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Abstract — Polarimetric diversity has been recently shown to 

significantly improve the target detection performance in passive 

radar systems, if properly exploited to mitigate the competing 

interference. An adaptive processing scheme is presented in this 

work, leveraging the information conveyed using multi-polarized 

receiving antennas and modeling the disturbance as a 

multichannel autoregressive process. Despite this approach 

operates with a limited number of adaptive degrees of freedom, 

the long integration time exploited by passive radar typically 

requires a substantial computational cost and ad hoc expedients 

for its application. Therefore, a modified cost-effective 

implementation of the conceived solution is proposed in order to 

reduce the computational burden while controlling the resulting 

loss. The authors extensively demonstrate the effectiveness of the 

proposed solution against experimental data collected by a FM 

radio based passive coherent location system. The experimental 

results show that the proposed processing scheme yields a 

remarkable improvement with respect to both the conventional 

processing at the single polarimetric channel and the state-of-

the-art strategies exploiting polarization diversity in PCL 

systems.  

Index Terms — passive radar, polarization diversity, 

multichannel autoregressive model, FM radio signal, adaptive 

target detection 

I. INTRODUCTION 

ASSIVE bistatic radar (PBR), also known as passive 

coherent location (PCL), technology has been attracting 

significant research interests over the past two decades 

[1][2][3][4]. The wide interest received by PCL sensors 

allowed them to increasingly reach a point of maturity. 

Nevertheless, by relying on signals emitted by illuminators of 

opportunity (IOs) to detect and localize targets, the 

performance of PCL sensors might still be strongly limited. 

The main limitations stem from the lack of control over the 

exploited waveform structure as well as from the strong direct 

signal and multipath contributions. In addition, significant 

interference can be experienced due to co-channel or adjacent-

channel transmissions, especially when broadcast emitters are 

exploited as IOs.  

 

Recently, among the advanced processing strategies 

devised to overcome these limitations, the exploitation of 

polarimetric diversity has been considered [5]-[21]. In [5]-

[17], the target detection stage is addressed, observing that 

target echoes typically show a random polarization and 

therefore the use of a fixed polarization on receive might result 

in a significant signal to noise ratio (SNR) degradation. 

Consequently, it is expected that a combination of signals 

received via differently polarized antennas yields a detection 

performance improvement, provided that proper strategies are 

employed. Different solutions along this line have been 

proposed and have been shown to effectively increase the PCL 

system reliability against those effects that are not under the 

control of the radar designer. These advantages have been 

demonstrated against different operative geometries as well as 

exploiting different sources of opportunities. 

A first attempt toward this direction is represented by a 

simple non-coherent integration (NCI) of the range-Doppler 

maps obtained at multi-polarized surveillance channels 

[5][6][7]. The polarimetric NCI strategy aims at increasing the 

SNR of the target echo, however it does not fruitfully exploit 

the information diversity to reject the disturbance 

contributions, such as cancellation residuals or interfering 

signals. Therefore, the authors in [8] have proposed and 

investigated a more effective polarimetric locally adaptive 

detection scheme based on a generalized likelihood ratio test 

(GLRT) applied over the range-Doppler domain. The latter 

strategy adaptively exploits the polarimetric information to 

discriminate targets from the competing disturbance, thus 

significantly improving the target detection performance of 

the system. The effectiveness of this approach has been 

extensively demonstrated using different IOs and operative 

scenarios, showing its capability to successfully mitigate the 

disturbance contributions [8]-[10].  

An alternative and efficient solution was investigated in 

[11], where the authors considered the possibility of globally 

adapting the filter weights of the polarimetric GLRT in the 

temporal domain. Both the approaches in [8] and [11] operate 

adaptively in the polarimetric domain only. However, based 

on the comparison reported in [8], the local estimation of the 

filter weights performed over the range-Doppler domain is 

shown to be more robust to the spectral characteristics of the 

disturbance. The latter consideration suggests the possibility 

to adaptively jointly exploit the polarimetric and temporal 

domain to better counteract the disturbance contributions, thus 

further improving the system performance. 
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To this purpose, we leverage our recent works [15][16] 

where we presented a novel parametric adaptive detection 

scheme, devised for a generic multipolarimetric radar system. 

Specifically, the proposed detection strategy is derived by 

modeling the disturbance as a multichannel autoregressive 

(AR) process and by resorting to a two-stage GLRT approach. 

The advantages of this detection scheme, referred to as 

modified polarimetric autoregressive model based adaptive 

matched filter (Mod-Pol-AR-AMF), have been extensively 

demonstrated both against simulated and experimental data 

collected via a polarimetric active radar system [16]. The same 

approach has been preliminarily applied to the case of a PCL 

system in [16][17]. In those works, along with some prelimary 

promising results, also some critical matters have been 

identified, arising from the direct application of the Mod-Pol-

AR-AMF to the case of a PCL system. The most critical issues 

stem from the use of long coherent processing intervals 

(CPIs), typically required for PCL systems to achieve 

reasonable SNR values. This requirement on the one hand, 

severely affects the computational complexity of the 

considered processing and, on the other hand, jeopardizes 

some assumptions underlying the adaptive implementation of 

the proposed approach. 

In the present paper we build upon the promising results 

obtained in [15][16][17], and we present a new 

computationally efficient version of the Mod-Pol-AR-AMF, 

specifically devised for PCL systems. In detail, different 

strategies are presented and compared to adapt and update the 

filter weights. Moreover, appropriate approximations are 

adopted to reduce the computational complexity of the 

original algorithm while limiting the corresponding loss, as 

validated via a theoretical analysis of the achievable 

performance. These modifications enable an extensive 

validation to be carried out, using both simulated and real data. 

For the experimental validation, we exploit a dataset collected 

by a multi-channel FM radio-based PCL system, equipped 

with two linearly polarized reference antennas and two 

linearly polarized surveillance antennas. We demonstrate the 

benefits of the proposed solution with respect to the 

conventional PCL processing performed at the single 

polarimetric channel as well as with respect to state-of-the-art 

approaches. Furthermore, we provide useful considerations 

for it to be applied in different operative scenarios exploiting 

different IOs. 

The remainder of the paper is organized as follows. In 

Section II, the AR model based polarimetric adaptive strategy 

is presented and adapted to the PCL case. Section III 

introduces the approximation to be adopted in order to reduce 

the computational burden while ensuring negligible loss. In 

Section IV the relevant parameters of the proposed approach 

are carefully selected by means of an extensive comparative 

analysis of the resulting performance. Finally, in Section V we 

compare the obtained performance with existing solutions 

while Section VI reports our concluding remarks.  

 

 
 

II. AR MODEL BASED POLARIMETRIC ADAPTIVE 

DETECTOR  

A. Signal Model  

Let us consider a polarimetric PCL system that 

simultaneously collects target echoes from L differently 

polarized receiving antennas connected to L surveillance 

channels (see Fig.1). The number of polarimetric channels 

strictly depends on the considered application and on the 

employed IO. For instance, the most common configuration is 

represented by two orthogonal linearly polarized antennas 

collecting echoes at both the horizontal (H) and vertical (V) 

polarizations (L = 2). This is also the configuration employed 

in this work for an extensive validation. However, the 

following mathematical development is reported regardless of 

the specific number of available channels and does not rely on 

any assumption on L for it to be exploited in future studies. 

According to the polarimetric processing scheme 

introduced in [8], the L surveillance signals first separately 

undergo the temporal disturbance cancellation stage. This 

stage is aimed at reducing the direct signal, clutter and 

multipath contributions received along with the target echoes 

and it relies on the availability of a good copy of the 

transmitted signal collected by a dedicated reference antenna. 

This temporal cancellation stage can be performed according 

to different solutions, for instance the Extensive Cancellation 

Algorithm (ECA) [22] or its polarimetric version (Pol-ECA) 

[8], if R>1 reference signals are made available using R 

polarimetric reference channels. In this work, we use a Pol-

ECA with R = 2 and we refer the interest reader to [8] for 

additional details. Once this stage has been performed, L 

sequences of samples are available where the direct signal, 

clutter and multipath contributions have been strongly 

reduced. However, despite the effectiveness of the temporal 

disturbance cancellation stage, it is likely for the L signals to 

include cancellation residuals and interfering contributions, 

along with target echoes. 

We arrange the data samples from the available 

polarimetric surveillance channels at the m-th temporal 

observation, m = 0, …, M – 1, in a L–dimensional vector 

𝐱0(m), as follows: 

𝐱0(m) = [𝑥0
(0)

(𝑚) …𝑥0
(𝑙)

(𝑚)… 𝑥0
(𝐿−1)

(𝑚)]
𝑇
 (1) 

denoting M as the number of samples in the considered CPI, 

i.e. 𝑀 = ⌊𝑇𝑖𝑛𝑡𝑓𝑠⌋ ,  where 𝑇𝑖𝑛𝑡  and 𝑓𝑠  are the coherent 

integration time and the sampling frequency, respectively. 

Furthermore, we arrange the M consecutive samples in a LM–

dimensional vector 𝐱0 = [𝐱0
𝑇(0)  𝐱0

𝑇(1) … 𝐱0
𝑇(𝑀 − 1)]𝑇.  

Under the null (or target absent) hypothesis 𝐻0, vector 𝐱0 

is solely composed by disturbance contributions 𝐝, such as 

thermal noise, interference from transmissions at co-/adjacent 

channels and residual clutter and multipath contributions. 

Conversely, under the alternate (or target present) 

hypothesis 𝐻1, vector 𝐱0 is composed by both disturbance and 

a useful target component 𝐬.  
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Therefore, one can write: 

𝐻0:    𝐱0 =  𝐝 

𝐻1:    𝐱0 =  𝐬 + 𝐝  
(2) 

The target component 𝐬 can be written as: 

𝐬 = 𝐭(𝜏, 𝑓𝐷) ⊗ 𝛂 (3) 

denoting ⊗ as the Kronecker product, where 

• 𝐭(𝜏, 𝑓𝐷)  is a M–samples fragment of the transmitted 

waveform 𝑟(𝑡), delayed in time by 𝜏 and Doppler shifted 

by 𝑓𝐷, i.e. 
 

𝐭(𝜏, 𝑓𝐷) =

[
 
 
 
 
 
 

𝑟(𝑡0 − 𝜏)

𝑟 (𝑡0 +
1

𝑓𝑠

− 𝜏)

⋮

𝑟 (𝑡0 +
𝑀 − 1

𝑓𝑠

− 𝜏)
]
 
 
 
 
 
 

⊙

[
 
 
 
 
 

1

𝑒
𝑗2𝜋

𝑓𝐷
𝑓𝑠

 

⋮

𝑒
𝑗2𝜋(𝑀−1)

𝑓𝐷
𝑓𝑠

 
]
 
 
 
 
 

   (4) 

being 𝑡0  the CPI starting time and denoting ⊙  as the 

Hadamard product; 

• 𝛂 = [𝛼0, … , 𝛼𝐿−1]
𝑇 contains the unknown complex target 

amplitudes at the different polarimetric channels, assumed 

constant during the CPI. 

As in [15], we model the disturbance as a L–channel AR 

process of order (Q – 1), denoted as AR(Q – 1). Accordingly, 

the L×1 vector random process 𝐝(𝑚) extracted at the m-th 

time lag satisfies the following relation  

𝐝(m) = ∑ 𝐀𝐻𝑄−1
𝑞=1 (q)𝐝(m – q) + 𝛆(𝑚) (5) 

where {𝐀(𝑞)}𝑞=1
𝑄−1

 are complex-valued L×L matrix parameters 

encoding the regression coefficients at different polarimetric 

channels and 𝛆(𝑚)~𝒞𝒩 (0,R) is the driving white noise 

sequence, denoting R as the L×L polarimetric covariance 

matrix. 

Based on the considered model, the approximate (actually 

conditional) likelihood function of the data x0 under the 𝐻γ (γ 

= 0,1) hypothesis is written as  

𝑓γ(𝐱0| γ𝛂, 𝐑, 𝐀) = (𝜋𝐿|𝐑|)−(𝑀−𝑄+1) ∙ 

exp{− ∑ [𝐱̃0(𝑚) − 𝛾𝐬̃(𝑚)]𝐻𝐏

𝑀−𝑄+1

𝑚=1

[𝐱̃0(𝑚) − 𝛾𝐬̃(𝑚)]} 
(6) 

where 𝐱̃0(m) and 𝐬̃(m) are QL–dimensional sub-vectors of 𝐱0 

and 𝐬, respectively, starting from the m-th elements, i.e. 𝐱̃0(m) 

= [𝐱0
𝑇(m)… 𝐱0

𝑇(m+Q-1) ]T and 𝐬̃(m) = [𝐬𝑇(m)… 𝐬𝑇(m+Q-1) ]T. 

Moreover, 𝐏 =  𝐇𝐻𝐑−1𝐇 , with 𝐇 =  [–𝐀𝐻 𝐈𝐿]  and 𝐈𝐿 

being the identity matrix. 

B. Polarimetric AR model based adaptive detector 

The sought polarimetric adaptive detector has been 

derived in [15] by resorting to a two-stage GLRT approach. 

First, the disturbance characteristics, namely matrices A and 

R, are assumed known and the clairvoyant detector is derived; 

then, suitable maximum likelihood (ML) estimates of the AR 

parameters are plugged into the derived clairvoyant test. We 

refer the reader to [15] for further details on the derivation. 

This approach is referred to as polarimetric AR model 

based adaptive matched filter (Pol-AR-AMF) and the 

resulting detection test to be applied at a given delay (range) -

Doppler cell under test (CUT) can be written as: 

 ‖𝐳0(𝜏, 𝑓𝐷)‖2

𝐻1

≷
𝐻0

 𝜚 (7) 

where 𝜚 is the detection threshold and 
 

𝐳0(𝜏, 𝑓𝐷) = 𝐖−
𝐻
2 (𝜏, 𝑓𝐷) ∑  𝚺𝐻(𝑚, 𝜏, 𝑓𝐷) 𝐏̂ 𝐱̃0(𝑚)

𝑀−𝑄

𝑚=0

 (8) 

where the representation (∙)−
𝐻

2  is a short notation for [(∙)− 
1

2]
𝐻

,  

𝐖(𝜏, 𝑓𝐷)  =
1

2
∑ 𝚺𝐻(𝑚, 𝜏, 𝑓𝐷) 𝐏̂ 𝚺(𝑚, 𝜏, 𝑓𝐷)

𝑀−𝑄

𝑚=0

 (9) 

and 

𝚺(𝑚, 𝜏, 𝑓𝐷) = 𝐭̃(𝑚, 𝜏, 𝑓𝐷) ⊗ 𝐈𝐿 (10) 

being 𝐭̃(𝑚, 𝜏, 𝑓𝐷) a Q–dimensional sub-vector of  𝐭(𝜏, 𝑓𝐷) in   

(4), starting from the m-th sample, i.e. 𝐭̃(𝑚, 𝜏, 𝑓𝐷) =

[𝑡𝑚(𝜏, 𝑓𝐷) … 𝑡𝑚+𝑄−1(𝜏, 𝑓𝐷)]
𝑇

, being 𝑣𝑛  the n-th element of 

vector 𝐯. 

 

Fig.1 Multi-polarimetric PCL processing scheme. 
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Matrix 𝐏̂ in (9) and (10) is evaluated by exploiting suitable 

estimates of matrices A and R. To this purpose, the adaptive 

detection scheme relies on the availability of K secondary data 

vectors  𝐱𝑘 , k = 1, …, K, assumed independent, identically 

distributed (i.i.d.), target free and sharing the same distribution 

of the primary data 𝐱0 under the H0 hypothesis. Under these 

hypotheses, proper approximations of the ML estimates of A 

and R are readily obtained as in [23] and [15]: 

𝐀̂ =  𝐐̂00
−1𝐐̂01 (11) 

and 

𝐑̂ =
1

𝐾(𝑀 − 𝑄 + 1)
(𝐐̂11 − 𝐐̂01

𝐻 𝐐̂00
−1𝐐̂01) (12) 

where 𝐐̂00 (L(Q–1)× L(Q–1)),  𝐐̂01 (L(Q–1)×L), 𝐐̂11 (L×L) 

are blocks of the following matrix: 

𝐐̂  = ∑ ∑ 𝐱̃𝑘(𝑚)𝐱̃𝑘
𝐻(𝑚)

𝑀−𝑄

𝑚=0

𝐾

𝑘=1

= [
𝐐̂00 𝐐̂01

𝐐̂01
𝐻 𝐐̂11

] (13) 

We observe that the LQ×LQ matrix 𝐐̂  represents an 

estimate of the pol-time disturbance covariance matrix within 

a sub-CPI of length Q, being Q the number of temporal 

degrees of freedom, namely taps, of the employed filter. As is 

apparent from (13), this estimate benefits from a joint average 

over K secondary data and M – Q +1 consecutive (overlapped) 

sub-CPIs within the CPI. 

 The analyses in [15] have demonstrated the effectiveness 

of the Pol-AR-AMF against an input disturbance that exactly 

matches the employed AR(Q – 1) model in (5). In contrast, we 

have demonstrated in [16] that when the spectral 

characteristics of the input disturbance differ from the 

employed AR model, some disturbance residual might arise 

after the temporal and polarimetric filtering. Such residual is 

encoded in the covariance matrix 𝐃𝑧(𝜏, 𝑓𝐷) of the complex 

Gaussian random output vector 𝐳0(𝜏, 𝑓𝐷)  that, differently 

from the case of a perfect spectral match, is not the identity 

matrix.  Therefore, in order to make the detector robust with 

respect to typical spectral mismatches between the input 

disturbance and the employed model, an additional 

polarimetric whitening stage is included in the processing 

scheme based on a proper estimate of matrix 𝐃𝑧(𝜏, 𝑓𝐷). The 

modified detection test proposed in [16] can be equivalently 

written as 

𝐰0
𝐻(𝜏, 𝑓𝐷) 𝐃̂𝑤

−1(𝜏, 𝑓𝐷) 𝐰0(𝜏, 𝑓𝐷)
𝐻1

≷
𝐻0

𝜂 (14) 

where 𝜂 is the detection threshold, 

𝐰0(𝜏, 𝑓𝐷) = ∑  𝚺𝐻(𝑚, 𝜏, 𝑓𝐷) 𝐏̂ 𝐱̃0(𝑚)

𝑀−𝑄

𝑚=0

 (15) 

and 𝐃̂𝑤(𝜏, 𝑓𝐷) is the sample covariance matrix of the filter 

output, namely 𝐃𝑤(𝜏, 𝑓𝐷) = 𝐸{𝐰0(𝜏, 𝑓𝐷)𝐰0
𝐻(𝜏, 𝑓𝐷) } =

𝐖−
𝐻

2(𝜏, 𝑓𝐷)𝐃𝑧(𝜏, 𝑓𝐷)𝐖
1

2(𝜏, 𝑓𝐷). It can be obtained using a set 

of P training data, 𝐰𝑝 (p = 1, …, P), that underwent the same 

filtering stages applied to the primary data, i.e. 𝐃̂𝑤(𝜏, 𝑓𝐷) =
1

𝑃
∑ 𝐰𝑝𝐰𝑝

𝐻𝑃
𝑝=1 .  In this regard we recall that the secondary data 

to be exploited for the estimation of matrix 𝐃𝑤  should not 

necessarily coincide with the secondary data exploited to build 

the first cancellation stage of the detector. For instance, an 

effective choice is to exploit the filter outputs at a set 𝐼(𝜏,𝑓𝐷) of 

P indices that identify range-Doppler cells surrounding the 

CUT over the range-Doppler plane, i.e. 𝐰𝑝 = 𝐰0(𝜏𝑝, 𝑓𝐷𝑝
), 

(p∈ 𝐼(𝜏,𝑓𝐷) , |𝐼(𝜏,𝑓𝐷)| = P). 

In this work we use the detector in (14), referred to as 

modified Pol-AR-AMF (Mod-Pol-AR-AMF) for a PCL 

application and we show in Fig.1 a block diagram of the main 

signal processing stages foreseen in the considered multi-

polarimetric processing scheme.  

An approximate analysis of the theoretical performance of 

the Mod-Pol-AR-AMF has been carried on in [16], in terms 

of false alarm probability 𝑃𝑓𝑎 as well as detection probability 

𝑃𝑑, for both a Swerling 0 and a Swerling I target model [24]. 

Specifically the performance of the detector have been 

derived in the case of perfectly known disturbance 

characteristics and the corresponding expressions are detailed 

in equations (30), (31) and (36) of the Appendix.  

In addition, a practical 𝑃𝑓𝑎 expression has been obtained 

to select a proper detection threshold 𝜂 that accounts for the 

fluctuations in the estimation of matrix 𝐃̂𝑤 due to finite P 

𝑃𝑓𝑎 =
(1 − 𝜅)𝑃−𝐿+1 

Γ(𝑃 − 𝐿 + 1)
∑

Γ(𝑃 − 𝑙)

Γ(𝐿 − 𝑙)

𝐿−1

𝑙=0

𝜅𝐿−𝑙+1 (16) 

where Γ(∙) is the Gamma function and  𝜂 = P
𝜅

(1−𝜅)
. Note that 

eq. (16) is obtained assuming that only the first adaptive 

cancellation stage meets the asymptotic conditions. In other 

words, in the development of the theoretical performance, we 

assumed that KM is sufficiently high for matrices 𝐀̂ and 𝐑̂ to 

be asymptotic, though possibly mismatched, estimates of the 

AR parameters.  

The direct implementation of the Mod-Pol-AR-AMF to 

the PCL case reveals three challenging aspects that need 

further investigations.  

(i) First, the computational complexity of the detector must 

be carefully addressed. Note that, in passive radar 

applications, long CPIs (in the order of seconds) are typically 

used to attain desired levels of SNR. In fact, the number M of 

samples included in the CPI is at least in the order of hundreds 

of thousands and this sets quite demanding computational 

requirements. Moreover, as shown by the explicit dependence 

on the CUT in (7)(8)-(10) and (14) the operations included 

therein must be repeated for each bistatic range and Doppler 

bin in the map where the presence of target is sought. 
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Consequently, the considerable computational complexity is 

expected to prevent the direct implementation of the Mod-Pol-

AR-AMF in (14) and suitable strategies should be investigated 

with the aim of obtaining an efficient implementation of the 

proposed detection scheme. The subsequent Section III will 

be devoted to the derivation of a cost-effective approximate 

version of the Mod-Pol-AR-AMF that simultaneously ensures 

negligible loss. 

(ii) Moreover, the strategy adopted to adaptively adjust the 

filter weights must be considered. In a pulsed radar 

application, the considered detection scheme is applied after 

the range compression stage, thus allowing the extraction of a 

set of training data from K adjacent range cells. Clearly, this 

is not possible in a PCL application, as we operate in the fast-

time domain. Therefore, one possible solution could be to 

extract the secondary data from signal fragments adjoining the 

employed CPI and not used for detection purposes. However, 

the i.i.d. condition must be carefully verified especially in the 

presence of disturbance contributions whose spectral 

characteristics slowly change with time. In Section IV we will 

carry out a thorough validation of different possible secondary 

data selection and adaptivity strategies. 

(iii) Finally, both the computational complexity and the 

adaptivity strategy will depend on the employed number of 

taps Q or, equivalently, on the adopted AR model order Q – 1. 

It is therefore clear that the purpose of a proper selection of 

this parameter is twofold: on the one hand we aim at 

approximating the spectral characteristics of the input 

disturbance and on the other hand we aim at limiting the 

adaptivity loss and computational burden. Section IV will also 

deal with this aspect, aiming at identifying useful guidelines 

for the selection of the relevant parameters. 

III. COST–EFFECTIVE IMPLEMENTATION OF THE 

MOD-POL-AR-AMF 

The direct implementation of the Mod-Pol-AR-AMF 

requires a very high computational complexity that might 

prevent it from being used in practical applications. To 

illustrate this point, we have decomposed the entire 

computational complexity into three main components: 

1. AR parameters estimation: The cost required for the 

adaptive estimation of the AR parameters and evaluation 

of matrix 𝐏̂. In detail, this contribution includes the ML 

estimates of 𝐀̂  and 𝐑̂  based on matrix 𝐐̂ according to 

equations (11)-(13) and the subsequent evaluation of the 

LQ×LQ matrix 𝐏̂ = 𝐇̂𝐻𝐑̂−1𝐇̂, with 𝐇̂  =  [– 𝐀̂𝐻 𝐈𝐿].   

2. Pol-time filtering: The cost required for the application 

of the polarimetric and temporal filter to the data (see 

(15)). This includes the evaluation of the temporally 

whitened sequence of L–dimensional 

vectors 𝐲0(𝑚, 𝜏, 𝑓𝐷) = 𝚺𝐻(𝑚, 𝜏, 𝑓𝐷)𝐏̂ 𝐱̃0(𝑚) , followed 

by the summation across consecutive samples  to 

achieve the coherent integration of target echoes in time 

domain, say 𝐰0(𝜏, 𝑓𝐷) = ∑ 𝐲0(𝑚, 𝜏, 𝑓𝐷)𝑀−𝑄
𝑚=0 . 

3. Polarimetric whitening and test: The cost required for the 

final polarimetric whitening stage based on matrix 𝐃̂𝑤, 

followed by the detection test in (14). 

The computational load expected for the direct 

implementation of the Mod-Pol-AR-AMF is reported in the 

first column of Table I. Specifically, we report the order of 

magnitude of the number of floating-point operations 

(FLOPs) needed for each of the three components above, 

expressed as a function of the relevant matrices size. We 

assume that a complex addition requires 2 FLOPs and a 

complex multiplication requires 6 FLOPs. 

 It is easy to verify that the main contribution to the cost is 

represented by the second component, i.e. the pol-time 

filtering stage. Basically, this cost increases both with the 

employed CPI length, namely the number of samples M, and 

with the extent of the range and Doppler region of interest, 

along with the number L of polarimetric channels and the 

number Q of taps. In fact, the computations included in point 

2 above must be repeated at each delay and Doppler bin where 

the target echo is looked for. Notice that the total number of 

considered delay and Doppler bins (𝑁𝜏 and 𝑁𝑓, respectively) 

is typically in the order of 104–105 when long range 

surveillance applications are considered. 

Consequently, we look for an efficient implementation of 

the proposed detection algorithm, based on reasonable 

approximations. The sought strategy aims at reducing the 

computational burden while guaranteeing negligible or 

limited loss. To this purpose, we first observe that the 

dependence of the pol-time filter on the Doppler 𝑓𝐷  is only 

due to the matrix 𝚺(𝑚, 𝜏, 𝑓𝐷)  and, in turn, to the vector 

𝐭̃(𝑚, 𝜏, 𝑓𝐷) used to build that matrix (see (10)): 

𝐭̃(𝑚, 𝜏, 𝑓𝐷) =

[
 
 
 
 𝑟 (𝑡0 +

𝑚

𝑓𝑠
− 𝜏)

⋮

𝑟 (𝑡0 +
𝑚 + 𝑄 − 1

𝑓𝑠
− 𝜏)

]
 
 
 
 

⊙ [
𝑒

𝑗2𝜋𝑚
𝑓𝐷
𝑓𝑠

 

⋮

𝑒
𝑗2𝜋(𝑚+𝑄−1)

𝑓𝐷
𝑓𝑠

 

] (17) 

 Assuming that the sub-CPI is short, i.e. for limited values 

of Q, this vector can be approximated as follows: 

𝐭̃(𝑚, 𝜏, 𝑓𝐷) ≅

[
 
 
 
 𝑟 (𝑡0 +

𝑚

𝑓𝑠
− 𝜏)

⋮

𝑟 (𝑡0 +
𝑚 + 𝑄 − 1

𝑓𝑠
− 𝜏)

]
 
 
 
 

𝑒
𝑗2𝜋𝑚

𝑓𝐷
𝑓𝑠

 

= 𝐭̃0(𝑚, 𝜏)𝑒
𝑗2𝜋𝑚

𝑓𝐷
𝑓𝑠

 
 

(18) 

where we have defined the vector 𝐭̃0(𝑚, 𝜏) = 𝐭̃(𝑚, 𝜏, 0) and 

we have neglected the Doppler induced phase variation within 

the Q–dimensional sub–CPI. Consequently, by defining 

𝚺0(𝑚, 𝜏) = 𝐭̃0(𝑚, 𝜏) ⊗ 𝐈𝐿, matrix 𝚺(𝑚, 𝜏, 𝑓𝐷) becomes 
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𝚺(𝑚, 𝜏, 𝑓𝐷) ≅ 𝚺0(𝑚, 𝜏)𝑒
𝑗2𝜋𝑚

𝑓𝐷
𝑓𝑠

 
 (19) 

and the pol-time filter output can be simplified as 

𝐰0(𝜏, 𝑓𝐷) = ∑ 𝚺0
𝐻(𝑚, 𝜏) 𝐏̂ 𝐱̃0(𝑚)𝑒

𝑗2𝜋𝑚
𝑓𝐷
𝑓𝑠

 

𝑀−𝑄

𝑚=0

 (20) 

where the computationally intense evaluation of the whitened 

sequence 𝐲0(𝑚, 𝜏) = 𝚺0
𝐻(𝑚, 𝜏)𝐏̂ 𝐱̃0(𝑚) , has not to be 

repeated at each Doppler bin. Instead, the Doppler dependent 

phase term can be taken into account at the subsequent 

coherent integration stage needed to obtain 𝐰0(𝜏, 𝑓𝐷). 
Assuming that the search grid in the Doppler dimension is 

uniformly spaced and not oversampled, for a given delay bin 

𝜏, eq. (20) corresponds to the evaluation of L Discrete Fourier 

Transforms (DFTs) of filtered sequences of M – Q + 1 samples 

each. This could be easily implemented by resorting to a Fast 

Fourier Transform (FFT). By repeating the computations 

above across an appropriate grid of delays, L range/Doppler 

maps are obtained, and the final adaptive detector is applied 

for each CUT.  The resulting processing scheme is scketched 

in Fig.2. 

Before evaluating the computational load saving, we first 

investigate the loss yield by the approximation above. In this 

regard, note that, if the target echo is such that 

𝐭̃(𝑚, 𝜏, 𝑓𝐷) = 𝐭̃(0, 𝜏, 𝑓𝐷) 𝑒
𝑗2𝜋𝑚

𝑓𝐷
𝑓𝑠  (21) 

the approximation in (18), which would imply that 

𝐭̃(0, 𝜏, 𝑓𝐷) ≅ 𝐭̃0(0, 𝜏), is irrelevant. In other words, under the 

condition in (21), neglecting the Doppler induced phase 

variation within the sub-CPI,  does not modify the asymptotic 

detection performance of the simplified detector with respect 

to the detector in (14). See Appendix for demonstration.  

This is, for instance, the case of a polarimetric active pulsed 

radar system where vector 𝐭 represents the M dimensional 

temporal steering vector and no tapering window is applied, 

namely if 𝐭  encodes the target echo phase shifts across 

consecutive pulses. 

On the other hand, when eq. (21) is not valid, e.g. in the 

case of a PCL system where 𝐭 is a fragment of the transmitted 

signal, a loss might result from using the cost-effective 

implementation of the detector. However, we show in the 

following that, for the parameter values typical of PCL 

applications, the resulting loss is negligible.  

To illustrate this point, we compare in Fig.3(a) the 

asymptotic performance obtained with the direct 

implementation of the Mod-Pol-AR-AMF and the cost-

effective implementation of the same detector for a simulated 

scenario. To this end, we consider the case of L = 2 (H,V) and 

a CPI of M = 103 samples. The signal of opportunity is 

generated as an FM radio transmission [25] containing music 

content. We model the disturbance as a L–channel AR(Q – 1) 

process, with Q = 10, a polarimetric correlation coefficient 

equal to 0.9 and equal spectral characteristics at the H and V 

channels. Two different target models are considered, namely 

Swerling 0 and Swerling I. According to a Swerling 0 target 

model [24], the target complex amplitudes are assumed 

deterministic.  

 

 

Fig.2 Sketch of the cost-effective implementation of Mod-Pol-AR-AMF. 

 

 

TABLE I 

COMPUTATIONAL COMPLEXITY OF THE MOD-POL-AR-AMF (NUMBER OF FLOPS) 

 

𝜏 𝜏

𝜏 𝜏
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In the considered case study, they are set as 𝛂 =

𝑎𝑡[1 e𝑗Δ𝜙𝐻/𝑉]𝑇, with  Δ𝜙𝐻/𝑉 = 𝜋/4. For the Swerling I target 

model [24], the target complex amplitudes vector 𝛂  is 

generated as a zero-mean Gaussian random vector, with the 

following covariance matrix 

 𝐌𝑡 = 𝐸{𝛂𝛂𝐻} = 𝜎𝑡
2 (

1 0
0 1

) (22) 

We report in Fig.3(a) the asymptotic Pd versus the input 

signal-to-clutter ratio (SCR) for a target with Doppler 

frequency equal to fD = 10-3 fS. The SCR at the first 

polarimetric channel is considered as a reference and it is 

obtained as SCR = |𝑎𝑡|
2/𝜎𝑑

2  and as SCR = 𝜎𝑡
2/𝜎𝑑

2  for the 

non-fluctuating and fluctuating target model, respectively, 

being 𝜎𝑑
2 the disturbance power, deliberately set to 𝜎𝑑

2= 1 at 

both polarimetric channels. Also the results of a Monte Carlo 

(MC) simulation are reported to prove the validity of the 

theoretical Pd expressions. 

 

By observing Fig.3(a), we note that the asymptotic Pd 

curves obtained with the direct implementation of the detector  

(blue lines and markers) are substantially identical to those 

obtained with the cost-effective solution (red lines and 

markers) for any of the two considered target models.  

The loss is expected to increase with the Doppler 

frequency of the considered target echo as the approximation 

in (18) becomes weaker. This is shown in Fig.3(b) where we 

extended the theoretical performance analysis to the case of a 

target with Doppler frequency equal to fD = 10-2 fS. As it is 

apparent, the loss is still negligible and limited to 0.2 dB. 

Besides we observe that, using typical parameters for a FM 

radio based PCL system, e.g. the ones reported in Table II, the 

employed target Doppler frequency value would correspond 

to a bistatic velocity of approx. 6000 m/s which is well outside 

the range of practical values for typical surveillance 

applications. Consequently, based on the considerations on 

Fig.3, we can infer that the cost-effective implementation of 

the Mod-Pol-AR-AMF yields negligible loss for the typical 

operative scenarios.  

Therefore, it is worth investigating the obtained 

computational complexity reduction. To this aim, we use the 

same decomposition presented at the beginning of this Section 

and we report the order of magnitude of FLOPs required for 

each component of the cost in the second column of Table I. 

As expected, the cost required for the second component 

significantly reduces when the proposed approximation is 

adopted with respect to the direct implementation of the Mod-

Pol-AR-AMF. In contrast, we recall that the cost required for 

the first and the third components are not affected by the 

proposed simplification. Specifically, the cost for the AR 

parameters estimation is mainly represented by the number of 

complex operations required for the estimation of matrix 

𝐐̂ according to (13) while the cost required for the 

polarimetric whitening and detection test is mainly given by 

the estimation and inversion of the L×L matrix 𝐃̂𝑤, based on 

P training data, to be repeated 𝑁𝜏  𝑁𝑓 times. 

To further investigate how the computational complexity 

decreases with the efficient implementation, a dedicated 

numerical analysis is required for practical cases.  

To this purpose, we refer to the case of a PCL system for 

aerial surveillance exploiting FM radio transmissions. The 

employed parameters are reported in Table II.  

 
(a) 

 
(b) 

Fig.3  Pd vs SCR with Pfa = 10-3 for an AR(9) process with target 

Doppler frequency equal to (a) fD = 10-3 fS and (b) fD = 10-2 fS. 

  

TABLE II 

SELECTED PARAMETERS FOR THE COMPUTATIONAL 

COMPLEXITY EVALUATION 

∙

∙
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Note that we assume the availability of K = 1 secondary data 

vector, which includes M samples of the signals 

simultaneously collected at the L = 2 polarimetric channels, 

and it is used as training data for the AR parameters 

estimation. Correspondingly, we report in Fig.4 the total cost 

required for the Mod-Pol-AR-AMF based on the direct and 

cost-effective implementations of the detector versus the CPI 

length for different values of Q. We also report in bold black 

line the number of FLOPs required for a conventional single-

channel PCL processing scheme after the first disturbance 

cancellation stage for comparison. Specifically this 

encompasses (i) the evaluation of a bistatic range - velocity 

map and (ii) a cell average (CA-CFAR) detection scheme with 

P training data used to adaptively scale the threshold. In detail, 

the evaluation of the range-velocity map is assumed to be 

carried out using an efficient algorithm described in [4] and 

referred to as Direct–FFT which requires N𝜏 (8M log2(M) + 

6M) FLOPs.  

As expected, Fig.4 shows that: 

• the number of FLOPs required for the direct implementation 

of the Mod-Pol-AR-AMF is much higher than for the single-

channel processing and their separation grows with Q. The 

increase is approximately of three orders of magnitude in the 

considered case study and might be higher if we include in 

the overall computational complexity the cost of the 

temporal disturbance cancellation stage [22], preliminarily 

separately applied to each of the surveillance signals 

regardless of the employed detector.  

• The computational complexity required for the cost-

effective implementation of the Mod-Pol-AR-AMF is 

substantially lower. For instance, the reduction is larger than 

two orders of magnitude for typical values of the CPI length, 

namely 1 – 2 s. 

The cost-effective implementation of the Mod-Pol-AR-

AMF will be used in the following to carry out an extensive 

performance analysis against real data aiming at validating the 

expected improvement with respect to both single-pol PCL 

system and alternative polarimetric approaches. Incidentally 

we observe that the same analysis would have been unfeasible 

using the direct implementation of the algorithm.  

IV. TUNING OF THE RELEVANT PARAMETES 

In this Section, we carry out an extensive analysis of the 

performance of the Mod-Pol-AR-AMF on real data, enabled 

by the cost-effective implementation proposed in Section III. 

The objective of this analysis is to provide further insights into 

the proposed detector by investigating the remaining  

challenging aspects of its application to the passive radar case, 

as listed in Section II.B. 

A. Experimental data and preliminary results 

To this aim, we use the same experimental data employed 

in [8] and collected during an experimental campaign carried 

out near Fiumicino Airport, in Italy, exploiting the FM radio 

transmitter of Monte Cavo as IO, located approx. 35 km away 

from the PCL receiver, see Fig.5(a). Fig.5(b) shows the two 

employed dual-polarized log periodic antennas, each 

equipped with two independent outputs, one vertical (V) and 

one horizontal (H) polarized.  

One of them was used as reference antenna and steered 

toward the IO to collect the V and H polarized versions of the 

transmitted signal. The other was adopted as surveillance 

antenna and was pointed toward the area to be monitored, 

 

Fig.4 Computational complexity versus CPI for the direct 
implementation and the cost-effective version of the Mod-Pol-AR-AMF. 

The employed parameters are reported in Table II. 

 

 

 
 

(a) 
 

 
 

(b) 
 

Fig.5 Acquisition campaign: 

(a) geometry (b) employed dual-polarized antennas. 
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simultaneously collecting target echoes at the V and H 

channel. The employed data set consists of 2060 data files, 

each containing a 1.1 s registration of the signals 

simultaneously collected by the different antennas. A total 

acquisition of 80 minutes was obtained, using a multi-channel 

PCL prototype, based on a direct RF sampling approach and 

exploiting the ICS-554 PMC module (GE Fanuc Embedded 

Systems). This module consists of four 14-bit ADCs sampling 

synchronously the properly amplified and filtered analogue 

signals from up to four input channels. Simultaneous down 

conversion of up to 16 arbitrary signal bands (e.g. 16 FM radio 

channels) is provided by four Graychip GC4016 quad digital 

downconverters (DDC). The described setup allows collecting 

data from up to four different FM radio channels from each 

receiving antenna. In this work, we consider the FM channel 

at 94.5 MHz, transmitted with V polarization. The air-truth for 

the same air space has been provided by the SBS-1 real time 

virtual radar.All the available data files first underwent the 

Pol-ECA temporal disturbance cancellation stage described in 

[8] with a filter length 140 taps.  

Afterwards, different processing schemes are applied and 

compared, using a CPI of 1s.  

To preliminarily investigate the benefits of the joint 

exploitation of different polarimetric channels, we report in 

Fig.6(a-c) the raw detection results obtained for 50 

consecutive data files over the same bistatic range-velocity 

plane with nominal 𝑃𝑓𝑎  =  10−5 . The gray lines represent the 

available air-truth while the blue dots denote the raw PCL 

detections.  

In detail, Fig.6(a-b) are obtained when the conventional 

single-channel PCL processing is separately applied to each 

of the surveillance signals. By comparing Fig.6 (a) and (b), we 

notice that the V polarization outperforms the H polarization 

for the considered dataset. However, even with the best 

performing channel, we observe that only a few isolated plots 

are obtained for some of the target tracks. Fig.6(c) shows the 

result obtained when using the proposed Mod-Pol-AR-AMF, 

with L = 2 and Q = 3. We used a signal fragment adjoining the 

signal samples included in the CPI, to estimate the AR 

parameters. Specifically, a fragment composed by J + Q – 1 

samples, or equivalently by J subsequent overlapped sub-

CPIs, is employed, with J = 200. Fig.6 clearly shows that 

when the polarimetric information is exploited according to 

the proposed detection scheme, the target detection capability 

is remarkably improved with respect to the use of single 

polarimetric channels. In fact, longer and much denser 

sequences of detections are obtained in Fig.6(c). 

As mentioned, the promising results of Fig.6 have been 

obtained over a set of few consecutive data files with a given 

selection of the processing parameters. In the following, the 

results of extended performance analyses are reported based 

on the entire dataset of 2060 files and the available air-truth. 

Specifically, the empirical receiver operating characteristic 

(ROC) curves have been evaluated to demonstrate the relative 

frequency of target detections against a grid of false alarm rate 

values. At each data file, and for each considered false alarm 

rate value, a correct detection was declared when a peak in the 

range-Doppler plane exceeded the selected threshold at the 

radar coordinates predicted by the available air-truth plus a 

small tolerance.  

 

 
(a)

 
(b) 

 
(c) 

Fig.6  Detection results over 50 consecutive data files with Pfa = 10-5, 

using (a) Single-pol H (b) Single-pol V 

(c) Mod-Pol-AR-AMF with Q = 3 and J = 200 (S1). 
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Then, the detection frequency is obtained by dividing the 

number of correct detections by the maximum number of 

target occurrences, namely 9632. Note that the detection 

analysis is limited to targets laying in the range-band [0–100] 

km and included within an angular sector of 90° around the 

surveillance antenna pointing direction. All other peaks 

exceeding the threshold are considered false alarms. The false 

alarm density is measured in the range band [150-200] km 

where the detection probability is very low so that it is unlikely 

to include and label as false alarms detections corresponding 

to targets not equipped with a transponder and therefore not 

identified by the available air-truth, see e.g. the track at 

approx. 250 m/s between 60 and 90 km in Fig.6(c). 

The methodology above is exploited to investigate the 

impact of the processing parameters on the average 

performance of the Mod-Pol-AR-AMF. First, we investigate 

alternative strategies to estimate the AR parameters and thus 

to adaptively adjust the pol-time filter weights (sub-Section 

IV.B). Then, we study the effect of diverse choices of the 

relevant parameters (sub-Section IV.C). 

B. Adaptivity Strategies 

In Section II, we assumed that the adaptive AR parameters 

estimation is obtained by relying on the availability of K i.i.d. 

and target free secondary vectors  𝐱𝑘, k = 1, …, K. However, 

we mentioned that this strategy must be revised to allow the 

application of the proposed detector to the passive radar case. 

1) Strategy #1 (S1) 

As previously introduced, among the possible adaptivity 

strategies, a suitable solution is to extract the secondary data 

from a signal fragment adjoining the employed CPI (primary 

data) and not used for the detection. Specifically, we assume 

J + Q – 1 data samples are available, including J consecutive 

overlapped sub-CPIs of dimension Q. Accordingly, eq. (13) is 

modified as 

𝐐̂  = ∑ 𝐱̃0(𝑗)𝐱̃0
𝐻(𝑗)

𝑀+𝐽−1

𝑗=𝑀

 (23) 

Once the covariance matrix 𝐐̂ is estimated according to (23), 

the AR parameters are evaluated as in (11)-(12) and the results 

are used for the evaluation of matrix 𝐏̂. For instance, this is 

the strategy adopted in Fig.6(c). S1 certainly guarantees the 

statistical independence of the primary and secondary data. 

However, since very long CPIs are typically used in passive 

radar applications, this strategy might result in a training data 

set that is no longer representative of the disturbance affecting 

the primary data. In fact, the temporal separation between the 

primary and secondary data might jeopardize the hypothesis 

of identical distribution since the disturbance process cannot 

be assumed stationary over long periods. 

As an alternative, portions of the CPI might be used to 

adaptively adjust the AR parameters to be employed in the 

filter evaluation. In particular, two possible solutions are 

considered in this paper: 

2) Strategy #2 (S2) 

The estimation of the covariance matrix 𝐐̂ is carried out 

using the whole primary data, averaging the estimation over 

the entire CPI: 

𝐐̂  = ∑ 𝐱̃0(𝑚)𝐱̃0
𝐻(𝑚)

𝑀−𝑄

𝑚=0

 (24) 

Then, using the result of (24), matrices 𝐀̂ and  𝐑̂ are derived 

as in (11)-(12) and plugged into the expression of matrix 𝐏̂. 

S2 is based on the simplifying assumptions that, due to the 

high number of samples in the CPI, the target contributions 

are negligible with respect to the competing disturbance and 

an asymptotic estimate of the AR parameters is achieved.  

3) Strategy #3 (S3) 

The simplifying assumptions of S2 might hold even when 

reasonably reducing the size J of the training set with respect 

to the whole CPI length M, especially when the size of the 

matrix to be estimated is kept small, namely for limited QL 

product. However, using smaller portions of the CPI allows to 

update the estimate of matrix Q across the integration time 

thus increasing the robustness against disturbance 

contributions whose spectral characteristics slowly change 

with time. Therefore, in S3, eq. (13) is modified as: 

𝐐̂𝑛  = ∑ 𝐱̃0(𝑚)𝐱̃0
𝐻(𝑚)

(𝑛+1)𝐽−1

𝑚=𝑛𝐽

 

(𝑛 =  0, … , 𝑁– 1) 

(25) 

where we assumed that the estimation of matrix Q is repeated 

N=⌈ (M – Q + 1)/J ⌉ times. At the n-th block of J sub-CPIs, 

the AR parameters 𝐀̂𝑛 and 𝐑̂𝑛 are updated according to (11)-

(12) and used to evaluate 𝐏̂𝑛 = 𝐇̂𝑛
𝐻𝐑̂𝑛

−1𝐇̂𝑛 , where 𝐇̂𝑛 =
[– 𝐀̂𝑛

𝐻 𝐈𝐿]. Accordingly, eq.(20) is modified as 

𝐰0(𝜏, 𝑓𝐷) = ∑ 𝚺0
𝐻(𝑚, 𝜏) 𝐏̂(𝑚) 𝐱̃0(𝑚)𝑒

𝑗2𝜋𝑚
𝑓𝐷
𝑓𝑠

 

𝑀−𝑄

𝑚=0

     (26) 

where the filter weights update across subsequent sub-CPIs is 

made explicit and the matrix 𝐏̂(𝑚) to be exploited at the mth 

sub-CPI, selected as 𝐏̂(𝑚) = 𝐏̂⌊𝑚/𝐽⌋. 

The three adaptivity strategies above are sketched in Fig.7 

where we show the different approaches to the selection of the 

training set and have been validated and compared based on 

their application on real data. Alternative strategies that 

update the filter weights on partially overlapped portions of 

the CPI could be the subject for future investigation.  

Note that, depending on the  selected adaptivity strategy, 

the computational complexity required for the AR parameters 

estimation (see the first row of Table I) might slightly change 

More precisely, it is equal to O[4 J (LQ)2] for S1, O[4 (M - Q 

+ 1)(LQ)2] for S2 and O[4 NJ(LQ)2] for S3. Therefore, if 
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J<<M –Q+1, S1 requires the lowest computational load while 

the cost is comparable for S2 and S3. However, as mentioned, 

the most demanding cost component is represented by the pol-

time filtering (see second row of Table I) therefore the, despite 

the slight potential variation, the overall complexity is 

comparable for the three cases. 

Fig.8 reports the empirical ROC curves obtained for the 

Mod-Pol-AR-AMF with Q = 3, exploiting S1, S2, or S3 

against the available datasets. We set J = 200 in S1 and S3. 

The results obtained with the single-pol operation at both the 

H and V channel are also shown for comparison. Observing 

Fig.8, first we can confirm what already demonstrated in 

[8],[10] and [17] and shown in Fig.6(a-b), namely that the 

target detection capability obtained using the conventional 

single-channel processing is different when using the V or the 

H channel. With reference to this dataset, the V polarization is 

the best performing single channel on average, however it was 

shown in [8],[10] that it is not possible to a priori establish the 

best performing channel. 

It is also evident that the Mod-Pol-AR-AMF remarkably 

improves the detection capability with all considered 

adaptivity strategies, increasing the target detection rate up to 

30% and 80% with respect to the V and H channels, 

respectively. Furthermore, among the considered strategies, 

namely comparing the magenta, blue, and red lines, it is clear 

that S3 yields the highest target detection rate. This result 

reveals the need to account for the non-stationary nature of the 

disturbance across the entire CPI. This is also confirmed by 

the fact that the worst performing adaptivity strategy is S1, 

namely the one that extracts the secondary data from a signal 

fragment temporally adjoining the considered CPI of 1 s. Note 

that an increase of approx. 10% is obtained at 𝑃𝑓𝑎  =  10−4 

with the S3 with respect to S1, which in turns results in +655 

correct detections in the considered scenario.  

C. Setting of Q and training data set 

S3 will be further investigated in this section in 

conjunction with the setting of the number Q of taps of the 

pol-time filter. Specifically, different choices are considered 

for the selection of the training data size J. Note that when J = 

M – Q + 1, S3 coincides with S2. 

For each combination of parameters, we repeated the 

extensive analysis yielding the empirical ROC curves. We 

collect the obtained results in Fig.9, that shows the target 

detection rate measured in the range band [0-100] km for a 

measured 𝑃𝑓𝑎 equal to 10−3 .  

Specifically, each reported curve collects the results obtained 

with different Q values for a given selection of the training 

data size J.  To better appreciate the differences between the 

considered solutions, the y-axis has been limited between 0.65 

and 0.8.  

Observing Fig.9 the following considerations are in order: 

• An update of the AR parameters estimation along the CPI 

(S3) always allows an higher target detection performance 

with respect to using the entire CPI (S2). This confirms the 

comments on Fig.8 and the slowly varying characteristics of 

the disturbance. 

• As the number J of training data decreases and the number 

Q of taps grows, the target detection capability suffers from 

incrisingly higher loss. The latter is due to both a higher 

adaptivity loss due to a limited training set and the 

assumption of negligible target echo that is likely to be no 

longer verified. In addition, we also recall that the sub-CPIs 

averaged to estimate the AR parameters are partially 

overlapped so that they do not provide independent training 

data and the percentage of overlap increases with Q. These 

effects are particularly evident when considering a relative 

small J, e.g. 50 or 100. As J increases, the same effects are 

expected to arise for higher Q.  

• The target detection performance always improves moving 

from Q = 1, namely when the employed filter only exploits 

the polarimetric diversity, to Q ≥ 2. This confirms that the 

temporal correlation of the disturbance should be taken into 

account to effectively help in its rejection thus increasing the 

capability to discriminate targets. 

 

Fig.7 Sketch of the considered adaptivity strategies. 
 

 

 

Fig.8 Empirical ROC curves with different detection schemes 
exploiting different adaptivity strategies for the Mod-Pol-AR-AMF. 

 

Authorized licensed use limited to: Universita degli Studi di Roma La Sapienza. Downloaded on November 02,2020 at 10:20:41 UTC from IEEE Xplore.  Restrictions apply. 



0018-9251 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAES.2020.3008548, IEEE
Transactions on Aerospace and Electronic Systems

 

 

• The solutions with J = 100, 200 and 1000 provide largely 

comparable performance in the interval between Q = 3 and 

Q = 7, with the maximum difference in terms of correct 

target detections being lower than 70. We recall that this 

result is obtained by averaging the performance over the 

entire considered dataset, therefore specific improvements 

are not noticeable. Moreover, the local performance might 

be affected by a number of aspects that occur in pratical 

scenarios (e.g. low target altitudes, fluctuating target radar 

cross section) . Therefore, whilst it cannot be deemed as an 

outright result, this shows the benefits of the proposed 

strategy when the relevant parameters are selected among an 

appropriate range. At this point, the choice of the employed 

parameters is also driven by further considerations, 

including the overall complexity. Therefore, we use the 

combination of Q = 3 and the adaptivity strategy S3 with J 

= 200 in the following for the comparison with state-of-the-

art strategies that exploit polarimetric diversity. 

V. COMPARISON WITH STATE-OF-THE-ART POLARIMETRIC 

DETECTION SCHEMES FOR PASSIVE RADAR 

In this Section, we compare the performance of the 

proposed detector with alternative existing solutions. The 

considered techniques, namely the polarimetric NCI and the 

polarimetric GLRT [8], are briefly summarized in the 

following and then encompassed in a thorough comparison 

that takes into account both the achievable detection 

performance and the required computational complexity.  

Both the considered techniques operate in the delay-

Doppler, or equivalently, the bistatic range-velocity domain. 

Specifically, the L polarimetric surveillance signals first 

undergo the Pol-ECA stage and then are separately used to 

evaluate L range-velocity maps. These are finally exploited to 

implement two different detection strategies.  

Under the simplifying assumption of statistically 

independent and identically distributed interference affecting 

different channels, the simplest approach consists in an NCI 

of the L maps. To this purpose, the complex valued outputs 

obtained at a given delay-Doppler location are gathered in a 

L-dimensional vector 𝛘(𝜏, 𝑓𝐷) = [𝜓0(𝜏, 𝑓𝐷) … 𝜓𝐿−1(𝜏, 𝑓𝐷)]𝑇. 

The NCI stage sums up, after square law detector, the 

components of vector 𝛘(𝜏, 𝑓𝐷) . Then, target detection is 

performed by resorting to a CA – CFAR scheme: 

‖𝛘(𝜏, 𝑓𝐷)‖2 

𝐻1

≷
𝐻0

 𝜂𝑃𝑜𝑙−𝑁𝐶𝐼 ∙ ∑ ‖𝛘 (𝜏𝑝, 𝑓𝐷𝑝
)‖

2

𝑝∈𝐼(𝜏,𝑓𝐷)

 (27) 

where 𝛘(𝜏, 𝑓𝐷) accounts for the range-Doppler CUT, 𝜂𝑃𝑜𝑙−𝑁𝐶𝐼  

is readily found by inverting the theoretical expression of the 

𝑃𝑓𝑎 in [8], and 𝐼(𝜏,𝑓𝐷) denotes a set of P indices that identify 

range-Doppler bins surrounding the CUT from which the 

secondary cells are extracted, i.e. 𝛘 (𝜏𝑝, 𝑓𝐷𝑝
) (p ∈ 

𝐼(𝜏,𝑓𝐷) , |𝐼(𝜏,𝑓𝐷)| = P). The detection scheme in  (27)  is referred 

to as Pol-NCI and it was shown in [5]-[8] that it allows a target 

echo enhancement. However, the weakness of the simplifying 

hypothesis of independent disturbance underlying this 

approach is revealed in a decreased capability of controlling 

the false alarm rate.  

Based on these considerations, a polarimetric adaptive 

approach has been derived in [8] by resorting to a GLRT 

approach. The detection test is obtained as: 

𝛘𝐻(𝜏, 𝑓𝐷)𝐌̂−1(𝜏, 𝑓𝐷) 𝛘(𝜏, 𝑓𝐷)
𝐻1

≷
𝐻0

 𝜂𝑃𝑜𝑙−𝐺𝐿𝑅𝑇  (28) 

where 𝐌̂(𝜏, 𝑓𝐷) =
1

𝑃
∑ 𝛘 (𝜏𝑝, 𝑓𝐷𝑝

) 𝛘𝐻 (𝜏𝑝, 𝑓𝐷𝑝
)𝑝∈𝐼(𝜏,𝑓𝐷)

 is the 

sample covariance matrix, estimated via the P training data 

𝛘 (𝜏𝑝, 𝑓𝐷𝑝
) , p ∈ 𝐼(𝜏,𝑓𝐷) , |𝐼(𝜏,𝑓𝐷)|  = P, and  the threshold 

𝜂𝑃𝑜𝑙−𝐺𝐿𝑅𝑇 is selected according to the 𝑃𝑓𝑎 expression in (16). 

The detection scheme in (28) is referred to as Pol-GLRT [8] 

and it has been shown to effectively exploit the polarimetric 

information to improve the target discrimination capability, 

both using FM radio [8] and DVB-T signals [9][10]. Note that 

the detection test of the Pol-GLRT is similar to the one of the 

Mod-Pol-AR-AMF. In fact, both strategies encompass, as a 

final stage, the cascade of a polarimetric whitening, an NCI 

across the polarimetric dimension and a thresholding stage. 

However, according to the Pol-GLRT scheme, no previous 

pol-time filtering has been applied to the data before the 

range-velocity map evaluation.  

Before comparing the performance of the proposed 

detector with the results of the Pol-GLRT and Pol-NCI, we 

study the computational complexity required by the 

mentioned strategies. The processing scheme of both the 

considered competing approaches requires (i) the evaluation 

of L bistatic range - velocity maps and (ii) the application of 

the specific detection test.  

 

Fig.9 Target detection rate versus Q with measured Pfa = 10-3 exploiting 

the adaptivity strategy S3 with different J. 
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As for the single-channel processing scheme in Section II, we 

assume that each map is evaluated using the efficient Direct-

FFT algorithm which requires [N𝜏 (8M log2 (M) + 6M)] 

FLOPs. Afterwards, with the Pol-NCI, a simple 2D autogate 

is applied to generate the adaptive threshold to be exploited 

for target detection. A slightly higher cost is expected with the 

Pol-GLRT since the corresponding detection scheme requires 

the same computational complexity of the ‘polarimetric 

whitening and test’ component detailed in Section III and 

reported in Table I. However, in both cases, the major 

contribution to the final computational complexity is 

represented by the evaluation of L CAFs.  

In Fig.10 we study the surplus cost required by the Mod-

Pol-AR-AMF with respect to the Pol-GLRT. Specifically, the 

∆FLOPs is reported, defined as the ratio between the 

computational cost required by the Mod-Pol-AR-AMF and 

that needed to implement a Pol-GLRT, deducting from the 

overall complexity the cost required for the temporal 

disturbance cancellation stage, separately applied to the L 

polarimetric channels regardless of the employed detector.   

The results are reported versus a grid of Q values, using a CPI 

of 1s. The Mod-Pol-AR-AMF is assumed to operate with J = 

200 and the adaptivity strategy S3 whereas P = 32 has been 

used for both approaches. The dark blue line represent the case 

of a PCL system exploiting FM radio transmissions, with the 

system parameters reported in Table II . This curve confirms 

that the Mod-Pol-AR-AMF requires a higher computational 

complexity with respect to the Pol-GLRT in the scenario 

considered in this paper. However, the complexity is less than 

doubled, i.e. ∆FLOPs < 2, for the typical Q values that have been 

shown to reasonably approximate the disturbance spectral 

characteristics. Note that surplus cost might further reduce if 

we take into account the burden of the preliminary temporal 

disturbance cancellation stage in evaluating of the overall 

complexity.   

The case of a PCL system exploiting DVB-T signals is also 

reported for comparison. In the latter case, we assume that the 

signal is transmitted at carrier frequency fC = 666 MHz and 

received with sampling frequency fS = 6817/896 MHz. The 

same extent of the range-velocity map is considered as in 

Table II. Incidentally, we notice that in this case the 

computational load reduction offered by the cost-effective 

implementation of the detector is even higher. In fact, it is 

equal to approx. three orders of magnitude and this allows to 

restore a computational complexity that is comparable to that 

required by the Pol-GLRT in the same scenario. A dedicated 

analysis would be required to investigate the benefits of the 

proposed detector when exploiting DVB-T signals of 

opportunity. 

In this paper we exploit the available dataset to carry out 

an extensive comparison for the case of FM radio-based PCL. 

The results are shown in Fig.11 and Fig.12. In detail, Fig.11 

shows the false alarm rate measured in the range band [150  – 

200] km versus the nominal value while Fig.12 reports the 

 
Fig.10 ∆FLOPs versus Q exploiting FM radio and DVB-T signals. 

 

 

 
 

 

Fig.11 Measured versus nominal false alarm rate curves with different 
detection strategies for the bistatic range band [150-200] km.  

Fig.12 Empirical ROC curves with different polarimetric adaptive detection 
strategies for the bistatic range band [0-100] km.  
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empirical ROC curves.  Note that the Mod-Pol-AR-AMF is 

applied with Q = 3 and J = 200 (S3). Incidentally, we recall 

that we measure the false alarm rate in the range band [150-

200] km to avoid labelling as false alarms detections 

corresponding to targets not identified by the available air-

truth therefore enabling an unsupervised false alarm counting 

process. 

From Fig.11 and Fig.12, the following comments apply:  

i.   The capability to control the false alarm rate changes with 

the employed detector. Specifically, the CA-CFAR 

detection scheme applied to the single-pol channel map 

yields the best capability to guarantee the nominal 𝑃𝑓𝑎. In 

constrast, the CA-CFAR scheme applied after the Pol-NCI 

is the worst performing solution, confirming the weakness 

of the simplifying hypothesis of independent disturbance 

affecting the L  range-velocity maps. The false alarm rate 

control offered by the Mod-Pol-AR-AMF is comparable 

to that of the Pol-GLRT and, in both cases, largely 

acceptable in practical applications. 

ii. The polarimetric approaches can effectively improve the 

performance of the system only if suitable strategies are 

employed to exploit signals collected via multi-polarized 

antennas. This is demonstrated by observing the 

performance of the Pol-NCI strategy. The latter, in fact,  

does not succed in improving the target detection 

performance with respect to the single H and V channels. 

This is due to the generally higher number of false alarms 

obtained, that confirms the unsuitability of this solution.   

iii. The polarimetric strategies that adaptively exploit the 

information diversity to counteract the disturbance, 

namely the Pol-GLRT and the proposed Mod-Pol-AR-

AMF, substantially increase the target detection 

performance with respect to the single-pol channels and 

the Pol-NCI.  

iv. The proposed Mod-Pol-AR-AMF solution is the best 

performing solution, yielding a tremendous improvement 

with respect to both the worst and best performing single-

pol channel. Moreover, it further increases the capability 

to discriminate target of the previously proposed Pol-

GLRT by approximately 7-8%. This for example yields 

461 additional correct detections at 𝑃𝑓𝑎  =  10−4. 

The same considerations are confirmed observing 

Fig.13(a-c) where we show the raw detection results obtained 

for the same set of 50 consecutive data files considered in 

Fig.6 over the same bistatic range-velocity plane with nominal 

𝑃𝑓𝑎  =  10−5. In detail, we report the results for the Pol-NCI, 

the Pol-GLRT and the Mod-Pol-AR-AMF in Fig.13(a),(b) and 

(c), respectively. We recall that the Mod-Pol-AR-AMF is now 

applied with the parameters and the adaptivity strategy 

selected after the careful tuning of Section IV. The benefits of 

this tuning are evident by comparing Fig.13(c) and Fig.6(c). 

In addition, the advantage of the Mod-Pol-AR-AMF is 

apparent with respect to both the alternative strategies that 

exploit polarization diversity in Fig.13 (a-b), see e.g. the target 

tracks at [30–70] km bistatic range and approx. –300 m/s 

bistatic velocity and at [100–150] km bistatic range and  

approx. – 400 m/s bistatic velocity that are now detected with 

great continuity. Moreover, the improvement is tremendous 

with respect to the single-pol solutions in Fig.6(a-b). 

 

 

 
(a) 

 
(b) 

 
(c) 

 

Fig.13 Detection results over 50 consecutive data files with Pfa = 10-5, 

using (a) Pol-NCI (b) Pol-GLRT  
(c) Mod-Pol-AR-AMF, with Q = 3 and J = 200 (S3). 
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VI. CONCLUSION 

In this paper, we presented an adaptive processing scheme 

to fruitfully exploit polarization diversity in PCL systems. The 

proposed strategy is based on a multichannel autoregressive 

disturbance model and leverages the information conveyed 

using multi-polarized surveillance channels. A cost-effective 

implementation of the proposed detector is introduced to 

reduce the computational burden while yielding negligible 

loss.  The extensive experimental validation carried out 

against data collected using an FM radio-based PCL, 

demonstrates that the joint exploitation of polarimetric and 

temporal information according to the proposed strategy 

significantly improves the system performance. In fact, the 

derived parametric adaptive detector effectively rejects the 

disturbance and in turn significantly increases the target 

discrimination capability. This advantage is observed both 

with respect to the conventional single-pol processing scheme 

and with respect to previously proposed solutions to multi-

polarimetric detection in passive radar.  

APPENDIX 

In this Appendix we prove that, under the condition in 

(21), the asymptotic performance of the direct and cost-

effective implementations of the proposed detector are 

identical. We recall that the assumption in (21) is tantamount 

to write 

𝚺(𝑚, 𝜏, 𝑓𝐷) = 𝚺(0, 𝜏, 𝑓𝐷) 𝑒
𝑗2𝜋𝑚

𝑓𝐷
𝑓𝑠  (29) 

where 𝚺(0, 𝜏, 𝑓𝐷) = [𝐭̃(0, 𝜏, 𝑓𝐷) ⊗ 𝐈𝐿] being 𝐭̃(0, 𝜏, 𝑓𝐷)  the 

vector of expected temporal returns for a unit amplitude target 

echo vector at the first sub-CPI, and it is exploited to provide 

the target echo energy focusing within the generic sub-CPI. 

The exponential term in (29) accounts for the Doppler-

induced phase compensation across subsequent overlapped 

sub-CPIs.  

Accordingly, in the following we demonstrate that the 

asymptotic performance of the Mod-Pol-AR-AMF does not 

depend on 𝐭̃(0, 𝜏, 𝑓𝐷), or equivalently on 𝚺(0, 𝜏, 𝑓𝐷), provided 

that 𝐅 = 𝐔𝐻𝚺(0, 𝜏, 𝑓𝐷) is full-rank, being 𝐔 the L×LQ matrix 

that realizes the singular value decomposition (SVD) of the 

normal matrix 𝐏, i.e. 𝐏 = 𝐔𝚲𝐔𝐻. This, in turn, shows that any 

approximation adopted for the vector 𝐭̃(0, 𝜏, 𝑓𝐷) that meets the 

above condition does not yield any performance degradation. 

To this end, we first recall some results obtained by the 

authors in [15] and [16]. Note that the explicit dependency on 

the delay and Doppler bin (𝜏, 𝑓𝐷)  will be omitted in the 

following to simplify the notation. 

In [15] and [16], we have shown that, under the 𝐻0 

hypothesis and the assumption of perfectly known disturbance 

characteristics, vector 𝐰̅0 = (𝐃𝑤
−1/2

)
𝐻
 𝐰0  is a complex 

Gaussian random variable with zero-mean vector and 

covariance matrix IL , i.e. 𝐰̅0|𝐻0
~𝒞𝒩 ( 𝟎𝐿×1 , IL). 

Consequently, the distribution of the test statistic, scaled by a 

factor 2, is a central Chi-squared distribution with 2L degrees 

of freedom, i.e. 2‖𝐰̅0‖
2~ 𝜒2𝐿

2 (0) . Note that this result is 

independent of 𝚺(𝑚)  (see Appendix C of [15] for 

demonstration) and, in turn, the strategy adopted to set the 

detection threshold in order to achieve the desired 𝑃𝑓𝑎 remains 

unaltered. In fact, the 𝑃𝑓𝑎 expression is written as  

𝑃𝑓𝑎 = ∑
 1

Γ(𝐿 − 𝑙)

𝐿−1

𝑙=0

(
𝜂

2
)

𝑙

𝑒− 
𝜂
2  (30) 

where 𝜂 is the detection threshold. Consequently, if any loss 

arose from the use of an approximated vector 𝐭̃(0), see e.g. the 

approximation in (18), it should be attributed to the filter 

effect on the target returns rather than to a mismatch in term 

of disturbance cancellation.  

In [15][16] we also derived the 𝑃𝑑 expressions, for both a 

non-fluctuating and fluctuating target model, under 

asymptotic conditions. 

For a Swerling 0 target model [24], and assuming the 

disturbance parameters known, vector 𝐰̅0  under the 𝐻1  

hypothesis is a complex Gaussian random vector, with mean 

vector  𝛖 =  (𝐃𝑤
−

1

2)
𝐻

∑ 𝚺𝐻(𝑚)𝐏𝑀−𝑄
𝑚=0 [𝐭̃(𝑚) ⊗ 𝛂]  and 

covariance matrix IL, i.e.  𝐰̅0|𝐻1
~𝒞𝒩(𝛖,IL). Therefore, the 

asymptotic distribution of the test statistic, scaled by a factor 

2, is given by a non-central Chi-squared distribution with 2L 

degrees of freedom and non-centrality parameter ς = ‖𝛖‖2 , 

i.e. 2‖𝐰̅0‖
2~ 𝜒2𝐿

2 (ς). Consequently, the asymptotic 𝑃𝑑 can be 

expressed using the Marcum Q–function, as follows 

𝑃𝑑 = 𝑄𝐿(√ς, √𝜂) = 

∫ 𝑥 (
𝑥

√ς
)

𝐿−1

exp (−
𝑥2+ς

2
) 𝐼𝐿−1(√ς𝑥) 𝑑𝑥

∞

√𝜂
  

(31) 

where 𝐼𝐿−1(√ς𝑥)  denotes the modified Bessel function of 

order L – 1. 

We write the non-centrality parameter ς as 

ς = ∑[𝐭̃(𝑚) ⊗ 𝛂]𝐻𝐏 𝚺(𝑚)

𝑀−𝑄

𝑚=0

𝐃𝑤
−1

× ∑ 𝚺𝐻(𝑛)𝐏

𝑀−𝑄

𝑛=0

[𝐭̃(𝑛) ⊗ 𝛂] 

(32) 

We recall the definition of  𝐃𝑤 

𝐃𝑤 = ∑ ∑ 𝚺𝐻(𝑖)𝐏𝐌𝑖𝑘  𝐏𝚺(𝑘)

𝑀−𝑄

𝑘=0

𝑀−𝑄

𝑖=0

 (33) 
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where  𝐌𝑖𝑘 = 𝐸{𝐱̃0(𝑖)𝐱̃0
𝐻(𝑘)| 𝐻0} . By substituting (29) and 

(33) in (32), we can rework ς as follows 

ς = (𝑀 − 𝑄 + 1)2 [𝐭̃(0) ⊗ 𝛂]𝐻  𝐔𝚲𝐔𝐻 𝚺(0) × 

{𝚺𝐻(0)𝐔𝚲𝐔𝐻  [ ∑ ∑ 𝐌𝑖𝑘  𝑒
𝑗2𝜋

𝑓𝐷
𝑓𝑠

(𝑘−𝑖)

𝑀−𝑄

𝑘=0

𝑀−𝑄

𝑖=0

]  𝐔𝚲𝐔𝐻𝚺(0)}

−1

× 𝚺𝐻(0) 𝐔𝚲𝐔𝐻[𝐭̃(0) ⊗ 𝛂] 

(34) 

where we used the SVD of the L rank matrix 𝐏 = 𝐔𝚲𝐔𝐻 . 

Consequently, provided that the L×L  matrix 𝐅 = 𝐔𝐻𝚺(0) 

is full-rank, eq. (34) is simplified as 

ς = (𝑀 − 𝑄 + 1)2[𝐭̃(0) ⊗ 𝛂]𝐻  𝐔(𝐔𝐻 𝐌𝐷𝐔)−1

× 𝐔𝐻[𝐭̃(0) ⊗ 𝛂] 
(35) 

where we defined 𝐌𝐷 = ∑ ∑ 𝐌𝑖𝑘  𝑒
𝑗2𝜋

𝑓𝐷
𝑓𝑠

(𝑘−𝑖)𝑀−𝑄
𝑘=0

𝑀−𝑄
𝑖=0 . Eq. 

(35) proves that the non-centrality parameter ς  does not  

depend on the employed 𝚺(0) , under the considered 

assumptions. 

On the other hand, assuming a Swerling I target model 

[24], namely if the target complex amplitude is distributed as 

a zero-mean Gaussian random variable with covariance 

matrix  𝐌𝑡 = 𝐸{𝛂𝛂𝐻} , vector 𝐰̅0  turns into a complex 

Gaussian random variable with zero-mean vector and 

covariance matrix 𝐃𝑤
′ .  

Consequently, the asymptotic 𝑃𝑑 is given by 

𝑃𝑑 = ∑ ∑
−𝑒

−
𝜂

 𝜆𝑛  𝜂𝑘

Γ(𝑘 + 1)

𝜇𝑛−1

𝑘=0

𝑁−1

𝑛=0

𝛿𝑘,𝑛   (36) 

where 𝜆0 …𝜆𝑁−1  denote the N ≤ L distinct non-zero 

eigenvalues of  𝐃𝑤
′ , each with multiplicity  𝜇𝑛 , and the 

coefficients 𝛿𝑘,𝑛, n  = 0, …, N – 1 , k = 0, …, 𝜇𝑛 – 1,  can be 

evaluated using the formulas reported in [16]. We recall that 

matrix 𝐃𝑤
′  is given by  𝐃𝑤

′ = 𝐈𝐿  +  𝚼 , where 𝚼  can be 

written as follows, provided that eq. (21), and thus in (29), are 

valid 

𝚼 = (𝑀 − 𝑄 + 1)2𝐃𝑤

−
𝐻
2 [𝚺𝐻(0) 𝐏 𝐌𝑇  𝐏 𝚺(0)] 𝐃𝑤

−
1
2 (37) 

with 𝐌𝑇 = 𝐭̃(0)𝐭̃𝐻(0) ⊗ 𝐌𝑡 .  
 

By using the SVD decomposition for P and the definition 

of 𝐅, we write 𝐃𝑤

−
1

2 as 

𝐃𝑤

−
1
2 = 𝐅−1𝚲−1(𝐔𝐻 𝐌𝐷𝐔)−

1
2 (38) 

Then, by substituting (38) into (37) we obtain 

𝚼 = (𝑀 − 𝑄 + 1)2(𝐔𝐻 𝐌𝐷𝐔)−
𝐻
2 (𝐔𝐻𝐌𝑇𝐔)

× (𝐔𝐻 𝐌𝐷𝐔)−
1
2 

(39) 

Eq. (39) proves that matrix 𝚼 , and therefore the 

eigenvalues of matrix 𝐃𝑤
′ , do not depend on the employed 

𝚺(0) if this is selected so that matrix F is invertible.  

Finally, we have demonstrated that, when eq. (21) holds, 

considering both a Swerling 0 and Swerling I target model, the 

asymptotic performance of the proposed detector does not 

change with the specific vector 𝐭̃(0, 𝜏, 𝑓𝐷) applied to the sub-

CPI of Q samples, provided that this is selected so that 𝐅 =
𝐔𝐻𝚺(0)  is full-rank. This is certainly the case for the  

approximation proposed in (18) that implies the neglect of the 

Doppler induced phase variation within the sub-CPI, so that it 

is concluded that it does not yield any loss in terms of target 

detection. 
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