Finally from
(5) working as in [20] we deduce (8). �
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Proof of Theorem 3. Let φ(x) = x2 log
(
x2 +1

)
. Other cases can be treated simi-

larly. First we prove (9). From (12) the operator S n can be written as

S n( f ;x) =
n

∑
k=0

sk(x) f (xk),

with

sk(x) =

1
(x− xk)2 log((x− xk)2 +1)

∑n
k=0

1
(x− xk)2 log((x− xk)2 +1)

.

If we prove that
S n( f ;x) = f , if f = constant, (24)

∑
|x−xk|�d0

sk(x) = o

(
1
n

)
, d0 > 0, arbitrarily fixed, (25)

s j(x) � 1
2
, if |x− x j| � δ

n
, 0 < δ < d1 < 1, (26)

∑
|x−xk|

sk(x) � d2
δ 1+ε

n
, δ as above, (27)

with x j again the closest knot to x and with certain positive fixed reals d1,d2,ε, then
by [15], Theorem 2.1 (see also [3])

limsup
n

∥∥ f −S n( f )
∥∥ > M( f ),

with

M( f ) = sup
x

(
M( f ;x), M( f ;x) := limsup

τ→x

| f (τ)− f (t)|
|τ − x|

)
.

Now we prove (24)–(27). Relation (24) holds true by definition. From (22) it follows
that

∑
|x−xk |>d0

sk(x) � C
n4 ∑

|x−xk |>d0

1
(x− xk)2 log((x− xk)2 +1)

� Cn

n4d4
0

= o

(
1
n

)
,

that is (25). Now we prove (26). Again by (22)

∑
k �= j

sk(x) � ∑
|xk−x|�1/2

sk(x)+ ∑
|x−xk|>1/2

sk(x)

� 4n4

24n4

n

∑
k=1

1
k4 +

25n
24n4

� 1
2
, n � 3,



INEQUALITIES FOR SHEPARD-TYPE OPERATORS 529

and by sk(x) � 0 and ∑sk(x) = 1 we get (26). Now we prove (27). Indeed

∑
k �= j

|x− xk|sk(x) � (x− x j)2 log
(
(x− x j)2 +1

)

×
[

∑
|x−xk |�1/2

+ ∑
|x−xk|>1/2

]
|x− xk|

(x− xk)2 log((x− xk)2 +1)

� C
δ 4

n4

[
n3 +n

]
� C

δ 1+ε

n
,

(28)

i.e. (27) holds true. Then working as in [21], we get (9). The proof of (10) and (11) is
similar to the proof of Theorem 2.2 p. 316 in [21] and we omit it. �

Proof of Theorem 5. From (18) (19) immediately follows. Moreover from (18),
by Theorem 4, we get (20). �
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Università di Roma ‘La Sapienza’
Piazzale Aldo Moro 5, 00185 Roma, Italy

e-mail: biancamaria.dellavecchia@uniroma1.it

Journal of Mathematical Inequalities
www.ele-math.com
jmi@ele-math.com


