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Multidimensional network data can have different levels of
complexity, as nodes may be characterized by heteroge-
neous individual-specific features, which may vary across
the networks. This paper introduces a class of models for
multidimensional network data, where different levels of
heterogeneity within and between networks can be consid-
ered. The proposed framework is developed in the family
of latent space models, and it aims to distinguish symmet-
ric relations between the nodes and node-specific features.
Model parameters are estimated via aMarkov ChainMonte
Carlo algorithm. Simulated data and an application to a real
example, on fruits import/export data, are used to illustrate
and comment on the performance of the proposed models.
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1 | INTRODUCTION

Relational data can be, and often are, represented in the form of networks. In an observed network, dyadic relations
of interest are coded as edges between nodes. When multiple relations are recorded among the same group of nodes,
a multidimensional network (multiplex) is observed. If the same relation is observed through time on the same set
of nodes, a dynamic network can be defined. Observed network data, either uni-dimensional or multidimensional,
can exhibit different features, which may directly influence their structure. A frequently studied feature is transitivity,
which refers to transitive relations. Roughly speaking, transitivity in social networks can be described by the “a friend
of my friend is my friend” phenomenon. A popular way to model such a feature is through latent space models, first
introduced by Hoff et al. (2002). The basic idea is to represent the nodes in a low-dimensional unobserved space,
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postulating that the probability of observing an edge in the network depends on the positions of the nodes in such a
space; closer objects in the latent space have an higher propensity to be connected in the network. Different latent
space approaches have been proposed in the literature, either based on metrics (see Hoff et al. (2002), Hoff (2005)) or
on ultrametrics (see Schweinberger and Snijders (2003)). Among metric latent spaces, models based on the Euclidean
distance are the most widespread, as they produce easily interpretable representations of the networks while being
flexible enough to describe a large variety of network data. Alternatives to distance-based latent space models are
the projection (Hoff et al., 2002) and the multiplicative latent space model (Hoff, 2005). Both postulate that the edge
probabilities depend on the inner products of the latent coordinates. Such models address transitivity differently from
distance models, as they also incorporate in the latent space representation the “direction” of the relation between
the nodes, see Hoff et al. (2002). Extensions of the latent space models to multidimensional networks are described in
Gollini and Murphy (2016), Salter-Townshend and McCormick (2017), Hoff (2011) and D’Angelo et al. (2018). Sewell
and Chen (2015) introduce a latent space model for dynamic binary networks, later extended to include weighted
dynamic networks, see Sewell and Chen (2016). Durante and Dunson (2016) developed a framework based on a
dynamic latent space model to describe dynamic networks of face-to-face individual contacts. Other works have
discussed approaches to cluster networks into sub-groups sharing similar attributes or properties. These modelling
frameworks may be of particular interest when the aim is at dimensional reduction, if the number of networks is quite
large, or when different networks describe opposite types of relations, e.g. preys and predators networks. For further
details we refer to Durante et al. (2017a), Durante et al. (2017b), Signorelli and Wit (2020). It is worth to point out
that multiplex data could be also analyzed from the point of view of tensor data analysis. Within this framework, we
refer to Hoff (2015), Fosdick and Hoff (2014) and Zhou et al. (2015).
Another interesting feature of network data is that of degree heterogeneity, which refers to the differential (higher/lower)
propensity of nodes to send/receive edges when compared to others. Holland and Leinhardt (1981) proposed the so
called “p1” model, where node-specific sender and receiver effects are treated as random effects. van Duijn et al.
(2004) developed the “p2” model, an extension of the “p1” model, where node-specific attributes are introduced as
covariates, together with sender/receiver random effects. Other extensions of the basic model are discussed by Hoff
(2003) and Hoff (2005), that bring together sender/receiver effects and latent space representations for a single net-
work. Part of this framework was later extended by Krivitsky et al. (2009), to allow for clustering of the nodes in the
latent space. In the context of dynamic networks, Sewell and Chen (2015) model the overall sender/receiver effect in
the networks, investigating whether activity (sending links) or popularity (receiving links) is more important when the
edge formation process is considered.
We develop a latent space approach based on the Euclidean distance to model transitivity and heterogeneity in mul-
tidimensional networks. Our aim is to extend the model presented in D’Angelo et al. (2018) to account for degree
heterogeneity in multidimensional networks. The previous model was developed to analyse shared similarities among
nodes in the specific case of the Eurovision Song Contest multiplex, where heterogeneity across the networks was
limited by construction by rules established in the competition. In general, multiplex data are complex in two direc-
tions: the number of nodes and the number of views. A model that aims at describing the interactions between the
actors in such a high dimensional context should explain the view-specific features, while being parsimonious with
respect to the number of parameters. For this purpose, we model transitivity via a single latent space, common to
the whole multiplex, assuming that the distances in such a space represent the overall association between the nodes.
A single latent space is able to capture “characterizing” traits of the nodes, i.e. their individuality. Indeed, multiple
networks represent multiple expressions of the same nodes, and the use of a single latent space helps distinguishing
individual, core features from view-specific ones. Heterogeneity across different views, i.e. node-specific character-
istics, will be addressed introducing node-specific sender/receiver parameters, that will account both for intra(-) and
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inter(-) networks degree heterogeneity.
The paper is organized as follows: in Section 2 we formally introduce the concept of multidimensional networks and
define the proposed class of models for directedmultiplexes. Section 3 details the estimation procedure and discusses
issues of model identifiability. Section 4 describes the proposed class of models for the particular case of undirected
multidimensional networks. A simulation study is conducted is Section 5, to investigate the properties of the proposed
class of models, and to study the performance of a novel heuristic procedure for model selection. An application to
FAO trade data is presented in Section 6. We conclude with a discussion in Section 7.

2 | LATENT SPACE MODELS FOR DIRECTED MULTIPLEXES

A binary multidimensional network (multiplex) Y is a complex object defined by a collection of networks (also known
as views). These networks can be represented by a set of n × n adjacency matrices

{
y (1), . . . , y (K )

}
= Y, where

the index k = 1, . . . ,K denotes the different views. The entries in each matrix (k th network) can take two values,
y
(k )
i j

= 1 when nodes (i , j ) are joined by an edge, and y (k )
i j

= 0, when they are not. Views in a multiplex share
the same set of nodes, whose cardinality is denoted by n . In the present context, nodes will be indexed by i , j =
1, . . . , n . A multiplex can be either undirected, if y (k )

i j
= y

(k )
j i

or directed, if the different adjacency matrices are not
necessarely symmetric, y (k )

i j
, y

(k )
j i

for at least one (i , j ) couple. In general, many interesting real world multiplexes
are directed, and different levels of “symmetry” can be observed in the adjacency matrices at hand. Notice that,
even if a network is undirected, this does not imply that all the nodes have the same number of connections, that
is, the same degree. Modelling the degree, or, for directed networks, the out-degree, ∑n

j,i y
(k )
i j

, and the in-degree,∑n
j,i y

(k )
j i

, is a task that might be of interest in many empirical applications. Indeed, it can help recover the most
influential, or popular, nodes in a network, or the most active ones. Further, different views may exhibit different
levels of heterogeneity in the node-specific degree distribution. In this sense, multidimensional networks can be
heterogeneous in two directions: within and between the views. In the present work, we introduce a class of latent
space models that address transitivity and view-specific heterogeneity in the analysis of multiplex data. We start
by introducing the general latent space framework for directed multidimensional networks. Section 4 discusses the
restriction to the specific case of undirected multidimensional networks.
In latent space models based on Euclidean distances we assume that each node is located into an unobserved p-
dimensional Euclidean space; according to model specification, the probability of observing an edge between the
elements in the dyad (i , j ), conditionally on the latent coordinates zi ,zj , i , j = 1, . . . , n , does not depend on the other
nodes positions, see Hoff et al. (2002). We hold these assumptions in our model, together with a further one, as we
assume that the probability of a connection between nodes in a dyad also depends on node-specific propensity to
send/receive links. In multidimensional networks, the propensity may vary with the views, as an actor could be quite
popular in a network, while receiving few edges in another one. Different levels of heterogeneity in edge probabilities
may depend on different levels of node heterogeneity in the networks.
For this purpose, let θ(k )

i
and γ(k )

i
, i = 1, . . . , n , k = 1, . . . ,K represent the sender and the receiver effects for the i th

node in the k th network, respectively. These parameters are introduced in the model specification to describe the
propensity of a given node to send/receive edges, respectively. The probability p (k )

i j
of a connection from node i to

node j , in the k th network, depends on the parameters
(
θ
(k )
i
, γ
(k )
j

)
, through the following model:

p
(k )
i j

= P
(
y
(k )
i j

= 1 | α (k ), β (k ), θ(k )
i
, γ
(k )
j
, di j

)
=

exp
{
f (α (k ), θ

(k )
i
, γ
(k )
j
) − β (k )di j

}
1 + exp

{
f (α (k ), θ

(k )
i
, γ
(k )
j
) − β (k )di j

} (1)
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where α =
(
α (1), . . . , α (K )

)
and β =

(
β (1), . . . , β (K )

)
are network-specific vector parameters and di j is the squared

Euclidean distance between node i and node j in the p-dimensional latent space.
According to the node-specific behaviour, we may define three different scenarios for each effect:

• Null (N): The nodes do not have any specific propensity to send and/or receive links; the edge probabilities reduce
to a function of the distances in the latent space alone. This scenario is parametrized as θ(k )

i
= 0 and/or γ(k )

i
= 0,

[ i , k ;
• Constant (C): The nodes exhibit a different propensity in sending/receiving links, but such propensities are con-

stant over the considered views. This second scenario is parametrized by fixing θ(k )
i

= θi and/or γ(k )i = γi , [
i , k ;

• Variable (V): The propensity of nodes to send and/or receive links varies across the views analysed. This last
scenario may be parametrized considering θ(k )

i
or γ(k )

i
, [ i , k .

Note that we assume the same type of effect (null, constant or variable) for all the views in the multiplex. While this
assumption may seem a stringent one, we may observe that, in practice, assuming θ(k )

i
and γ(k )

i
are variable we may

have some nodes with null effects, others with constant effects and the remaining with variable effects. We further
discuss this assumption in Section 7. Table 1 presents a schematic taxonomy of the 9 different models arising from
the different assumptions upon the sender and the receiver effects.

Receiver effect
0 γj γ

(k )
j

Sender effect
0 NN NC NV
θi CN CC CV
θ
(k )
i

VN VC VV
TABLE 1 The class of models defined by the different assumptions on the sender/receiver effects.

The impact of the sender/receiver effects on the edge probabilities can be made explicit by defining a collection of
network-specific matrices Φ =

(
Φ(1), . . . ,Φ(K )

)
, with generic element defined by

[
φ
(k )
i j

]
=

[
g
(
θ
(k )
i
, γ
(k )
j

) ]
, g (θ

(k )
i
, γ
(k )
j
) =



1 if both effects are absent,

θ
(k )
i

if only the sender effect is present,

γ
(k )
j

if only the receiver effect is present,
θ
(k )
i
+γ
(k )
j

2 if both effects are present.

(2)

Last, we can define the function f (·) as follows:

f (α (k ), θ
(k )
i
, γ
(k )
j
) = f

(
α (k )φ

(k )
i j

)
= α (k )g

(
θ
(k )
i
, γ
(k )
j

)
(3)

Equations (1-3) explicit the basic modelling assumption; within each view, the sender and the receiver effects jointly
impact the view-specific intercept. Furthermore, if we assume that

γ
(k )
j
, θ
(k )
i

∼ Uni f (−1, 1), i , j = 1, . . . , n
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we have that, differently from the additive sender and receiver effect specification, see Krivitsky et al. (2009), and as
in standard latent space models, the intercepts α (k ) still correspond, on the logit scale, to the maximum value that
edge probabilities in the networks may achieve, in fact f

(
α (k )φ

(k )
i j

)
= α (k )g

(
θ
(k )
i
, γ
(k )
j

)
≤ α (k ). Recalling the definition

ofφ(k )
i j

in equation (2), we may also notice that the sender and receiver effects can be considered as relative quantities.
Indeed, inactive (or unpopular) nodes will have an effect value close to −1, while active (or popular) nodes will have
an effect value close to 1. Obviously, the combined effect φ(k )

i j
varies in the same range. Bounding these effects in

the interval [−1, 1] allows for easy interpretation of the differences in levels of activity (or popularity) across nodes.
The “actual” scale of the sender/receiver effects (their impact on the edge probabilities) in each network is controlled
by the α (k ) parameter. Its role can be compared to that of a variance parameter controlling the scale for γ(k )

j
and

θ
(k )
i

. However, avoiding the use of variance parameters for the node-specific effects reduces the number of model
parameters and hence model complexity, without affecting flexibility in modelling the edge probabilities.
We must also notice that if we allow φ

(k )
i j

to be negative and we do consider negative intercepts α (k ), a fundamental
problem arises. In fact, if we take α (k ) < 0 and two dyads with a common node, say (i , j ) and (i , l )with φ(k )

i j
< φ

(k )
i l
< 0,

we obtain p (k )
i j
> p

(k )
i l

and this would violate the assumption that sender and receiver effects are proportional to
edge probabilities. For this reason, we bound the intercept to be non-negative, α (k ) ≥ 0 = LB(α), k = 1, . . . ,K . This
constraint does not alter the interpretation of the intercept and other model parameters. Indeed, fixing a lower bound
for the intercept does not imply a lower bound for the edge probabilities, as the impact of the distances in the latent
space may decrease substantially this value.
From equation (3), we may also notice that when no sender/receiver effects are present (scenario NN in Table 1), the
edge probability in (1) reduces to the model specification introduced by D’Angelo et al. (2018), for which inference
procedures have already been provided. In the next section, we will focus on those scenarios that include at least one
of such effects. For these models, the edge probability formula presented in equation (1) can be rewritten as:

p
(k )
i j

=
exp

{
α (k )φ

(k )
i j
− β (k )di j

}
1 + exp

{
α (k )φ

(k )
i j
− β (k )di j

} (4)

3 | ESTIMATION

We propose a hierarchical Bayesian approach to perform inference on the latent space model proposed in Section 2.
The (log-)likelihood can be derived from equation (4),

`
(
α,β,Φ,D | Y

)
=

K∑
k=1

∑
i=1
j,i

`
(k )
i j

=
K∑
k=1

∑
i=1
j,i

y
(k )
i j

log
(
p
(k )
i j

)
+ (1 − y (k )

i j
) log

(
1 − p (k )

i j

)
. (5)

The prior distributions for model parameters are specified as follows:

β (k ) ∼ N(0,∞)

(
µβ ,σ

2
β

)
, α (k ) ∼ N(0,∞)

(
µα ,σ

2
α

)
, zi ∼ MVNp

(
0, I

)
, γ

(k )
j
, θ
(k )
i

∼ Uni f (−1, 1).

Since µβ , µα ,σ2β ,σ
2
α are nuisance parameters whose specification could be relevant to inference, we introduce an extra

layer of dependence using the following (hyper) prior distributions:

µr | σ
2
r ∼ N(0,∞)

(
mr , τr σ

2
r

)
, σ2r ∼ Invχ2νr ,
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F IGURE 1 Hierarchy structure for the models.

with r = (α , β ). The hyperparameters mα ,mβ , τα , τβ , να , νβ have to be specified by the user. The constraint β (k ) ≥ 0,
k = 1, . . . ,K is imposed according to the assumption that edge probabilities are inversely proportional to the distance
between nodes in the latent space. For further discussion on the choice of the prior distributions for the model pa-
rameters, we refer to D’Angelo et al. (2018). A schematic representation of the hierarchical structure of the proposed
model is displayed in Figure 1.

3.1 | Identifiability

As discussed in D’Angelo et al. (2018), one out of the K parameters α (k ) and β (k ) must be fixed to ensure parameter
identifiability for the basic latent space model. The corresponding network is then referred to as the “reference”
network. In the present context, fixing these two parameters is not enough, as the multiplicative effect of φ(k )

i j
may

still cause problems. To avoid such issues, if both effects are present, one sender and one receiver effect should be
fixed in each view, and the corresponding nodes will be considered as “reference” nodes. More in details, when the
effect is variable, we propose to choose as reference, in each network, the i th node with the highest observed out-
degree (or in-degree) and fix θ(k )

i
= 1 (respectively γ(k )

i
= 1). Instead, when the effect is constant, we propose to select

the i th node with highest observed mean out-degree (or mean in-degree) and fix θi = 1 (respectively γi = 1). Fixing
the sender/receiver parameter for a specific node to 1 does not change the interpretation of the model, as we are
most interested in ordering the nodes with respect to the sender/receiver effects rather than in deriving precise point
estimates for such effects.

3.2 | MCMC algorithm

We propose an MCMC algorithm to estimate parameters for the latent space model proposed in section 2. Full condi-
tionals for the nuisance parameters are available in closed form, while Metropolis-Hastings steps are needed for the
other parameters, the latent coordinates and the nuisance parameters. Full conditional distributions for the nuisance
parameters, proposal distributions for the network-specific parameters and the latent coordinates are described in the
supplementary material, together with proposal distributions for the sender/receiver effects. The adopted procedure
starts by simulating a new value for each nuisance parameter; then, it proposes a new value for the network-specific
parameters α (k ) and β (k ), with a joint MH step on each network. A further MH step sequentially proposes new latent
coordinate values. As the likelihood in equation (5) is invariant to rotations and translations of the latent coordinates,
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when a new set of positions is defined, Procrustes transformation is employed to check whether this new set is just a
simple transformation of the previous solution. If so, the proposed set is discarded in favour of the previous one. After
that, sender/receiver parameters are updated sequentially on the nodes, but jointly over the different networks via
an additional MH step. The joint update is performed to speed up the calculations, given the high number of model
parameters. When all the effects are updated, a new solution of Φ(k ) is available. The proposed algorithm scales
quadratically with the number of nodes n and linearly with the number of networks.
Latent coordinates are initialized via multidimensional scaling on the average geodesic distances calculated over the
different networks. Squared Euclidean distances are then computed on the starting latent positions, and are used to
perform a logistic regression for the adjacency matrix binary entries to get starting values for the intercept and the
coefficient parameters α (k ) and β (k ): Sender and receiver parameters are initialized with 0 starting values.
Edge specific covariates, either constant or variable across the networks can be easily incorporated in the proposed
model for the edge probabilities. Also, the model can be easily extended to deal with the presence of missing
edges/nodes in the data. The full conditional and proposal distributions for model parameters presented in the sup-
plementary materials refer to the most general case of missing data and edge-specific covariates.

4 | UNDIRECTED NETWORKS

In the particular case of undirected networks, out-degrees and in-degrees are identical for each node,∑i y
(k )
i j

=
∑
i y
(k )
j i

[i = 1, . . . , n . The framework proposed in section 2 can be easily modified to deal with undirected multidimensional
networks by imposing the constrain: θ(k )

i
= γ(k )

i
= δ (k )

i
. According to such assumption, the edge probability equation

(4) can be rewritten as:

P
(
y
(k )
i j

= 1 | α (k ), β (k ), δ (k )
i
, δ
(k )
j
, di j

)
=

exp
{
α (k )g (δ

(k )
i
, δ
(k )
j
) − β (k )di j

}
1 + exp

{
α (k )g (δ

(k )
i
, δ
(k )
j
) − β (k )di j

} (6)

If not null, the effect δ (k )
i

can be either variable across the different networks, δ (k )
i

, or constant, δ (k )
i

= δi , for
k = 1, . . . ,K and i = 1, . . . , n . We provide the reader with the proposal distributions used to estimate these model
parameters in the supplementary material.

5 | SIMULATIONS

We defined a simulation study to evaluate the performance of the proposed estimation procedure, with a particular
focus on the behaviour ofmodel parameter estimates formodelsNC,NV, CC, CV andVV. These fivemodels are chosen
to investigate the properties of the estimators when the true scenarios refer to different numbers of parameters. For
each of the simulated multiplexes (10 for each model), we fit the “true” model, that is, the model a given multiplex was
simulated from. A first scenario, B1, refers to multiplexes with size n = 50,K = 5. A second larger one, B2, has size
similar to those of the multiplex that we analyse in the application, see section 6, namely n = 50,K = 10.
In both these simulation scenarios, we set α (1) = 2 and β (1) = 1. The prior parameters are να = νβ = 3, mα = 2, mβ = 0,
τα = τβ = (K − 1)/K . The dimension of the latent space is set to p = 2 for parsimony and graphical analysis purposes,
as it is often the case with latent space models. Further work in this field is needed to develop criteria for the choice
of p , to better drive the decision on such parameter. Small variations of these values have been also tried and did
not affect the results. Also, there are no missing edges in the simulated data. The MCMC algorithm run for 800000
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iterations with a burn in of 15000. MCMC diagnostics are reported in the Appendix.
Table 2 shows the average values of the distance correlation between the true and the estimated edge probabilities,
for all the different networks composing the multiplexes in scenarios B1 and B2 and the average AUC values (Area
Under the Curve). As we may observe, the correlations are always high, proving that we are able to recover the
edge probabilities with good quality, regardless of the true model, the view or the multiplex size. Also, last column
of Table 2 reports the average values of the Procrustes correlation between the simulated and the estimated latent
space coordinates. As for the edge probabilities, we notice that the latent coordinates are appropriately recovered. To
evaluate the estimates of the sender/receiver parameters in the different models, we compute, for each network, the
Spearman correlation coefficient between the simulated and the estimated parameters; this choice is used as we are
mainly interested in recovering the nodes ordering, with respect to the effect estimates. Indeed, sender and receiver
parameters vary in the relatively small interval (−1, 1), and the exact numerical values may not be of interest. Table
3 reports, for each network in the simulated multiplexes, the average values of the Spearman correlation coefficient
between the simulated and the estimated receiver effect, γ(k )

i
. These values are always much greater than 0.5, with

a couple of exceptions for some networks drawn from models with a higher complexity, CV and VV. However, as we
comment in Table 2, this does not impact the recovering of edge probabilities. Table 4 reports the average values of
the Spearman correlation coefficient between the simulated and the estimated sender effect, θ(k )

i
. The behaviour of

these estimates complies with those of the receiver effect previously discussed, proving that the effects, when both
present, are estimated with similar quality.
We refer to the supplementary materials for the α (k ) and the β (k ) estimates. The intercepts are recovered within
a 95% credible interval, with two exceptions which occur when the simulated values are “extreme”. However, the
ordering between the different intercepts in a given multiplex is always well recovered. Instead, the β (k ) coefficient
tends to be overestimated. Also in this case, the ordering of coefficients in a multiplex is correctly recovered. The
overestimation of this coefficient may be caused by a corresponding underestimation of the latent distances, as the
simulated and estimated products β (k )di j are always well recovered. Precise point estimates for all the parameters are
quite hard to recover, due to the large number of parameters in the models and the “multiplicative” parametrization
adopted. However, the aim of this class of latent space models is to describe different features of a multiplex by
comparing nodes and networks. This intent is met, as we are always able to recover the corresponding orderings. All
simulations are ran on a Intel(R) Core(TM) i7-8565U@1.80GHz computer andwe refer to the supplementarymaterials
for information on the computational times. The supplement also provides information on Average Expected Sample
Size (ESS) and acceptance probability values for model parameters and latent coordinates. Although some of the
acceptance probability values are small, the simulation study presented in this Section showed that parameters and
latent coordinates are still quite well recovered using the proposed algorithm, under all different sender/receiver effect
specifications.
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k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7 k = 8 k = 9 k = 10 AUC PC
0.65

B1

NC 0.86 0.84 0.86 0.87 0.85 - - - - - 0.83 0.94
NV 0.87 0.87 0.87 0.85 0.86 - - - - - 0.82 0.92
CC 0.89 0.89 0.90 0.91 0.87 - - - - - 0.80 0.96
CV 0.84 0.81 0.83 0.84 0.85 - - - - - 0.79 0.90
VV 0.83 0.81 0.80 0.81 0.81 - - - - - 0.77 0.93

0.65

B2

NC 0.89 0.84 0.83 0.83 0.81 0.92 0.84 0.81 0.81 0.82 0.87 0.85
NV 0.83 0.80 0.79 0.76 0.81 0.78 0.88 0.71 0.75 0.75 0.84 0.93
CC 0.83 0.87 0.91 0.84 0.90 0.91 0.91 0.84 0.86 0.91 0.78 0.90
CV 0.75 0.86 0.87 0.76 0.86 0.88 0.87 0.86 0.83 0.87 0.85 0.91
VV 0.73 0.72 0.82 0.85 0.88 0.79 0.79 0.79 0.86 0.84 0.76 0.90

TABLE 2 Simulation study. Average distance correlation between the simulated and the estimated edge-probabilities. Columns
AUC and PC show, respectively, the average AUC (Area Under the Curve) value and the average Procrustes correlation between the
simulated and the estimated latent space coordinates. Standard deviations associated with the different estimates were always lower
than 0.10.

k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7 k = 8 k = 9 k = 10

0.65

B1

NC 0.84 0.84 0.84 0.84 0.84 - - - - -
NV 0.85 0.80 0.86 0.92 0.91 - - - - -
CC 0.84 0.84 0.84 0.84 0.84 - - - - -
CV 0.80 0.86 0.81 0.73 0.6 - - - - -
VV 0.67 0.61 0.50 0.64 0.75 - - - - -

0.65

B2

NC 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.94
NV 0.92 0.86 0.84 0.74 0.84 0.83 0.92 0.61 0.80 0.79
CC 0.84 0.84 0.84 0.84 0.84 0.84 0.84 0.84 0.84 0.84
CV 0.51 0.66 0.83 0.50 0.73 0.82 0.82 0.85 0.61 0.79
VV 0.61 0.48 0.81 0.83 0.86 0.58 0.54 0.57 0.87 0.59

TABLE 3 Simulation study. Average Spearman correlation index between the simulated and the estimated receiver effects.
Standard deviations associated with the different estimates were always lower than 0.07, with the exception of the VV model, where
they were lower than 0.12.

k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7 k = 8 k = 9 k = 10

B1

0.65
CC 0.84 0.84 0.84 0.84 0.84 - - - - -
CV 0.90 0.90 0.90 0.90 0.90 - - - - -
VV 0.58 0.57 0.55 0.58 0.59 - - - - -

B2

0.65
CC 0.78 0.78 0.78 0.78 0.78 0.78 0.78 0.78 0.78 0.78
CV 0.79 0.79 0.79 0.79 0.79 0.79 0.79 0.79 0.79 0.79
VV 0.65 0.66 0.66 0.65 0.66 0.66 0.66 0.66 0.67 0.65

TABLE 4 Simulation study. Average Spearman correlation between the simulated and the estimated sender effects, by simulation
scenario and true model structure. Standard deviations associated with the different estimates were always lower than 0.07, with the
exception of the VV model, where they were lower than 0.12.
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5.1 | An heuristic procedure for model selection

In Section 2 we have proposed a class of models for multidimensional networks, with 9 different specifications for
the sender/receiver effects. In general, the issue of model selection can be addressed in two different ways. A first
approach is that of an expert who, based on some prior knowledge on the data, suggests which particular model
should be used. A second, more common, approach, is that of choosing the “best” model using some selection criteria.
In the present context, the estimation of the nine models, on a specific observed multiplex may require substantial
(computational) time, especially when the size of the multiplex is large. Hence, it could be convenient to have some
idea on which model to estimate on a priori basis. In particular, we propose to determine the model to fit on the basis
of some summary statistics calculated on the observed multidimensional network data. The idea of using summary
statistics to aid the model selection was introduced by Hunter et al. (2008). In that work, the authors proposed a
graphical goodness of fit procedure to compare structural statistics of the observed network with the corresponding
statistics on networks simulated from a given model. Although this procedure allows to compare different models
without the need to fit them, it relies on graphical comparisons, which may be subjective or difficult when the number
of models to compare is large. A more automated model selection procedure is discussed by Pudlo et al. (2015) in the
context of ABC algorithms. There, model selection is rephrased as a classification problem, with random forests used
to predict, prior to fitting, which model would be the most appropriate for the data.
We propose to summarize observed multiplex data using in-degrees and out-degrees correlations. The general idea is
that of computing the correlations among out-degrees/in-degrees. This could serve as a proxy of the heterogeneity
within and between the views. Let us denote by S = [si k ] the matrix of the observed out-degrees and by R = [ri k ] the
matrix of the observed in-degrees; both matrices have dimension n × K , where n denotes the number of nodes and
K the number of networks. Then, the matrices csk and crk , of dimension K × K , contain the values of the correlation
between the sender/receiver effects across views. Instead, the matrices csi and cri , of dimension n × n , include the
correlations between the sender/receiver effects across nodes. Let us now define c̄sk , c̄rk , c̄si and c̄ri the mean values
among all the cells of the matrices introduced above and sd (csk ), sd (crk ), sd (csi ) and sd (cri ) the corresponding stan-
dard deviations. We use such quantities to choose which type of model has to be estimated, among those proposed in
Section 2. The idea is that observed multiplexes with similar values of c̄sk and c̄rk , and of c̄si and c̄ri , could have similar
types of sender and receiver effects. On the contrary, a multiplex that exhibit conflicting values of sender/receiver
correlation among views or among nodes might come from a model where the two effects are different. In the latter
case, the higher the discrepancy between sender and receiver “node” correlations, the higher the chance that the
underlying model has two most different types of effects, that is, null and variable. The variability between nodes
correlations (for which the standard deviations serve as proxies) may be used to discriminate between different model
structures, referring to null, constant or variable node-specific effects. Formally, the proposed procedure works as
described below.
To study the behaviour of this approach, given an observed multidimensional network with n nodes and K views, we
propose to simulateT multiplexes from equation 4, for each one of the nine models. For each simulated dataset, the
correlation summary statistics (c̄sk , c̄rk , c̄si , c̄ri , sd (csk ), sd (crk ), sd (csi ), sd (cri )) are computed. Such summary statis-
tics are later employed to train a Linear Discriminant Analysis (LDA) classifier, using mclust (Scrucca et al., 2016). The
proposed procedure has been tested for multidimensional networks with n = (50, 75, 100) nodes and K = (3, 5, 10)

networks, withT = 5000. Table 5 reports the cross validation error for the classifier, for different n and K values. The
classification errors are quite low in all scenarios, and they decrease with increasing K . Indeed, having multiple repli-
cates of the networks may help distinguishing the type of network/node-specific effects. To further test the proposed
procedure, we have used the estimated classifier to predict the model-type of other 5000multidimensional networks,
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simulated independently from those used to train the classifier. Table 6 reports the average accuracy of the classifier
on test data over different (n,K ) values, for each one of the models. The accuracy values on the diagonal show that
the proposed procedure has a larger discriminant power among the competing models. Also, when it fails to select
the right model, it proposes a model that is “near” to the “true” one. For example, when multiplexes are simulated
from aVV model, the procedure recovers the true model 96% of the times, the CC model 2% and the CV -VC models
2% of the times.
Using such an heuristic procedure to choose among the models can help reducing drastically the computing effort.
Moreover, the proposed framework allows the implementation of dimension-specific classifier, as the scheme and the
corresponding classification directly depend on the size of the observed multidimensional network, n,K .

n = 50 n = 75 n = 100

K = 3 K = 5 K = 10 K = 3 K = 5 K = 10 K = 3 K = 5 K = 10

0.152 0.059 0.024 0.076 0.030 0.016 0.051 0.023 0.013

TABLE 5 Cross validation error for the classifier, for different n and K values.

Predicted
NN CN NC CC VN NV VC CV VV

Class

NN 93 (2) % 1 (0) % 0 (0) % 6 (1) % 0 (0) % 0 (0) % 0 (0) % 0 (0) % 0 (0) %
CN 0 (0) % 97 (4) % 0 (0) % 2 (2) % 0 (0) % 0 (0) % 0 (0) % 1 (1) % 0 (0) %
NC 0 (0) % 0 (0) % 97 (3) % 2 (2) % 0 (0) % 0 (0) % 1 (1) % 0 (0) % 0 (0) %
CC 6 (2) % 1 (1) % 1 (1) % 88 (7) % 0 (0) % 0 (0) % 1 (1) % 1 (2) % 2 (1) %
VN 0 (0) % 0 (0) % 0 (0) % 0 (0) % 97 (3) % 0 (0) % 3 (2) % 0 (0) % 0 (0) %
NV 0 (0) % 0 (0) % 0 (0) % 0 (0) % 0 (0) % 97 (3) % 0 (0) % 3 (2) % 0 (1) %
VC 0 (0) % 0 (0) % 0 (1) % 1 (2) % 3 (2) % 0 (0) % 95 (6) % 0 (0) % 1 (2) %
CV 0 (0) % 0 (1) % 0 (0) % 1 (2) % 0 (0) % 3 (2) % 0 (0) % 95 (6) % 1 (2) %
VV 0 (0) % 0 (0) % 0 (0) % 2 (1) % 0 (0) % 0 (0) % 1 (2) % 1 (2) % 96 (5) %

TABLE 6 Average accuracy of the classifier on the test data over different (n,K ) values, for each one of the nine models. Standard
deviations are reported in brackets.

6 | FAO TRADE DATA

The application deals with FAO food and agricultural trade data, measuring annual import/exports between countries.
The data are available at FAO website (FAOStat, 2013), and the most recent subset refers to 2013. Here we consider
the fruit sub-market, in particular, fresh fruit, as fresh items are themost internationally traded. For illustrative reasons,
we consider a restricted number of fruits, by choosing 10 out of the most commonly consumed and traded goods:
“Grapes”, “Watermelons”, “Apples”, “Oranges”, “Pears”, “Bananas”, “Pineapples”, “Tangerines, mandarins, clementines,
satsuma”, “Plantains” and “Grapefruit (inc. pomelos)”. The original data register the volume of the trade, that is, the
quantity traded among each couple of countries; however, we focus on the presence/absence of an import/export
relation between couples of countries. Our aim is to verify whether close countries are more likely to trade, by
comparing the estimated latent coordinates of the countries with the geographical ones. Also, we can address which
countries are the most relevant in the exchange of fruits, via the estimated node-specific effects, and whether their
relevance is constant throughout the different markets. The original number of trading countries in the data is large,
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more than 200, but not all of them trade in all of the markets. Thus, to avoid the presence of isolated node-countries
(countries with no links) and to guarantee an easy and feasible representation of the results, we focus on a subgroup of
64 countries, see the supplementary materials. To define such a sub-sample, we have considered the median number
of countries with which a country trades (equal to 7) and removed all the countries with a value under the median.
We end up considering a multidimensional networks with n = 64 nodes and K = 10 networks.
The observed densities range from 0.10 (Plantains market) to 0.28 (Apples market), with a mean of 0.20. Also, the
associations1 between couples of adjacency matrices are quite high, ranging in between 0.8 and 0.9, suggesting that
countries tend to import/export fruits from/to a relatively constant set of partners. As the observed out-degrees and
in-degrees present a strong association (see the Supplementary materials), the data are a good candidate to test the
proposed model. The heuristic procedure described in Section 5.1 suggested to use the CN model with probability
0.98, and the VC and CN models both with probability 0.01. Hence, we fit a model with constant sender effects,
using the MCMC algorithm described in section 3.2, where the number of iterations and the hyper parameters are
fixed as in the simulation setting (Section 5). We set p = 2, the dimension of the latent space, both for graphical
reasons and to compare the estimated with the geographical coordinates. The choice of the number of dimensions
in the latent spaces is further validated through AUC for out-of-sample edge prediction. More in details, we fit CN
models with different number of latent dimensions to the FAO multiplex data and compute median AUC values for
out-of-sample edge prediction. Such values are {0.87, 0.87, 0.86}, respectively for p = {2, 3, 4}. These results suggest
that the choice of p = 2 can be appropriate for the data at hand as increasing the value of p only increments model
complexity, not predictions accuracy. Moreover, Spearman correlation coefficient values computed between couples
of estimated sender effects for these models range in (0.94, 0.97), showing stability with respect to different latent
space dimensions specifications. Indeed, the proposed model is able to disentangle between reciprocal relations
between the nodes, captured by the latent space, and node-specific ones.
Figure 2(left plot) reports the estimated sender effects and the observed mean out-degrees, for the 64 countries
considered. Countries corresponding to high estimated sender effects may be considered as “top exporters”. “Top
exporting” countries are to be interpreted as those countries that tend to export fruit to a large group of trading
partners, conditional on the latent distances to other nodes. Three out of the first four “top exporting” countries are
European: Italy, Netherland and Spain. Netherlands (NLD) is one of the major trade hubs for fresh fruits, importing
goods from developing countries and then reselling them (mostly) to the European market (CBI, 2015)(FreshPlaza,
2015). Contrary to Netherlands, Spain and Italy directly grow most of the fruits they export. Just to give an example,
Canary Islands are major pineapples producers. Also, Spain in 2017 became the world’s largest watermelon exporting
country (FreshPlaza, 2018). These three European countries show good agreement between the estimated sender
effects and the observed mean out-degrees, see Figure2(left plot). On the contrary, New Zealand, which is estimated
to be the third “top exporter”, has a moderate mean out-degree. Such mismatch between New Zealand’s estimated
sender effect and mean-out degree may be explained looking at its position in the latent space, in Figure 2(right
plot). Indeed, New Zealand is estimated to be quite far from the countries it trades with, therefore the “residual”
contribution given by the sender effect to the edge probability needs to be really high. In other words, a large value
of the sender effect accounts for the “distance” New Zealand has to travel to export its goods. The estimated latent
coordinates for the 64 countries are presented in Figure 3, which additionally displays the geographic coordinates of

1The association between any two adjacencymatrices, k , l = 1, . . . ,K , is computed comparing the total number of concordant cells between the twomatrices
and the total number of cells:
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such countries, for comparison. The estimated latent coordinates do not match the geographical ones; indeed, the
Procrustes correlation value between the two sets is not high (0.53). The estimated latent space is characterized by a
large number of Asian countries placed in the right hand side of the space and themajority of the European countries in
the left hand part. United States are placed in between Asiatic and Oceanic countries. Indeed, most of these countries
are leading suppliers of fruits for the United States, thanks to established or pending free trade agreements (Johnson,
2016). Comparing the estimated distances with the number and types of reciprocal ties 2 exchanged between the
nodes, we find that the estimated latent space well depicts symmetric relations in the newtorks. Indeed, nodes that
often exchange reciprocal ties are placed very close to each other in the latent space, while those that hardly ever
connect are the ones furthest apart from one another. For more details on the matter, we refer to the supplementary
materials. Moreover, the latent space is estimated to be always relevant in the determination of the edge probabilities,
and to have similar effect in the different networks. Indeed, Table 7 shows that the estimated coefficients β (k ) range in
(0.76, 2.52). The same Table displays the estimates of the intercepts in the different networks, with all of the intercepts
corresponding, at baseline di j = 0, to high edge probability values (greater than 0.9). Figure 4 represents the estimated
probabilities in the fruit networks, given some values of the distances and of the sender effect. In particular, the
probabilities are computed for the first (0.385), second (1.274) and third (2.281) quartiles of the distances, and for
θi = (−0.5, 0, 0.5, 1). The plot in Figure 4 shows that, even though the latent space is constant, quite different values of
the edge probability correspond to the same estimated distances, depending on the sender effect and the network-
specific parameters, α (k ) and β (k ).

k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7 k = 8 k = 9 k = 10

α
mean 2.00 1.96 2.51 2.49 2.63 1.80 2.26 2.43 1.78 2.59
sd - 0.12 0.13 0.15 0.12 0.12 0.13 0.14 0.15 0.14

β
mean 1.00 1.37 0.76 1.04 1.12 1.70 1.46 1.13 2.52 1.42
sd - 0.06 0.05 0.05 0.07 0.08 0.07 0.06 0.12 0.07

TABLE 7 Averages and standard deviations of the estimated posterior distributions for the intercept and the scale coefficient
parameters in the fruit networks.

7 | DISCUSSION

In the present work we have introduced a novel class of Euclidean distance latent space models for multidimensional
network data. The models allow to represent transitivity in a parsimonious way, via a single latent space. The shared
latent space assumption can be quite appealing in the presence of some sort of “homogeneity” in the type of relations
collected in a multiplex, for example with countries trading similar goods, as it allows to easily summarize multiple
views and visualize similarities in the data. Note however that such assumption may not be appropriate for multidi-
mensional networks formed by views inhomogeneous in the relation types, as for example prey-predator networks
or networks depicting opposite relations. The proposed models should be extended to account for such types of
multiplex data. An example of a feasible extension would rely on clusters of “homogeneous” networks (in terms of

2For each network k and for each pair of nodes (i , j ), we can classify ties as: reciprocal and null if (y (k )
i j

= y
(k )
j i

= 0), asymmetric if (y (k )
i j
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reciprocal and positive if (y (k )
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= 1).
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F IGURE 2 Fruit multiplex. Estimated sender parameters and observed mean out-degrees. The grey lines represent out-degree
standard deviations (left figure). Estimated latent space. The segments link New Zealand to the countries it exports to, with different
colors corresponding to different fruit markets (right figure).

type of relation), each of which could be then represented by the same shared latent space. Also, different levels
of node-specific degree heterogeneity can be specified. In the spirit of model parsimony, we assume that the type
of sender/receiver effect (“Null”, “Constant” and “Variable”) is constant across the views. An interesting relaxation of
such hypothesis would be to have the type of effect varying with the networks. Indeed, for example, it may be that
a subset K ∗ of the K views has no sender effect, but the remaining networks have constant sender effect. Finding
such sub-groups of networks would then become a clustering problem, with extra complexity brought by the alloca-
tion of each network to the specific effect-sub-group and the estimation of the number of clusters, which, however,
would be bounded in (1, 3). We have proposed an heuristic procedure for model selection, that allows to choose an
appropriate model for observed multiplex data without the need to estimate all the possible models. Thus, the pro-
cedure allows to bypass a model selection step. A prior selection of the model may be convenient in many real data
applications, as model estimation for network data can be quite (computationally) demanding. The performance of
the proposed heuristic procedure and that of the latent space model have been tested in separate simulation studies
and have proven to give quite good results.
Further, the models were designed to disentangle symmetric and asymmetric relationships in the networks, where
these two types of structure are captured respectively by the latent space and the node-specific effects. An illustra-
tive application to FAO trade data regarding different fruit trades has been presented, where the method was able
to uncover trade patterns and shared similarities among different fruit markets. Pairs of nodes strongly exhibiting
positive reciprocity in the multiplex resulted to be those placed closer to each other in the latent space, showing that
the latter is able to capture symmetric structures in the data. Moreover, the estimated node-specific effect values
were shown to be consistent under different latent space dimensions specifications, proving that the proposed model
is able to well separate asymmetric from symmetric relational structures. The data may be an interesting research
problem per se, and an interesting extension of the proposed class of models could take into consideration weighted
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F IGURE 3 Fruit multiplex. Estimated latent coordinates. The segment represented at the bottom of the plot displays the median
value of the estimated distances distribution.The average standard deviation associated with each coordinate is 0.11 (left figure).
Geographical coordinates. Estimated latent coordinates are reported in grey in the background, for comparison purposes (right figure).

multiplexes, analysing import/export values or quantities. However, considering such weighted edges is non trivial,
as the distributions of the exchanged quantities are both right skewed and zero-inflated.
The proposedmodels and the heuristicmodel selection procedure are incorporated in theR package spaceNet (D’Angelo
and Fop, 2018), available on CRAN.
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