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Abstract  An experimental investigation of the near field of a turbulent orifice jet is performed using high 

resolution Particle Image Velocimetry, aiming to highlight effects on the flow field due to changes in Reynolds 

number. The attention is focused onto departures from isotropy for large and small scales, by considering 

statistics of mean square velocity and velocity derivatives and specifically the non-dimensional ratios of such 

quantities. The results compare well with available literature data and pointed out that the effects of Reynolds 

number on large scales are usually small and limited to a region ranging less than seven-ten diameters from the 

jet outlet. For small scales, such Reynolds number dependence is extended up to ten-fifteen diameters. Farther 

from the jet exit, Reynolds number dependence almost disappears and all data approach similar asymptotic 

behaviors. On the other hand, velocity and some velocity derivative statistics clearly show that neither large nor 

small scale statistics strictly follow the isotropy condition; nonetheless, differences from that condition are 

limited to a factor which is almost constant in the whole measured field. In order to provide a link between 

such large and small scale departures from isotropy, a relation among mean square velocity ratios and mean 

square derivative ratios is proposed and proved to be well verified in the measured region and interval of 

Reynolds numbers. This relation allows deriving small scale derivative ratios, which are difficult to measure 

experimentally or to obtain numerically, due to high resolution requirements, from large scale velocity ratios, 

which are achieved much easier.  
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D 

f 

g 

Orifice diameter 

Longitudinal correlation function 

Transverse correlation function 

Ki 

KS 

KU 

Mean square derivative ratios  

Half-jet width coefficient 

Jet velocity centerline decay coefficient 

PIV 

Ri 

Acronym for Particle Image Velocimetry 

Mean square velocity ratios 

ReD 

Reλ 

ri 

RMS 

TKE 

Reynolds number,  ReD = U0D/ν  

Taylor microscale Reynolds number,  Reλ = urms λf/ν  

Spatial separation along  ith  direction 

Acronym for Root Mean Square 

Acronym for Turbulent Kinetic Energy 

U 

U0 

Local mean velocity 

Mean exit bulk velocity at the orifice 

Umax Maximum jet velocity at vena contracta position 

ui 

u’i 

urms 

vrms 

xi 

y1/2  

Velocity  ith – component (u1=u, u2=v, u3=w) 

Fluctuating velocity, ui –Ui 

Streamwise velocity root mean square value 

Transverse velocity root mean square value 

Coordinate  ith – component (x1=x, x2=y, x3=z) 

Half-velocity jet width 

η Kolmogorov microscale 

λf 

λg 

λij 

Longitudinal Taylor microscale 

Transverse Taylor microscale 

Taylor microscale of the ith velocity component along direction jth 

ν Kinematic viscosity of the fluid (��/s) 
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1. Introduction and theoretical background 

There is theoretical and practical broad evidence that in turbulent round jets the small flow scales 

behave as predicted by the axisymmetric turbulence approximation [1, 2]. Good indicators of such a small scale 

behavior are the mean square and mixed velocity derivatives, which retain the largest part of the Turbulent 

Kinetic Energy (TKE) dissipation content at high wavenumbers [3, 4] 
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(where the overbar indicates average). In order to verify simplified hypothesis, it is useful to define mean 

square derivatives ratios, explicitly written as eight mean square derivative ratios and three mixed derivative 

ratios, assuming direction 1 as main streamwise reference and 2, 3 along orthogonal axis 
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In particular, in axisymmetric turbulence, all mean square derivatives can be derived by only four, as reported 

in the following relations [2] 

 

K1 = K2,   K3 = K5,   K4 = K6,   K7 = K8 

K9 = K10 = - 0.5,    

K1 = (1+K7)/3,   K11 = (1-2K7)/6, 
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However, these specific relations do not allow evaluating the exact values of most of derivative ratios 

previously introduced. On the other hand, by assuming the much stronger hypothesis of isotropic turbulence, 

the invariance to axis direction leads to the following exact values for each derivative ratio [5] 

 

    K1 = 1,   K2 = 1,    

K3 = K4 = K5 = K6 = K7 = K8 =2, 

    K9 = K10 = K11 = - 0.5,    

 

However such a hypothesis is hardly verified in most of interesting flows and particularly in the near field of a 

turbulent jet [6], thus it would be highly desirable to determine specific values for such ratios to be used as 

references and how they are dependent on specific conditions, as inlet and boundary conditions and Reynolds 

number.  

 The simultaneous picture from the point of view of large scales, is given by the behavior of the mean 

square velocity fluctuations, which retain the largest part of the TKE content at small wavenumbers [3, 4]. In 

isotropic turbulence, the following ratios  
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must be all equal to unity. On the other hand, in axisymmetric turbulence, it is only possible to establish the 

equivalence of the mean square velocity fluctuations along the directions orthogonal to the mean flow, so that 

R1 = R2, so far the specific values once more being undetermined. 

 Despite the lack of theoretical and analytical support, numerical simulations and experiments on 

different jets allowed to obtain ranges of values for the previously defined derivative and velocity ratios [7, 8, 

9, 10, 11, 12, 13, 14, 15]. For example, for those most frequently measured values, at the jet centerline, at an 

axial distance larger than 5 jet diameters, it is obtained  
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 K1 ∼ 0.7÷1.1       

 K3 ∼ 1.7÷2.1       

 K4 ∼ 1÷1.5          

 K9 ∼ -0.5÷-0.3    

 R1 ∼ 0.5÷0.7     

 R2 ∼ R1 

 

It is clearly noticed that, while some of such values, especially those related to small scales, are close to the 

isotropic values (K1, K3, K9), others, related to both large and small scales, are far from isotropy (R1, K4). Such a 

behavior seems almost independent of the specific conditions used by the cited authors, as inlet condition and 

Reynolds number. The reason for this behavior is unknown, but it is surely noticeable that the ratio K4 is the 

only one among those reported above, containing mean square derivatives computed only along the streamwise 

direction.  In some sense, such streamwise mean square derivatives should be dominated by transport, that is a 

phenomenon acting mostly on large scales (as for R1), whereas numerators in K1 and K3 are computed along the 

vertical direction, so far they should be definitely dominated by diffusion effects, i.e. by small scales. The large 

scales affecting transport will be typically anisotropic in the near field of a jet, while diffusion phenomena 

could approach more closely isotropy even near to the jet inlet. Therefore, it would be important to clarify if 

this picture really takes place, by also recalling theoretical relation between the previous values, especially 

from the point of view of relating small scales (i.e. K ratios) with large scales (i.e. R ratios). 

 In order to do that, we have to reconsider the way in which the mean square derivative ratios are 

derived. The first step is to define the longitudinal correlation functions and its Taylor expansion close to zero 

separation, with the hypothesis of homogeneous flow field, valid up to third-order [3, 16, 17] 
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where i=1 or 2 or 3. This relation defines the longitudinal Taylor microscales,  
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so that each diagonal mean square derivative can be expressed as 
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Similarly, it is possible to proceed for the transverse correlation functions 
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where i≠j, allowing to define the transverse Taylor microscales,  
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so that again cross mean square derivatives can be expressed as 
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Now, if isotropy is assumed, the second-order derivatives of f and g will not depend on the specific direction ri, 

(i=1, 2  or 3), so that immediately some exact relation can be derived for the mean square derivative ratios 

 

    K1 = K2 = 1,    

K3 = K4 = K5 = K6 = K7 = K8 

 

and of course for the Taylor microscales 

    λii = λf    

    λij = λg    

 

However most of the previous ratios are still not determined, unless a specific relation is established among the 

longitudinal and transverse correlation function. This can be derived by using the hypothesis of incompressible 

flow, which therefore is an additional hypothesis [3, 16, 17] 
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and 

                   2λg = λf    

Thus, in addition to the previous ratios, it is possible to derive 

 

    K3 = K4 = K5 = K6 = K7 = K8 = 2 
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Furthermore, additional relations among small and large scale ratios are here derived, by considering the plane 

containing axial and transverse directions (1, 2), the first one from the definition of Taylor microscales λ21 and 

λ11,  

                        K4 = 2 R1 /A 

 

where A is a non-dimensional factor almost equal to 1, deriving from the specific relation among the squares of 

λ21 and λ12, in case of departure from isotropy. The second one is cross-relation from the other Taylor 

microscales definitions on the same plane (1, 2) 

                        K3 / K1 = 2A / R1  

 

Similar relations can be obtained in the other coordinate planes, as for example  K6 = 2R2/B (where B is again a 

non-dimensional factor almost equal to 1, deriving from the specific relation among the squares of λ31 and λ13 

in case of departure from isotropy).  

The previous relations, and in particular the one between K4 and R1, not only gives a way to relate small and 

large scales and their departures from isotropy, but also allows to derive an estimation of mean square 

derivatives on small scales as K4 (which suffer from high resolution requirements both numerically and 

experimentally), from the measurement of mean square velocities on large scales, as R1, which can be derived 

much more easily. 

Therefore, moving from these relations, the first aim of this paper is to determine experimentally, 

using high resolution Particle Image Velocimetry (PIV), the mean square velocities and mean square 

derivatives in the near field of a turbulent jet, in order to verify the above reported relations, by comparing 

direct measurements of K ratios with estimates using the R ratios. The second objective of this work, is to 

verify the dependence of velocity and velocity derivatives on specific inlet conditions, in terms of dynamical 

actions, i.e. on Reynolds number, with the specific goal of revealing departures and approaches to isotropic 

conditions. 
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2. Experimental facility and measurement technique 

A sketch of the experimental setup is presented in Figure 1, the circular nozzle being produced with a 

sharp edge contour, with roundness less than 0.5 mm, thus ensuring proper developing of the shear layers. The 

nozzle is manufactured on a plate, so that the jet can be considered as an orifice jet, the plate dimensions on the 

coordinate planes (x1-x2 and x2-x3, x1=x being the streamwise direction and x2=y and x3=z the vertical and 

transverse ones) being around 20 D (where D=2cm is the diameter of the orifice).  

 

 

 

Figure 1. Schematic view of the experimental setup, the flow direction in the test section is from left to right. 

 

As shown in Figure 1, the continuous jet is part of a closed loop hydraulic circuit starting from a ground 

container, from where a centrifugal pump moves water to a high level container (around 4 meters in height, 

which can be adjusted to change the jet velocity), to smooth fluctuations due to the pump. Once flowed out 

from such a tank, the water enters through a small chamber and honeycombs into the test tank, which is 

subdivided by the orifice plate into a settling chamber (38 cm in size, about 18 D, upstream of the orifice) and 

the proper test chamber (58 cm, about 30 D, downstream the orifice). Finally, a second plate delimits a 

discharge chamber, downstream to the test one, through which the water comes back to the main tank, so far 

closing the loop. The whole test section is made by Plexiglas to allow optical access. The flow rate is measured 
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by an ultrasound flow meter, placed between the discharge chamber and the ground container, with an error of 

±2.5%. 

Dynamical conditions are determined mainly by the Reynolds number defined by ReD = U0D/ν (where 

U0 is the exit bulk velocity, D is the diameter of the orifice, and ν the kinematic viscosity of water) set between 

2,000 and 70,000. The Taylor microscale Reynolds number, defined by Reλ = urms λ/ν (where urms is the 

streamwise rms velocity and λ is the longitudinal Taylor microscale), is between 80 and 500. For ReD = 

1.5×104, it is obtained λ = 2.1×10−3 m and η = 2.2×10−4 m for the Kolmogorov length scale, derived by 

employing the Kolmogorov local isotropy hypothesis to derive an estimate of the TKE dissipation. 

The present experimental study has been carried out by means of Particle Image Velocimetry 

technique. The acquisition system is composed of a light source, namely a double-pulse Nd-Yag laser having 

200 mJ energy per pulse, forming a light plane with around 1 mm thickness and a minimum pulse duration of 8 

ns, and an acquisition device, i.e. a digital high-speed camera (2,000 frames/s at maximum resolution), with 

1,024 × 1,024 pixel resolution and a 10 bit CMOS sensor. Between them, a BNC 575 pulse generator allows 

the synchronization between laser illumination and camera recording. The camera had a 17 μm sensor pixel 

size, a 50 mm focal length objective, with an aperture equal to F = 1.8 and a working distance near to 20 cm, 

due to an extension tube set. The attention is focused on to the near jet region, i.e. x/D < 25 for two main 

reasons: primarily, earliest investigations revealed that all large and small scale statistics are basically 

independent on Reynolds number for x/D > 25. In addition, the majority of interest for engineering applications 

is related to the near field, where different strategies (change in geometry, Reynolds number and active 

solutions) can be applied to improve mixing and convergence to isotropy conditions as also related to 

numerical approximations. In order to improve the spatial resolution of the measurements, the acquired near jet 

region is divided into sub-regions, each one by 3.5 D, imaged at full camera resolution, i.e. with a resolution 

around 130 pixel/cm. Details on the dependence of results on image resolution are reported in [6]. The water 

was seeded by glass hollow beads having a diameter in the range (8 – 12) μm and a density around (1.05−1.15) 

g/cm3, the particle image size being in between (1.5 - 2.3) pixels. Acquired images have been analysed by 

LaVision Davis 7 software, making use of a multi-pass algorithm consisting of two passes with a large window 
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size equal to 64 × 64 pixels and four passes with a smaller window of 32 × 32 pixels, in both cases using 75 % 

overlapping. Thus, the final spacing between velocity vectors was 8 pixels, which is equal to about 0.5 mm, i.e. 

on the average around λ/4 and 2η. In addition, a vector validation algorithm, based on a local median filter and 

group removing, is applied to eliminate spurious vectors. The LaVision Davis software performances in the 3rd 

PIV Challenge attained a bias error less than 0.5% and an rms error around 5%, dependent on the quality of 

acquired images [18]. Such a bias error is consistent with an absolute error of ±0.05 pixels (which is typical of 

advanced PIV processing) and an average tracer displacement of 10 pixels.    

To derive statistics of velocity and velocity derivatives, for each Reynolds number, about 10,000 

image pairs have been acquired in subsets of 1,000 at a repetition rate of 10 Hz, so that each acquisition took 

100 s, ensuring statistical independence between samples in time. Indeed, the integral time scale is around 4 

ms, which is much smaller than the repetition time of 0.1 s, so that there are 25 integral time scales between 

each sample in time. In addition, the total number of samples is sufficient for proper statistical convergence, as 

shown in a previous paper by looking at probability density function dependence on the number of samples [6]. 

The space derivatives have been computed by making use of finite difference approximations with second 

order accuracy, except at the boundaries. From this point of view, it is important to underline that in this paper 

only spatial derivatives are computed and that keeping the vector spacing around to two Kolmogorov scales 

also ensures a good evaluation of spatial velocity differences [19]. 

 

 

3. Results and discussion  

The detailed characterization of the orifice jet has been already performed elsewhere [6, 15, 20], so 

hereafter the attention will be focused on the effect of Reynolds number on large and small scale statistics and 

on the relation among them in view of departures from isotropy as detailed in the first section of this paper.  
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Figure 2. Colormap of normalized streamwise velocity component in the near field of the orifice jet for 

Reynolds number equal to 35,000. The flow direction is from left to right. 

 

3.1. Large scale statistics 

The streamwise velocity field, obtained from the data in the near jet region, is shown in Figure 2 for a Reynolds 

number of 35,000. The velocity is normalized with the maximum velocity, Umax, which for an orifice jet is not 

attained just at the outlet, but slightly downstream, usually at one diameter due to the vena contracta 

phenomenon [21, 15]. This is visible in Figure 2, where the exit velocity is increasing when moving 

downstream along the centerline, as also the usual decay of velocity and spreading of the jet in the ambient 

fluid after the end of the jet core, around 5D. In the figure, it is also possible to notice the different sub-regions 

used to assemble the whole jet behavior with high resolution. Similar behaviours are obtained for the flow 

fields at the other Reynolds numbers and to point out the effect of the latter, the inverse of the streamwise mean 

velocity decay along the centerline is reported in Figure 3. 

From such a figure, again it is possible to notice the acceleration close to the jet orifice due to the vena 

contracta, the location for the maximum velocity (which is a minimum in this plot) being around (1-2)D, 

slightly dependent on Reynolds number. On the other hand, from around 5D, after the end of the jet core 

region, the centerline velocity starts to decay almost as 1/x, which is a linear behavior in this inverse decay plot 

 

Umax/U = KU (x/D) + CU . 
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Figure 3. Inverse of mean streamwise velocity centreline decay measured at different Reynolds numbers. The 

black circles refer to the data reported by Quinn (1989) [22], obtained on an elliptical orifice jet at a Reynolds 

number  almost equal to 105.  

 

 

Only the data acquired at Re=2,000 depart from such a behavior, showing an almost non-linear trend, with a 

stronger centerline velocity decay in comparison to the other data. Apart from this, the overall behaviors are in 

agreement with data by Quinn (1989) and (2007) [22, 21], obtained by Hot Wire Anemometry on an elliptical 

orifice jet at a Reynolds number almost equal to 105, which are closely overlapped also with data by Mi et al. 

(2007) [10], obtained with PIV on a circular orifice jet at Re=70,000.  

The previous reported decay coefficient KU has been extensively investigated in the past, as also its 

counterpart in terms of jet half-width increase, which again results as linear within the hypothesis of jet self-

similarity [23, 22]: 

 

y1/2/D = KS (x/D) + CS . 
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The behaviour of the coefficients KU and KS as a function of Reynolds number is reported in Figure 4, 

compared with results by other authors [23, 24, 25, 26]. For both, there is a decrease from small to high 

Reynolds numbers, reaching almost constant values,  KU ≈ 0.15  and  KS ≈ 0.1 respectively, in good agreement 

with existing data. Certainly, it is reasonable to get a smaller decrease in centreline velocity (small KU) when 

the jet aperture is also small (small KS) and this behaviour is observed for Reynolds numbers not exceeding 104. 

This means that the jet development is expected to be faster for low Reynolds number jets. On the other hand, 

the jet decay and spreading is slightly dependent on Reynolds number if this is larger than 104.  

Regarding velocity fluctuations, examples of color plots for the rms of streamwise and radial velocity 

components are presented in Figure 5, as derived for a Reynolds number equal to 35,000. Again values are 

made non-dimensional by using the maximum velocity at the vena contracta section. The two developing shear 

layers are clearly observed, merging at about 5D, i.e. where the jet core region ends, with maximum non 

dimensional values of fluctuations almost equal to 0.15 and 0.1 respectively for the two components. 

 

 

Figure 4. Jet velocity and half-width coefficients, KU and KS, as measured at different Reynolds numbers 

(symbols connected by lines). The single circles (filled for KU and open for KS) refer to the data reported by 

Quinn (2006) [24], squares to data by Wygnansky and Fiedler (1969) [23], triangles to data by Chen and Rodi 

(1980) [25] and diamonds to those by Panchapasekan and Lumley (1993) [26]. 
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The present results are is good agreement with those obtained by other authors [21, 15] and similar behaviours 

are obtained also for the measurements at different Reynolds numbers. To this aim, in order to compare the 

data acquired at different Reynolds numbers, the centerline trends of the two non dimensional rms fluctuations 

are presented in Figure 6 and compared with data by Quinn (2007) [21], obtained by Hot Wire Anemometry on 

an elliptical orifice jet at a Reynolds number almost equal to 105. The first thing to notice is that the data 

collapse quite well for both components for x/D larger than around 7, whereas there is a relevant variability for 

smaller distances, expecially if the Reynolds number is smaller than 15,000, again showing an earlier 

development of low Reynolds number jets. This is proving that the local maximum jet velocity at the vena 

contracta position, used in this plot, is a good scaling reference velocity. In addition, it is confirmed that the 

peaks in rms fluctuations for both components are located in the region  x/D between 5 and 8, with a value in 

the range (0.12 - 0.16) for the streamwise component  and in the range (0.09 – 0.15) for the radial component.  

 

 

 

 

Figure 5. Colormaps of normalized rms fluctuations for streamwise (at the top) and radial (at the bottom) 

velocity components in the near field of the orifice jet for Reynolds number equal to 35,000. The flow direction 

is from left to right. 
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These results are in agreement with the reference data, obtained by Quinn (2007) [21] for similar Reynolds 

numbers, even if on an elliptical jet, which usually gave some slightly overestimated rms value [15]. An 

equivalent collapse of data at different Reynolds number is obtained if considering the behaviours in the shear 

layers or along the transverse directions (not shown here). 

 

 

 

Figure 6. Rms fluctuations at the jet centreline for the streamwise (at the top) and radial (at the bottom) 

velocity components as measured at different Reynolds numbers. The black circles refer to the data reported by 

Quinn  (2007) [21], obtained on an elliptical orifice jet at a Reynolds number  almost equal to 105. 
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 From these rms fluctuations, it is possible to derive the ratio among  mean square velocity variations 

along two orthogonal axes, i.e. urms/vrms, which is not dependent on the specific velocity used to have non-

dimensional quantities, so quite a general properties of the considered flow. A color plot example is presented 

in Figure 7, for a Reynolds number equal to 35,000.  This ratio is also equal to the inverse of the root of the 

invariant R1 introduced in section 1 of this paper, so that a value equal to 1 is expected for fully isotropic 

conditions on large scales. Indeed, the result reported in Figure 7 points out that, apart from the external 

ambient fluid, starting from shear layers, an almost constant value spreads all over the field, as indicated by the 

dominant green-yellow colors. Noticeable is the fact that this color is different from the one related to the value 

1, which is light blue. This consideration can be made more quantitative by considering the centerline profile of 

this ratio, for the different Reynolds numbers tested, as reported in Figure 8. In the first 5 diameters there are 

strong variations at the different Reynolds numbers, which are replicating the differences observed in mean and 

rms velocities due to large scale vortices, whereas for x/D>7, the data are well grouped and close to the results 

reported as references, except possibly for the very small Reynolds number. They reach an almost constant 

value, which as already noted is different form unity, lying in the interval (1.2 – 1.4), in agreement with the 

interval (0.5 – 0.7) reported in the Introduction of this paper for the quantity R1. 

 

 

 

Figure 7. Colormap of the ratio urms/vrms  in the near field of the orifice jet for Reynolds number equal to 

35,000. The flow direction is from left to right. 
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Figure 8. Centerline profile of the ratio urms/vrms  as measured at different Reynolds numbers. The black circles 

with dotted line refer to the data reported by Djeridane et al. (1996) [7], obtained on a circular pipe jet at a 

Reynolds number almost equal to 2×104, whereas the blue circles with dotted line to the data reported by Xu & 

Antonia (2002) [9] on a smooth contraction circular jet at Reynolds number equal to 8×104. The blue horizontal 

line refers to the exact isotropic conditions for the large scales.  

 

 

Figure 9. Profile of the ratio urms/vrms  as measured in the upper shear layer at different Reynolds numbers. The 

blue horizontal line refers to the exact isotropic conditions for the large scales.  
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 Similarly, the urms/vrms  ratio can be computed in shear layers as reported in Figure 9 for the upper one. 

Again, except for the very small Reynolds number equal to 2000, the data are close one to each other for x/D>7 

and approach an almost constant value which is the same as the one at the centreline, i.e. in the range (1.2 – 

1.4) (similar results are obtained also for transverse profiles of this ratio, not shown here). Therefore, this 

confirms that the large scales, which dominate the rms ratio, are behaving not exactly as in isotropic conditions, 

with a significant departure from unity, being rms velocity fluctuations in the horizontal directions from 20% to 

40% larger than those along the vertical. Nevertheless, this departure seems to be almost constant in the whole 

near field and almost independent of the specific Reynolds number, at least in the measured range. So far, as 

suggested in the Introduction, such an anisotropic behavior in the jet near field seems to be transported 

downstream by large scales all over the field and the question is how this is affecting also the small scale 

behavior.  

 

3.2. Small scale statistics 

The non-dimensional mean square derivatives, i.e. the ratios recalled in the Introduction of this paper, give an 

overall description of the small scale behavior in a flow field. In Figure10, examples of the four measured 

ratios in the near jet field are provided for a Reynolds number equal to 35,000. The largest values are usually 

measured beside the orifice, at the shear layer boundaries and sometimes in the jet core region and boundaries, 

being then convected and smoothed downstream. These values correspond to local high values of mean square 

velocity variations, either along the transverse direction (as for K3 and K1 respectively), in comparison to those 

in the streamwise direction (present in the normalization factor of the ratios, i.e. the average of  (∂u’1/∂x1)
2), or 

due to the transverse velocity component (as in K4) or the mixed ones (as in K9) in comparison to the 

streamwise component alone. So, in some sense, these large values attest the importance of diffusion over 

transport processes for small scales. The isotropic values (respectively K1 = 1, K3 = K4 = 2, K9 = -0.5), 

correspond to blue and light blue colors in the previous color images and seem to be reasonably approached at 

this Reynolds number. However, a more detailed analysis related to this approximation and to Reynolds 

number dependence must be performed. 
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Figure 10. Colormaps of the four measured derivative ratios K1, K3, K4, K9 in the near field of the orifice jet for 

Reynolds number equal to 35,000. The flow direction is from left to right. 
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 To this end, the behaviour of the four ratios is computed along the jet centreline at different Reynolds 

numbers and results are presented in Figure 11, together with the lines reproducing isotropic conditions. In 

agreement with results of other authors reported in the Introduction, the quantities K1, K3 and K9 closely 

approach isotropy already for x/D=7, except possibly for a small deviation for the largest measured Reynolds 

number (Re=70,000), due to a slower convergence trend in comparison to smaller Reynolds numbers, due to 

the delayed jet development, already observed in Figures 3 and 4. On the other hand, for K4, the deviation from 

the isotropic value is more pronounced and the isotropic value is not reached in the measuring range. As 

observed in Figure 10, this behavior is almost uniform all over the field, so that also in shear layers the quantity 

K4 is still far to be equal to 2, as reported in Figure 12. The limiting value, which is approached as slowly as 

higher the Reynolds number, is quite similar to that along the centerline, i.e. within the interval (1.5 – 1.8). 
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Figure 11. Centerline profile of the the four measured derivative ratios K1, K3, K4, K9 at different Reynolds 

numbers. The dark blue horizontal lines refer to the exact isotropic conditions for small scales.  
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Figure 12. Profile of the derivative ratio  K4 as measured at the upper shear layer at different Reynolds 

numbers. The dark blue horizontal line refers to the exact isotropic conditions for the small scales.  

 

 

3.3. Relation among large and small scales 

As reported in the Introduction of this paper, relations among departure from isotropy conditions of 

small and large scales are derived. In this section, those relations are verified, by considering the direct 

measurements of the small scales ratios reported in the previous section (indicated for example as K4 with the 

suffix “measured” in the following) and the computation of the same quantity as derived by the measurements 

of large scale ratios (indicated for example as K4 with the suffix “computed” in the following). In Figure 13, 

such a comparison is presented for Reynolds number equal to 35,000 (similar behaviours are obtained for the 

other Reynolds numbers).  Concerning the quantity K4, the computed ratio, equal to 2R1, shows a behaviour 

very similar to the measured one, with high values beside the orifice, in shear layers and core regions, even if 

much more regular in comparison to the direct measurement, due to reduced errors in computing large rather 

than small scale statistics. The ratio among the computed over measured ratios is also presented in the last part 

of the figure, showing that an almost constant value is reached for x/D > 7 all over the measured field, even if 

this value seems to be slightly smaller than one (indicated as a factor A in the Introduction). This means that in 
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such a region, the computed value could represent a good approximation of the real ratio, being the factor A 

still to be determined precisely as also its dependence on Reynolds number. 

 

 

 

 

 

Figure 13. Colormaps of derivative ratio K4 in the near field of the orifice jet for Reynolds number equal to 

35,000. Direct measurement of the ratio, K4measured, at the top, evaluation by the large scale ratio, K4computed=2R1, 

at the center, and ratio among the two at the bottom. The flow direction is from left to right. 
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Therefore, the ratio of K4 “computed” over “measured” is investigated in detail in Figure 14, both at 

the centreline and in the shear layer, for the different Reynolds numbers tested in this work. For all data, there 

is a trend approaching a limiting constant value, except for those at the highest Reynolds number, still 

presenting a non-constant limiting behaviour, especially at the centreline, due to the already noticed slower 

approach as higher the Reynolds number. The asymptotic value, which is just the factor A, is very slightly 

dependent on Reynolds number and almost the same along the centreline and in the shear layer, being in the 

interval (0.6-0.8), of course in agreement with limiting value of the large scale ratio (given at the end of section 

3.1) and of small scale ratio (given at the end of section 3.2). 

 

 

 

Figure 14. Profile of the ratio among computed and measured K4, as measured at the centerline (at the top) and 

in the upper shear layer (at the bottom) at different Reynolds numbers. The horizontal lines refer to the perfect 

equivalence among computed and measured ratios.  
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Similarly, the ratio among K3 and K1 can be evaluated by the large scale computation equal to 2/R1, 

again multiplied by the same factor A as before. In Figure 15, the “measured”, “computed” and the ratio among 

the two are shown for a Reynolds number equal to 35,000. Even if the overall behaviors of the directly 

measured and computed ratio seem to be very similar, the absolute values seem different. However, the 

observation of the ratio among the two, presented in the last figure, show an almost constant value, except for 

thin regions in shear layers and at the boundaries of the core region. As for the ratio K4, presented before, the 

constant value is just the factor A, which seems to be smaller than one from the last plot. In order to derive 

detailed information on such a factor and on its dependence on Reynolds number, the “computed” over 

“measured” ratio is investigated in Figure 16, both at the centreline and in the shear layer, for the different 

Reynolds numbers tested. All data, approach a limiting constant value, which is just the factor A, already from 

x/D ≈ 6, and this value is almost independent of Reynolds number and on the specific location, centreline or 

shear layer. The value is in the interval (0.5-0.7), in agreement with the one found previously, thus confirming 

the good verification of the proposed relation among isotropy indicators for large and small scales. 
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Figure 15. Colormaps of ratio K3 /K1 in the near field of the orifice jet for Reynolds number equal to 35,000. 

Direct measurement of the ratio, (K3/K1)measured, at the top, evaluation by the large scale ratio, (K3/K1)computed 

=2/R1, at the center, and ratio among the two at the bottom. The flow direction is from left to right. 

 

 

 
Figure 16. Profile of the ratio among computed and measured (K3/K1), as measured at the centerline (at the top) 

and in the upper shear layer (at the bottom) at different Reynolds numbers. The horizontal lines refer to the 

perfect equivalence among computed and measured ratios.  
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4. Remarks and Conclusions 

The near field of a circular orifice turbulent jet is investigated experimentally in order to determine 

Reynolds number dependence and departures from isotropy for large and small scale statistics, with special 

focus onto velocity and velocity derivative mean square fluctuations. The required high spatial resolution for 

velocity derivative measurements is obtained by using Particle Image Velocimetry (PIV) in small partially 

overlapped sub-regions.  

The large scale statistics is described in terms of mean velocity decay along the centerline and of the 

consequent jet half-width increase when moving along the streamwise direction, as derived by self-similarity 

hypotheses. For both those quantities, the observed behaviours are in agreement with results obtained by other 

authors, showing an initial decrease with Reynolds number (for Re<8000) of the velocity and width 

coefficients, KU and KS, followed by a plateau up to the maximum Reynolds number tested in this work 

(Re=70,000). This is shown in Figure 4 and indicates a sort of asymptotic scaling so that the behavior for all 

jets with Reynolds number larger than 104 could be considered as equivalent, at least for the mean field. No 

relevant modifications of the mean fields due to Reynolds number differences are observed, even very close to 

the jet orifice, i.e. in the core region (x/D < 5). 

In addition, mean square velocity fluctuations have been obtained from data and are much more 

dependent on Reynolds number than the mean field for x/D<5. On the other hand, further from the jet exit, for 

both streamwise and vertical velocity components, there is a slight dependence on Reynolds number, especially 

noticed for the peak height at the centerline around x/D ≈ 7, whereas almost no dependence for x/D>10. Thus, 

the ratio of streamwise to vertical mean square fluctuations is investigated and proved to be almost constant, 

(urms/vrms) being in the range (1.2-1.4), and independent of Reynolds number for x/D>7, also in agreement with 

data by other authors, as shown in Figure 8. This value is constant all over the field, but significantly different 

from unity, this last being the prescribed value derived from the hypothesis of isotropy for the ratio R1= 

(vrms/urms)
2. This last quantity is dominated by large scales, as derived by spectral contribution, so that a 

relevant departure from isotropy, equal for all Reynolds numbers, is observed for such large scales. 
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Mean square derivatives ratios are also computed in the measurement plane and compared at different 

Reynolds numbers, their spectral contribution deriving mainly from small scales.  All measured ratios show 

asymptotic constant behaviours for x/D >10, almost independent of Reynolds number, even if the highest 

measured one is still showing an approaching trend in some ratios, as reported in Figure 11. For those ratios 

involving the transverse component, the transverse direction or both (as K1, K3, K9), such asymptotic values are 

very close to what prescribed by the isotropy hypothesis (respectively equal to 1, 2, -0.5). On the other hand, 

for the ratio involving the streamwise direction (K4) such asymptotic value is significantly different from 2, i.e. 

in the interval (1.5 – 1.8), even far from the centreline. It is reasonable to assume that this last ratio could be 

dominated by transport phenomena along the streamwise directions, whereas the other ratios should be more 

related to diffusion processes along the transverse direction. Starting form this point, it could be possible to 

relate the ratio K4 to the large scale streamwise transport, i.e. to the ratio R1 and this is just obtained in the 

Introduction of the paper under the additional hypothesis of incompressible flow. 

Thus, the last part of the paper is devoted to the verification of the proposed relations and to the 

related dependency on Reynolds number. Except for the slower trend of the highest tested Reynolds number, 

which presumably will get the asymptotic value farther from the jet exit in comparison to smaller Reynolds 

numbers, all data indicate a constant factor to be included in the relation which is independent of Reynolds 

number. It is attained already for x/D ≈ 7 and is constant all over the field with a value in the interval (0.5-0.8), 

as reported in Figures 14 and 16. These results verify the proposed relations and point out that the observed 

departures from isotropy of small scale are closely linked to departures from isotropy due to large scales, at 

least in the investigated turbulent jet flow and for the interval of Reynolds numbers tested in the present work. 

Therefore, it would be possible to derive the small scale derivative ratios, which are difficultly measured 

experimentally and numerically, due to high resolution requirements, from the determination of large scale 

ratios, which are obtained much easier and this could be very useful also for closure hypothesis. 
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