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Abstract
We continue, generalize and expand our study of linear degenerations of flag varieties from
Cerulli Irelli et al. (Math Z 287(1–2):615–654, 2017). We realize partial flag varieties as
quiver Grassmannians for equi-oriented type A quivers and construct linear degenerations
by varying the corresponding quiver representation.We prove that there exists the deepest flat
degeneration and the deepest flat irreducible degeneration: the former is the partial analogue
of the mf-degenerate flag variety and the latter coincides with the partial PBW-degenerate
flag variety.We compute the generating function of the number of orbits in the flat irreducible
locus and study the natural family of line bundles on the degenerations from theflat irreducible
locus. We also describe explicitly the reduced scheme structure on these degenerations and
conjecture that similar results hold for the whole flat locus. Finally, we prove an analogue of
the Borel–Weil theorem for the flat irreducible locus.
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1 Introduction

The theory of complex simple Lie groups and Lie algebras is known to be closely related
to the representation theory of Dynkin quivers (see e.g. [1,11,14,18]). In this paper we use
the following simple but powerful observation: any partial flag variety associated to the
group SLN is isomorphic to a quiver Grassmannian for the equi-oriented type A quiver and
suitably chosen representation and dimension vector. Varying the representation of the quiver
and keeping the dimension vector fixed one gets degenerations of the flag varieties (see e.g.
[12,13,15,16]). The goal of this paper is to study these degenerations, in particular, to describe
the irreducible and flat irreducible loci. Let us formulate the setup and our results in more
details.

Let G = SLN (C) and let P be a parabolic subgroup of G with respect to the fixed
Borel subgroup B. The quotient G/P is known to be isomorphic to the variety of flags
(U1 ⊂ U2 ⊂ · · · ⊂ Un) in an N -dimensional vector space such that dimUi = ei for a
certain increasing sequence 1 ≤ e1 < · · · < en ≤ N .

Let Q be the equi-oriented quiver of type An with the set of vertices Q0 = {1, 2, . . . , n}
where n is the sink. We fix N ≥ n + 1 and a complex vector space V of dimension N . We
consider the dimension vector d = (N , . . . , N ) and denote by Rd the affine space whose
points parametrize the Q-representations of dimension vector d, i.e. collections {( fi )n−1

i=1 } of
linear endomorphisms of V . The group Gd = ∏n

i=1 GLN acts on Rd by base change and the
Gd-orbits get identified with the isomorphism classes of quiver representations. It is known
that there are only finitely many orbits, parametrized by the collections (ri, j )1≤i< j≤n of the
ranks of the composite maps. A general point of Rd is isomorphic to M0 := (idV , . . . , idV ).
For a point M = ( fi )

n−1
i=1 ∈ Rd we denote by rM = (rMi, j ) the rank collection rMi, j =

rank( f j−1 ◦ · · · ◦ fi ). In particular, if M = M0, then rMi, j = N for all pairs i, j and we denote

this collection by r0.
We fix a dimension vector e = (ei )ni=1 such that 1 ≤ e1 < · · · < en ≤ N and consider the

proper family π : Ye → Rd whose fiber over a point M is the quiver Grassmannian Gre(M).
Our goal is to study geometric properties of this family.

Two simple observations are in order. The first observation is that a general fibre of this
family is isomorphic to G/P , thus the special fibres can be viewed as degenerations of the
partial flag varieties. The second observation is as follows. The map π is Gd-equivariant and
the quiver Grassmannians corresponding to the points from oneGd-orbit are isomorphic. We
denote by Or the Gd-orbit corresponding to the tuple r. The main message of our paper is
that there exist two other rank collections r1 and r2:

r1i, j = N − e j + ei , 1 ≤ i < j ≤ n; (1.1)

r2i, j = N − 1 − e j + ei , 1 ≤ i < j ≤ n, (1.2)

which are as fundamental as the tuple r0. In particular, the rank collection r1 corresponds to
the PBW degenerate flag variety [5,6,10]. We provide here some details.

The partial flag varieties G/P are known to be irreducible and have easily computed
dimensions. There are two natural loci in Rd. The first one is the flat locusU f lat which is the
locus where the map π is flat. In other words, U f lat consists of representations M such that
the quiver Grassmannian Gre(M) is of expected (minimal possible) dimension dimG/P .
The second natural locus is the flat irreducible locusU f lat,irr ⊂ U f lat consisting of M such
that Gre(M) is irreducible. Here is our first theorem which generalizes [15, Theorem 3].

Theorem A The following holds:
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Linear degenerations of flag varieties: partial flags. . . 455

(a) The flat irreducible locus U f lat,irr consists of the orbits Or degenerating to Or1 , i.e.
ri, j ≥ r1i, j for all pairs i, j .

(b) The flat locus U f lat consists of the orbitsOr degenerating toOr2 , i.e. ri, j ≥ r2i, j for all
pairs i, j .

Our next goal is to compute the number of orbits in the flat irreducible locus. Let Be be
the number of these orbits. We note that Be does not depend on N (provided N > en). If
ei = i , then Be is equal to the n-th Bell number https://oeis.org/A000110 (see [15, Section
4.2]).

We consider the generating function

Bn(x1, . . . , xn) =
∑

e

Be x
e1
1 xe2−e1

2 · · · xen−en−1
n .

Theorem B We have

Bn(x1, . . . , xn) =
n∏

i=1

(1 − xi )
−1

∏

∅	=I⊂{2,...,n}

(

1 −
∏

i∈I
xi

)−1

.

Next, we describe the reduced scheme structure for the quiver Grassmannians correspond-
ing to the representations inU f lat,irr by providing an explicit set of quadratic generators for
the ideal describing the Plücker embedding (see also [17]). Our main combinatorial tool
is the notion of PBW semi-standard Young tableaux (see [7]), parametrizing a basis in the
homogeneous coordinate ring of the PBW degenerate flag varieties. We prove the following
theorem.

Theorem C For any orbit O degenerating to Or1 there exists a point M ∈ O such that the
semi-standard PBW tableaux form a basis in the homogeneous coordinate ring of Gre(M).

We conjecture that a similar result holds for the whole flat locus.
Finally, we discuss groups acting on the fibers in the flat irreducible locus and study

the sections of natural line bundles. More precisely, we make use of a transversal slice T
through the flat irreducible locus constructed in [15]. For a Q-representation Mt for t ∈ T
we construct a group Gt acting on the quiver Grassmannian Gre(Mt ) with an open dense
orbit. We construct a family of representations of Gt and identify them with the dual spaces
of sections of natural line bundles on Gre(Mt ).

Our paper is organized as follows. In Sect. 2 we recall some basic facts about quivers
and quiver Grassmannians of type A. In Sect. 3 we prove Theorem A. In Sect. 4 we prove
Theorem B. In Sect. 5 we describe the ideal of relations defining linear flat degenerations
and prove Theorem C. In Sect. 6 we construct line bundles on the flat degenerations of the
complete flag variety and provide a Borel-Weil-type theorem for quiver Grassmannians.

2 Methods from the representation theory of quivers

2.1 Quiver representations

For all basic definitions and facts on the representation theory of (Dynkin) quivers, we refer
to [2].
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456 G. Cerulli Irelli et al.

Let Q be a finite quiver with the set of vertices Q0 and arrows written a : i → j for
i, j ∈ Q0. We assume that Q is a Dynkin quiver, that is, its underlying unoriented graph |Q|
is a disjoint union of simply-laced Dynkin diagrams.

We consider (finite-dimensional) C-representations of Q. Such a representation is given
by a tuple

M = ((Mi )i∈Q0 , ( fa)a:i→ j ),

where Mi is a finite-dimensional C-vector space for every vertex i of Q, and fa : Mi → Mj

is a C-linear map for every arrow a : i → j in Q. A morphism between representations
M and K = ((Ki )i , (ga)a) is a tuple of C-linear maps (ϕi : Mi → Ki )i∈Q0 such that
ϕ j fa = gaϕi for all a : i → j in Q. Composition of morphisms is defined componentwise,
resulting in aC-linear category repCQ. This category isC-linearly equivalent to the category
modA of finite-dimensional left modules over the path algebra A = CQ of Q.

For a vertex i ∈ Q0, we denote by Si the simple representation associated to i , namely,
(Si )i = C and (Si ) j = 0 for all j 	= i , and all maps being identically zero; every simple
representation is of this form. We let Pi be a projective cover of Si , and Ii an injective hull
of Si .

The Grothendieck group K0(repCQ) is isomorphic to the free abelian group ZQ0

in Q0 via the map attaching to the class of a representation M its dimension vector
dimM = (dim Mi )i∈Q0 ∈ ZQ0. The category repCQ is hereditary, that is, Ext≥2(_, _)
vanishes identically, and its homological Euler form

dimHom(M, K ) − dim Ext1(M, K ) = 〈dimM,dim K 〉
is given by

〈d, e〉 =
∑

i∈Q0

di ei −
∑

a:i→ j

di e j .

For two dimension vectors e,d ∈ NQ0 we write e ≤ d if ei ≤ di for all i ∈ Q0.
By Gabriel’s theorem, the isomorphism classes [Uα] of indecomposable representations

Uα of Q correspond bijectively to the positive roots α of the root system� of type |Q|; more
concretely, we realize� as the set of vectors α ∈ ZQ0 such that 〈α, α〉 = 1; then there exists
a unique (up to isomorphism) indecomposable representation Uα such that dimUα = α for
every α ∈ �+ = � ∩ NQ0.

We make our discussion of the representation theory of a Dynkin quiver so far explicit in
the case of the equi-oriented type An quiver Q given as

1 2 · · · n.

We identify ZQ0 with Z
n , and the Euler form is then given by

〈d, e〉 =
n∑

i=1

di ei −
n−1∑

i=1

di ei+1.

We denote the indecomposable representations by Ui, j for 1 ≤ i ≤ j ≤ n, where Ui, j is
given as

0 → · · · → 0 → C
id→ · · · id→ C → 0 → · · · → 0,

supported on the vertices i, . . . , j . In particular, we have Si = Ui,i , Pi = Ui,n , Ii = U1,i for
all i .
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We have

dimHom(Ui, j ,Uk,l) = 1 if and only if k ≤ i ≤ l ≤ j

and zero otherwise, and we have

dim Ext1(Uk,l ,Ui, j ) = 1 if and only if k + 1 ≤ i ≤ l + 1 ≤ j,

and zero otherwise, where the extension group, in case it is non-zero, is generated by the
class of the exact sequence

0 → Ui, j → Ui,l ⊕Uk, j → Uk,l → 0,

where we formally set Ui, j = 0 if i < 1 or j > n or j < i .
Given two dimension vectors e and s such that e0 := 0 ≤ e1 ≤ e2 ≤ · · · ≤ en and

s1 ≥ s2 ≥ · · · ≥ sn ≥ sn+1 := 0, we define the two Q-representations:

Pe :=
n⊕

i=1

Pei−ei−1
i , I s :=

n⊕

i=1

I si−si+1
i . (2.1)

Given a dimension vector d ∈ NQ0 and C-vector spaces Vi of dimension di (i ∈ Q0), let
Rd be the affine space

Rd =
n−1⊕

i=1

HomC(Vi , Vi+1),

on which the groupGd = GL(V1)×· · ·×GL(Vn) acts via base change: given g = (gi )ni=1 ∈
Gd and f = ( fi )

n−1
i=1 ∈ Rd, we have g · f = f ′ where f ′ makes commutative every square

Vi
fi

gi

Vi+1

gi+1

Vi
f ′
i

Vi+1

for i ∈ Q0. The Gd-orbits in Rd are naturally parametrized by isomorphism classes of rep-
resentations of Q of dimension vector d. By the Krull-Schmidt theorem, a Q-representation
M is, up to isomorphism, determined by the multiplicities of the Ui, j , that is,

M =
⊕

i≤ j

U
mi, j
i, j .

Then dimM = d is equivalent to
∑

k≤i≤l

mk,l = di for all i .

We define

ri, j (M) =
∑

k≤i≤ j≤l

mk,l

for i ≤ j . We note that ri, j is equal to the rank of the composite map Mi → Mj . Viewing
M as a tuple of maps ( f1, . . . , fn−1) as before, ri, j is thus the rank of f j−1 ◦ · · · ◦ fi and,
trivially, we have ri,i = di . We can recover mi, j from (rk,l)k,l via

mi, j = ri, j − ri, j+1 − ri−1, j + ri−1, j+1,
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458 G. Cerulli Irelli et al.

for all 1 ≤ i ≤ j ≤ n, where we formally set ri, j = 0 if i = 0 or j = n + 1 and ri,i = di .
We easily derive the inequality

ri,l + r j,k ≥ ri,k + r j,l (2.2)

for all four-tuples i < j ≤ k < l.
Let Or be a subset of Rd consisting of maps ( f1, . . . , fn−1) such that

rank( f j−1 ◦ · · · ◦ fi ) = ri, j .

If non-empty, Or is a single Gd-orbit, and every orbit arises in this way.
The orbit of M degenerates to the orbit of K if K (or OK ) is contained in the closure of

OM . In this case we write M ≤deg K . By [3], we have for any U

M ≤deg K if and only if dim Hom(U , M) ≤ dimHom(U , K ). (2.3)

2.2 Dimension estimates for certain quiver Grassmannians

Let Q be an equi-oriented quiver of type An . Let N ≥ n + 1 and let V be a complex
vector space of dimension N . Given the dimension vector d = (N , . . . , N ) ∈ N

n , the
variety Rd consists of collections ( fi : V → V )n−1

i=1 of linear endomorphisms of V . Let
e = (e1, . . . , en) be a dimension vector such that e0 := 0 < e1 < · · · < en < en+1 := N ,
Ze = Gre1(V ) × · · · × Gren (V ) and let Ye ⊂ Rd × Ze be the variety of compatible pairs of
sequences ( f∗,U∗) such that fi (Ui ) ⊂ Ui+1 for all i . The natural projection π : Ye → Rd is
called the universal quiver Grassmannian and it is the family mentioned in the introduction
thatwewant to study. It isGd-equivariant and the quiverGrassmannian for a Q-representation
M ∈ Rd is defined as Gre(M) = π−1(M).

We would like to estimate the dimension of Gre(M). A general representation M0 of
dimension vector d is isomorphic to UN

1,n , thus all its arrows are represented by the identity

maps. Since Gre(M0) is a partial SLN -flag variety, we denote by Flr(V ) the π-fiber over
a point in Or, which is well-defined up to isomorphism since π is Gd-equivariant. We call
Flr(V ) the r-degenerate partial flag variety.We continue to use the notationGre(M)whenever
we explicitly refer to methods from the representation theory of quivers.

It follows from [13, Prop. 2.2] that every irreducible component of Flr(V ) has dimension
at least

dim(Flr(V )) ≥ 〈e,d − e〉 =
n∑

i=1

ei (ei+1 − ei ) = dim(SLN /P)

where P is an appropriate parabolic subgroup. We would like to study for which rank col-
lections r this dimension estimate is an equality, and in case the equality holds, how many
irreducible components the corresponding r-degenerate partial flag varieties have. It turns
out that this can be done by a straightforward modification of the proof of [15, Theorem 1,
Proposition 1]. We get the following complete answer.

To state the result we need to recall the stratification ofGre(M) introduced in [13]. Namely,
for a representation K of dimension vector e, let S[K ] be the subset of Gre(M) consisting
of all sub-representations U ⊂ M which are isomorphic to K . Then S[K ] is known to be an
irreducible locally closed subset of Gre(M) of dimension dimHom(K , M) − dim End(K ).
Since this gives a stratification ofGre(M) into finitelymany irreducible locally closed subsets,
the irreducible components of Gre(M) are necessarily of the form S[K ] for certain K .
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Theorem 1 Let Q be the equi-oriented quiver of type An. Let d = (N , . . . , N ), e = (e1 <

· · · < en) and f = d − e be dimension vectors as above. Let M be a Q-representation of
dimension vector d, written as M = P ⊕ X, where P is projective.

(1) The quiver Grassmannian Gre(M) has dimension 〈e,d − e〉 if and only if, for all sub-
representations K of X such that e − dim K ≤ dim P, we have

dim End(K ) ≥ dimHom(K , X) − dimHom(K , I f ).

(2) In this case, the irreducible components of Gre(M) are of the form S[K ] for representa-
tions K = KP ⊕ K such that KP is projective, K has no projective direct summands
and in the previous inequality for K , equality holds.

Proof This is a straightforward modification of the proof of [15, Theorem 1]. ��

3 Flat and flat-irreducible locus

In this section we prove TheoremA of the introduction. At the end of the section, we illustrate
all the combinatorial concepts with an example.

3.1 Complements of certain open loci in Rd

We retain the notation of the previous section. Thus, Q is the equi-oriented quiver of type
An , N ≥ n + 1, d = (N , . . . , N ) ∈ N

n , e = (e1 < · · · < en) ≤ d and f = d − e. We
are going to show the technical key result to prove Theorem A. We introduce some special
representations in Rd: for a tuple a = (a1, . . . , an−1) of non-negative integers ai such that∑

i<n ai ≤ N , we define M(a) by the multiplicities:

m1,n = N −
∑

i

ai , m1,i = ai for i < n, mi,n = ai−1 for i > 1,

and m j,k = 0 for all other j < k. In particular, we define

M0 = M(0, . . . , 0), M1 = M(e2 − e1, . . . , en − en−1).

It is easily verified that

ri j (M(a)) = N −
∑

i≤k< j

ak .

We also define M2 by the multiplicities

m1,1 = e2 − e1 + 1, mn,n = en − en−1 + 1, m1,i = ei+1 − ei for all i > 1,

mi,n = ei − ei−1 for all i < n, mi,i = 1 for all 1 < i < n, m1,n = N + e1 − en + 1

and m j,k = 0 for all other j < k.
A direct calculation then shows that

r(M0) = r0, r(M1) = r1, r(M2) = r2

as defined in (1.1) and (1.2), respectively. Inmore invariant terms,we canwriteM1 = Pe⊕I f .
There exists a short exact sequence

0 → Pe → M0 → I f → 0.
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We have canonical maps

Pe → S =
n⊕

i=1

Si → I f ,

and M2 can be written as
M2 � Pe ⊕ S ⊕ (I f/S). (3.1)

Nowwe turn to degenerations of representations. Again we write M ≤deg K if the closure
of the Gd-orbit of M contains K ; the numerical characterization (2.3) of degenerations
mentioned above then reads

M ≤deg K if and only if ri, j (M) ≥ ri, j (K ) for all i < j .

The representation M0 = UN
1,n is generic in the sense that M0 ≤ M for all M in Rd. The

following result characterizes representations M ∈ Rd that degenerate to M1.

Proposition 1 Given M ∈ Rd we have: M ≤deg M1 if and only if there exists a short exact
sequence 0 → Pe → M → I f → 0.

Proof IfM fits into the stated exact sequence thenM degenerates to Pe⊕ I f ([4, Lemma1.1]).
On the other hand, suppose that M ≤deg M1 = Pe ⊕ I f . Since dimHom(Pe, M) =
dimHom(Pe, M1) we can conclude that Pe embeds into M by [4, Theorem 2.4] and the
generic quotient of M by Pe is I f . ��

We are now interested in the complement of the locus of representations degenerating into
M1 resp. M2. For this, we introduce the following tuples:

• for 1 ≤ i < n, define

ai = (0, . . . , 0, ei+1 − ei + 1, 0, . . . , 0),

with the i-th entry being non-zero;
• for 1 ≤ i < j ≤ n, define

ai, j=(0, . . . , 0, ei+1−ei + 1, ei+2−ei+1, . . . , e j−1 − e j−2, e j − e j−1 + 1, 0, . . . , 0),

with the non-zero entries placed between the i-th and the ( j − 1)-st entry, except in the
case j = i + 1, where we define

ai,i+1 = (0, . . . , 0, ei+1 − ei + 2, 0, . . . , 0),

with the i-th entry being non-zero.

Now we can formulate:

Theorem 2 Let M be a representation in Rd.

(1) If M degenerates to M2 but not to M1, then M is a degeneration of M(ai ) for some i.
(2) If M does not degenerate to M2, then M is a degeneration of M(ai, j ) for some i < j .

Proof To prove the first part, let M degenerate to M2 but not to M1 and consider the cor-
responding rank collection r = r(M). Degeneration of M to M2 is equivalent to r ≥ r2

componentwise, thus ri, j ≥ N − 1 − e j + ei for all i < j . Non-degeneration of M to M1

is equivalent to r � r1, thus there exists a pair i < j such that ri, j < N − e j + ei , which
implies ri, j = N − 1 − e j + ei . We claim that this equality already holds for a pair i < j
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such that j = i +1. Suppose, to the contrary, that ri, j = N −1− e j + ei for some pair i < j
such that j − i ≥ 2, and that rk,l ≥ N − el + ek for all k < l such that l − k < j − i . In
particular, we can choose an index k such that i < k < j , and the previous estimate holds for
ri,k and rk, j . But then, the inequality (2.2), applied to the quadruple i < k = k < j yields

2N − 1 − e j + ei = ri, j + rk,k ≥ ri,k + rk, j = 2N − e j + ei ,

a contradiction. We thus find an index i < n such that ri,i+1 = N − 1− ei+1 + ei , and thus
rk,l ≤ N − 1 − ei+1 + ei for all k ≤ i < i + 1 ≤ l trivially. On the other hand, it is easy to
compute the rank collection of M(ai ) as

r j,k(M(ai )) = N − 1 − ei+1 + ei for j ≤ i < k,

and r j,k(M(ai )) = N otherwise. This proves that r ≤ r(M(ai )) as claimed.
Now suppose that M does not degenerate to M2, and again consider the rank collection

r = r(M) � r2. We thus find a pair i < j ≤ n such that

ri, j ≤ N − 2 − e j + ei .

We assume this pair to be chosen such that j − i is minimal with this property; thus

rk,l ≥ N − 1 − el + ek for all k < l such that l − k < j − i .

For every i < k < j , application of the inequality (2.2) to the quadruple i < k = k < j
yields

2N − 2 − e j + ei = N − 2 − e j + ei + N ≥ ri, j + rk,k

≥ ri,k + rk, j ≥ N − 1 − ek + ei + N − 1 − e j + e j = 2N − 2 − e j + ei ,

from which we conclude

ri,k = N − 1 − ek + ei , rk, j = N − 1 − e j + ek for all i < k < j

and

ri, j = N − 2 − e j + ei .

Now we claim that

rk,l = N − el + ek for all i < k < l < j .

This condition is empty if j − i = 1, thus we can assume j − i ≥ 2. We prove this by
induction over k, starting with k = i + 1. For every i + 1 < l < j , application of (2.2) to
i < l − 1 < l < l yields

ri+1,l−1 = ri+1,l−1 + ri,l − ri,l−1 + el − el−1 ≥ ri+1,l + el − el−1.

This, together with (2.2) for i < i + 1 ≤ j − 1 < j , yields the estimate

N = ri+1,i+1 ≥ ri+1,i+2 + ei+2 − ei+1 ≥ ri+1,i+3 + ei+3 − ei+1 ≥
· · · ≥ ri+1, j−1 + e j−1 − ei+1 ≥ ri+1, j + ri, j−1 − ri, j + e j−1 − ei+1 = N ,

thus equality everywhere. Now assume that k > i+1, and that the claim holds for all relevant
rk−1,l . Similarly to the previous argument, we arrive at an estimate

N = rk,k ≥ rk,k+1 + ek+1 − ek ≥ rk,k+2 + ek+2 − ek ≥
· · · ≥ rk, j−1 + e j−1 − ek ≥ rk, j + rk−1, j−1 − rk−1, j + e j−1 − ek = N ,
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and this again yields equality everywhere. This proves the claim.
Finally, we have the trivial estimates

• rk,l ≤ ri, j = N − 2 − e j + ei if k ≤ i ≤ j ≤ l,
• rk,l ≤ ri,l = N − 1 − el + ei if k < i < l < j ,
• rk,l ≤ rk, j = N − 1 − e j + ek if i < k < j < l, and trivially
• rk,l ≤ N otherwise, that is, if k < l ≤ i < j or i < j ≤ k < l.

An elementary calculation of r(M(ai, j )) shows that all these estimates together prove that

r ≤ r(M(ai, j )).

The theorem is proved. ��

3.2 Proof of Theorem A

We can now combine Theorem 1 and Theorem 2 to prove Theorem A stated in the introduc-
tion. For the reader’s convenience we restate it here. Let Q be the equi-oriented quiver of
type An . Let d = (N , . . . , N ), e = (e1 < · · · < en) and f = d − e be dimension vectors
as above. Let π : Ye → Rd be the universal quiver Grassmannian, whose generic fiber is
a partial flag variety of dimension 〈e,d − e〉. Consider the rank collections r0, r1 and r2

defined by

r0i, j = N , 1 ≤ i < j ≤ n;
r1i, j = N − e j + ei , 1 ≤ i < j ≤ n;
r2i, j = N − 1 − e j + ei , 1 ≤ i < j ≤ n.

Theorem 3 The following holds:

(a) The flat locusU f lat ⊂ Rd is the union of all orbitsOr degenerating toOr2 , i.e. ri, j ≥ r2i, j
for all pairs i, j .

(b) The flat irreducible locus U f lat,irr ⊂ Rd is the union of all orbits Or degenerating to
Or1 , i.e. ri, j ≥ r1i, j for all pairs i, j .

Proof The flat locus U f lat ⊂ Rd consists of those M ∈ Rd such that the fiber π−1(M)

has minimal dimension given by dimGre(M) = 〈e,d − e〉 (see e.g. [15, Theorem 2 (1)]).
Let us prove that dimGre(M2) = 〈e,d − e〉. We have M2 = P ⊕ X with P = Pe and
X = S ⊕ I f/S and we can apply the criterion of Theorem 1. Using the exact sequence

0 → S → I f → I f/S → 0,

and injectivity of I f , we can rewrite

dim Hom(K , S ⊕ I f/S) − dimHom(K , I f ) = dim Ext1(K , S).

We thus have to check the inequality

dim End(K ) ≥ dim Ext1(K , S).

Writing

K =
⊕

1≤i≤ j<n

U
ki, j
i, j ,
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we have

dim Ext1(K , S) =
∑

1≤i≤ j<n

ki, j ,

and certainly

dim End(K ) ≥
∑

1≤i≤ j<n

k2i, j .

This proves the claim about the dimension of Gre(M2). Next, suppose that M does not
degenerate to M2. By Theorem 2, M is a degeneration of some M(ai, j ) for i < j . We
claim that Gre(M(ai, j )) has dimension strictly bigger than 〈e,d − e〉, for which we make
use of Theorem 1. We decompose M(ai, j ) into its projective part P and its part without
projective direct summands X . We consider the representation K = Ui, j−1 and verify, using
the definition ofM(ai, j ), that K embeds into X and fulfills e−dimK ≤ dimP . The inequality
of Theorem 1 is easily seen to be violated. By upper semi-continuity of fiber dimensions,
dim Gre(M) is also strictly bigger than 〈e,d − e〉.

Since r1i, j ≥ r2i, j for every i, j , it follows that M1 ≤deg M2 and hence M1 ∈ U f lat . Let

us prove that Gre(M1) is irreducibile. This follows from Theorem 1: Indeed, M1 = P ⊕ X
for P = Pe and X = I f . The criterion of Theorem 1 then reads dim End(K ) ≥ 0 which is
trivially fulfilled, and irreducibility follows since K = 0 is the only representations for which
equality holds. On the other hand, since Gre(M1) is irreducible, then Gre(M ′) is irreducible
for every representation degenerating to M1 (see e.g. [15, Theorem 2 (2)]). Suppose that
M does not degenerate to M1. By Theorem 2, M is a degeneration of some M(ai ). We
claim that Gre(M(ai )) is reducible. Namely, we consider the two subrepresentations K1

and K2 determined by K1 = 0 and K2 = Si (notation as in Theorem 1). Both K1 and K2

fulfill equality in the estimate of Theorem 1, thus Gre(M(ai )) has at least two irreducible
components. It hence follows that Gre(M) is reducible (see e.g. [15, Theorem 2 (2)]). ��

Since the orbitOr2 isminimal in the flat locusUflat, the linear degenerate partial flag variety

Flr
2
(V ) is maximally degenerated, thus we call it the maximally flat (mf)-linear degeneration

of the partial flag variety. That this variety is rather natural, although being highly reducible
and singular, is suggested by the next result (see also [19,20]):

Theorem 4 The variety Flr
2
(V ) is equi-dimensional, its number of irreducible components

being the n-th Catalan number.

An arc diagram on n points is a subset A of {(i, j), 1 ≤ i < j ≤ n} (draw an arc from
i to j for every element (i, j) of A). An arc diagram A is called non-crossing if there is no
pair of different elements (i, j), (k, l) in A such that i ≤ k < j ≤ l (that is, two arcs are not
allowed to properly cross, or to have the same left or right point. But immediate succession
of arcs, like for example {(1, 2), (2, 3)}, is allowed).

To a non-crossing arc diagram we associate a rank collection r(A) by

r(A)i, j = ei − #{arcs in A starting in [1, i] and ending in [i + 1, j]}.
Define SA ⊂ Flr

2
(V ) as the set of all tuples (U1, . . . ,Un) such that

rank(( f j−1 ◦ · · · ◦ fi )|Ui : Ui → Uj ) = r(A)i, j

for all i < j .
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Moreover, define representations N A and NA of Q by

N A =
⊕

(i, j)∈A

Ui, j−1, NA =
⊕

i

Pci
i ⊕ N A,

where

ci = ei − ei−1 + #{arcs ending in i} − #{arcs starting in i}.
It is immediately verified that r(A) is precisely the rank collection of NA.

We have the following more precise version of the previous theorem:

Theorem 5 The irreducible components of Flr
2
(V ) are the closures of the SA, for A a non-

crossing arc diagram.

Proof Working again in the setup and the notation of the proof of Theorem 3, the irreducible
components are parametrized by the representations K as above forwhich the direct summand
K satisfies

dim End(K ) = dim Ext1(K , S).

To satisfy this equality, it is thus necessary and sufficient for K to have all multiplicities ki, j
of indecomposables equal to either 0 or 1, and there should be no non-zero maps between
those Ui, j for which ki, j = 1. But this can be made explicit since

dimHom(Ui, j ,Um,l) = 1 if m ≤ i ≤ l ≤ j,

and zero otherwise. Thus K has to be of the form

K =
⊕

(i, j)∈I
Ui, j−1

for a set I of pairs (i, j) with i ≤ j , such that there is no pair of different elements
(i, j), (m, l) ∈ I fulfilling i ≤ m < j ≤ l. These are precisely the representations K A

associated to non-crossing arc diagrams introduced above. It suffices to check that these K
fulfill the additional assumptions, that is, that they embed into S ⊕ I f/S and the condition
on dimension vectors. But this is easily verified. ��
Example 1 We consider the case (e1, e2, e3) = (1, 3, 5) and N = 6. The classical partial flag
variety for this case is thus the 13-dimensional variety of flags U1 ⊂ U2 ⊂ U3 of subspaces
of dimensions one, three and five, respectively, in a six-dimensional space V . We choose a
basis b1, . . . , b6 for V . In defining representations of the quiver

1 −→ 2 −→ 3,

we denote by pr I , for a subset I ⊂ {1, . . . , 6}, the projection along the bi for i ∈ I (that
is, pr I (bi ) = 0 for i ∈ I and pr I (bi ) = bi for i /∈ I ). We have the following three
representations:

M0 : V
id−→ V

id−→ V ,

M1 : V
pr1,2−→ V

pr3,4−→ V ,

M2 : V
pr1,2,3−→ V

pr3,4,5−→ V .
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Thus U f lat,irr consists of all representations

V
f−→ V

g−→ V

such that rank( f ), rank(g) ≥ 4 and rank(g ◦ f ) ≥ 2 (there are in fact 14 such orbits with
respect to the base change action of GL(V )3). This means that, in this case, the degenerate
flag variety, that is, the variety of triples

(U1,U2,U3) ∈ Gr1(V ) × Gr3(V ) × Gr5(V )

such that f (U1) ⊂ U2 and g(U2) ⊂ U3, is irreducible and 13-dimensional. Similarly, U f lat

consists of all such representations such that rank( f ), rank(g) ≥ 3 and rank(g ◦ f ) ≥ 1
(there are in fact 29 such orbits); in this case, the corresponding degenerate flag variety is
still 13-dimensional.

In contrast, consider the representation

M(a1,2) : V
pr1,2,3,4−→ V

pr3,4−→ V :
the corresponding degenerate flag variety admits a 14-dimensional irreducible component
consisting of triples (U1,U2,U3) such that U1 ⊂ 〈b1, b2, b3, b4〉 and U2 ⊂ U3.

Similarly, the degenerate flag variety for the representation

M(a1) : V
pr1,2,3−→ V

id−→ V

admits two 13-dimensional irreducible components, namely the subset of triples (U1 ⊂ U2 ⊂
U3) and the subset of triples (U1 ⊂ 〈b1, b2, b3〉,U2 ⊂ U3), respectively.

Themaximally flat degenerate flag variety, associated to the representationM2, admits five
irreducible components. They can be described as the subsets Sa,b,c of triples (U1,U2,U3)

such that rank(pr1,2,3 : U1 → U2) ≤ a, rank(pr3,4,5 : U2 → U3) ≤ b and rank(pr1,2,3,4,5 :
U1 → U3) ≤ c, where (a, b, c) is one of the following tuples:

(1, 3, 1), (0, 3, 0), (1, 2, 0), (1, 2, 1), (0, 2, 0).

4 Counting orbits in the flat irreducible locus: proof of Theorem B

We retain notation as in the previous sections. Thus, Q is the equi-oriented quiver of type
An , N ≥ n + 1, d = (N , . . . , N ) ∈ N

n , e = (e1 < · · · < en) ∈ N
n , e0 = 0, en < N and

ei+1 = ei+1 − ei . Let Be be the number of orbits in the flat irreducible locus in Rd (relative
to the universal quiver Grassmannian π : Ye → Rd).

Lemma 1 Be does not depend on N, provided N > en.

Proof An orbit Or sits in the flat irreducible locus if and only if ri, j ≥ r1i, j for all pairs i, j

where r1i, j = N − e j + ei . Since r1i, j can not exceed N , the number of orbits depends on e,
but not on N . ��

We consider the generating series

Bn(x1, . . . , xn) :=
∑

e=(e1<···<en)

Be x
e1
1 xe22 xe33 · · · xenn .
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Theorem 6 We have

Bn(x1, . . . , xn) =
n∏

i=1

(1 − xi )
−1

∏

∅	=I⊆{2,...,n}
(1 − xI )

−1,

where for I = {i1, . . . , ik}, xI := xi1 · · · xik .
Proof The proof is executed by induction on n. The case n = 1 is trivial. For n = 2 one has
Be = e2 − e1 + 1 and

Bn(x1, x2) =
∑

0≤e1≤e2

(e2 − e1 + 1)xe11 xe2−e1
2 = (1 − x1)

−1(1 − x2)
−2.

By induction, it suffices to show that

Bn(x1, . . . , xn) = Bn−1(x1, . . . , xn−1) × (1 − xn)
−1

∏

I⊆{2,...,n−1}
(1 − xI xn)

−1,

where x∅ := 1.
We fix the following notation:

• R is the set of rank collections r satisfying r0 ≥ r ≥ r1;
• Pn−1 is the power set on {1, 2, . . . , n − 1}, P∗

n−1 := Pn−1\{∅} and for 1 ≤ i ≤ n − 1,
P i
n−1 := {I ∈ Pn−1 | i ∈ I };

• Qe is the polytope

Qe :=

⎧
⎪⎨

⎪⎩
( f I ) ∈ R

P∗
n−1

≥0 |
∑

I∈P i
n−1

f I ≤ ei+1 − ei , i = 1, . . . , n − 1

⎫
⎪⎬

⎪⎭
;

• for a polytope P ⊆ R
k , we denote PZ := P ∩ Z

k ⊂ P the set of lattice points.

First notice that by Theorem 3, Be = #R. By definition, Qe depends only on the mutual
differences ei+1; we sometimes denote by e = (e1, e2, . . . , en) the dimension vector of
those differences. A rank collection r = (ri, j ) satisfies this condition if and only if for
i = 1, . . . , n − 1, ri,i+1 ≥ N − ei+1: the conditions posed on ri, j are implications of those
on ri,i+1.

We claim that there exists a bijection between R and QZ
e . To show this it suffices to

establish two mutually inverse maps.

• Given f := ( f I ) ∈ QZ
e , we define for 1 ≤ i < j ≤ n

ri, j (f) := N −
∑

I∈P∗
n−1, I∩[i, j]	=∅

f I .

The defining inequalities of f imply that for any i = 1, 2, . . . , n − 1 one has ri,i+1(f) ≥
N − ei+1. This gives a rank collection in R.

• Conversely, let r ∈ R be a rank collection. Let (pr J1 , . . . , pr Jn−1
) ∈ Rd be a projection

sequence having rank collection r. By assumption, Jk ⊂ {1, 2, . . . , N } and #Jk ≤ ek+1.
We associate to this projection sequence a point f = ( f I ) ∈ Qe in the following way:
for k = 1, . . . , N , we denote

Lk := {s | 1 ≤ s ≤ n − 1, k ∈ Js}
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and

f I := #{k | 1 ≤ k ≤ N , I = Lk}.
It is clear that f I does not depend on the choice of the projection sequence. To show
they give mutually inverse maps, it suffices to notice that for a projection sequence
(pr J1 , . . . , pr Jn−1

), the rank ri, j = N − #Ji ∪ · · · ∪ J j−1 and

#Ji ∪ · · · ∪ J j−1 = #
⋃

I∈P∗
n−1

I∩[i, j]	=∅

{k | 1 ≤ k ≤ N , I = Lk}.

For f ∈ Qe and 1 ≤ i 	= j ≤ n − 1, we denote

�i (f) :=
∑

I∈P i
n−1

f I , P i, j
n−1 = P i

n−1 ∩ P j
n−1, and �i, j (f) :=

∑

I∈P i, j
n−1

f I .

Then

Bn(x1, . . . , xn) =
∑

e=(e1<···<en)∈Nn

#QZ
e xe =

∑

�i (f)≤ei+1
i=1,...,n−1

xe.

We consider the projected and the fibre polytopes. Let π : R
P∗
n−1 → R

Pn−1
n−1 be the linear

projection induced by the inclusion Pn−1
n−1 ⊆ P∗

n−1. We denote Qe,n−1 := π(Qe), and for
g ∈ Qe,n−1, the fibre polytope is denoted by Qe(g) := π−1(g) ∩ Qe.

By rearranging the sum we have

∑

en≥0

∑

g∈Qe,n−1

⎛

⎝
∑

e1,...,en−1≥0

∑

h∈Qe(g)

xe11 x
e2−�1,n−1(g)
2 · · · xen−1−�n−2,n−1(g)

n−1

⎞

⎠

×x
�1,n−1(g)
2 · · · x�n−2,n−1(g)

n−1 xenn .

The bracket in the middle gives Bn−1(x1, . . . , xn−1). It suffices to evaluate the sum
∑

en≥0

∑

g∈Qe,n−1

x
�1,n−1(g)
2 · · · x�n−2,n−1(g)

n−1 xenn ,

which can be written into

∑

gI≥0
I={i1<···<ik }∈Pn−1

n−1

⎛

⎝
∑

en−�n−1(g)≥0

xen−�n−1(g)
n

⎞

⎠ (xi1+1 · · · xik+1)
gI .

Notice that in the first sum, ik = n − 1 hence the last variable xik+1 = xn . The sum in the
middle bracket gives (1 − xn)−1; for the remaining summation, it suffices to notice that the
variables gI are independent, hence we obtain

(1 − xn)
−1

∏

I⊆{2,...,n−1}
(1 − xI xn)

−1,

and the proof terminates. ��
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From [15, Section 4.2], the Bell numbers can be recovered as

∂n

∂x1 · · · ∂xn
∣
∣
∣
∣
x1=···=xn=0

Bn(x1, . . . , xn).

In fact, the coefficient in front of x1 · · · xn in Bn is equal to the number of orbits in the flat
irreducible locus corresponding to the case of complete flags (e1 = 1, . . . , en = n).

5 Homogeneous coordinate rings: flat locus

We start with linear degenerations of the complete flag variety. Thus, Q denotes the
equi-oriented quiver of type An , N = n + 1, d = (n + 1, n + 1, . . . , n + 1) ∈ N

n

and e = (1, 2, . . . , n). Moreover, π : Ye → Rd is the universal quiver Grassmannian
whose generic fiber is the complete flag variety of dimension n(n+1)

2 , and all other fibers
are quiver Grassmannians Gre(M) where M ∈ Rd. We consider the Plücker embedding
Gre(M) ⊂ ∏n

i=1 P(�i Mi ). Our goal is to describe the reduced scheme structure of the
embedded Grassmannian in the flat irreducible locus, i.e. to describe the ideal of multi-
homogeneous polynomials vanishing on the image ofGrassmannians in an orbit degenerating
toOr1 . The strategy is as follows: first, we give explicit set of Plücker-like quadratic relations.
Second, we show that for any orbit O degenerating to Or1 there exists a point M ∈ O such
that these relations are enough to express any monomial (in Plücker coordinates) from the
coordinate ring of Gre(M) in terms of PBW semi-standardmonomials. This would imply that
our quadratic relations indeed provide the reduced scheme structure. In fact, the number of
PBW semi-standard monomials of shape λ is equal to the dimension of the irreducible SLN

module of highest weight λ, which coincides with the dimension of the degree λ component
of the homogeneous coordinate ring of the classical flag variety. Since the degeneration over
Or1 (even over Or2 ) is flat, the quadratic relations we use do generate the genuine ideal of
relations for the homogeneous coordinate ring of Gre(M).

Remark 1 The results in the following two subsections hold for the whole flat locus. In
particular, the set-theoretic equality (Proposition 2) of the quiver Grassmannian and the
vanishing set of the Plücker-like quadratic relations are true for the whole flat locus. In Sect.
5.3, the crucial ingredient is the existence of a special point in every orbit (Lemma 2), which
can be shown to exist for orbits in the flat, irreducible locus and a few other orbits (see Remark
3). Nevertheless, we conjecture that Theorem 7 extend to the whole flat locus.

5.1 Degenerate Plücker relations for the complete flags

We first fix some notation:

(1) for n ∈ N>0, [n] = {1, 2, . . . , n};
(2) I (d, n) is the set of all d-element subsets of [n]; T (d, n) is the set of d-tuples ( j1, . . . , jd)

with 1 ≤ j1, . . . , jd ≤ n pairwise distinct.

We fix a basis {v1, v2, . . . , vn+1} to identify V with C
n+1. Let I1, . . . , In−1 be subsets of

[n + 1] and pr Ik : C
n+1 → C

n+1 be the projection along basis elements indexed by Ik . Let
M be the following representation of Q:

M : C
n+1

pr I1
C
n+1

pr I2 · · ·
pr In−1

C
n+1.
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Assume that I1, . . . , In−1 are chosen such that the dimension of the quiver Grassmannian
dimGre(M) = n(n+1)

2 is minimal (i.e. M ∈ U f lat ).
We fix the Plücker embedding of the quiver Grassmannian:

Gre(M) ↪→ Gr1(C
n+1) × Gr2(C

n+1) × · · · × Grn(C
n+1) ↪→

n∏

k=1

P(�k
C
n+1).

For I ∈ I (d, n + 1), let XI be the Plücker coordinate on Grd(Cn+1). Let A = C[XI | I ∈
I (d, n + 1) for some 1 ≤ d ≤ n] and At := A[t].

We first introduce the deformed Plücker relations with respect to a set ∅ 	= K ⊂ [n + 1].
For J ∈ I (r , n + 1), we define degK (X J ) := #(K ∩ J ).

For J = ( j1, j2, . . . , jr ) ∈ T (r , n + 1), L = (l1, l2, . . . , ls) ∈ T (s, n + 1) with 1 ≤ s <

r ≤ n and 1 ≤ k ≤ s, we denote

RK
J ,L;k(t) := t−m(J ,L,K )

⎛

⎝tdegK (XL )X J XL −
∑

1≤α1<···<αk≤r

tdegK (XLα )X Jα XLα

⎞

⎠ ∈ At ,

where for α = (α1, . . . , αk) with 1 ≤ α1 < · · · < αk ≤ r ,

Jα = ( j1, . . . , jα1−1, l1, jα1+1, . . . , jα2−1, l2, jα2+1, . . . , jr ),

Lα = ( jα1 , jα2 , . . . , jαk , lk+1, . . . , ls);
and

m(J , L, K ) = min{degK (XL), degK (XLα ) | 1 ≤ α1 < · · · < αk ≤ r}.
In particular, when the projection sequence I = (I1, I2, . . . , In−1) is given, we define for

1 ≤ s < r ≤ n a set K (s, r) ⊂ [n + 1] by:
K (s, r) := Is ∪ Is+1 ∪ · · · ∪ Ir−1.

Then prK (s,r) = pr Ir−1
◦ · · · ◦ pr Is : C

n+1 → C
n+1.

Definition 1 Let II be the ideal in A generated by the following relations:

(P1) Plücker relations in Grk(Cn+1) for 1 ≤ k ≤ n;
(P2) for any 1 ≤ s < r ≤ n, J ∈ T (r , n + 1), L ∈ T (s, n + 1) and 1 ≤ k ≤

max{1, #(L\K (s, r))}, the relation RK (s,r)
J ,L;k (0).

Let XI = V (II) denote the vanishing locus of II in
∏n

k=1 P(�k
C
n+1).

Remark 2 In the study of these relations, we can always assume that L is not contained in K
for K = K (s, r). Under the assumption dimGre(M) = n(n+1)

2 , we have #K ≤ r − s + 1. If
J ⊆ K , s must be 1 and hence J = K . In this case L ⊂ K will make the relation RK

J ,L;1(0)
to be empty.

Without loss of generality we can assume that j1 /∈ K . If L ⊆ K we denote J̃ :=
(l1, j2, . . . , jr ) and L̃ := ( j1, l2, . . . , ls), then L̃ is not contained in K and RK

J ,L;1(0) =
−RK

J̃ ,L̃;1(0).

Proposition 2 The set Gre(M) coincides with XI.
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Proof We first show that Gre(M) ⊂ XI. Let x = (V1, V2, . . . , Vn) ∈ Gre(M) and 1 ≤
s < r ≤ n. For J = ( j1, j2, . . . , jr ) ∈ T (r , n + 1), L = (l1, l2, . . . , ls) ∈ T (s, n + 1),
K = K (s, r) and 1 ≤ k ≤ #(L\K ), one needs to show that RK

J ,L;k(0) vanishes on x. Since
k ≤ #(L\K ), by arranging elements in L we can always assume that l1, . . . , lk /∈ K . With
this assumption, the proof of Theorem 3.13 in [7] (or Proposition 2.2 in [6]) can be applied.

To show the other inclusion, we take x = (V1, . . . , Vn) /∈ Gre(M) and construct a
relation RK

J ,L;k(0)(x) 	= 0. According to the assumption, there exist V1 ∈ Grs(Cn+1) and

V2 ∈ Grr (Cn+1) for 1 ≤ s < r ≤ n such that prK (V1) � V2.
We prove that x /∈ XI.
Assume that EK = span{vk | k ∈ K } and EKc = span{vl | l ∈ [n + 1]\K }. We choose

a basis {e1, e2, . . . , es} of V1 in the following way: et+1, . . . , es is a basis of V1 ∩ EK , then
extend it to a basis e1, . . . , es of V1. Up to base changes in EK and EKc we can assume that

e1 = vl1 + w1, . . . , et = vlt + wt , et+1 = vlt+1 , . . . , es = vls ,

where w1, . . . , wt ∈ V1 ∩ EK . As V1 � EK , we can assume that l1 /∈ K .
We denote L = (l1, . . . , ls), then XL(V1) 	= 0. There exists a tuple J = ( j1, . . . , jr ) such

that X J (V2) 	= 0.
We consider the relation tm(J ,L,K )RK

J ,L;1(t):

tm(J ,L,K )RK
J ,L(t) := t#(L∩K )X J XL −

∑

1≤α≤r

t#(Lα∩K )X Jα XLα ,

where Jα = ( j1, . . . , jα−1, l1, jα+1, . . . , jr ) and Lα = ( jα, l2, . . . , ls). Since l1 /∈ K , by
definition,

RK
J ,L;1(0) = X J XL −

∑

1≤α≤r , jα /∈K
X Jα XLα .

We claim that for any 1 ≤ α ≤ r with jα /∈ K ,

X jα,l2,...,ls (V1) = 0.

As V1 ⊂ span({vl1 , . . . , vls } ∩ {vk | k ∈ K }), it suffices to show that for jα ∈ {l1, . . . , lt } the
above equality holds. But in this case the corresponding Plücker relation is empty.

As a conclusion, RK
J ,L;1(0)(x) = X J XL(x) 	= 0. ��

Example 2 Consider M = C
4

pr1,2
C
4

pr2,3
C
4 : Gre(M) is the mf-linear degenerate

flag variety. The defining ideal is given by:

X12X3, X12X4, X13X4 − X14X3, X23X4 − X24X3,

X123X4, X123X14, X123X24 + X234X12, X123X34 + X234X13, X234X14,

X12X34 − X13X24 + X14X23.

5.2 Straightening law

We assume that I = (I1, . . . , In−1) with Ik ⊂ {k, k + 1}, then K (s, r) ⊂ {s, s + 1, . . . , r}.
Recall that

M = C
n+1

pr I1
C
n+1

pr I2 · · ·
pr In−1

C
n+1

and dimGre(M) = n(n+1)
2 .
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A PBW semi-standard Young tableau [7] of shape λ = ∑N−1
i=1 miωi is a filling Ti, j of

the Young tableau with mi -columns of length i (i = 1, . . . , N − 1) such that the following
conditions are satisfied (l j denotes the length of the j-th column):

• if Ti, j ≤ l j , then Ti, j = i ;
• if Ti1, j , Ti2, j > l j , then i1 < i2 implies Ti1, j > Ti2, j ;
• for any j > 1, i ≤ l j there exists i0 ≤ l j−1 such that Ti0, j−1 ≥ Ti, j .

We call a monomial in Plücker coordinates PBW semi-standard if it corresponds to a PBW
semi-standard Young tableau (recall that to a column I = (i1, . . . , is) of a Young tableau
we attach the Plücker variable XI ; a monomial attached to a Young tableau is equal to the
product of Plücker variables corresponding to its columns).

Proposition 3 The relations (P1) and (P2) are enough to express any monomial in Plücker
coordinates on Gre(M) as a linear combination of the PBW semi-standard monomials.

Proof We consider the following total ordering defined on the set of tableaux of a fixed shape:
for two tableaux T (1) and T (2): we say T (1) ≥ T (2), if there exists (i, j) such that for any
(k, �) where either � > j or � = j and k > i , T (1)

k,� = T (2)
k,� and T (1)

i, j > T (2)
i, j .

For a column A we denote by �(A) the length of A. Assume that we have a non-PBW
semi-standard Young tableau with two columns A and B representing the product of Plücker
coordinates XAXB where r = �(A) ≥ �(B) = s such that both A and B are PBW tableaux.

We assume that k0 is the smallest index such that for any k ≥ k0, Ak < Bk0 . First
notice that by the semi-standard property, Bk0 ≥ r + 1. Assume that A = ( j1, . . . , jr ) and
B = (l1, . . . , ls), then jk < lk0 . Since lk0 ≥ r + 1, l1, . . . , lk0−1 are either strictly less than s
or strictly larger than r + 1; this implies that

{l1, . . . , lk0} ∩ {s, s + 1, . . . , r} = ∅
and hence l1, . . . , lk0 /∈ K (s, r).

We consider the relation RK (s,r)
A,B;k0(0) from (P2) exchanging the first k0 indices in B with

an arbitrary k0 elements in A: the resulting tableaux are strictly smaller in the total order on
tableaux introduced above. Moreover, the monomial XAXB appears in the relation: assume
that XA′ XB′ is a monomial obtained from the exchange, then #(B ′ ∩ K ) ≥ #(B ∩ K ). As
there are only finitely number of tableaux of a fixed shape, this procedure will terminate after
having been repeated finitely many times. ��

5.3 Bases in the coordinate rings

Lemma 2 (a) Let N = n + 1 and ei = i , i = 1, . . . , n. Then for an orbit O degenerating
to Or1 there exists a point M ∈ O such that the defining maps f = ( f1, . . . , fn−1),
fi : Mi → Mi+1 satisfy the following properties:

• ( fi )a,b = 1 if a = b < i or a = b > i + 1,
• ( fi )a,b = 0 if a, b < i , a 	= b;
• ( fi )a,b = 0 if a, b > i + 1, a 	= b;
• ( fi )a,b = 0 if a > b.

(b) For a partial flag variety case (arbitrary N, e1, . . . , en) any orbit has a canonical form,
which is a projection of the canonical form for the complete flags (with the same N)
forgetting all the components but the ones numbered by e1, . . . , en.
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Proof This follows immediately from the definition of a transversal slice to the flat irreducible
locus given in [15, Section 4.3, Definition 5, Proposition 3]. ��
Theorem 7 For any orbit O degenerating to Or1 there exists a point M ∈ O such that the
semi-standard PBW tableaux provide a basis in the homogeneous coordinate ring ofGre(M).

Proof We consider a representation M = (M1, . . . , Mn) satisfying conditions of Lemma 2.
Let f p,q : Mp → Mq be corresponding linear map. Let {v1, . . . , vN } be the standard basis of
Mp and Mq (the conditions from Lemma 2 are written for matrix elements of the maps fi in
the basis {va}). Since the orbit of M degenerates toOr1 , the corank of f p,q is at most q − p.
Let us choose a basis {v′

b} of Mp and {v′′
b } of Mq such that the matrix of f in these bases is

pr I for some I with |I | ≤ q − p. Since the matrix f p,q in the basis {va} is upper-triangular,
we may assume that the matrices expressing {v′

b} and {v′′
b } in terms of the initial basis {va}

are both upper-triangular.
Now assume we are given a non PBW semi-standard monomial XAXB , |A| = p, |B| =

q written in the coordinates corresponding to the basis {va}. Let YA′ , YB′ be the Plücker
coordinates in the bases {v′

b} and {v′′
b }. Then XAXB−YAYB is equal to the linear combination

of monomials (in X -coordinates or in Y -coordinates) such that the sum of all indices of these
monomials is strictly smaller than that of XAXB . Since Proposition 3 tells us that a non
PBW semi-standard YAYB can be rewritten in terms of the PBW semi-standard quadratic
monomials, the same is true for XAXB .

Recall (see [7]) that the PBW semi-standard monomials form a basis in the homogeneous
coordinate ring of the PBW degenerate flag variety, which is isomorphic to Gre(K ) for
K ∈ Or1 . Since the degeneration over the flat locus is flat, the dimension of the homogeneous
components of the coordinate rings does not change in the family. We conclude that PBW
semi-standard monomials form a basis in the homogeneous coordinate ring of our quiver
Grassmannian Gre(M) and the relations from Definition 1 (after the base change as above)
provide the reduced scheme structure. ��
Remark 3 Theorem 7 holds for all partial flag varieties. The proof given above generalizes
in a straightforward way by forgetting the corresponding components. Moreover, the proof
generalizes also to all orbits in the flat locus, that contain a point satisfying conditions in
Lemma 2. For example, in the r2-orbit, there is a point such that the semi-standard PBW
tableaux provide a basis in the homogeneous coordinate ring.

6 Flat irreducible locus: group action and line bundles

6.1 Lie algebras and representations

Let T ⊂ R be the transversal slice through the flat irreducible locus from [15], consisting of
all tuples of linear maps ( f1, . . . , fn−1) such that the matrix entry of fi in the standard basis
{v1, v2, . . . , vn+1} is given by:

( fi )p,q =
⎧
⎨

⎩

1, p = q 	= i + 1,
λp,q , 2 ≤ p ≤ i + 1 ≤ q ≤ n,

0, otherwise

for certain (λi, j )2≤i≤ j≤n . Let Mt = ((Mt )1, . . . , (Mt )n) be the representation of Q corre-
sponding to t ∈ T and let Ft denote the composition fn−1 ◦ fn−2 ◦ · · · ◦ f1. Then the matrix
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coefficient (Ft )a,b equals to (b − a + 1)λa,b if 2 ≤ a ≤ b ≤ n and vanishes otherwise with
the exception (Ft )1,1 = (Ft )n+1,n+1 = 1.

Let gt be the Lie algebra of all (n + 1) × (n + 1) matrices with the bracket defined by the
formula [x, y]t = x Ft y − yFt x .

Remark 4 The subspace of upper triangular matrices b+ is closed with respect to the bracket
[·, ·]t . However, this is not true for the subspace of strictly lower triangular matrices n−.

The deformed brackets naturally arise via endomorphism algebras of Mt . Namely, let us
define the family of maps �t : gt → End(Mt ) by the formula

(�t (x))i = fi−1 ◦ · · · ◦ f1 ◦ x ◦ fn−1 ◦ fn−2 ◦ · · · ◦ fi .

Remark 5 The condition that the�t (x) indeed defines an endomorphismof the representation
is easily verified, since this amounts to the conditions fi ◦ (�t (x))i = (�t (x))i+1 ◦ fi for
i < n, which are immediate from the definition of the �t .

Then we have the following lemma.

Lemma 3 The map �t is a homomorphism of Lie algebras with respect to the bracket [·, ·]t
on gt and the usual composition on End(Mt ).

Thanks to the lemma above, the image of �t is a Lie subalgebra in End(Mt ). We denote
this Lie subalgebra by at .

Lemma 4 The map �t has no kernel on n−.

Proof The lower left (n− i)× i-submatrix of�t (x)i coincides with the lower left (n− i)× i-
submatrix of x , which means that we can recover x completely from �t (x). ��

Remark 6 The dimension of �t (b+) does depend on t . For example, if λi, j = δi, j , then
dim�t (b+) = dim(b+) = (n + 1)(n + 2)/2. If all λi, j = 0, then dim�t (b+) = 2n + 1.

Let us construct a family of representations Vt (μ) of at labeled by dominant integral
weights μ = m1ω1 + · · · + mnωn with mi ∈ Z≥0. We start with the fundamental represen-
tations.

Definition 2 For k = 1, . . . , n we define V (ωk) ⊂ �k(Mt )k as the U(at )-span of the vector
vωk = v1 ∧ · · · ∧ vk .

Lemma 5 V (ωk) = �k(Mt )k .

Proof This is implied by the argument from the proof of Lemma 4. ��

Definition 3 For a dominant integral weight μ = ∑n
k=1 mkωk we define the at -module

Vt (μ) ⊂ ⊗
Vt (ωk)

⊗mk as the U(at )-span of the vector vμ = ⊗
v

⊗mk
ωk .

Remark 7 Each space Vt (μ) is generated from the cyclic vector vμ by the action of
the (associative) algebra of operators generated by �t (n−). In fact, one easily sees that
�t (b+)vμ ⊂ Cvμ.
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In order to compute the dimension and to construct bases of the spaces Vt (μ) we define
the following total order on the standard basis Ea,b, a > b of the algebra n− of strictly
lower triangular matrices: Ea,b < Ec,d if a − b > c − d or (a − b = c − d and a <

c). We extend this order to the homogeneous lexicographic order on the set of ordered
monomials Ea1,b1 · · · EaL ,bL , Ea1,b1 > · · · > EaL ,bL . Namely, for two ordered monomials
Ea1,b1 · · · EaL ,bL < Ea′

1,b
′
1
· · · Ea′

M ,b′
M
if L < M or (L = M and there exists j such that

Ea j ,b j < Ea′
j ,b

′
j
and Eai ,bi = Ea′

i ,b
′
i
for i > j). Given such an ordering we define monomial

bases of Vt (μ) (see Remark 7) as follows. We say that a vector
∏L

i=1 Eai ,bi vμ ∈ Vt (μ) is
essential if

L∏

i=1

Eai ,bi vμ /∈ span

{
M∏

i=1

Eci ,di vμ

∣
∣
∣
∣
∣

M∏

i=1

Eci ,di <

L∏

i=1

Eai ,bi

}

.

Clearly, the set of essential vectors form a basis of Vt (μ).
For an element s = (si, j )1≤ j<i≤n+1, si, j ∈ Z≥0 we denote by Es the ordered product

∏
E
si, j
i, j . Let St (μ) be the set of essential exponents, i.e. the set of all s such that Esvμ is an

essential vector.

Remark 8 For t = 0 (i.e. all λi, j = 0) the set of essential vectors is described via the
combinatorics of Dyck paths (see [9]). In particular, the number of essential vectors is equal
to the dimension of the irreducible sln+1-module V (μ) (which corresponds to t with all
λi, j 	= 0).

Our goal is to show that the set of essential monomials does not depend on t . In particular,
we will show that dim Vt (μ) is independent of t .

Lemma 6 For any k = 1, . . . , n and t ∈ T the set of essential monomials in Vt (ωk) is of the
form

Ea1,b1 · · · EaL ,bL , 1 ≤ b1 < · · · < bL ≤ k < aL < aL−1 < · · · < a1.

Proof Direct computation. ��
For a dominant integral μ let S(μ) be the Minkowski sum m1St (ω1) + · · · + mnSt (ωn).

Corollary 1 Letμ = ∑n
k=1 mkωk . Then the vectorsEsvμ, s ∈ St (μ) are linearly independent

in Vt (μ).

Proof We prove this by induction on m1 + · · · +mn . If the sum is equal to one, then we are
done. Now by definition Vt (μ + ωk) = Vt (μ) � Vt (ωk), where for two cyclic at -modulesU
and W with cyclic vectors u ∈ U and w ∈ W the module U � W ⊂ U ⊗ W is the Cartan
component U(at )(u ⊗ w). Now one shows that the products of essential monomials for U
and W are linearly independent in U � W . ��
Corollary 2 dim Vt (μ) ≥ dim V (μ).

6.2 Lie groups and quiver Grassmannians

Let Gre(Mt ) be the quiver Grassmannian corresponding to the representationMt . To simplify
the notation, we assume below that e = (1, 2, . . . , n). However, all the results of this section
hold in full generality.
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Let O j be the following line bundles on Gr j (V ) generating the Picard group: O j =
ı∗O(1), where ı : Gr j (V ) �→ P(� j V ) is the Plücker embedding. Then for each μ =
m1ω1 + · · · + mnωn we obtain the line bundle

O(μ) =
n⊗

j=1

O⊗m j
j .

In a similar way we obtain the line bundleOt (μ) on each quiver Grassmannian Gre(Mt ).
More precisely, for each t the quiver Grassmannian Gre(Mt ) sits inside

∏n
j=1 Gr j (V ). Hence

the line bundles O j , 1 ≤ j ≤ n as well as Ot (μ) make perfect sense.

Proposition 4 For any t ∈ T we have

dimHk(Gre(Mt ),Ot (μ)) = δk,0 dim V (μ).

Proof This follows from the semicontinuity of the dimensions of the cohomology groups in
a flat family and the known result for t = 0 in [8] (the PBW-degenerate flag varieties). ��

For convenience, we extend the parameters λi, j , 2 ≤ i ≤ j ≤ n to λi, j with arbitrary
i, j ∈ {1, . . . , n + 1} by λ1,1 = λn+1,n+1 = 1 and λi, j = 0 for other (not yet covered) pairs
i, j .

Lemma 7 If λb,a = 0, then the endomorphisms Id + x�t (Ea,b), x ∈ C form a group Ga,b

isomorphic to the additive group Ga = C+. If λb,a 	= 0, then the operators Id+ x�t (Ea,b),
x ∈ C\{(a−b−1)λ−1

b,a} form a group Ga,b isomorphic to the multiplicative groupGm = C
∗.

Proof We note that

(Id + x�t (Ea,b))(Id + y�t (Ea,b)) = Id + (x + y + xy(b − a + 1)λb,a)�t (Ea,b).

This implies the lemma. ��
We denote by Gt the group generated by all Ga,b and by G−

t the subgroup generated by
Ga,b with a > b.

Remark 9 The Lie algebra of Gt is isomorphic to at .

Lemma 8 The group Gt acts on the quiver Grassmannian Gre(Mt ) with an open dense
G−

t -orbit through the point (span(v1, . . . , vk))k=1,...,n.

Proof One sees that the G−
t -orbit above has dimension n(n + 1)/2. Since the quiver Grass-

mannian Grd(Mt ) is irreducible, our lemma holds. ��
Proposition 5 For a regular μ (i.e. mk > 0 for all k) there exists a natural projective
embedding ıμ : Gre(Mt ) ⊂ P(Vt (μ)). We have ı∗μO(1) � Ot (μ).

Proof We have the embedding Gre(Mt ) ⊂ ∏n
k=1 Grk((Mt )k), where the left hand side is

the closure of the G−
t orbit through the point

∏n
k=1 span(v1, . . . , vk). We also have natural

Gt -equivariant embeddings Grk((Mt )k) ⊂ P(Vt (ωk)). Since Vμ(t) is the Cartan component
inside the tensor product of fundamental representations, we obtain the embedding ıμ :
Gre(Mt ) ⊂ P(Vt (μ)). ��
Lemma 9 There exists an embedding Vt (μ)∗ ↪→ H0(Gre(Mt ),Ot (μ)).
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Proof Recall the isomorphism Vμ(t)∗ = H0(P(Vμ(t)),O(1)). Using the embedding ıμ we
consider the restriction map

Vt (μ)∗ = H0(P(Vt (μ)),O(1)) → H0(Gre(Mt ), ı
∗
μO(1)) = H0(Gre(Mt ),Ot (μ)).

Weclaim that thismap has no kernel. Indeed, if a section s fromH0(P(Vt (μ)),O(1)) vanishes
on the quiver Grassmannian, in particular it vanishes on the open orbit of the group G−

t .
However, the linear span of the vectors from this orbit coincides with the whole Vt (μ).
Hence, s ∈ Vt (μ)∗ vanishes on Vt (μ). ��
Theorem 8 H0(Gre(Mt ),Ot (μ))∗ � Vt (μ) as at -modules.

Proof Lemma 9 gives the surjection from the left hand side to the right hand side. Now
Proposition 4 and Corollary 2 imply the Theorem. ��
Corollary 3 dim Vt (μ) is equal to the dimension of the irreducible sln+1-module of highest
weight μ.

Acknowledgements The work of the authors is supported by the DFG-RSF project “Geometry and represen-
tation theory at the interface between Lie algebras and quivers”. E.F. was partially supported by the Russian
Academic Excellence Project ’5-100’.

References

1. Abeasis, S., Del Fra, A.: Degenerations for the representations of an equi-oriented quiver of type Am .
Analisi Funzionale e Applicazioni. Suppl. B.U.M.I-Vol. 2 (1980)

2. Assem, I., Simson, D., Skowronski, A.: Elements of the representation theory of associative algebras.
Vol. 1. Techniques of representation theory. London Mathematical Society Student Texts, 65. Cambridge
University Press, Cambridge (2006)

3. Bongartz, K.: Minimal singularities for representations of Dynkin quivers. Comment. Math. Helv. 69(4),
575–611 (1994)

4. Bongartz, K.: On degenerations and extensions of finite dimensional modules. Adv. Math. 121, 245–287
(1996)

5. Fang, X., Feigin, E., Fourier, G., Makhlin, I.: Weighted PBW degenerations and tropical flag varieties.
Commun. Contemp. Math. 21(01), 1850016 (2019)

6. Feigin, E.:Degenerate flag varieties and themedianGenocchi numbers.Math. Res. Lett. 18(6), 1163–1178
(2011)

7. Feigin, E.: G
M
a degeneration of flag varieties. Selecta Math. (N.S.) 18(3), 513–537 (2012)

8. Feigin, E., Finkelberg, M.: Degenerate flag varieties of type A: Forbenius splitting and BW theorem.
Math. Z. 275(1–2), 55–77 (2013)

9. Feigin, E., Fourier, G., Littelmann, P.: PBW filtration and bases for irreducible modules in type An .
Transform. Groups 16(1), 71–89 (2011)

10. Fourier, G.: PBW-degeneratedDemazuremodules and Schubert varieties for triangular elements. J. Comb.
Theory Ser. A 139, 132–152 (2016)

11. Gabriel, P.: Unzerlegbare Darstellungen. I. Manuscripta Mathematica 6, 71–103 (1972)
12. Cerulli Irelli, G., Lanini, M.: Degenerate flag varieties of type A and C are Schubert varieties. Int. Math.

Res. Notices 2015(15), 6353–6374 (2015)
13. Cerulli Irelli, G., Feigin, E., Reineke, M.: Quiver Grassmannians and degenerate flag varieties. Algebra

Num. Theory 6(1), 165–194 (2012)
14. Cerulli Irelli, G., Feigin, E., Reineke, M.: Desingularization of quiver Grassmannians for Dynkin quivers.

Adv. Math. 245, 182–207 (2013)
15. Cerulli Irelli, G., Fang, X., Feigin, E., Fourier, G., Reineke, M.: Linear degenerations of flag varieties.

Math. Z. 287(1–2), 615–654 (2017)
16. Cerulli Irelli, G., Feigin, E., Reineke, M.: Schubert quiver Grassmannians. Algebras Rep. Theory 20(1),

147–161 (2017)
17. Lorscheid, O., Weist, T.: Plücker relations for quiver Grassmannians. Algebras Rep. Theory 22(1), 211–

218 (2019)

123



Linear degenerations of flag varieties: partial flags. . . 477

18. Reineke,M.:Monomials in canonical bases of quantum groups and quadratic forms. J. PureAppl. Algebra
157(2–3), 301–309 (2001)

19. Ringel, C.M.: The Catalan combinatorics of the hereditary Artin algebras, Recent developments in rep-
resentation theory, 51–177, Contemp. Math., 673, Amer. Math. Soc., Providence, RI (2016)

20. Riordan, J.: A budget of rhyme scheme counts. Second International Conference on Combinatorial Math-
ematics (New York, 1978), pp. 455–465, Ann. New York Acad. Sci., 319, New York Acad. Sci., New
York, (1979)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123


	Linear degenerations of flag varieties: partial flags, defining equations, and group actions
	Abstract
	1 Introduction
	2 Methods from the representation theory of quivers
	2.1 Quiver representations
	2.2 Dimension estimates for certain quiver Grassmannians

	3 Flat and flat-irreducible locus
	3.1 Complements of certain open loci in the base space
	3.2 Proof of Theorem A

	4 Counting orbits in the flat irreducible locus: proof of Theorem B
	5 Homogeneous coordinate rings: flat locus
	5.1 Degenerate Plücker relations for the complete flags
	5.2 Straightening law
	5.3 Bases in the coordinate rings

	6 Flat irreducible locus: group action and line bundles
	6.1 Lie algebras and representations
	6.2 Lie groups and quiver Grassmannians

	Acknowledgements
	References




