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Abstract: Beam self-imaging in nonlinear graded-index multimode optical fibers is of interest
for many applications, such as implementing a fast saturable absorber mechanism in fiber lasers
via multimode interference. We obtain a new exact solution for the nonlinear evolution of first
and second order moments of a laser beam of arbitrary transverse shape carried by a graded-index
multimode fiber. We have experimentally directly visualized the longitudinal evolution of beam
self-imaging by means of femtosecond laser pulse propagation in both the anomalous and the
normal dispersion regime of a standard telecom graded-index multimode optical fiber. Light
scattering out of the fiber core via visible photo-luminescence emission permits us to directly
measure the self-imaging period and the beam dynamics. Spatial shift and splitting of the
self-imaging process under the action of self-focusing are also revealed.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Nonlinear multimode optical fibers (MMFs) are an emerging research field, as they permit new
ways for the control of spatial, temporal and spectral properties of ultrashort pulses of light
[1]. As a result, nonlinear MMFs are of interest for a diversity of optical technologies, e.g.,
for scaling-up the power of fiber lasers and supercontinuum light sources, for high-resolution
biomedical imaging, micromachining, and high-power beam delivery, to name a few. MMFs also
provide a simply accessible testbed for the study of complex physical phenomena [2]. Among
MMFs, graded-index fibers are of particular interest for nonlinear optics studies, since the reduced
modal dispersion leads to relatively long interaction lengths among the fiber modes, even for
pulses in the femtosecond regime [3].

Spatial self-imaging (SSI), first observed by Talbot in 1836 [4], is a peculiar property of beam
propagation in GRIN fibers. SSI leads to periodic oscillations along the fiber of the beam width
and intensity. In combination with the Kerr effect, SSI leads to a longitudinal periodic modulation
of the refractive index of the fiber core, akin to a dynamic long-period grating. As a result, as
discussed in a review paper by Agrawal [5], SSI leads to many recently discovered nonlinear
effects in GRIN MMFs, such as dispersive wave sideband series emission from multimode
femtosecond solitons [6,7], geometric parametric instability of continuous wave (CW) beams
in the normal dispersion regime [8,9], and spatial beam self-cleaning phenomena [10–12]. In
addition, SSI has been recently widely exploited for the mode-locking of fiber lasers, by means of

#398531 https://doi.org/10.1364/OE.398531
Journal © 2020 Received 27 May 2020; revised 1 Jul 2020; accepted 1 Jul 2020; published 29 Jul 2020

https://orcid.org/0000-0002-2164-4732
https://orcid.org/0000-0002-4930-2216
https://orcid.org/0000-0003-4419-6618
https://doi.org/10.1364/OA_License_v1
https://crossmark.crossref.org/dialog/?doi=10.1364/OE.398531&amp;domain=pdf&amp;date_stamp=2020-07-29


Research Article Vol. 28, No. 16 / 3 August 2020 / Optics Express 24006

multimode interference (MMI) resulting from SSI in a short piece of GRIN MMF with precisely
controlled length, sandwiched between two singlemode fibers.
Because of SSI, any input field profile is periodically reproduced at equally spaced points zs

along the GRIN fiber, such that
(βn − β1)zs = πmn, (1)

where βn and β1 are the propagation constants of higher-order modes with index n and of the
fundamental mode, respectively, and mn is an integer. As a result, any input beam shape is
reproduced at the fiber output, whenever its length is exactly equal to an integer multiple of zs.
However, unless the shape of the input beam exactly matches the fundamental mode of the fiber,
the input beam is spread in several propagating modes. As a result, the periodic reconstitution
of the initial beam shape is obtained via a superposition of modes with different propagation
constants, which affects the output beam divergence. The presence of self-imaging in a MMF
was indirectly put into evidence by Zhu et al. [13] by tuning the wavelength of the input signal,
and measuring the transmission spectrum of the MMI structure.
Nazemosadat and Mafi proposed to use intensity-dependent differential phase shift among

transverse modes, to obtain nonlinear MMI in a short length of GRIN MMF [14]. According to
their description, in a nonlinear MMF the self-imaging period should change to zI where

(βn(I) − β1(I))zI = πmn. (2)

In a realistic situation, an input laser beam coupled to a GRIN MMF excites several modes,
each of them carrying a different amount of intensity along the fiber. Therefore the simple
description of Eq. (2) should be substituted by the solution of nonlinear coupled mode equations
including self- and cross-phase modulation, as well as four-wave mixing terms [15]. Equivalently,
one may use a two-dimensional nonlinear Schrödinger equation (2D-NLSE) [10].
By sandwiching the MMF between two singlemode fibers (SMS structure), it has been

experimentally observed that nonlinear MMI acts as a fast saturable absorber (SA) mechanism
which permits to obtain mode-locking in high pulse-energy fiber lasers. Specifically, low power
signals are strongly attenuated when propagating through the SMS structure, while high intensity
pulses experience a relatively high transmission. Nonlinear MMI-based SAs permit to operate at
much higher pulse energies and peak powers than other SA mechanisms, thanks to their high
damage threshold, low cost, simple structure, and mechanical robustness. Nonlinear MMI in a
GRIN MMF also permits spectral filtering, a necessary property for fiber laser mode-locking in
the normal dispersion regime.
Several different variants of the technique of fiber laser mode-locking based on nonlinear

MMI have been demonstrated in recent years [16–24]. In order to test the nonlinear transmission
of the SMS structure, the MMF was stretched, and the SMS transmission was measured as a
function of the stretching length, for different input intensities [20]. It was found that, at relatively
high intensities, the self-imaging induced beam oscillations occur with much smaller amplitude,
and with average (i.e., over one self-imaging period) transmission that is significantly increased
(' 75%) with respect to the low intensity case (' 68%). This suggests that nonlinear mode
coupling and the resulting beam reshaping could be a mode-locking mechanism, rather than the
nonlinear variation of the self-imaging period. Indeed, experiments show that the excitation
of high-order modes (HOMs) in the GRIN fiber is a necessary condition to obtain saturable
absorber action [17,18]. A study of the impact of the GRIN core diameter (ranging from 20 to
62.5 µm) revealed that larger diameters (hence larger proportions of excited HOMs) increase
the output laser power. Another mode-locking mechanism could result from the longitudinal
translation of the self-imaging process, because of self-focusing effects in the GRIN MMF.
Already back in 1992, Karlsson et al. have theoretically studied, by means of a variational

approach (VA), the dynamics of self-imaging in a GRIN MMF under the combined action of
diffraction, nonlinearity, and parabolic index profile [25]. They derived an approximate analytical
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solution for a multimode beam, which permits to describe the evolution of the beam width, and
its longitudinal phase delay. The VA is based on the assumption that the beam keeps the initial
shape (e.g., Gaussian) along the whole propagation distance. Notable predictions of the VA
are that the SSI period zs is independent of power, whereas the amplitude of the beam intensity
and width oscillations is power-dependent. An important consequence of the invariance of zs is
that the position of GPI sidebands remains a constant, as the beam power is increased [8,26].
In this work, we advance the theory of SSI in GRIN MMFs, by deriving an exact solution for
the nonlinear evolution of first and second order moments of a laser beam of arbitrary shape.
Specifically, our theoretical analysis does not require, unlike methods based on the VA, that the
beam maintains a specific shape throughout its propagation in the MMF: it applies even to the
case of speckled beams. This permits us to confirm, in full generality, and in contrast with current
understanding of fiber laser mode-locking based on nonlinear MMI, that the SSI period does
not vary with power. Whereas the amplitude of the beam width oscillations is power-dependent,
which is still sufficient to enable a power-dependent transmission from a MMI device, in order to
act as equivalent fast SA. Remarkably, our method also permits us to derive the power threshold
for catastrophic self-focusing in a GRIN MMF for a beam of arbitrary incidence.
Although SSI is a well-known process, it remains difficult to directly prove its existence in

MMFs. Here we show that it is possible to work around this problem, by experimentally recording
the local photo-luminescence side-scattered by the GRIN MMF. A physical mechanism for light
scattering is the emission of a second harmonic (SH)wave, obtained at the core-cladding interfaces,
leading to nonlinear parametric conversion in a non-collinear geometry, i.e., by using Cherenkov
phase matching [27]. The generation of a SH is accompanied by multi-photon absorption by
defects of the Germanium-doped fiber [28], leading to wideband photo-luminescence in the blue
spectral domain. The side-scattering of blue light at the points of peak intensity provides a clear
evidence of the periodic evolution of the beam propagating in the MMF. We could highlight
these processes, we believe for the first time, by using femtosecond laser pulse excitation both in
the anomalous and in the normal dispersion regime. This permits us to obtain sufficiently high
peak intensities, in the multi-MW range, at the points of minimum beam waist of the SSI process.

2. Theory

2.1. Model

We consider beam propagation in a multimode optical fiber with a parabolic index profile. The
beam dynamics is assumed to be described by a 2D-NLSEwith an instantaneous Kerr nonlinearity
of the form

∂A
∂z
− i

1
2k0

(
∂2A
∂x2
+
∂2A
∂y2

)
+ i

k0∆
ρ2
(x2 + y2)A = i

k0n2
nco
|A|2A, (3)

where k0 = ω0nco/c is the wavenumber, ρ is the core radius, ∆ = (n2co − n2cl)/2n2co is the relative
index difference, and nco (ncl) is the refractive index of the fiber core (cladding), respectively.
Here we neglect dispersion and Raman scattering and assume that the index profile has an infinite
extent (i.e. it does not truncate when the cladding index is reached).

2.2. Moments of the beam

Now, we show that it is possible to obtain an exact, analytical solution for the moments of the
field, whose evolution is described by the 2D-NLSE (3). In particular, we derive a closed system
of equations for the various moments. The moments (see Appendix A for definitions) may
conveniently be obtained by considering them as expectation values of observables and using
operator methods from quantum mechanics. With this machinery the evolution equations for
the various moments can be found in a few lines of calculation using commutator algebra. We



Research Article Vol. 28, No. 16 / 3 August 2020 / Optics Express 24008

introduce a linear Hamiltonian operator

Ĥ =
1
2k0

(
p̂2x + p̂2y

)
+ β

(
x̂2 + ŷ2

)
− γÎ (4)

where β = k0∆/ρ2, γ = k0n2/nco, x̂ and ŷ are transverse position operators, and the z-dependent
nonlinear operator Î = |A(x, y, z)|2 is treated as a potential term that should be determined
self-consistently. Here we have also made use of the momentum operators p̂x = −i∂/∂x and
p̂y = −i∂/∂y. With this pseudo-Hamiltonian we can write Eq. (3) as

i
∂A
∂z
= ĤA. (5)

Following the procedure described in the Appendix, we find the sinusoidal solutions for the
first-order moments

〈x〉 = ax cos

(√
2β
k0

z + bx

)
, 〈y〉 = ay cos

(√
2β
k0

z + by

)
, (6)

where the oscillation period depends on the index parameters, and ax,y, bx,y are integration
constants that depend on the initial conditions. Moreover, the radial moment 〈x2+y2〉 = 〈x2〉+〈y2〉,
associated with the root mean square (RMS) width for a centered beam, satisfies the closed
equation

d2〈x2 + y2〉
dz2

=
2
k0
〈H0〉 −

8β
k0
〈x2 + y2〉. (7)

where the Hamiltonian invariant 〈H0〉 is defined in Eq. (28) of the Appendix. This equation has a
solution when 〈H0〉>0 that describes sinusoidal oscillations around a constant average value, viz.

〈x2 + y2〉(z) =
1
4β
〈H0〉 + ar cos

(√
8β
k0

z + br

)
, (8)

where ar and br are integration constants that determine the amplitude and phase of the oscillations.
These can be found from the initial beam profile entering the fiber. Whenever the input beam is
not in the process of changing, i.e. [d〈x2 + y2〉/dz]0 = 0, one obtains ar = 〈x2 + y2〉0 − 〈H0〉/4β
and br = 0 . The oscillation amplitude is consequently a function of the input beam width, while
the SSI period is determined by the fiber parameters only, and it remains equal to its linear value
zs = πρ/

√
2∆. It is also seen that the oscillation period of the first-order moments is twice that of

the RMS-width.
The first integral of Eq. (7) represents a conservation law, M2 − γk0〈x2 + y2〉〈I〉 = const.,

for the beam quality factor M2 = 〈x2 + y2〉〈p2x + p2y〉 − 1
4
(
〈xpx + pxx〉 + 〈ypy + pyy〉

)2, cf. [29].
Furthermore, assuming br = 0, we may rewrite Eq. (8) by using the beam compression parameter
(C-parameter) that was introduced by Karlsson et al. [25]

〈x2 + y2〉(z) =
〈x2 + y2〉0

2

[
(1 + C) + (1 − C) cos

(√
8β
k0

z

)]
, C =

1
2β

〈H0〉

〈x2 + y2〉0
− 1. (9)

This parameter measures the relative importance of diffractive broadening and nonlinear self-
focusing. The radial moment is seen to be stationary for C = 1, while it becomes negative for
C<0 which corresponds to the condition for collapse. The critical collapse power is reduced in
a GRIN fiber with respect to a homogeneous bulk material, because of the guiding refractive
index profile. In the latter case the Hamiltonian must be negative for collapse to occur for a beam
without an initial phase front curvature [30].
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2.3. Vortex beam

A numerical example of a propagating beam with a non-trivial beam profile is shown in Fig. 1,
together with the corresponding evolution of the associated radial moment. The normalized
simulation parameters are k0 = 1.3,∆ = 1.7, ρ = 0.8, nco = 2.0 and n2 = 1.5, and the initial
field is given by the function A = A0 sech(x/ax)sech(y/ay) sin(x)ei2tan−1(y/x) with coefficients
ax = 0.81, ay = 1.01 and A0 = 0.56 that has been shifted to the position (x0, y0) = (1.29, 2.47).
The simulated moment (red dots) is found to be in excellent agreement with the analytical
expressions that is shown as a blue curve in Fig. 1 (any discrepancy is only due to numerical
inaccuracy).

Fig. 1. Top panel: Contour slices showing simulated propagation of a complex beam with
a vortex charge. The initial beam profile has been displaced from the center of the fiber
(dashed line) and displays periodic oscillations in both position and width; Bottom panel:
Evolution of the moment corresponding to the non-centered RMS-width.

2.4. Gaussian beam

It is also evident from Eq. (8) that the constant average value for the RMS-width depends on the
Hamiltonian invariant that is determined by the initial conditions. Assuming a Gaussian initial
beam profile of the form

A(x, y, 0) = A0 exp

[
−
1
2

(
x
x0

)2
−
1
2

(
y
y0

)2]
, (10)
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the power and Hamiltonian invariants evaluate to

〈P0〉 = π |A0 |
2x0y0, 〈H0〉 =

〈P0〉

2

[
1
k0

(
1
x20
+

1
y20

)
+ 2β(x20 + y20) −

γ〈P0〉

πx0y0

]
. (11)

The RMS-width is found by calculating the power normalized radial moment
√
〈x2 + y2〉/〈P0〉 =√

(x20 + y20)/2, which reduces to the (1/e) beam width x0 = y0 for a symmetric beam. It is
seen that the magnitude of the Hamiltonian is reduced by the nonlinear term for a focusing
nonlinearity. This implies that the average value of the radial beam width will shrink as the power
is increased. In Fig. 2 we illustrate the power-induced variation of the average beam width, i.e.
w =

√
〈H0〉/4β〈P0〉, for different values of the input width x0. As can be seen, the average beam

width decreases as the power 〈P0〉 grows larger: the narrower the input beam size x0, the faster
the nonlinear decrease of the beam width with power.

Fig. 2. Variation of average beam width with power, for unchirped Gaussian initial
conditions.

When using fiber parameters from the numerical simulations reported in Ref. [10], and
assuming a fixed input beam diameter of xFWHM = 40 µm full width at half maximum (FWHM)
so that x0 = y0 = xFWHM/(2

√
log 2) = 24.0 µm, one obtains that the associated power-induced

variation of the average width for the radial moment w occurs on a GW scale (and w shrinks
down to zero for 〈P0〉 = 2.5 GW). This means that the nonlinear reduction of the Hamiltonian is
not the root cause of spatial beam cleaning. Note that, in this case, the average radial beam width
approaches the value w = 17.0 µm (c.f. core radius ρ = 26 µm) in the low power limit. This can
be compared with the radial width of the fundamental linear eigenmode solution

A(x, y, z) =
√
α

π
exp

[
−
1
2
α(x2 + y2) − i

1
k0
αz

]
, α =

√
2k0β, (12)

which has xf =
√
〈x2 + y2〉/〈P0〉 = 1/

√
α ≈ 5.76 µm or 9.59 µm FWHM (see corresponding

orange curve in Fig. 2). Note that, for an input beam perfectly matching the fundamental mode
shape, the average beam width shrinks until it reaches zero when 〈P0〉 ≈ 16.55 MW. However,
the beam will not be stationary in the GRIN profile, and oscillations of the beam width will
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cause it to collapse at a lower critical power. The moment theory is however exact under the
assumption of a non-truncated index profile, which suggests that a cleaned beam should still have
an overall RMS-width, although perhaps with a skewness, that is in agreement with the theory.

To better highlight the nonlinear dependence of the solution for the second-order radial moment
Eq. (8), we plot in Fig. 3 the input beam power 〈P0〉 dependence of the beam width oscillation
amplitude Ar = 4βar/〈H0〉, for different values of the input radial width x0. As can be seen,
if the initial width x0 = xf , the oscillation amplitude is equal to zero in the linear limit, and it
increases with power until it reaches unity for 〈P0〉 ' 8.3 MW. This means that the beam width
shrinks to zero, which corresponds to a beam collapse condition. In fact, the C-parameter

C =
1

2βk0x20y
2
0

(
1 −

γk0〈P0〉x0y0
π(x20 + y20)

)
(13)

shows that, for a symmetric Gaussian with flat initial phase, the critical collapse power 〈Pc〉 =

2π/(γk0) = λ2/(2πncon2) is independent of the beam width. For a beam with a nonvanishing
initial phase-front curvature, our approach also permits to obtain the condition for critical collapse
to occur. It is interesting to point out that the collapse power depends on the incidence angle of
the beam into the GRIN MMF. Details about the analytical description of SSI beam evolution in
the most general case are provided in the Appendix.

Fig. 3. Variation of beam oscillation amplitude with power, for unchirped Gaussian initial
conditions.

Figure 3 also shows that, in the low-power limit, the oscillation amplitude is positive (negative)
when the input beam width x0 is larger (smaller) than the width of the fundamental mode xf .
A positive (negative) value of Ar means that the beam width is decreasing (increasing) along
the fiber with respect to the input value, until it experiences a maximum beam compression
(widening), before returning back to the input width after one period. At sufficiently high powers,
self-focusing leads to a narrowing beam width in all cases.

The generality of the moments method also permits to analytically study the SSI dynamics for
beams with non-Gaussian transverse profile. We have thus generalized the analytical description
to the case of a super-Gaussian initial beam profile: corresponding results are reported in
Appendix A.2.
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3. Experiments

In order to confirm the theoretically predicted invariance of the SSI spatial period zs with
respect to the input power, we carried out an experimental study of the dynamics of SSI in the
nonlinear regime of pulse propagation in a GRIN MMF. By using femtosecond input pulses
with peak powers up to the MW power range, we could directly visualize the high intensity
points inside the MMF, thanks to the associated side scattering of visible higher-harmonics and
photo-luminescence light.

3.1. Anomalous dispersion

We performed two sets of measurements, with two different laser sources. First, we used an
ultra-short femtosecond laser system, involving a hybrid optical parametric amplifier (OPA) of
white-light continuum, pumped by a femtosecond Yb-based laser, generating 70-120 fs pulses at
1550 nm, with 25 kHz repetition rate. The input laser beam was focused by a 30 mm focal lens,
corresponding to an input beam diameter (1/e2) of 18 µm, into a 5 cm long multimode standard
50/125 GRIN fiber, with relative index difference ∆ = 0.0102.
Figures 4 and 5 reveal the presence of multiple peaks of scattered light, corresponding to

the nodes of maximum beam compression in the course of SSI, and highest intensities. This
permits us to directly monitor, as shown in Fig. 5, the dependence of SSI as a function of the
input peak power of the injected pulses. Here the input peak power that is coupled into the MMF
is increased from 2.3 MW up to 7 MW.

Fig. 4. Side scattering imaging of periodic self-imaging in 5 cm of GRIN MMF. From the
top, we show the digital microscope picture, photo-luminescence at ∼7 MW of input peak
power of 120 fs pulses, the side scattering of blue/violet radiation, and its zoom.

Figure 6(a) shows the multiple peaks of scattered light, as well as the spectra at the fiber output
for different input peak powers (see Fig. 6(b)), exhibiting a series of dispersive wave sidebands
generated from soliton oscillations [6,7], and the spectrum of side-scattered light (Fig. 6(c)). In
all spectra it is possible to note the presence of the emission of a broadband photo-luminescence,
with a peak around 360 nm.

Figure 4 shows, in the top panel, the picture taken by a digital microscope. The second panel
from the top shows that blue photo-luminescence is periodically scattered from the side of the
MMF. The bottom two panels in Fig. 4 show that green light is also scattered by the defects of
the fiber cladding.
As can be seen in Fig. 5, the SSI period remains unchanged, and remarkably close to the

theoretically predicted value (i.e., zs = πρ/
√
2∆ ≈ 550 µm). The input pulses generate high-order
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Fig. 5. Experimental measurements of periodic SSI in 5 cm of GRINMMF, for five different
input peak power values of 120 fs pulses. Top panels: digital microscope pictures. Bottom
panels: relative 1D plot of the photo-luminescence intensity.

Fig. 6. Experimental results on non-collinear frequency conversion obtained in a 50/125
GRIN fiber by using a 70 fs laser source at 1550 nm; (a) side image of the fiber, showing
periodic emission of blue light; (b) output spectra for several input peak powers; (c) spectrum
of side-scattered light.

multimode solitons in the fiber. These solitons undergo, after a propagation distance of about 10
cm, fission into several fundamental solitons under the action of Raman soliton self-frequency
shift and higher-order dispersion. Here we limit ourselves to consider the regime of multisoliton
propagation over the first few cm of GRIN MMF, that is before that soliton fission takes place.
The dynamics of multimode Raman solitons generated by the fission process will be discussed
in a separate publication. However, it is important to point out that the observed processes of
multiphoton absorption-induced side-scattering of visible photo-luminescence lead to significant
nonlinear losses, which induce intensity clamping at the output of the GRIN MMF.
The invariance of the SSI period with power is well illustrated by Fig. 7(a), that shows the

input power dependence of the spatial period of the scattered photo-luminescence. These results
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confirm that the SSI period remains a constant (within experimental measurement errors) even at
the highest input peak powers.

Fig. 7. Experimental measurements of power dependence of (a) self-imaging period; (b)
luminescence transverse diameter and (c) axial dimension at FWHM: vertical lines represent
the variance of the measurements for each input power.

We also estimated the power-dependence of the beam size at the points of maximum beam
compression, corresponding to the bright spots in Fig. 5. Figure 7(b) reports the diameter of the
luminescence signal in the transverse section of the fiber both at FWHM and at 1/e: as can be
seen the beam size does not show a significant dependence on input power, keeping a slightly
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smaller size than the 18 µm input beam diameter. This confirms the hypothesis of Section 2 that
the ansatz for the transverse mode profile is maintained along the nonlinear beam propagation.
On the other hand, Fig. 7(c) shows that the beam size at FWHM in the axial dimension exhibits a
power-dependence.
Specifically, Fig. 7(c) shows that, for input peak powers below (above) 4 MW, the beam

dimension in the axial direction increases (decreases) along the fiber. The longitudinal dependence
of the beam size in the axial direction could be related with the presence of significant nonlinear
losses, which occur over the first few centimeters of the fiber. To put into evidence the nonlinear
transmission properties of the GRIN MMF subject to input peak powers just below the critical
value for collapse, we reported in Fig. 8 the values of the fraction of input coupled energy that
emerges from different lengths of the fiber, as a function of the input peak power. As can be seen,
from 1 cm of fiber the transmission drops below 50% at the highest peak powers close to 5 MW.
Whereas for lengths above 7 cm, the transmission drops below 20% for powers approaching 3
MW. Note that the different curves for fiber lengths above 7 cm tend to overlap, indicating that
most of the nonlinear loss occurs over the first few centimeters of the fiber.

Fig. 8. Experimental measurement of nonlinear transmission, for different lengths of the
GRIN fiber. Dots: experimental points; curves are provided as a guide to the eye.

3.2. Normal dispersion

We also carried out a series of measurements in the normal dispersion regime of the fiber, by
using a fiber laser source at 1030 nm, generating 250 fs pulses with a 30 kHz repetition rate.
Here we injected the pulses in a relatively short, 1 cm section of a 50/125 µm GRIN MMF. We
obtained at the nodes (that is, at the points of minimum beam waist and maximum intensity) of
SSI a sufficient intensity to trigger, in addition to multi-photon luminescence, also non-collinear
(i.e., using Cherenkov phase matching [27]) second-harmonic generation (SHG), both of which
are scattered outside the fiber cladding (see Fig. 9). The SHG is due to the presence of a weak
quadratic nonlinearity because of the Ge doping ions.
Beyond the observation of the self-imaging periodicity by means of non-collinear frequency

conversions, we investigated possible longitudinal distortions introduced by a self-focusing
regime (see Fig. 10). By increasing the input beam power (up to 5.2 MW), and keeping the
on-axis excitation, we initiated a self-focusing propagation regime, starting from the first node of
the self-imaging process.
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Fig. 9. Experimental results on non-collinear frequency conversion obtained in a 50/125
GRIN fiber by using a 250 fs laser source at 1030 nm; (a) schematic representation of the
coupling conditions and side image of the fiber, showing periodic emission of visible light;
(b) Spectrum of the emitted light, (c) far field image of the output beam (fiber length: 1 cm,
peak power: 2 MW).

Fig. 10. Experimental side images of a 50/125 optical fiber excited by a 250 fs laser source
at 1030 nm showing the periodic self-imaging process; (a) image recorded at 2.1 MW; (b)
5.2 MW; (c) output near and far fields for an input peak power of 2.1 MW.

This spatial trapping, which resembles a Townes soliton [31], propagates over hundreds of
micrometers before recovering its diffracting nature under the effect of nonlinear losses introduced
by frequency conversions. Because of its intensity-dependent nature, this extreme event can
drastically modulate the initial mode beating, by introducing both a pulse breaking process and a
shift of the self-imaging periodicity. As a result, the intense beam of Fig. 10(b) is transformed
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in a double peak of intensity, both oscillating with the same initial period of the self-imaging
process.
As shown by Fig. 11, light scattering outside the fiber, at 1030 nm, gives again a clear

visualization of the presence of SSI, which leads to sharp intensity peaks along the periodic
evolution of the field in the GRIN MMF. The measured periodicity of the light intensity in the
fiber matches well the value obtained with experiments at 1550 nm, as well as the theoretical
value.

Fig. 11. Experimental side images of a 50/125 optical fiber excited by a 250 fs laser source
at 1030 nm for 2.1 MW of peak power; (a) axial coupling; (b) off-axis excitation.

We also investigated the case when the input beam is injected at a small angle with respect
to the axis of the fiber. In this case, as shown by the resulting series of bright spots of Fig. 11,
the beam traces out a zig-zag trajectory, as it appears to be reflected by the core-cladding index
boundary.
It is also clearly visible that the transverse dimension of the spot does not extend over all the

transverse fiber core section, but is either localized on the central part or on a side. Thus, the
longitudinal modulation imprinted on the propagating light inside the fiber is directly dependent
of the initial coupling conditions, i.e. of the combination of initially excited modes which can
self-modulate because of the mode beating and the Kerr effect, and initiate a spatial exchange of
energy between them. This mechanism is at the origin of the spatial self-cleaning effect, which
has been largely reported in the literature [10,12]. Additionally, this experiment demonstrates
that the transverse position of the nodes of the periodic beating can be transversely tuned by
means of the initial coupling conditions. This brings an additional degree of freedom to realize a
nonlinear saturable absorption mechanism, eventually favouring the emergence of a high-order
mode, in order to benefit of the higher dispersion when light is coupled back in the multimode
fiber. In this sense, temporal mode-locking on a high-order transverse mode should be possible.
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4. Conclusion

We studied the dynamics of beam self-imaging in nonlinear GRIN multimode optical fibers. We
obtained an exact solution for the first and second order moments of a laser beam, describing
both the period and the amplitude of the beam width oscillations along the fiber. The theory also
permits to analytically predict the critical power for beam critical self-focusing, or collapse. We
experimentally studied the longitudinal evolution of beam self-imaging by means of femtosecond
laser pulse propagation in both the anomalous and the normal dispersion regime of a standard
GRIN fiber. By observing light scattering out of the fiber core via visible photo-luminescence
emission and harmonic wave generation, we could directly confirm that the invariance of the
self-imaging period up to values close to beam collapse. These findings are of interest for
applications involving fiber lasers mode-locked via multimode interference, and to all-optical
beam processing with multimode fibers.

A. Appendix

Momentum operators must satisfy certain commutation relations

[x̂i, x̂j] = 0, [p̂i, p̂j] = 0, [x̂i, p̂j] = iδij, [x̂i, Î(x, y)] = 0, (14)

where i, j denotes combinations of the x, y operators, and the commutator is defined by [f̂ , ĝ] =
f̂ ĝ − ĝf̂ . We assume that ~ = 1 and that the commutators obey the standard Lie algebra

[f̂ , ĝ] = −[ĝ, f̂ ], [f̂ ,αĝ + βĥ] = α[f̂ , ĝ] + β[f̂ , ĥ], [f̂ , [ĝ, ĥ]] + [ĝ, [ĥ, f̂ ]] + [ĥ, [f̂ , ĝ]] = 0,
(15)

together with the relation [f̂ , ĝĥ] = ĝ[f̂ , ĥ] + [f̂ , ĝ]ĥ.
To derive the moment equations we make use of the fact that the integrals can be expressed as

expectation values of operators

〈q〉 =
∫

Aq̂A∗ ds, (16)

where ds = dxdy, and we omit the power normalization for simplicity. As a result, the evolution
equation for each moment are obtained from Heisenberg’s equation of motion

d〈q〉
dz
= i〈[q̂, Ĥ]〉 +

〈
∂q
∂z

〉
. (17)

Where the last term accounts for any explicit z dependence of the operator. In particular we have
that

〈x〉 =
∫

x|A|2 ds, 〈px〉 =
i
2

∫ (
∂A
∂x

A∗ − A
∂A∗

∂x

)
ds, 〈I(z)〉 =

∫
|A|4 ds, (18)

〈x2〉 =
∫

x2 |A|2 ds, 〈xpx + pxx〉 = i
∫

x
(
∂A
∂x

A∗ − A
∂A∗

∂x

)
ds, 〈p2x〉 =

∫ ����∂A
∂x

����2 ds,

(19)
and analogous for y.
The zeroth-order moment corresponding to the unity operator is a constant of motion that

expresses the conservation of power and is denoted by

〈P0〉 =

∫
|A|2 ds. (20)
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For the first-order moments we find that

d〈x〉
dz
= −

1
k0
〈px〉,

d〈px〉

dz
= 2β〈x〉, (21)

d〈y〉
dz
= −

1
k0
〈py〉,

d〈py〉

dz
= 2β〈y〉. (22)

These equations have sinusoidal solutions (see Eqs. (6)).
For the second-order moments we have that

d〈x2〉
dz
= −

1
k0
〈xpx + pxx〉,

d〈y2〉
dz
= −

1
k0
〈ypy + pyy〉, (23)

d〈p2x〉
dz
= 2β〈xpx + pxx〉 − iγ〈[p2x , I]〉,

d〈p2y〉
dz
= 2β〈ypy + pyy〉 − iγ〈[p2y , I]〉, (24)

d〈xpx + pxx〉
dz

= −
2
k0
〈p2x〉 + 4β〈x2〉 + γ〈I〉,

d〈ypy + pyy〉
dz

= −
2
k0
〈p2y〉 + 4β〈y2〉 + γ〈I〉, (25)

where we have used that 〈[xpx + pxx, I]〉 = 〈[ypy + pyy, I]〉 = i〈I〉 and it remains to evaluate the
commutators between the square momenta and Î. From the definition we have that

〈[p2x , I]〉 =
∫

∂(|A|2)
∂x

(
∂A
∂x

A∗ − A
∂A∗

∂x

)
ds, (26)

and similar for y. The commutators are related through

d〈I〉
dz
= −i

1
k0

(
〈[p2x , I]〉 + 〈[p2y , I]〉

)
. (27)

It can be verified that the proper Hamiltonian invariant

〈H0〉 =
1
k0

(
〈p2x〉 + 〈p

2
y〉

)
+ 2β

(
〈x2〉 + 〈y2〉

)
− γ〈I〉 (28)

is conserved. In addition to power and Hamiltonian, we also have conservation of angular
momentum, viz.

〈ypx − xpy〉 =
i
2

∫ [
y
(
∂A
∂x

A∗ − A
∂A∗

∂x

)
− x

(
∂A
∂y

A∗ − A
∂A∗

∂y

)]
ds. (29)

A.1. Collapse conditions

The integration constants of Eq. (8) can in general be determined from

a2r =
(
〈x2 + y2〉0 −

1
4β
〈H0〉

)2
+

k0
8β

(
d〈x2 + y2〉0

dz

)2
, (30)

tan br = −

√
k0
8β

d〈x2 + y2〉0
dz

/ (
〈x2 + y2〉0 −

1
4β
〈H0〉

)
, (31)

with the change in the radial moment for the initial beam profile given by

d〈x2 + y2〉0
dz

= −
1
k0

[
〈xpx + pxx〉0 + 〈ypy + pyy〉0

]
. (32)
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If the beam has a nonvanishing initial phase-front curvature, br , 0, we may rewrite Eq. (9) as

〈x2 + y2〉(z) =
〈x2 + y2〉0
1 + cos br

[
(1 + C cos br) + (1 − C) cos

(√
8β
k0

z + br

)]
, (33)

where the C-parameter satisfies

C =
1
4β

〈H0〉

〈x2 + y2〉0
−

1
〈x2 + y2〉0

√(
〈x2 + y2〉0 −

1
4β
〈H0〉

)2
+

k0
8β

(
d〈x2 + y2〉0

dz

)2
, (34)

and is defined by the condition that the minimum beam width is 〈x2+ y2〉 = C〈x2+ y2〉0. Collapse
will therefore occur at some point along the beam trajectory when C ≤ 0.

A.2. Supergaussian beam profile

To investigate the influence of the beam shape on the dynamics we also consider a supergaussian
beam profile

A(x, y, 0) = A0 exp

[
−
1
2

(
x
x0

)4
−
1
2

(
y
y0

)4]
. (35)

The power and Hamiltonian invariants for this case are obtain as

〈P0〉 =
Γ2(1/4)

4
|A0 |

2x0y0, 〈H0〉 =
4π〈P0〉
√
2Γ2(1/4)

[
3
2k0

(
1
x20
+

1
y20

)
+ β(x20 + y20) −

γ〈P0〉

πx0y0

]
,

(36)
while the beam RMS-width and C-parameter becomes

xRMS =
21/4

Γ(1/4)

√
π(x20 + y20), C =

3
2βk0x20y

2
0

(
1 −

2γk0〈P0〉x0y0
3π(x20 + y20)

)
. (37)

It is seen that the critical collapse power 〈Pc〉 = 3π/(γk0) is independent of the beam width also
for a symmetric supergaussian beam, and is a factor 3/2 larger than in the case of an ordinary
Gaussian beam.
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