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afDipartimento di Fisica, Università di Bologna, Bologna I-40127 - Italy

Abstract

CUORE-0 is an experiment built to test and demonstrate the performance of the upcoming CUORE experiment. Com-

posed of 52 TeO2 bolometers of 750 g each, it is expected to reach a sensitivity to the 0νββ half-life of 130Te around

3 · 1024 y in one year of live time. We present the first data, corresponding to an exposure of 7.1 kg y. An analysis of

the background indicates that the CUORE sensitivity goal is within reach, validating our techniques to reduce the α
radioactivity of the detector.

c© 2014 Published by Elsevier Ltd.
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1. Introduction

Double beta decay experiments con provide a powerful probe into the non-conservation of lepton num-

ber. In this decay process, a parent nucleus converts two neutrons simultaneously into two protons. In the

lepton number conserving version of this decay (2νββ), the nucleus emits two β particles and two electron

anti-neutrinos. This process has been observed in a handful of nuclei. However, in neutrinoless double

beta decay (0νββ), the nucleus produces only the two βs, thus violating lepton number by two. Though this

process has never been observed, its discovery would reveal neutrinos to be unlike any other elementary

fermion in the standard model, would establish neutrinos to be their own anti-particles and could even shed

light on the origins of the matter-antimatter asymmetry of the Universe (for a recent review see for example

[1] and references therein).

The CUORE experiment [2, 3] will search for 0νββ decay in 130Te. CUORE itself is an array of 988
natTeO2 cryogenic bolometers that act as both the source and detector of the decay. The bolometers each

weigh 750 g and are arranged into 19 towers of 52 crystals each. The total active mass is 741 kg, 206 kg

of which is 130Te (34.2% natural abundance [4] in tellurium). The bolometers are operated at a temperature

of about 10 mK which allows it to achieve an energy resolution of about 5 keV FWHM at the Q-value of

the decay, 2528 keV [5]. CUORE is currently under construction at Laboratory Nazionali del Gran Sasso

(LNGS) in Italy, and is anticipated to start data taking in 2015.

The technology of CUORE was proven by its predecessor, Cuoricino, a 40 kg tower of 62 bolometers

that, with 19.75 kg y of 130Te exposure, set a lower limit to the decay half-life of 2.8 ·1024 y at 90% C.L. [6].

The analysis of that data, combined with Monte Carlo simulations, predicted that the sensitivity of CUORE

would be limited by the background from α particles, which are generated by the natural radioactivity of

the detector structure. To improve the background for CUORE, we implemented a set of strict protocols to

limit the radioactive contamination of the detector materials during production and assembly.

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license 
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
Selection and peer review is the responsibility of the Conference lead organizers, Frank Avignone, University of South Carolina, 
and Wick Haxton, University of California, Berkeley, and Lawrence Berkeley Laboratory
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The first tower produced on the CUORE assembly line and operated separately from the other 19 towers

is called CUORE-0 [7], and has been taking data since March 2013. It is both an experiment which is

expected to surpass the Cuoricino sensitivity in one year of live time, and also a technical prototype for

CUORE. The data from CUORE-0 is being used to develop and test the detector monitoring tools, the data-

acquisition system and the data analysis software for the larger CUORE. In this paper we present the first

7.1 kg y of TeO2 exposure (2.0 kg y of 130Te) from CUORE-0 and a successful validation of the background

reduction techniques developed for CUORE.

2. Detector

CUORE-0 is a CUORE style tower of 52 TeO2 crystals, for a total TeO2 mass of 39 kg, 11 kg of which

is 130Te. The crystals are arranged in 13 floors of 4 crystals each. Each crystal is operated as an indepen-

dent bolometer, using a Neutron Transmutation Doped (NTD) germanium thermistor [8] as a temperature

sensor. The crystals are thermally linked to a copper frame through small teflon (PTFE) supports (Fig. 1).

Additionally, one silicon Joule heater is attached to each crystal for offline correction of drifts in the gain

caused by temperature variations [9].

Fig. 1. The CUORE-0

detector.

To minimize background intrinsic to the crystals, we developed a radiopurity

control protocol in collaboration with the crystal grower, the Shanghai Institute

of Ceramics [10]. After production, the crystals were transported to LNGS at

sea level to minimize the cosmogenic activation. We performed dedicated cryo-

genic tests to measure the bulk and surface contamination rates and determined

them to be less than 6.7 · 10−7 Bq/kg and 8.9 · 10−9 Bq/cm2 at 90% C.L. in 238U,

respectively, and less than 8.4 · 10−7 Bq/kg and 2.0 · 10−9 Bq/cm2 in 232Th, re-

spectively [11]. To mitigate the surface contamination of the copper structure,

we tested three surface treatment techniques [12], and chose a series of tumbling,

electropolishing, chemical etching, and magnetron plasma etching for the surface

treatment. The upper limit of the surface contamination of the cleaned copper

was measured in R&D bolometers to be 1.3 · 10−7 Bq/cm2 at 90% C.L. in both
238U and 232Th [12].

The detector was assembled underground, in a dedicated clean room built in

the CUORE hut. All the steps were performed in glove boxes under nitrogen

atmosphere to minimize the radon contamination from contact with air. Only

certified tools and materials were used to attach thermistors and heaters to the

crystals, assemble the crystals in the copper frame, and electrically connect the

sensors to the readout cables [13]. After construction, one thermistor and one

heater had non working electrical connections. After the first cool down, we

found that we had lost one more heater. In the two channels without heaters the

drifts in thermal gain cannot be corrected in the offline data analysis processing,

while the channel without a working thermistor is lost completely.

CUORE-0 is operated in the same cryostat that previously hosted Cuori-

cino, in the Hall A of LNGS [14]. CUORE-0 maintains an operating temper-

ature of about 13-15 mK. At this temperature the typical signal amplitude is

10 − 20 μK/MeV, with typical rise and decay times of 50 and 250 ms, respec-

tively. The analog read-out of the thermistor is performed using the same elec-

tronics as was used for Cuoricino [15]. The signals are first amplified, filtered

by 6-pole active Bessel filter [16] and then fed into an 18-bit National Instrument

PXI analog-to-digital converter (ADC). The filter cutoff and the ADC sampling

frequency are set to 12 Hz and 125 Hz, respectively. The data are then processed

with Apollo, the data acquisition software developed for CUORE. The trigger is

software generated on each bolometer. When it fires, one second of data preceding the trigger and the 4

seconds following are saved to disk. Additionally, the waveforms from the bolometers on the same floor

and on the floors above and below the triggering bolometer are acquired, irrespective of their own trigger.
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This feature, not used in the analysis presented here, has been implemented to perform an accurate analysis

of multi-site events.

A CUORE-0 “dataset” consists of 3-4 weeks of low background data taking preceded and followed by

2-3 days of calibration runs. To calibrate the detector, we insert two thoriated tungsten wires between the

outer vacuum chamber of the cryostat and the external lead shield. During the offline analysis, we calibrate

each channel separately over the energy range 511 to 2615 keV using the γ lines from the daughter nuclei

of 232Th.

3. Data analysis

The raw data from the bolometers are processed offline with Diana, the analysis software suite devel-

oped for CUORE. The data reconstruction steps are the same as in the Cuoricino analysis [6], but we have

improved the automation and robustness of many of the algorithms in anticipation of scaling to CUORE.

The offline data production begins by evaluating the signal amplitude of each waveform using the

matched filter described in [17, 18]. Each channel has its own signal template, which is built from an

average of 2615 keV γ events in the calibration runs, and its noise spectral density, which is built from

randomly triggered events collected during the low background runs. The analysis software also uses the

filtered waveforms to evaluate shape parameters on the rising and falling edges of each event, which are

later used for event rejection.

The next step of the data production is to stabilize the gain drifts caused by thermal variations using the

Joule heater attached to each crystal. The heater injects fixed amplitude pulses of about 3 MeV pulses every

300 s on each bolometer, which provide a measure of the gain dependence on temperature. After stabilizing

all events in the dataset, we fit the calibration peaks to a 3rd order polynomial with zero intercept for each

channel, and apply this calibration function to all of the events in the low background data. The final step of

the data production, is to evaluate the time coincidences between events on different crystals which are later

used in the anti-coincident analysis.

The first step in the analysis procedure is to filter the processed data through a series of quality cuts.

First, we remove noisy periods on each channel caused by temperature or electronic instabilities. We use

the evaluated pulse shape parameters to remove pile-up and “noise-like” events. Since the majority of 0νββ
events are expected to be fully contained in a single crystal, we select only single crystal events by applying

a 200 ms anti-coincidence window around each event.

We evaluate all cut efficiencies on the 2615 keV 208Tl γ line, except for the anti-coincidence cut, for

which we use the 1461 keV γ line from 40K. The overall quality cut efficiency is estimated to be 92.9 ±
1.8%. Since we are considering only single crystal events, we include the containment efficiency which

was evaluated using Monte Carlo to be 87.4 ± 1.1% [6]. And finally, we include the trigger efficiency

which is measured on heater events to be 99.00 ± 0.01%. The overall detection efficiency in this analysis is

80.4 ± 1.9%. This is comparable to the Cuoricino detection efficiency of 82.8 ± 1.1%.

For now, the 0νββ ROI is kept blinded using a procedure of “data salting”. We randomly choose events

from the 2615 keV line and move them to the ROI and vise-versa. Since there are more events in the

2615 keV peak than the ROI, this process produces a false peak in the ROI. The fraction of events that

are moved are in the range 1 − 3%, but the exact value is also kept blinded. The true energy of an event

is encrypted with a public RSA key and stored. The associated private key is available to only a few

collaborators and will be distributed for the unblinding. The advantage of this blinding procedure is that it

preserves the energy spectrum in the ROI, and allows one to test the fitting algorithms that will be used after

unblinding.

4. Results

Figure 2 (left) shows the acquired calibration spectrum from the thoriated tungsten source and the low

background spectrum corresponding to an exposure of 7.1 kg y (2.0 kg y of 130Te). In the low background

spectrum, the peaks from 208Tl,40K and 60Co are attributed to contamination in the cryostat, while the peaks
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Fig. 2. Left: calibration and background spectra from threshold to 2.7 MeV. The peaks labeled in the background are due to γs from

(1) e+e− annihilation, (2) 214Bi, (3) 40K, (4) 208Tl, (5) 60Co and (6) 228Ac. Right: α continuum background compared to Cuoricino.

The peak at 3.2 MeV is due to 190Pt contamination in the crystals.
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from 214Bi are attributed to 222Rn in the air around the cryostat during the initial runs. We began purging the

space between the detector and the external lead shield with nitrogen gas, and observed that the peaks were

reduced by more than a factor of 5. The energy resolution is evaluated on the low background spectrum,

and found to be 5.7 keV FWHM at 2615 keV.

Figure 2 (right) shows the background from the 0νββ region up into the α region. The peak between

3.1 and 3.4 MeV is due to 190Pt contamination internal to the crystal. The continuum from 2.7 to 3.9 MeV,

excluding the 190Pt peak, is attributed to degraded α particles that deposit only a fraction of their energy

in the crystal and the rest in inactive materials. This α continuum extends down into the ROI and was a

significant background for Cuoricino, 0.110 ± 0.001 counts/(keV kg y). The α background in CUORE-0

is measured to be 0.019 ± 0.002 counts/(keV kg y). This factor of 6 reduction from Cuoricino proves the

success of the radiopurity protocols that were implemented for the CUORE production and assembly.

We show the energy spectrum in the 0νββ ROI in Fig 3 (left). The false peak produced by the data

salting is clearly evident. The fit consists of a flat background with two gaussians, one for the 2506 keV
60Co sum peak and one for the 2528 keV 0νββ peak. The peak centers are fixed to the nominal decay

energies and the FWHM is fixed to 5.7 keV. The flat background rate in the ROI is measured to be 0.071 ±
0.011 counts/(keV kg y). The excess over the α background stated above is attributed to scattered 2615 keV

γs originating from the cryostat. This excess is consistent with the γ rate similarly observed in Cuoricino,

which was run in the same cryostat.
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5. Conclusions and perspectives

With an isotope mass of 11 kg, a background index of 0.071 ± 0.011 counts/(keV kg y) and an energy

resolution of 5.7 keV FWHM, CUORE-0 is the most sensitive experiment searching for the 0νββ of 130Te.

It is expected to surpass the Cuoricino sensitivity in about 1 year of live time (Fig. 3).

The background in CUORE-0 is now dominated by γs from the cryostat. The measured α background

index of 0.019 ± 0.002 counts/(keV kg y) validates the background reduction techniques developed for

CUORE. Projecting the observed background to CUORE, where the cryostat contaminations are expected

to be negligible, the target background index of 0.01 counts/(keV kg y) in the ROI seems highly achiev-

able. With this background CUORE is expected to achieve a sensitivity to the 0νββ half-life of 130Te of

1 · 1026 y [19].
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