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ABSTRACT A stochastic scheme, namely, PLM-Lap, has recently been propounded, which relies on
the profile likelihood (PL) constructed with a Laplace distribution for estimating muscle activation
onsets (MAOs) in surface electromyographic (sEMG) data. The MAO detection accuracy and robustness
of the PLM-Lap have been empirically shown to be better than those of several state-of-the-art approaches.
The algorithm designates the data point index associated with the maximum of the PL function as an onset
occurrence by regarding every sEMG data point as a candidate onset and hence exhaustively evaluating
the objective function. This article concerns an expedient and faster approach premised on the discrete
Fibonacci search (DFS) to locate the maximum of the discrete PL function. The experimental results
support that both the exhaustive and DFS procedures are equivalent in a statistical sense, whereas the
latter offers impressive computational savings by a factor of approximately 90. Owing to the speed-up,
the accuracy of MAO estimation may further be enhanced by modeling the sEMG data with a set of
PL functions, each one built using a suitable probability distribution, and picking the estimate from the
best model. Three statistical criteria, i.e., Kolmogorov-Smirnov, Lilliefors, and Anderson-Darling test,
for choosing the probability distribution are recommended. A freely downloadable MATLAB package,
namely PROLIFIC, meant for sEMG onset detection is available on MATLAB File Exchange from the
following link: https://www.mathworks.com/matlabcentral/fileexchange/76495-prolific-profile-likelihood-
based-on-fibonacci-search.

INDEX TERMS Anderson-Darling test, discrete Fibonacci search, Kolmogorov-Smirnov test, Lilliefors
test, muscle activation onset, profile likelihood, surface electromyography.

I. INTRODUCTION
Accurate estimation of muscle activation onsets (MAOs)
from the surface electromyographic (sEMG) data is an impor-
tant research problem, due to its potential implications on
the diagnosis of neuromuscular disorders [1], rehabilitation,
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and sport science [2], [3]. Even though the manual detec-
tion of MAOs is feasible for small datasets, it is admit-
tedly laborious and subjective. Therefore, the MAO detection
algorithms are preferred to visually pinpointing onsets from
the sEMG data. For instance, wavelet transform (WT)-based
algorithms are popularized, e.g., [4], since the WT can track
the time instant at which the signal undergoes a sudden
change. Threshold-based algorithms, on the other hand, are
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simple to implement; however, they are too sensitive to sig-
nal parameters such as the signal-to-noise ratio (SNR), and
hence the choice of a threshold is application-specific [5].
On the contrary, methods relying on statistical principles do
not necessitate information concerning the signal properties,
except the a priori knowledge on the data distribution [6].
Of late, a statistical method has been developed in [7],

namely, PLM-Lap, based on the profile likelihood (PL) max-
imization assuming that the underlying data distribution is
Laplace. The superior performance of PLM-Lap over sev-
eral state-of-the-art algorithms has been demonstrated by
implementing the algorithm with 103 sEMG signals acquired
from two muscles of 18 participants (available online from
https://github.com/TenanATC/EMG) and 103 simulated sig-
nals that were created as explained in [8]. Aside from its
capability to accurately find muscle onsets, the PLM-Lap
obviates the need for parameter tuning. Nevertheless, the PL
maximization is carried out with a naive exhaustive proce-
dure—first by considering each data point as a candidate
onset and, then, by evaluating the objective (PL) function to
find the data point index that corresponds to the maximum
PL value. This exhaustive method requires N function evalu-
ations with N being the total number of sEMG data points.

Toward improving the computational efficiency of
PLM-Lap, we introduce the discrete Fibonacci search (DFS)
to seek the maximum of PL function. Notwithstanding that
the PLM-Lap implementation is expedited, the onset detec-
tion outcomes from the exhaustive and DFS search are statis-
tically equivalent as shown in Section VI-A. An impressive
computational advantage of the latter allowed us to explore
several other distribution functions to better approximate
sEMGdata distributions for computing the PL and, hopefully,
enhance the accuracy of the onset estimation. The best fit of
distributions is determined via statistical tests. The impact
of distribution choice on the MAO error is analyzed in
Section VI-B. We direct the readers to [7] and the references
therein for a collection of recent works on MAO detection
and sEMG distribution modeling.

The key benefits are, therefore, two-pronged: (i) computa-
tional savings attained by DFS search and (ii) better (subject-
adaptive) sEMG data modeling to improve the MAO detec-
tion accuracy.

II. UNDERLYING PRINCIPLE OF PLM-DFS-LAP
Essentially the PLM-Lap approach hypothesizes that the
sEMG data preconditioned with the Teager-Kaiser energy
operator (TKEO) belongs to two disparate distribu-
tions—one associated with baseline activities and the other
with the muscle activation. Our empirical study in [7]
demonstrates that the Laplace distribution best fits the
TKEO-conditioned sEMG data. More formally, given the
candidate onset index k = 1, . . . ,N , the objective function
that can be viewed as a measure of ‘‘goodness of fit’’ is
evaluated as follows:

Lk (k) =
k∑
i=1

log f (x[i]; θ̂1(k))+
N∑

j=k+1

log f (x[j]; θ̂2(k)) (1)

FIGURE 1. The PLM-DFS-Lap is implemented in two stages. First, a coarse
search is performed in a uniform grid of finite length that is dependent
on the data length (solid blue circles) to estimate a muscle onset, which
supposedly lies in a close proximity to the first peak of the PL curve (gray
curve). Centered around the data point that corresponds to the rough
estimate of the onset, an sEMG data segment of length M (red curve)
containing both the baseline and muscle activation is chosen. Second, the
DFS is invoked to accurately locate the MAO by evaluating the PL function
defined on the interval [1, M] in a few selected data points (magenta
asterisks) and finding its maximum (solid orange square) in n� M
evaluations. The respective TKEO-conditioned sEMG data (green) is
co-located with the function landscape to show that the first peak of the
PL function—MAO detected by the algorithm—coincides with the onset of
muscular activity noticeable from the signal.

where x[i] is the i-th data point of the sEMG segment con-
ditioned with the TKEO, θ̂1(·) and θ̂2(·) are the maximum
likelihood (ML) estimates (as a function of the argument in
the parenthesis) of the parameters that govern the Laplace
distributions f (·; ·) modeling the baseline and muscle activ-
ity, respectively. The downside of the PLM-Lap is that it
mandates the evaluation of (1) at all data points to find the
maximum of the function, which is presumably the bestMAO
estimate.

In the pursuit of reducing the number of function eval-
uations required to maximize (1), a two-stage procedure,
namely, PLM-DFS-Lap, as illustrated in Fig. 1 is advocated
in this work. Depending on the duration of the sEMG signal,
the PL function can have several maxima, each one corre-
sponding to a muscle onset, offset, and random fluctuation
in the signal amplitude. As explained in the sequel, the first
stage selects the segment of the signal that encompasses an
MAO, whereas the second stage detects the MAO within the
reduced search interval.

(i) Initially a coarse searchwith a uniform grid covering the
entire interval finds the first peak in the fitness function
landscape (PL curve), which is deemed a rough estimate
of a muscle onset. In order to precisely locate the MAO,
a section of the sEMG data around the onset estimate
comprising baseline and muscle activation is selected.

(ii) The DFS is then employed to maximize the unimodal1

PL function in (1) defined on the interval [1, M ] with

1A function f (x) is said to be unimodal if for some value m it is monoton-
ically increasing for x ≤ m and monotonically decreasing for x ≥ m.
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M being a finite integer depending on the duration of
the signal.

III. WHY IS THE DFS PREFERRED?
For maximizing (1), one can resort to an optimizer tailored to
handle discrete unimodal functions defined on an interval. For
instance, a bounded and discretized Nelder-Mead (BDNM)
algorithm proposed in [9], a discrete golden section search
(DGSS) introduced in [10], and the DFS described in [11] are
viable options. The BDNM is not guaranteed to converge to
the optimum of an objective function, and the required num-
ber of function evaluations cannot be predicted. The DGSS
in [10] is a rudimentary attempt to adopt the golden section
search (GSS) to seek the optimum of an integer-valued uni-
modal function. We prefer the DFS algorithm to the BDNM
and DGSS for the following rationale.

(i) Desirably, the GSS is linearly convergent [12]. For
probing positions of the GSS at only integer sequence
indices, it is widely recommended to use its variant, viz.,
the Fibonacci search. In other words, the DFS is inher-
ently suitable for optimizing integer-valued unimodal
functions.

(ii) At every iteration, the DFS reduces the interval that sur-
rounds the optimum such that the width of the ‘‘brack-
eted’’ interval (in number of samples) will turn out to
be a Fibonacci number, defined as:

F0 = 0 F1 = 1 and Fn+1 = Fn + Fn−1. (2)

This strategy maximizes the amount of interval reduc-
tion, while preserving the property of a bracketing algo-
rithm, i.e., the reuse of information concerning function
evaluations at intermediate points.

(iii) Unlike other discrete optimizers, in practical instances,
the maximum can be found in a very few function
evaluations, i.e., n � M , where n is the largest integer
such that Fn < M .

IV. DESCRIPTION OF PLM-DFS-LAP ALGORITHM
Given the function interval [a, b], with a = 1 and b = M , the
PLM-DFS-Lap algorithm initially selects two intermediate
points, p = Fn−1 and q = Fn, from the Fibonacci sequence
in (2), where n is the largest integer such that Fn < M . The
PL function defined on the interval [1, M ] is then evaluated
at the internal test points, p and q, which are initialized or
determined as indicated inAlgorithm in Fig. 2. By comparing
the function values, Lp and Lq, one of the subintervals, [a, p)
or (q, b], is discarded based on the update rules listed in
lines 6–20 in Algorithm in Fig. 2. The interval that brackets

the maximum
•

L is recursively reduced until the termination
criterion—for instance, |q− p| = 1 as suggested in [11]—is
satisfied by updating the endpoints and intermediate points.
For more details on the DFS search strategy, one may refer
to [13].

FIGURE 2. Description of PLM-DFS algorithm maximizing (1). Depending
on the choice of the distribution(s) for modeling the rest and the muscle
activity, the objective function stated in (1) is altered. For example, if both
distributions in (1) are selected as Laplacian, the algorithm is designated
as PLM-DFS-Lap.

V. CHOICE OF DISTRIBUTIONS
The computational relief would facilitate the implementation
of PLM-DFS algorithmwith other, possible heavy-tailed, dis-
tributions that offer a better fit to the data, thereby enhancing
the accuracy of MAO detection. The onset would correspond
to the data index with the largest PL value from the respective
model (if the a priori information on the preconditioned
sEMG data distribution is unavailable, which is mostly the
case). To this end, we will consider models with different
distributions and various statistical methods for estimating
the best distribution.

A. DISTRIBUTIONS
A wide variety of distributions exist, which can be adapted to
several applications, because disparate distributions differ in
their shape and support. In the present work, we consider
a subset of distributions that are flexible enough to fit the
distribution of sEMG signals recorded during the period of
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rest or muscle activation. In particular, we also select some
distributions linked to extreme events or proven to adapt to
phenomena of rupture of materials or occurrence of events
that are analogous to the ‘‘bursts’’ of muscle activation, since
MAOs may be viewed as disruptive events. In this respect,
an important feature of the interesting distributions is their fat
tails. We remark that some distributions are particular cases
of the ones considered in the paper and therefore are not
reported.

We denote by f (x) a probability distribution function and
F(x) the corresponding cumulative function; moreover, x ≡
(x1, . . . , xN ) is a random sample from the distribution. For
an easier discussion, we suppose that the sample x has been
sorted. We consider the following distributions:
• Gaussian distribution, defined on ]−∞,+∞[:

f (x) =
1

σ
√
2π

exp

(
−
(x − µ)2

2σ 2

)

F(x) =
1
2

[
1+ erf

(
x − µ

σ
√
2

)]
,

with estimates

µ̂ =
1
N

N∑
i=1

xi, σ̂ 2
=

1
N − 1

N∑
i=1

(
xi − µ̂

)2 (3)

• Laplace distribution, defined on ]−∞,+∞[:

f (x) =
1
2b

exp
(
−
|x − µ|

b

)

F(x) =


1
2
exp

(
x − µ
b

)
, if x ≤ µ

1−
1
2
exp

(
−
x − µ
b

)
if x > µ,

with estimates

µ̂ = median(x), b̂ =
1
N

N∑
i=1

|xi − µ̂| (4)

• Cauchy distribution, defined on ]−∞,+∞[:

f (x) =
1

πγ

[
1+

(
x−x0
γ

)2]
F(x) =

1
π
arctan

(
x − x0
γ

)
+

1
2
.

Estimate of scale (γ ) and location (x0) parameters can be
obtained by ML; alternatively, a computationally more
efficient way is to estimate them by the following closed
formulae [14]:

x̂0 =
1

0.24N

∑
xi≥P38th(x)
xi≤P62th(x)

xi, γ̂ = IQR(x), (5)

with Pnth(x) and IQR(x) being the n-th percentile and the
interquartile range of x, respectively.

• Logistic distribution, defined on ]−∞,+∞[:

f (x) =
exp (−(x − µ)/s)

s (1+ exp (−(x − µ)/s))2

F(x) =
1

1+ exp (−(x − µ)/s)
.

The location (µ) and scale (s) parameters are estimated
by ML.

• Lognormal distribution, defined on [0,+∞[:

f (x) =
1

xσ
√
2π

exp

(
−
(log x − µ)2

2σ 2

)

F(x) =
1
2

[
1+ erf

(
log x − µ

σ
√
2

)]
,

with estimates

µ̂ =
1
N

N∑
i=1

log xi, σ̂ 2
=

1
N − 1

N∑
i=1

(
log xi − µ̂

)2 (6)

• Weibull distribution, defined on ]0,+∞[:

f (x) =
k
λ

( x
λ

)k−1
exp

(
−

( x
λ

)k)
F(x) = 1− exp

(
−

( x
λ

)k)
.

The scale (λ) and shape (k) parameters are estimated by
ML.

• Gamma distribution, defined on ]0,+∞[:

f (x) =
1

0(k)θk
xk−1 exp

(
−
x
θ

)
F(x) =

1
0(k)

γ
(
k,
x
θ

)
,

with γ (x) being the digamma function.
The shape (k) and scale (θ ) parameters can be esti-
mated by ML. However, the closed-form solutions can
be obtained by the method of moments (MM), which are
computationally faster but less efficient, and from the
ML of the generalized gamma distribution [15]:

k̂ =
N
∑N

i=1 Xi
N
∑N

i=1 Xi logXi −
∑N

i=1 logXi
∑N

i=1 Xi

θ̂ =
1
N 2

(
N

N∑
i=1

Xi logXi −
N∑
i=1

logXi
N∑
i=1

Xi

)
. (7)

The estimators in (7) are endowed with a proper correc-
tion for bias.

• Birnbaum-Saunders distribution, defined on [0,+∞[:

f (x) =
1
√
2π

exp

−
(√

x
β
−

√
β
x

)2

2γ 2



√

x
β
+

√
β
x

2γ x


F(x) = 8

(
1
γ

(√
x
β
−

√
β

x

))
,
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TABLE 1. List of the probability distributions considered for computing
the PL, while implementing the Algorithm in Fig. 2. The main features of
these distributions—range (R, R+0 , or R+), symmetry, and skewness—are
indicated. In addition, the method (closed formula or ML) to estimate the
parameters and the test(s) suitable for estimating the best distribution,
namely, Kolmogorov-Smirnov (KS) and/or Anderson-Darling (AD) and/or
Lilliefors (L), are tabulated.

with shape (α) and scale (β) parameters estimated by
ML.

• Maximum Extreme Value distribution, defined on
]−∞,+∞[:

f (x) =
1
σ
exp

(
µ− x
σ

)
exp

(
− exp

(
µ− x
σ

))
F(x) = exp

(
− exp

(
µ− x
σ

))
,

with location (µ) and scale (σ ) parameters estimated by
ML.

Table 1 summarizes the distributions of interest, their
key features, means to estimate parameters, and statistical
tests employed to select the best distribution. We remark
that some distributions are defined on the entire real axis
(R), whereas the rest on the positive real axis including
zero (R+0 ) or not (R

+). For this reason, the absolute value
of TKEO-conditioned sEMG data is considered in the lat-
ter case. Moreover, we observe that a few distributions
are derived from others through proper transformations;
for instance, lognormal and extreme value distributions are
obtained by the logarithm of a variable distributed as a Gaus-
sian and Weibull distribution, respectively.

B. SELECTION OF DISTRIBUTIONS
Subsequent to the selection of a set of candidate distributions,
a criterion for the choice of the best2 distribution has to be
devised. In the sequel, we have explored two possibilities:
fixed distributions (i.e., independent of the subject realiza-
tion) and subject-adaptive distributions.

In principle, one could naturally think of ML itself as a cri-
terion for choosing the best distribution, that is to maximize
PL not only with respect to time but also to the distribution
among the candidate ones. Note that theoretical arguments

2Best is meant as minimizing some error indicator of an estimated onset,
as specified in Sections V-B1 and V-B2 for the KS, L, and AD tests.

tend to discourage this framework, since ML is a parametric
quantity intended to estimate a (limited) number of parame-
ters and not to estimate or compare nonparametric distribu-
tions themselves. Nevertheless, this approach is empirically
investigated in Section VI.
Aside from the ML, we apply some nonparametric tests

to compare how well various distributions fit the empirical
data. They belong to the category of minimum distance esti-
mation (MDE), which could also be adopted for estimating
the parameters of a distribution as discussed in Section VII-B.

1) KOLMOGOROV-SMIRNOV TEST WITH ITS LILLIEFORS
CORRECTION
Technically it relies on a statistic, Dn, given by the maximum
L1 distance between the empirical distribution function Fn(x)
of a signal and the target cumulative distribution F(x):

Dn = sup
x
|Fn(x)− F(x)| ,

estimated from the sample3 by

Dn ≈ max
i

(
F(xi)−

i− 1
n
,
i
n
− F(xi)

)
. (8)

Dn converges to a known distribution that allows one
to infer p-values of the test. The main strength of the
Kolmogorov-Smirnov (KS) test is that it is distribution
free. However, it assumes independence between F and
Fn, in other words, the parameters of distribution F have
to be known in advance or by ancillary information and
cannot be estimated from the empirical Fn—an assumption
that does not hold for our problem. As a consequence, the
true (unknown) distribution F approaches to the empiri-
cal distribution Fn, and hence p-values are biased upward.
See [16] for details. This difficulty will not deter its use
in our formulation, since we are interested in merely com-
paring the p-values among distributions and not inferring
significance of fit based on actual p-values. The distribution
with the smallest Dn or, equivalently, the largest p-value is
hence regarded as the best among the candidate distributions.
Nonetheless, we also employ an extension of the KS test due
to Lilliefors [17], which is predominantly known as Lilliefors
test (L). It relies on the same statistic Dn as the KS test
but p-values are instead given by precomputed tables, spe-
cific for some selected families of distributions (see [18] for
Gaussian, [19] for exponential, and [20] for extreme value).
More accurate p-values can be obtained by a Monte Carlo
strategy. By construction, the best distribution is selected as
the one with the largest p-value. Noteworthy is that the KS
test (and its Lilliefors correction) are mostly sensible to the
middle part of the distribution and not to the tails, because
naturally F tends to 0 and 1 at the left and right boundary for
all distributions, respectively.

3We recall that the sample x has been ordered.
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2) ANDERSON-DARLING TEST
The Anderson-Darling test (AD) [21] is based on the L2
distance between the target and experimental cumulative
distribution functions weighted by a function that weights
the tails more heavily than the middle of the distributions,
in contrast to the KS test. It is given by the statistic

A2 = −N − S

S =
N∑
i=1

2i− 1
N

(logF(xi)+ log(1− F(xN−i+1))) .

Similar to the L test, p-values are available from specific
tables for selected families of distributions (e.g., [22] for
Gaussian, lognormal, and Weibull distributions and [23] for
logistic and extreme value distributions). Therefore, in an
analogous fashion to the L test, the AD test selects the dis-
tribution with the largest p-value as the best one.

VI. EXPERIMENTAL RESULTS
The investigation has two main objectives: (i) to report the
speed-up in the run time of PLM-DFS compared to that of the
exhaustive-search-based PLM for a specific dataset; and (ii)
to choose the best distribution that would serve as a basis for
evaluating the PL function.

A. SPEED-UP OF PLM-DFS
The PL function is evaluated in [7] based on the observation
that, in general, distributions of preconditioned sEMG data
resemble a Laplace distribution. Therefore, in order to read-
ily compare the run time of PLM-DFS with the algorithm
proposed in [7], we have adopted the Laplace distribution
as a basis for computing the PL. Interestingly, the inferences
drawn with this assumption will not be affected by the choice
of the distribution function that are studied in Section VI-B.
Note that the execution time taken to estimate the onset
heavily depends on the distribution, owing to the fact that
the method employed for parameter estimation relies on the
chosen distribution as shown in Table 1. The run time of
the algorithm is proportional to the number of evaluations
of the PL, and for each function evaluation, we have to
estimate the parameters of the distribution twice—data points
to the left (rest) and to the right of the candidate onset
(muscle activation). For example, in the case of Gaussian
distribution, parameter estimates in (3) have a closed form
and incurs O(N ) operations; whereas, for the Laplace distri-
bution, the closed-form solution in (4) requires the data to
be sorted, which necessitates O(N logN ) operations unless
specific algorithms are resorted to, and in any case would
result in a higher computational cost than for the Gaussian
(see Section VII for more details). When a closed-form solu-
tion is not available, generally an iterative procedure has
to be implemented to maximize the ML, that is even more
expensive from the computational point of view. Neverthe-
less, irrespective of the procedure to estimate the parameters,
the speed-up as a result of PLM-DFS implementation is not
contingent on the selected distribution, since the cost of a

TABLE 2. Mean, SD, median, and IQR of the execution time (in s) of MAO
detection algorithms—PLM-Lap and PLM-DFS-Lap—to analyze sEMG data
segments that were preconditioned as described in Section VI-A1.

single evaluation of PL remains the same for both the PLM
and PLM-DFS algorithms.

Besides estimating the speed-up, we also intend to infer
whether the computational savings due to the DFS-based
search would lead to a statistically significant degradation in
the MAO detection accuracy.

1) IMPLEMENTATION
The sEMG data segments were first filtered with a
second-order Butterworth low-pass (LP) filter having a high
cut-off frequency of 60 Hz, and then conditioned with the
TKEO operator. Each data segment was fed to the inves-
tigated approaches—PLM and PLM-DFS—and the MAO
estimates from both algorithms were compared with the gold
standard. The latter was derived by computing the mean
of six (double-blind) annotations made by three researchers
after visual inspection of each datum twice with a time gap
of one to seven days [8].

2) SPEED-UP
Recall from Section III that the PLM-DFS-Lap (excluding
the coarse search) would suffice to perform merely n �
M function evaluations to seek the maximum of (1). For
instance, it requires 18 function evaluations for the sEMG
data of duration 2.5 s, which has been sampled at a rate
(Sr ) of 1 kHz; whereas, the PLM-Lap evaluates the objective
2500 times, given the same data to analyze. Both approaches
were implemented with MATLAB R2018a, and executed on
a MacBook Pro computer (Intel Core i7-7820HQ 2.9 GHz
CPU). The mean, standard deviation (SD), median, and the
interquartile range (IQR) of the execution time taken by the
PLM-Lap and PLM-DFS-Lap for detecting MAOs over 103
sEMG signals provided in the dataset are recorded in Table 2
and graphically shown in Fig. 3 as jitter-box plots.
Most importantly, the muscle onset estimation is sped up

approximately 90 times on average as a desirable conse-
quence of employing the PLM-DFS-Lap. Note that the run
time consumed by the faster method takes into account the
execution of both the coarse grid search and the DFS for
a given sEMG input signal. More details on the computa-
tional complexity of the proposed scheme are deferred to
Section VII.

3) STATISTICAL ERROR
We have verified whether maximizing (1) with the
DFS-based algorithm with a much reduced number of
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FIGURE 3. Jitter-box plots for the execution time of the onset estimation
required by the PLM-Lap and PLM-DFS-Lap, which were generated by
overlaying the box-and-whisker plot on the jitter plot.

TABLE 3. Mean, SD, median, and IQR of the signed and absolute MAO
detection error (in ms) from PLM-Lap and PLM-DFS-Lap.

function evaluations would induce a statistically significant
degradation in the accuracy of the estimated muscle onset
time. The signed error and the absolute error are shown
using jitter-box plots in Fig. 4(a) and 4(b), respectively. The
jitters display the error distribution in one dimension without
overlapping error values, whereas the box-and-whisker plot
visually depicts the bias, the spread around the median, and
the outliers4 by displaying the five-number summary of the
error. Table 3 reports the mean, SD, median, and IQR of the
onset error committed by both algorithms in milliseconds.
Despite slight variations between the onset time predicted by
the two algorithms in certain instances, the differences are not
statistically significant per the inference from theWilcoxon’s
signed-rank test (two-tail)—acceptance of null hypothesis
(H0)—at 1% level of significance as consolidated in Table 4.
This implies that the PLM-Lap and PLM-DFS-Lap will yield
statistically the same result, while the latter is far superior in
the sense of computational efficiency.

Besides the statistical test, the Bland-Altman plot in Fig. 5
is meant to graphically compare the two MAO detection
algorithms and evaluate the agreement among their outcomes.
Since we are supplied with the gold standard of a muscle

4Whiskers are not included for the absolute error as the underlying distri-
bution is strongly asymmetric.

TABLE 4. Wilcoxon signed-rank test to ascertain that the MAO estimates
from PLM-Lap and PLM-DFS-Lap are statistically equivalent. The
acceptance of null hypothesis (H0) ensures this assumption.

onset, which was derived using six double-blind assessments
of three sEMG experts (Section VI-A1), it is deemed the
best estimate of the true one. Therefore, the gold standard
onset time (in ms) is plotted on the abscissa, and the absolute
error difference between the methods on the ordinate [24].
As can be noticed in Fig. 5, the fixed bias estimated by the
median difference is negligible. The precision of the detection
results is given by median ±1.5 IQR. The 95% limits of
agreement—mean ±1.96 SD—provide an indication of how
far apart the onset detection errors from both methods are
more likely to be for most instances. If the differences (mean
±1.96 SD) are not clinically important, the two methods are
recommended to be interchangeably used.

B. SELECTION OF DISTRIBUTION
We have investigated the influence of a chosen distribution,
which serves as a basis for computing the PL function, on the
outcome of PLM-DFS algorithm. The choice of distribu-
tion does affect the following: the accuracy of onset estima-
tion and computational time. As discussed in Section VI-A,
the type of distribution dictates the parameter estimation
approach, thereby altering the run time of the algorithm.
However, the speed-up attained by replacing the exhaustive
search with DFS in maximizing the PL is independent of
the distribution. Therefore, in the remainder of this section,
we will focus only on how the accuracy of onset estimation
is impacted by the selected distribution.

Several scenarios regarding the choice of the distribu-
tion function have been analyzed. First, we try to under-
stand the distinction between the fixed distribution and the
subject-adaptive distribution when it comes to the onset esti-
mation accuracy. In the former case, a unique distribution is
selected for all the subjects, on the other hand, the choice
is subject-specific in the latter. The estimate of the best
distribution is obtained with the help of statistical criteria,
i.e., ML, KS, AD, and L, described in Section V-B. Further-
more, we also deduced the oracle distributions by taking into
account the true onsets estimated subject-wise by experts.
It should be cautioned, though, that the oracle can only be
treated as a ‘‘reference’’ to validate the algorithms; such a
virtual distribution is not useful from an operational point of
view because it makes use of the true onset that is generally
unknown. In principle, one can assume that the distributions
to the left and to the right of the onset can be different.

First of all, the optimal oracle distributions were deter-
mined for each subject. To this end, the distributions on either
side of the true onset were analyzed and the KS method
was employed to select the optimal ones. In Table 5, the
percentage of occurrence of the distributions across all the
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FIGURE 4. Jitter-box plots for the onset estimation error committed by the PLM-Lap and PLM-DFS-Lap, which were generated by
overlaying the box-and-whisker plot on the jitter plot. (a) Signed error and (b) absolute error associated with the onsets detected from
103 sEMG signals by both methods. The signed error is useful to qualitatively assess the bias and the spread around the median, while
the comparison of the mean or median absolute error renders a straightforward performance evaluation. The whiskers help identify the
outliers in the plot with the signed error.

FIGURE 5. The Bland-Altman plot to examine the MAO detection
agreement between the PLM-Lap and the PLM-DFS-Lap. Both algorithms
were tested with 103 sEMG data segments downloaded from the web link
provided in [8]. The absolute MAO error difference between the two
approaches in each trial is plotted against the gold standard onset time
in milliseconds for the respective trial with a blue circle. The median
difference is denoted with a red line that represents the bias. The
precision of the error differences is indicated using magenta dotted lines,
whose value is calculated as median ±1.5 IQR. The orange dashed lines
imply the 95% limits of agreement for the differences, and are given by
mean ±1.96 SD. Since each trial is compared against itself, the horizontal
spread of the error difference between trials remains immaterial.

subjects is recorded in the first row; the distributions that were
never selected by any criterion are not included in the table.

In Figs. 6–9, a set of distributions are shown for subject
S01_a1. Both cumulative (Figs. 6 and 7) and probability
distributions (Figs. 8 and 9) are displayed separately for
the distributions defined on ] − ∞,+∞[ (Figs. 6 and 8)
and on [0,+∞) or ]0,+∞) (Figs. 7 and 9). The upper
and lower plots correspond to the TKEO-conditioned sEMG
data points that lie on the left and the right side of the

TABLE 5. The percentage of occurrence of distributions selected by
various criteria. Oracle-KS makes use of the true onset and the KS
criterion. The initial estimate of the onset is obtained by the remaining
approaches using PLM-DFS algorithm implemented with Weibull
distributions; afterwards, the distributions are chosen based on the KS, L,
and AD criteria on either side of the onset.

true onset, respectively. Moreover, the empirical cumulative
distributions and histograms are superimposed on the best
fit of several distributions listed in Section V-A. Note that a
few distributions are omitted from the plots due to lack of
convergence during the parameter estimation process (e.g.,
logistic, Birnbaum-Saunders).

Table 5 (rows 2–4) reports the occurrence of distributions
(in %) chosen by KS, L, and AD test applied on the sEMG
data, without using the information on the true onset. In this
case, the onset that divides the sEMG data into the resting
state and muscle activation was approximated by PLM-DFS
algorithm in Fig. 2, where the objective defined in (1) is for-
mulated with aWeibull distribution. We also modeled the rest
and muscle activity by both Gaussian as well as lognormal
distributions to have an initial estimate of the onset with the
coarse grid; the frequency of optimal distributions obtained
with these onset estimates differs from the values recorded in
Table 5 (rows 2–4) by only less then 2% (except in two cases
≈ 3% and 4%), and hence not shown for brevity’s sake.
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FIGURE 6. Plot of the empirical cumulative distribution function of the
TKEO-conditioned sEMG signal (dashed line) and its best fit according to
the Gaussian (blue), Laplace (red), Cauchy (orange), and extreme
value (purple) distributions defined on ]−∞,+∞[ to the left (upper plot)
and to the right (lower plot) of the true onset. The legend also reports the
statistic of the KS test given in (8). The figure refers to the subject S01_a1.

FIGURE 7. Plot of the empirical cumulative distribution function of the
absolute TKEO-conditioned sEMG signal (dashed line) and its best fit
according to the lognormal (blue), Weibull (red), and gamma (orange)
distributions defined on [0,+∞[, ]0,+∞[, and ]0,+∞[, respectively,
to the left (upper plot) and to the right (lower plot) of the true onset. The
legend also reports the statistic of the KS test given in (8). The figure
refers to the subject S01_a1.

Finally, we evaluated the performance of various algorithm
scenarios summarized in Table 6 in estimating the onset.
We have reported the mean, SD, median, and IQR of the
absolute error of onset estimates in Table 7, which would
facilitate the user to pick the optimal distribution(s) for his/her
application. The onset detection results from PLM-Lap devel-
oped in [7] are treated as the reference, wherein the algorithm
deploys an exhaustive search for finding the onset index
by modeling the sEMG data distribution on either side of
each data point as the Laplace function in every subject,
thereby evaluating the PL function in all data points. In the

FIGURE 8. Histogram of the TKEO-conditioned sEMG signal (gray) and the
corresponding best fit of the distribution functions according to the
Gaussian (blue), Laplace (red), Cauchy (orange), and extreme
value (purple) distributions defined on ]−∞,+∞[ to the left (upper plot)
and to the right (lower plot) of the true onset. The legend also reports the
statistic of the KS test given in (8). The figure refers to the subject S01_a1.

FIGURE 9. Histogram of the absolute TKEO-conditioned sEMG
signal (gray) and the respective best fit of the distribution functions
according to the lognormal (blue), Weibull (red), and gamma (orange)
distributions defined on [0,+∞[, ]0,+∞[, and ]0,+∞[, respectively,
to the left (upper plot) and to the right (lower plot) of the true onset. The
legend also reports the statistic of the KS test given in (8). The figure
refers to the subject S01_a1.

PLM-DFS-KS, PLM-DFS-L, and PLM-DFS-AD scenarios,
the initial onset estimate was obtained by approximating data
distributions with the Weibull function, because this choice
consistently yielded better results with respect to other distri-
bution functions.

A few other cases were also tested and yet not reported
in Table 7 for the sake of brevity, since they led to a poor
estimate of the onset. The scenarios that were excluded from
Table 7 due to their inferior outcome are the following:

• Estimating the distribution with the PL function.
• Employing different distributions for the PL to the left
and to the right of the onset, meaning that the PL is
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TABLE 6. Investigated algorithm scenarios and their design. In the
subject-adaptive scenarios, namely, PLM-DFS-KS, PLM-DFS-L, and
PLM-DFS-AD, the distribution function f (x) chosen by the statistical tests
on the left side of the onset estimate is used to model the distributions of
data points that lie on either side of the onset estimate. To determine the
suitable f (x) for PLM-DFS-Ora implementation, the MAO errors from
non-adaptive scenarios—each one making use of a distribution described
in Section V-A—are compared.

TABLE 7. Mean, SD, median, IQR, and maximum of MAO detection
absolute error (in ms) from the following scenarios: PLM-Lap,
PLM-DFS-Lap, PLM-DFS-Wei, PLM-DFS-Gau, PLM-DFS-Log, PLM-DFS-KS,
PLM-DFS-L, PLM-DFS-AD, and PLM-DFS-Ora described in Section VI-B.
The first five scenarios are non-adaptive with respect to the choice of the
distribution, meaning that the distribution does not depend on the
subject. Best error indicators are shown in boldface.

computed using the respective distribution on either side
of the onset.

• Scenarios analogous to PLM-DFS-KS, PLM-DFS-L,
and PLM-DFS-AD, where the common distribution for
computing the PL on both sides of the onset is selected
to be the one determined by KS, L, and AD, respectively,
as the best distribution on the right side of the onset.

The possible reasons for the less-than-expected performance
of these scenarios are discussed in Section VII-C.

We refrain from comparing the performance of
PLM-DFS-Lap with the state-of-the-art approaches dis-
cussed in [7], because the outcome of PLM-Lap has been
shown to have outclassed recent approaches (refer to §III-B
(pp. 1286–1288) of [7]). Therefore we restrict the perfor-
mance comparison to PLM-Lap, which has superseded for-
mer methods.

VII. DISCUSSION
A. SPEED-UP
Notice that the PL function in (1) is formulated using the
log-likelihood functions instead of the likelihood functions.

The underlying reason is the computational gain, because
exponential operations are very expensive, and we can cir-
cumvent this difficulty by taking the natural logarithm5 of
the likelihood function constructed with an exponential type
of distribution. In our case, the Laplace distribution is oth-
erwise known as the double exponential distribution, and it
lends itself to the log-likelihood-based formulation. Conse-
quently, the computational time of both the PLM-Lap and
PLM-DFS-Lap is reduced by a factor of three.

The exhaustive search for the maximum of the PL function
requires N function evaluations, whereas, as shown in p. 4
of [11], the number of iterations of the Fibonacci search
is limited to logN (disregarding the search step via coarse
grid). Since the computational cost associated with a function
evaluation remains the same in both cases, the theoretical
speed-up attained by the proposed method is N/ logN , e.g.,
it is around 1000 for sample sizes of the order of 10000.
Nevertheless, we compared the PLM-DFS-Lapwith an ‘‘opti-
mized version’’ of PLM-Lap algorithm, which is capable of
iteratively restricting the part of the signal that encloses the
onset being estimated. This explains the underlying reason for
the disparity between the theoretical and practical speed-up
(≈ 90 on an average) achieved, despite remarkable speed-up
in practice. We refrain from discussing the intricacies of the
‘‘improved’’ PLM-Lap algorithm, since the main focus here
is to investigate the PLM-DFS-Lap algorithm that super-
sedes the former approach. We also note that the computa-
tional complexity of a single function evaluation is O(N ) at
best, when a closed-form solution exists for the estimate of
parameters. Worth mentioning is that we also deploy a fast
algorithm that returns the sample median for estimating the
location parameter of the Laplace distribution, which avoids
the full sorting of data points that requires O(N logN ) opera-
tions, but instead finds only a fixed number of least values
(one half) that incurs O(N ) operations [25]. Therefore the
computational complexity of the Fibonacci search is limited
to O(N logN ). The uniform coarse grid that covers the entire
range of the signal in the preliminary step is chosen to have a
width1 > 0 in ms unit.1 is a trade-off between the exhaus-
tive search (1 → 0) and an inconsequential two-point grid
comprising only two boundary points of the time interval,
where all maxima of PL are lost (1 → T , with T being the
total duration of the signal). The size of the grid is deduced
as

N0 =

⌈
T
1

⌉
=

⌈
N
Sr1

⌉
= O(N ),

where Sr is the sampling rate of the acquisition and d·e returns
the ceiling of its argument.

Based on the empirical findings with real sEMG data,
we advocate the choice of 1 = 150 ms, which offers a
good compromise between the onset detection accuracy and
the computational load. Also, the empirical study suggests
that the PLM-DFS is robust with respect to 1 for 1 ranging

5Since the logarithm is a strictly increasing function, the logarithm of a
function attains its maximum value at the same point as the function itself.
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between 100 and 200 ms. Intuitively 1 is related to the tem-
poral dynamics ofmuscle activation, i.e., slower or faster con-
tractions may require larger or smaller values, respectively.

The choice of N0 driven by 1, i.e., electrophysiologi-
cal conditions, reverts the overall computational complexity
(including the coarse grid search) to O(N 2). If one would
like to preserve the order as O(N logN ), then it is possible to
choose N0 = c logN , with c > 0 being any positive constant.

B. ALTERNATIVE SCHEMES TO FIT AND SELECT
DISTRIBUTIONS
To find a distribution that best fits the data, one has to solve
two linked sub-problems: (i) estimate relevant parameters of
a distribution from the data; (ii) select the best distribution
according to some data driven criterion. Severalmethods have
been developed in the literature for estimating parameters of
a distribution. Most of them fall under the following cate-
gories: ML, MM, MDE, and maximum spacing estimation
(MSE). We mainly rely on the ML, since it has excellent
theoretical asymptotic properties and it naturally fits within
the PL framework. Note that the PL is premised on the likeli-
hood, which is the underlying principle of our methodology.
Nevertheless, one can resort to other parameter estimators
that may offer computational speed-up. We remark that the
ML supersedes the MM as far as theoretical properties are
concerned and the MSE turns out to be an approximation of
ML as the sample size increases. Notable examples of MDE
are KS, AD, and Cramér-von Mises.

Generally speaking, the approaches meant for estimat-
ing the parameters of a distribution could also be tailored
to select the best distribution, by simply comparing the
final values of the minimum/maximum criterion that serves
as the basis for estimating the parameters. In addition, the
information-theoretic criteria such as the classical Akaike or
Bayesian information criterion are advocated in scenarios
with an unequal number of parameters across distributions,
unlike the case here.

C. CHOICE OF DISTRIBUTIONS
The Oracle-KS scenario in Table 5 implies that different
functions render an optimal fit to the distribution of sEMG
data lying on the left and the right side of the onset. This is due
to intrinsic changes in the sEMG signal during dynamic or
sustained isometric contractions. From an electrophysiologi-
cal perspective, sEMG activity of a muscle is directly related
to the number of motor units (MUs) recruited and their firing
frequency [26]. At rest or low muscle activity, only smaller
MUs are recruited at low firing frequency. The generated
motor unit action potentials (MUAPs) are thus small and
well separated. During contraction or higher muscle activ-
ity, there is an increase in the recruitment of larger MUs
at higher frequency, resulting in overlapping MUAPs with
larger and sharper spikes [26]. These intrinsic changes lead to
modifications of the amplitude and frequency content of the
sEMG signal, and aremost likely responsible for the observed

changes in its distribution profile. Moreover, we observe that
the distributions of TKEO-conditioned sEMG pertaining to
both rest and muscle activation are skewed (see Fig. 8) and
unable to be fitted accurately by any distribution function.
This difficulty is mitigated by modeling the absolute value
of the TKEO-conditioned sEMG signals; one can visually
appreciate a better fit of the distributions in Figs. 7 and 9,
besides this claim being confirmed by the KS, L, and AD
tests.

Notice that the Oracle-KS scenario in Table 1 predomi-
nantly (73.8%) chooses the Weibull distribution to model the
resting state sEMG data, i.e., data to the left of the onset. The
other distributions selected by the KS test include the gamma
(14.6%) and lognormal (10.7%). On the other hand, the dis-
tribution functions that offer a better fit to the distribution of
the muscle activation data, i.e., sEMG on the right side of the
onset, turned out to be very different—the lognormal is cho-
sen more frequently (53.4%) than the Weibull (45.6%). In a
data-driven approach (scenarios KS, L, and AD), where we
are bereft of or refrain from using ancillary information on the
onset, the optimal distributions vary a lot from the Oracle-KS
case. The Weibull is the most preferred distribution to model
the sEMG data at both sides of the onset, whereas, the lognor-
mal is deemed appropriate for fitting the sEMG data on the
right side of the onset in more than one third of the subjects.
Furthermore, the occurrence of distributions to the left of
the onset determined by the L test differs notably from that
predicted by KS and AD. On the contrary, the outcome of
L test to the right of the onset is strikingly similar to that
of AD. It is also worthwhile to point out that the gamma
and exponential distribution are opted quite frequently to the
left of the onset by the KS (19.4%) and AD test (23.3%),
respectively.

The fundamental difference between the Oracle-KS and
the data-driven scenarios lies in the approximation of the
initial onset that separates the sEMG data into segments relat-
ing to rest (left) and muscle activities (right). In the former
approach, the onset is supplied by the experts, while in the
latter, it is estimated by the PLM-DFS algorithm implemented
with Weibull distributions as discussed in Section VI-B.
An inherent pitfall in the data-driven framework is that the
initial estimate of the onset would not be as precise as the true
onset apropos of demarcation between the rest and muscle
activation, thereby causing an overlap between the two data
segments. By contrast, from a physiological viewpoint, the
data points on either side of the true onset presumably belong
to two disparate distributions, in a sense that either the param-
eter estimates of both distributions are different or the under-
lying density functions are dissimilar. Therefore, it is more
likely that the data overlap stemming from an inferior onset
estimate would adversely interfere with the performance of
data-driven scenarios. In addition, the performance of both
approaches will be affected due to sEMG data that seldom
includes a muscle offset (marking the cessation of muscu-
lar activities), since the offset could potentially contribute
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to the degradation of ‘‘theoretical’’ distributions by mixing
sEMG recorded during different conditions. Another source
of difficulty is that the muscle activation is not always a well-
defined on and off process.

To summarize, adaptive strategies (where the distribution
functions are chosen subject-wise) model the distribution
of the rectified TKEO-conditioned sEMG more often using
the Weibull function and occasionally with the lognormal
function. This finding corroborates with the fact that among
the non-adaptive scenarios in Table 7, the one relying on the
Weibull distribution is reported to have resulted in a reduced
MAO detection error in terms of median and IQR range.
Nevertheless, the mean error produced by the PLM-DFS-Wei
is slightly more than that of PLM-DFS-Gau, since the
Gaussian-based scenario handles the extreme instances more
effectively as evidenced by the smallest maximum error.
Interestingly enough, the scenarios with the Weibull and
Gaussian distribution could outperform the Laplacian case,
even though the exhaustive-search-based PLM-Lap advo-
cated in [7] is designed with the Laplace distribution. We also
observe that the use of lognormal distribution within the
non-adaptive framework, despite being recommended by var-
ious tests to a certain extent (see Table 5 for percentage of
occurrence), has been proven to be ineffective in estimating
the onset.

What follows is the inference concerning the adaptive
selection of onset by the KS, L, and AD tests. We observe
that the KS strategy surpasses other adaptive as well as
non-adaptive strategies with regard to the median and IQR
of onset error; however, recall that the PLM-DFS-Gau (a
non-adaptive strategy) managed to lower the mean error
because of its ability to efficiently deal with extreme cases.
A possible explanation is that a non-adaptive and less flexi-
ble framework, even though less accurate generally than an
adaptive one, is less prone to pick one of the local maxima of
PL that could result in outliers.

Based on the empirical findings, we conclude that the
adaptive choice of distributions by KS is the best possible
strategy for estimating the onset.

VIII. CONCLUSION
Wehave described a discrete-Fibonacci-based search strategy
to speed-up the maximization of PL function, so that the
muscle onset detection via a robust method, viz., PLM-Lap,
can be expedited by an impressive factor6 (≈ 90). It has also
been shown that the computational savings do not degrade
the accuracy of the estimated onset time, meaning that the
outcomes of PLM-Lap and PLM-DFS-Lap are statistically
equivalent.

The speed-up attained due to DFS in the execution
of an MAO detection algorithm (as reported in Table 2)
enabled us to explore various possibilities to decide the best

6Actually this number is obtained for our dataset, but it could change for
others.

distribution for constructing the PL function. To this pur-
pose, we have proposed different strategies both non-adaptive
(i.e., fixed for all subjects) and adaptive (i.e., subject
dependent) based on statistical tests-of-fit, namely, KS, L,
and AD. We have empirically verified that the adaptive
selection of distributions premised on the KS test could
more accurately estimate the onset. As a side note, the
non-adaptive use of Weibull function did improve the results
obtained in [7] by virtue of relatively better-approximated
sEMG distributions with Weibull rather than Laplace
function.

The MATLAB source code for a collection of PLM-DFS
algorithms described in this article and the distribution choice
by KS, L, and AD tests-of-fit, whose acronym is PROLIFIC
(PROfile LIkelihood based on FIbonaCci search), is publicly
available on MATLAB File Exchange at the following li-
nk: https://www.mathworks.com/matlabcentral/fileexchange/
76495-prolific-profile-likelihood-based-on-fibonacci-search.
The software is tailored to the detection of muscle activation
onset from sEMG data. However, the same methodology
can be applied to other problems, where the data can be
split into two regions with different characteristics, because
of the following merits: (i) the ability to select the suitable
distributions from a wide variety to compute the PL function,
as the optimal distributions tend to vary depending on the
data at hand and (ii) the impressive computational savings.
Furthermore, the MATLAB code could easily be adapted to
handle other types of data by non-expert users.
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